PROJECTIVE REPRESENTATIONS OF GROUPS
USING HILBERT RIGHT C*MODULES
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The projective representation of groups was introduced in 1904 by Issai Schur in
his paper [6]. It differs from the normal representation of groups (introduced by
his tutor Ferdinand Georg Frobenius at the suggestion of Richard Dedekind) by
a twisting factor, which we call Schur function in this paper and which is called
sometimes multipliers or normalized factor set in the literature (other names
are also used). It starts with a group 7" and a Schur function f for 7. This
is a scalar valued function on T x T satisfying the conditions f(1,1) = 1 and
[f(s,t)] =1, f(r,s)f(rs,t) = f(r,st)f(s,t) for all r,s,t € T. The projective
representation of T twisted by f is a unital C*-subalgebra of the C*-algebra
L(I*(T)) of operators on the Hilbert space 1?(T). This representation can be
used in order to construct many examples of C*-algebras (see e.g. [I, Chapter
7]). By replacing the scalars R or C with an arbitrary unital (real or complex)
C*-algebra E, the field of applications is enhanced in an essential way. In this
case, 1?(T) is replaced by the Hilbert right E-module () E ~ E ® [*(T) and

teT
L(I*(T)) is replaced by Lg(E ® I*(T)), the C*-algebra of adjointable operators
of L(E ® I*(T)). The projective representation of groups, which we present
in this paper, has some similarities with the construction of cross products with
discrete groups. It opens the way to create many K-theories. In a first section, we
introduce some results which are needed for this construction, which is developed
in the second section. In the third section, we present examples of C*-algebras
obtained by this method. Examples of a special kind (the Clifford algebras) are
presented in the last section.
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0. NOTATION AND TERMINOLOGY

Throughout this paper, we use the following notation: T is a group,
1 is its neutral element, M := (*(T), 1p := idx := identity map of M, E
is a unital C*-algebra (resp. a W*-algebra), 1p is its unit, E denotes the
set E endowed with its canonical structure of a Hilbert right E-module (]I}
Proposition 5.6.1.5]),
9 v 9 W
L:=FoM~ () FE, (resp.L:=EM=~ (Q E)
teT teT
([3, Proposition 2.1}, (resp. [3, Corollary 2.2])). In some examples, in which T’
is additive, 1 will be replaced by 0.
The map

9

is an isomorphism of C*-algebras with inverse
E—Lg(E), z+—x- .

We identify E with £ E(E) using these isomorphisms.

In general, we use the notation of [I]. For tensor products of C*-algebras
we use [§], for W*-tensor products of W*-algebras we use [7], for tensor prod-
ucts of Hilbert right C*-modules we use [5], and for the exterior W*-tensor
products of selfdual Hilbert right W*-modules we use [2] and [3].

In the sequel, we give a list of notations used in this paper.
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1) K denotes the field of real numbers (:= R) or the field of complex
numbers (:= C). In general, the C*-algebras will be complex or real. H
denotes the field of quaternions, N denotes the set of natural numbers (0 ¢ N),
and for every n € NU {0} we put

Ny ={meN|m<n}.
Z denotes the group of integers and for n € N we put Z,, :=Z /(nZ).

2) For every set A, P(A) denotes the set of subsets of A, P;(A) the set
of finite subsets of A, and Card A denotes the cardinal number of A. If f is a
function defined on A and B is a subset of A then f|B denotes the restriction
of f to B.

3) If A, B are sets then AP denotes the set of maps of B in A.

4) For all i, j we denote by 6; ; Kronecker’s symbol:

s o[ 1t i=j
HOTL 00 iy

5) If A, B are topological spaces then C(A, B) denotes the set of continu-
ous maps of A into B. If A is locally compact space and E is a C*-algebra then
C(A,E) (resp. Co(A, E)) denotes the C*-algebra of continuous maps A — E,
which are bounded (resp. which converge to 0 at the infinity).

6) For every set I and for every J C I we denote by e; := 65 the
characteristic function of J, i.e. the function on I equal to 1 on J and equal
to0on I\ J. Forie I wepute; = (8;)jer € 1*(I).

7) If F is an additive group and S is a set then
F®) ::{xeFS‘ {s€S| xs#0}is finite } .

8) If E, F are vector spaces in duality then Fr denotes the vector space
FE endowed with the locally convex topology of pointwise convergence on F,
i.e. with the weak topology o(FE, F).

9) If E is a normed vector space then E’ denotes its dual and E# denotes
its unit ball:

E* :={zcE| |z <1}.
Moreover, if F is an ordered Banach space then E, denotes the convex cone
of its positive elements. If E has a unique predual (up to isomorphisms), then
we denote by F this predual and so by E} the vector space E' endowed with
the locally convex topology of pointwise convergence on FE.
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10) The expressions of the form “..C*-...(resp. ..W*-...)”, which appear
often in this paper, will be replaced by expressions of the form “...C**-...”.

11) If F is a unital C*-algebra and A is a subset of F' then we denote by
1z the unit of F', by Pr F the set of orthogonal projections of F', by
A°={zeF|lyceA=oy=yr}, ReF:={zxecF|x=2"},
and by Un F the set of unitary elements of F. If F' is a real C*-algebra then

(o]
F denotes its complexification.

12) If F is a C*-algebra then we denote for every n € N by F,,, the
C*-algebra of n x n matrices with entries in F'. If T is finite then Frr has a
corresponding signification.

13) Let F' be a C*-algebra and H, K Hilbert right F-modules. We denote
by Lr(H, K) the Banach subspace of L(H, K) of adjointable operators, by 1
the identity map H — H which belongs to
Lp(H):=Lp(H,H) .
For (¢,m) € H x K we put

n{-1&):H—K, (—n(C[¢)

and denote by Kr(H) the closed vector subspace of Lr(H) generated by
{n(-1€) 1 &neH}

14)“ Let F be a W*-algebra and H, K Hilbert right F-modules. We put
fora € F and (¢,n) € H x K,

—_—~—

(@,8): H—K, (—((¢[§),a),

(a,&n): Lr(H,K) — K, ur— ((u€]n),a)
and denote by H the closed vector subspace of the dual H' of H generated by

{@8|ach cen}
and by H the closed vector subspace of Lp(H, K)' generated by

{(ZEZ)‘ (a,g,n)eﬁxHxK}.

If H is selfdual then Ff is the predual of Lr(H) ([I, Theorem 5.6.3.5 b)]) and
H is the predual of H ([I, Proposition 5.6.3.3]). Moreover, a map defined on
F is called W*-continuous if it is continuous on Fj. If G is a W*-algebra
a C*-homomorphism ¢ : F' — G is called a W*-homomorphism if the map
¢ : Fp — G is continuous; in this case, ¢ denotes the pretranspose of .
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15) If F' is a C**-algebra and (H;);cs a family of Hilbert right F-modules
then we put

(D H,; .= { 5 S I]:Eﬂ

the family ( &; | & );c;is summable in F }

el icl
respectively
w
O H; =< €€ HHZ the family ( & | & ), is summable in Fj » .
i€l i€l

16) ©® denotes the algebraic tensor product of vector spaces.

17) If F,G are W*-algebras and H (resp. K) is a selfdual Hilbert right
F-module (resp. G-module) then we denote by H®K the W*-tensor product
of H and K, which is a selfdual Hilbert right F®G-module (|2, Definition 2.3)).

18) = denotes isomorphic.

If T is finite then (by [I, Theorem 5.6.6.1 f)])
,CE(H) = ET,T = KT,T QR FE = /CE(H) .

1. PRELIMINARIES
1.1. Schur functions

Definition 1.1.1. A Schur E-function for T is a map
f:TxXT—UnE°
such that f(1,1) = 1g and
fr,s)f(rs,t) = f(r;st)f(s,1)

for all r,s,t € T. We denote by F(T, E) the set of Schur E-functions for T’
and put

f:T —UnE, t—s f(t,t71)*,
f:TxT —UnE®, (st)— ft71 s
for every f € F(T, E).
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Schur functions are also called normalized factor set or multiplier or two-
co-cycle (for T" with values in Un E€) in the literature. We present in this
subsection only some elementary properties (which will be used in the sequel)
in order to fix the notation and the terminology. By the way, Un E° can be
replaced in this subsection by an arbitrary commutative multiplicative group.

PRrROPOSITION 1.1.2. Let f € F(T,E).
a) For everyteT,
e =fL0) =1, [t H=r0""1, f@)=F").
b) For all s,t €T,
Fs.0f ()= f(s7hst), [l )f(t) = f(st,t™!)"
Proof. a) Putting s = 1 in the equation of f we obtain
flr D) f(r,t) = f(r ) f(1,1)

SO

f(n 1) = f(17t)

f(tal):f(Lt) :f(lvl) =1g.
Putting » =t and s = ¢t~! in the equation of f we get

Fe (L) = f D).

for all r,t € T'. Hence

By the above,

f(t = fehy, F) = FEh,
b) Putting » = s™" in the equation of f, by a),
t)

f(S,t)f(S_l,St):f(S ) S ) ( ’ :f(s)*,
f(S,t)JF(S) - f(silﬂ St)*'

Putting now ¢ = s~! in the equation of f, by a) again,

Flros)f(rs,s™) = f(r, 1) f(s,s7") = f(s)",

flr9)f(s) = f(rs,s )", f(s,0)f(t) = f(st,t™)". O
Definition 1.1.3. We put

AMT,E) i={\:T —UnE°| N1) =15}

and
AT — Un E°, t—s At™h),
ON:TXT —UnE", (s,t)— AS)AE)A(st)*

for every A € A(T, E).
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ProposITION 1.1.4. a) F(T,E) is a subgroup of the commutative mul-
tiplicative group (Un E€)T*T such that f* is the inverse of f for every
feF(T,E).
b) f e F(T,E) for every f € F(T,E) and the map
F(T,E) — F(T,E), f+—f

18 an tnvolutive group automorphism.

¢) AT, E) is a subgroup of the commutative multiplicative group (Un E°)T,
0N € F(T,E) for every A € A(T, E), and the map

0:NT,E) — F(T,E), A0\
s a group homomorphism with kernel
{AeA(T,E) | \is a group homomorphism }
such that S\ = 6\ for every A € A(T, E).

Proof. a) is obvious.
b) For r,s,t € T,

~ A~

f(?”, S)f(rsvt) = f(silﬂ'il)f(til? 3717’71)

so f € F(T,E).
For f,g € F(T,E),

Hence E = fg.
f*(s7t) - f(svt)* = f(t_las_l)* = f*<t_173_1> = f*(S,t),
and therefore (f)* = I3

c) For r;s,t € T, we have:

so A € F(T,E).
For \,p € F(T,FE) and s,t € T, we have:

OA(s, t)opu(s,t) = A(s)A(H)A(st)" () () pu(st)”
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= (A (s) M) () (M) (st)" = d(Ap) (s, 1)
Therefore (0X)(0p) = d(Ap).
IN"(s,t) = N ()N (t)A(st) = (6A(s, 1)) = (6N)* (s, 1),

and hence 0A* = (6\)*. Therefore § is a group homomorphism. The other
assertions are obvious. [

PROPOSITION 1.1.5. Lett € T, m,n € Z, and f € F(T,E).
a) f(tmatn) = f(tnatm)‘

m—1 . m—1
b) m e N= f(t™ ") = (HO f(t"ﬂ,t)) (1}_[1 f(tk,t)*>.
c) We define

n—1 )
H f@, ) if neN
N:Z—UnE°, nrs{ 7
[1ft7.t) if ngN
j=1
If tP £ 1 for every p € N then
S, 8) = A(m)A(n)A(m +n)*
for all m,n € Z.

Proof. a) We may assume m € N because otherwise we can replace ¢ by
t~1. Put
Plm,n) s = f(7" ") = f(t", ™),
Q(m) : <= P(m,n) holds for all n € Z.

From
JT AT ) = AT )T ET)
it follows
P(m,n) <= P(m,n —m) <= P(m,n — km)
for all k € Z.

We prove the assertion by induction. P(m,0) follows from Proposition
a). By the above
P(1,0) < P(1,k)

for all k € Z. Thus Q(1) holds.
Assume Q(p) holds for all p € N,;,_1. Then P(m,p) holds for all p €
N;—1 U{0}. Let n € Z. There is a k € Z such that

p:=n—kmeN,_;U{0}.
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By the above P(m,n) holds. Thus Q(m) holds and this finishes the inductive
proof.

b) We prove the formula by induction with respect to m. By a), the
formula holds for m = 1. Assume the formula holds for an m € N. Since

FE™ O fE™L ) = FEm ) f(¢,67)
we get by a),
f(tm+1, tn) — f(tm, tn+1)f(t, tn)f(tm t)*

m—1
_ (H f(thrlJrj t) (H f tk *) )f(tm t)

= (H f<t"+j,t>) (H f<t’2t>*> .
7=0 k=1

Thus the formula holds also for m + 1.
c¢) If m,n € N then by b),

j=1 j=1
m—1 m—1
= FE",8) f(tkvt)*> = f@",t")
7=0 k=1

[
)
3
3
m
Z
3
\
3
-+
=
@
=
o

<

=

m—1 n n—m
A(m)A(=n)A(m —n)* = (H f(t'“,t)*> 11 f(tj,t)) ( I j,t)*>
k=1
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For all m,n € N put
R(m,n) <= f{t7",t7") = A(=m)A(—n)A(—m —n)* .
By the above and by Proposition a),b),
ADADAC2)" = £ 0F (207 = Fa ) fe, 62 = fiet e,
so R(1,1) holds. Let now m,n € N and assume R(m,n) holds. Then
A=m)A(=n — DAX(=m —n — 1)*

n+1 m-+n-+1

=TI (TTre0 ) [ TT re o
j=1 j=1 j=1

= fET LT = fT e,
so R(m,n) = R(m,n+1).
By symmetry and a), R(m,n) holds for all m,n e N. [
COROLLARY 1.1.6. The map
ANZ,E) — F(Z,E), X+ A
1 a surjective group homomorphism with kernel
{ANEAZ,E) | n€eZ = A(n)=A1)"} .

Proof. By Proposition ¢), only the surjectivity of the above map has
to be proved and this follows from Proposition c). O

1.2. E-C*-algebras

By replacing the scalars with the unital C*-algebra E we restrict the
category of C*-algebras to the subcategory of those C*-algebras which are
connected in a certain way with E. The category of unital C*-algebras is
replaced by the category of E-C*-algebras, while the general category of C*-
algebras is replaced by the category of adapted E-modules.

Definition 1.2.1. We call in this paper an F-module a C*-algebra F
endowed with the bilinear maps

ExF—F, (a,z)— az,

FxE-—F, (z,0)— z«a
such that for all , 8 € E and =,y € F,

(aB)z = a(fz), a(zf) = (ax)f, x(af) = (za)b,
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a(zy) = (az)y, (zy)a=z(ya), o€ E°= azr = za,
(ax)* =z*a*, (za)* =a*2*, lpzr=2lp=ur.

If F, G are E-modules then a C*-homomorphism ¢ : F — G is called E-linear
if for all (a,z) € E x F,

plaz) = a(pz),  p(za) = (pz)a.
For all (a,x) € E X F,
2 2 12 2 2112
o] = [lz"a"az| < ||z [lell®,  [lzall” = la"z za| < [af |||
SO
loz|| < laf ], fzall < {l] {loff-

Definition 1.2.2. An E-C**-algebra is a unital C**-algebra F' for which
E is a canonical unital C**-subalgebra such that E° defined with respect to F
coincides with E°¢ defined with respect to F', i.e. for every z € F, if zy = yx
for all y € E then xy = yx for all y € F. Every closed ideal of an E-C*-algebra
is canonically an E-module.

Let F,G be E-C**-algebras. A map ¢ : F — G is called an E-C**-
homomorphism if it is an E-linear C**-homomorphism. If in addition ¢ is
a C*-isomorphism then we say that ¢ is an F-C*-isomorphism and we use
in this case the notation ~p. A C**-subalgebra Fy of F is called E-C**-
subalgebra of F' if E C Fj.

With the notation of the above Definition (o — pa)px = 0 for all & € E
and x € F'. Thus ¢ is unital iff pa = « for every a € E. The example

K—KxK, z+—(z,0)

shows that an F-C*-homomorphism need not be unital.
IfweputT:={2z€C| |z|=1}, E:=C(T,C), and

z:T—C, z+—2z

and if we denote by A the Lebesgue measure on T then L*®°()) is an E-C*-

algebra, + € Un FE, and z is homotopic to 1 in Un L*(A) but not in
UnC(T,C).

Definition 1.2.3. We denote by € (resp. by €L) the category of E-C*-
algebras for which the morphisms are the E-C*-homomorphisms (resp. the
unital E-C*-homomorphisms).

PROPOSITION 1.2.4. Let F' be an E-module.

a) We denote by F the vector space E x F endowed with the bilinear map
(EXF)x(ExF)— ExF,  ((a,),(B,y)) — (af, oy + x8 + zy)
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and with the conjugate linear map
ExF—ExF, (ax)— (a* z%).
F is an involutive unital algebra with (1g,0) as unit.
b) The maps

m:F—FE, (a,z)— a,

M E—F, a—(a,0),

1:F—F, z+—(0,2)
are involutive algebra homomorphisms such that m o X is the identity
map of E, X\ and v are injective, and A and w are unital. If there is
a norm on F with respect to which it is a C*-algebra (in which case such
a norm is unique), then we call F' adapted. We denote by Mg the
category of adapted E-modules for which the morphism are the E-linear
C*-homomorphisms.

If F is adapted then F is an E-C*-algebra by using canonically the in-
jection A and for allaa € E and x € F,

lafl < (e )| <l + [l (0, 2) ]| = [l]| < 2][[(ev, 2],
10, 0)(0, 2)[| < lleel[ [l (10, 2) (e, O} < ]| ||} -
In particular, F (identified with (F')) is a closed ideal of F'.

If E and F are C*-subalgebras of a C*-algebra G in such a way that the
structure of E-module of F' is inherited from G then
0:F—ExG, (wz)— (a,a+2)

is an injective involutive algebra homomorphism, ¢(F') is closed, F is
adapted, and for all o € E and x € F,

(. 2)l gup = sup{llall, [o+ 2]} .

In particular, every closed ideal of an E-C*-algebra is adapted and Cg is
a full subcategory of M.

A closed ideal G of an adapted E-module F, which is at the same time
an E-submodule of F, is adapted.

If F is unital then it is adapted and

F— Ry, (a,z)— sup{|la|,||alpr + z|}

is the C*-norm of F.
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g) If
lim ||ay — yal =0
Y, 5

for all a € E,, where § denotes the canonical approrimate unit of I,
then F is adapted and

F— Ry, (a,z)+—> sup {HQH , limsup ||ay + x]}
Y, 5

is the C*-norm of F. In particular F is adapted if E is commutative.
h) If F is an adapted E-module then (with the notation of b))
0—F -5 FYE—0
s a split exact sequence in the category M.
Proof. a) and b) are easy to see.
¢) Since A and ¢ are injective and
(o, x) = a, (o, ) = (,0) + (0, ) ,

(@,0)(0,2) = (0,0z),  (0,2)(e,0) = (0,z0)
we get the first and the last two inequalities as well as the identity ||(0,z)|| =
lz||. It follows

100, 2) [} < [[(ex, )| + [[ (v, )| = [[(ex, )| + [[ A (e, 2)

< l(e, 2)[| + [[(e, 2) || = 2 [ (e, 2)]| -
d) It is easy to see that ¢ is an injective involutive algebra homomorphism.

Let (a,z) € o(F). There are sequences (o, )neny and (zp)neny in F and F,
respectively, such that

lim (ap, o + 2p) = (o, ) .
n—oo

It follows

a=limaoa, €E, z—a=limz,€F, (v,z)=p(a,z—a)colF).
n—oo n—oo
Thus (F) is closed, which proves the assertion by pulling back the norm of
E xG.

e) By c), F is a closed ideal of F so G is a closed ideal of F' (use an
approximate unit of F'). Since G is an E-submodule of F' its structure of
FE-module is inherited from F. By d), G is adapted.

f) The map

F—ExF, (a,z)— (o,alp+1)
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is an isomorphism of involutive algebras and so we can pull back the norm of
ExF.
g) It is easy to see that the above map is a norm. Since

1
sup{flall, 5 Iz} < [[(e, 2)|| < [laf| + ]

for all (a,r) € E x F, F endowed with this norm is complete. For (a,z) €
ExF,
(o, )" (o, ) = (o, + 2" + 2™x)
(@, 2)* (@, 2)]| = sup{]lo?, Tmsup |a*ay + a*z + z*a + 2z}
v,
For y € F#,

H(ay% + x)*(ay% +z) - (Fay+ "z + 2 a+ x*x)H

1 1
<|lyza'a —a ay:?

1 1
+ Hy?a*x — oz ‘ + ’ rray? — x*a”

1 1
lirg H(ay5 +2) (w2 + ) — (aFay + oz + "o+ x*x)H =0.
y’

Since the map Fy — Fy, y — y% maps § into itself and
lay + z]* = [lya*ay + yo'z + z*ay + z*z||

we have by the above,

2 2 1. 1 2
(@) = sup < flall*, limsup |lay? +
Y, 8
= sup {||a||2 , lim sup H(ay% + m)*(ay% + a:)H}
Y, 8
= sup{||a|?, limsup [la*ay + oz + z*a + 2*z||} = |[(a, 2)* (@, 2)||.
Y,
Thus the above norm is a C*-norm and F' is adapted.
h) ¢ is an injective E-C*-homomorphism and its image is equal to Ker .

O]

COROLLARY 1.2.5. Let F' an E-module, G a C*-algebra, and ®, the spa-
tial tensor product.

a) F ®y, G is in a natural way an E-module the multiplication being given
by
Wz ®y) = (0x)®y, (r&Y)a = (z0) Oy
foralae E,z € F, andy € G.
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b) If F is an E-C*-algebra and G is unital then the map
E—F®;,G ar—a®lg
s an injective C*-homomorphism. In particular, the E-module F @, G
is an E-C*-algebra.
c) If F is an adapted E-module then the E-module F ®, G is adapted and

(e, 2)[| = sup{|la], [lov + 2|}
for all (o, 2) € E x (F ®, G).

d) If F is an adapted E-module and G := Cy(Q2) for a locally compact space
Q then Cy(2, F) is adapted and

[(ev, 2)[| = sup{l[e]|, laeq + 2|}
for all (o,x) € E x Co(Q2, F).
Proof. a) and b) are easy to see.

¢) If G denotes the unitization of G then by b), F®,G is an E-C*-algebra
and F ®, G is a closed ideal of it, so the assertion follows from Proposition

D).
d) follows from c). O

PROPOSITION 1.2.6. a) If F,G are E-modules and ¢ : F — G is an E-
linear C*-homomorphism then the map

@:F—>G‘, (a,z) — (o, o)

s an involutive unital algebra homomorphism, injective or surjective if ¢
is so. If F'= G and if ¢ is the identity map then ¢ is also the identity
map.

b) Let Fy, Fy, F3 be E-modules and let ¢ : F1 — Fy and ¢ : Fy — F3 be
—~ = -
E-linear C*-homomorphisms. Then Y op =1 op. [

PROPOSITION 1.2.7. Let G be an E-module, F' an E-submodule of G
which is at the same time an ideal of G, and ¢ : G — G/F the quotient map.

a) G/F has a natural structure of E-module and ¢ is E-linear.

b) If G is adapted then G/F is also adapted. Moreover if ¥ : G — G/F
denotes the quotient map (where F' is identified to {(0,z)| x € F'}) then

~ = N
there is an E-C*-isomorphism 6 : G/F — G/F such that ¢ = 0 o .
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Proof. a) is easy to see.

b) Let (a, 2) € ’(-J//? and let x,y 67,01 (2). Then ¢(a,z) = Y(a,y) and we
put O(a, z) := (a, z). Tt is straightforward to show that # is an isomorphism
of involutive algebras. By pulling back the norm of G /F with respect to 6§ we
see that G/F is adapted. [

LEMMA 1.2.8. Let {(F})ier, (@ij)ijer)} be an inductive system in the cat-
egory of C*-algebras, {F, (pi)icr} its inductive limit, G a C*-algebra, for ev-
ery i € I, ¢ : F; — G a C*homomorphism such that 1; o p;; = ; for
all i,5 € I,i < j, and b : F — G the resulting C*-homomorphism. If
Ker; C Ker g; for every i € I then ¥ is injective.

Proof. Let ¢ € 1. Since Kery; C Ker1; is obvious, we have Ker ¢; =

Keri;. Let p: F; — F;/Ker; be the quotient map and

¢ Fi/Keryy — F, Wi F/Keri; — G
the injective C*-homomorphisms with

pi=giop,  Yi=1jop.
Then
Yiop=ri=1op=1opiop.

For z € F;, since ¢} and ¢} are norm-preserving,

lpz|| = [[¢ipz]| = [[veipz|| < ||ipx|| = llpz]

lppsz|| = |[veipz|| = ||eipz| = llps] -
Thus v preserves the norms on U;cr;(F;). Since this set is dense in F, 1) is
injective. [

PROPOSITION 1.2.9. Let {(F})ier, (¢ij)ijer} be an inductive system in
the category Mg and let (F, (pi)icr) be its inductive limit in the category of

E-modules (Proposition c)).
a) F is adapted.

b) Let (G, (¢i)ier) be the inductive limit in the category €L of the inductive

system {(E})ier, (¢ij)ijer} (Proposition a),b)) and let ¢ : G — F
be the unital C*-homomorphism such that v o v; = @; for everyi € I .
Then v is an E-C*-isomorphism.

Proof. a) Put

Fg::{(a,x)ep} aeE,xEU%(Fz‘)}7

el



17 Projective representations of groups using Hilbert right C*-modules 215

p: o — Ry, (a,z)r—inf{ |[(a,2;)]|| i€, € F;, pizi=2x} .
Fp is an involutive unital subalgebra of F'. p is a norm and by Proposition

T2,

= i
q(ayz) = lim pla,y)
y—x

exists and
)] < qla,z) < flefl + [zl lzll < 2¢(a, 2)
for every (a,x) € F.
Let (a,z) € Fy. Let further i € I, z;,y; € F; with px; = z, ¢;y; =
o*r + x2*a + z¥x. Then
0, pi(a*z; + o+ zfzi — yi) = Gi((@, 20) (o, ;) — (@, ;) =0
SO
ygg lpji(e’@; + zia + xiw; — yi)| = 0.
For € > 0 there is a j € I, i < j, with
llpji(a* e + xja+ iz —yi)|| < e.
We get
2
plen)? < ||(a, pjim)|* = [[(e, pjiz)* (o, pjizs) |
= (e a, " pjizi+(pjiai )atgji(ziz:)) || =[(a"a, pji(a*zi+aiatziz:))|
< e, pjiya)ll + 10, wjila’z; + aia 4+ iz — yi))|| < [[(a"a, jiys) || + €.
By taking the infimum on the right side it follows, since € is arbitrary,
plon )2 < plo* a0’z + a*a + ") = p((0 2)* (@, 7))

and this shows that p is a C*-norm. It is easy to see that ¢ is a C*-norms.
By the above inequalities, F' endowed with the norm ¢ is complete, i.e. F'is a
C*-algebra and F' is adapted.

b) Let i € I and let (o, z) € Ker ¢;. Then
0= Sbi(a?m) = (Oé, QO’L‘T)
SO
a = 07 @i = 07 R lnf HSOJZ‘T” - 0
jel,

1£5i(0, )] = (0 %ﬂ)l\ = llggill,
[9i(ev, 2) || = sants Ne5i(0,2)[[ =0, (a,z) € Kerd.

7

By Lemma [1.2.8] 1 is mJectlve.
Let (B,y) € F and let € > 0. There are i € I and x € F; with ||¢;z — y|| <

€. Then
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[0i(B, %) — (B, y)| = [|:(B, ) — (B, y)|| = [lpsx —yll <e.
Thus ¢(G) is dense in F and 1) is surjective. Hence 1 is a C*-isomorphism. [J

COROLLARY 1.2.10. We put ®(F) := F for every E-module F and
similarly ®g(p) := ¢ for every E-linear C*-homomorphism ¢.

a) ®g is a covariant functor from the category Mg in the category C}E.

b) The categories Q:IE and Mg possess inductive limits and the functor ¢
s continuous with respect to the inductive limits.

Proof. a) follows from Proposition [1.2.6]
b) follows from Proposition O

Remark. The category €g does not possess inductive limits in general.
This happens for instance if ¢;; = 0 for all 7,5 € I.

1.3. Some topologies

In this subsection, T" is only a set.

If the group T is infinite then different topologies play a certain role in
the construction of the projective representations of T'. It will be shown that
all these topologies conduct to the same construction, but the use of them
simplifies the manipulations.

We introduce the following notation in order to unify the cases of C*-
algebras and (resp. W*-algebras).

Definition 1.3.1.

Sy e 3= 3.
If T is a Hausdorff topology on Lg(H) then for every G C Lr(H), Gz denotes
T
the set G endowed with the relative topology ¥ and G denotes the closure of G

T
in Lg(H)z. Moreover ) denotes the sum with respect to <.
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LEMMA 1.3.2. For xz € E, by the above identification of E with EE(E),
@1k H— H, &+ (2€)ier
is well-defined and belongs to Ly(H).

a) The map N
(pE—)ﬁE(H), T +— Q1K
is an injective unital C*-homomorphism.

b) Assume E is a W*-algebra. Then for every (a,&,n) € E x H x H, the
family (& anf)ier is summable in Eg and for every xz € E,

(i @) = (. 2t ).

teT
Thus ¢ is a W*-homomorphism ([1, Theorem 5.6.3.5 d)]) with

E
=> &an,

teT

where ¢ denotes the pretranspose of .

c) If we consider E as a canonical unital C**-subalgebra of Lr(H) by using
the embedding of a) then Lg(H) is an E-C**-algebra.

Proof. a) follows from [5, page 37] (resp. [3, Proposition 1.4]).

b) We have
<93®1K7(075777)> <<($®1K)f’77 <Zntx§t7 >_
teT
ZZW:%&, a) :Z<x,§ta77f> .

teT teT
Thus the family (& an})ier is summable in Ex and

(oo (a€n >—< thant>.

teT

If ¢ : Lp(H) — E’ denotes the transpose of ¢ then

a{, Z&ant ck.

teT

By continuity ¢’ (L', p(H )) C E and ¢ is a unital W*-homomorphism.



218 C. Constantinescu 20

c) Let x € E€ and &,n € Lg(H). By [1, Proposition 3.17 d)],

(@3] n) = S ni (@BLr)e) = 3 niat, =

teT teT

:ixn;& :x/in:ft =x(&[n) .

teT teT
Thus for v € Lg(H),

(u(z@1k)E| n) = ((@@1k)E| w'n) =z (& u'n) =2 (u€|n) ,
w(r@1g) = (2@1x)u,
and so 2®@1g € Lp(H)¢. O
Definition 1.3.3. We put for all £, € H (resp. and a € E,)

e Le(H) — Ry, X +— |(XE]n)],

(resp. pema : Lo(H) — Ry, X — |[((XE|n) ,a)),
pe: Lp(H) — Ry, X — || X€|| = |( X¢| X))V,

(resp. pea: Lo(H) — Ry, X +— ((XE| XE), a)'/?),
g Lp(H) — Ry, X — pe(X7),

(resp. qeoq: LE(H) — Ry, X — peo(XT)).

and denote, respectively, by %1, %9, T3 the topologies on Lg(H) generated by
the set of seminorms

{peql &me Y, (resp. {pg,n,al &neH, a€E+}),
{pe| E€H}, (Tesp. {p§7a| £eH,aeE+}),
{pe| é€HYU{q | EcHY},
<resp. {pg’al §€H,a€E+}U{q§,a| §€H,a€E+}).
Moreover ||-|| denotes the norm topology on Lg(H).

Of course ¥ C T3. In the C*-case, Ty is the topology of pointwise
convergence. If E is finite-dimensional then the C*-case and the W*-case
coincide.

PROPOSITION 1.3.4. Let X € Lp(H) and €,m € H (resp. and a € E).
a) Pen(X) = ppe(X*)  (resp. pepjal(X) = Preja)(XF))-

b) pey(X) < pe(X) [Inll-
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c) If E is a W*-algebra and a = z|a| is the polar representation of a then

P

(X, (@) )| < peasol(X) ((n] ), ).
d) IfY,Z € L(H) then
Pg,n(YXZ) = ng,Y*n(X) (resp. pg,n,|a\(YXZ) = ng,y*n,m\(X))v
pe(YXZ) <Y pze(X) (vesp. peja)(YXZ) < [[Y] pze ja (X))
Proof. a) From
(X&m)=(&l X)) =(X"n] &)

p{a},n7|a|(X) =

it follows

Pen(X) = [ICXET ) = [[{ X0 | )] = pne(XT),
(resp. Pep.ja)(X) = [ ({ X 0] &), lal) | = Py o) (XT))-

b) pen(X) = [ICXE] M) < pe(X) [n]l-
c) We have

Peapal(X) = [((XEx) [ n)  Jal) [ =[({XE[ )2, Jal) | =

= [((X¢]m)  alal) | = [((XEln) o) = [( X, @Em)|.
By Schwarz’ inequality ([I, Proposition 2.3.3.9]),

[{({X (&) n), lal) |* < (( X(€2)| X(x)) , lal) ((nln) . lal),
Peanjol(X) < Pewfa(X) (1] ), la )72

d) The first equation follows from

Pen(YXZ) = (Y XZE| n)ll = [( XZE[ Yn)l| = pzeyn(X)
(resp. Pey,ja|(Y X Z) = [((Y X ZE[ n) , |a]) |

= (X281 Y™n) , lal) [ = pzeyen,a) (X))
and the second from
pe(YXZ) = Y XZ¢|| < Y[ | X 2] = Y[ pze(X)
(vesp. pejo)(YX Z) = ({YXZE| YXZE) |, |a] )/
<Y XZE| XZ€) , Jal)' " = |V ]| pzeja (X))
O
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LEMMA 1.3.5. Let n € N and (z;)ien, o family in E. Then
(2] (o) <n X s
1€EN, 1€Ny, 1€Ny,

Proof. We prove the relation by induction with respect to n. By [
Corollary 4.2.2.4] and by the hypothesis of the induction,

*

* *

1€Ny, €Ny, €N, 1 1€N, 1
*

= X)X, + Z (xyx; + ) xy) + Z T Z i

€Ny 1€EN, 1 i€EN, 1
* * * * *
<alx, + E () xn +xixi) + (n—1) E rir;=n g xw;.
iENn—l ieNn—l ieNn

O

LEMMA 1.3.6. Letn €N, x € E,,, and for every j € N, put
n; = (5ji1E)ieNn S @ E
1€Ny,
Then

[zl < v/ sup [lzn; |-
J€ENR

1€EN,

#
Proof. For € € ( D E‘) , by Lemma |1.3.5]

(wg] 28) =Y (@8] @i) =D | Y wis& | | D wije,

i€N,, i€Nn \jeN, jEN,
<n )y D (@) (wi&)=nYy | Y Eajwl=n)_ & (Z x:jfﬁij)gj
1€N, jEN, 1€N, jEN, JEN, 1E€ENy,
For ¢,7 € Ny,

3777] E TikNjk = Tij,
keN,

<x”7j | $773> = Z ($77] :Enj Z :Blj$2j’

iENn ZeNn
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SO

(et a8) <n > & lanlan) g <n Y llenl?&4

JEN, JEN,

< n sup HacnjHQ Z §;& < nsup HxnjHQ 1g .

Hence ||z||* < nsupjen,, lzn;|*. O
COROLLARY 1.3.7.

a) The map
EE(H)TI — »CE(H)‘IN X — X*
is continuous. In particular, Re Lp(H) is a closed set of Lp(H )<, .

b) T3 C T C T3 C norm topology.
c) If E is a W*-algebra then the identity map
Lp(H)y — Lp(H)sg,
18 continuous So
Lp(H)E, = Le(H)T,
18 compact.
d) ForY,Z € Lg(H) and k € {1,2}, the map
£E<H)Tk —)EE(H>gk, X—YXZ
18 CONtINUOUS.
e) Lg(H)z, is complete in the C*-case.
f) If T is finite then Ty is the norm topology in the C*-case.
g) Kr(H) is dense in Lr(H)xz,.

Proof. a) follows from Proposition a).

b) ¥1 C 9 follows from Proposition b),c). T3 C T3 C norm topol-
ogy is trivial.

c) follows from Proposition ¢) (and [I, Theorem 5.6.3.5 a)]).
d) follows from Proposition d).
e) Let § be a Cauchy filter on Lg(H )z,. Put

Y:H— H, §'—>l)i(1’%1(X§),



222 C. Constantinescu 24

Z:H— H, 5»—)1)15%(X*§),
where the limits are considered in the norm toi)ology of H. For ¢,me H,
(YEn) =lm (X¢|n) =1lim (] XTn) = (] Zn)

soY,Z € Lg(H) and Z = Y*. Thus § converges to Y in Lg(H)z, and
Lg(H)z, is complete.

f) follows from b) and Lemma [1.3.6]
g) Let X € Lg(H) and § € H. For every S € P4(T') put

Pg = Zes< | es) € Pr Kg(H)
ses
and let 7 be the upper section filter or B ¢(7). Then PsX € Kg(H) for every
S € P4(T) and
lim PgX¢ = X¢
881
in H (resp. in Hy;) ([I, Proposition 5.6.4.1 e)] (resp. [I, Proposition 5.6.4.6

c)])). Thus
lim PsX = X

ST

with respect to the topology ¥5. Since the same holds for X*, it follows that
X belongs to the closure of Kg(H) in Lg(H)z,. O

Remark. The inclusions in b) can be strict as it is known from the case
E =K.

LEMMA 1.3.8. Let G be a W*-algebra and F' a C*-subalgebra of G. Then
the following are equivalent.

a) F generates G as a W*-algebra.
b) F# is dense in Gﬁ
c) I is dense in G .

Proof. a = b follows from [Il, Corollary 6.3.8.7].
b = c is trivial.
¢ = a follows from [I, Corollary 4.4.4.12 a)]. [

PROPOSITION 1.3.9. Let G be a W*-algebra, F a C*-subalgebra of G
generating it as W#*-algebra, I a set, and

L:= (F, M= QG.
i€l el
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a) M is the extension of L to a selfdual Hilbert right G-module ([2, Propo-
sition 1.3 f)]) and L¥ is dense in Mz\i

b) If we denote for every X € Lp(L) by X € Lg(M) its unique extension
([3, Proposition 1.4 a)]) then the map

Lr(L) — Log(M), X+— X

s an injective C*-homomorphism and its image is dense in EG(M)M.

¢) The map

Lr(L)E — La(ME, X— X

1S continuous.

Proof. a) By Lemma [1.3.8/ a = b, F7 is dense in Gg so F# is dense
in ég and G is the extension of F' to a selfdual Hilbert right G-module (B3

Corollary 1.5 az = a1]). By [3 Proposition 1.8], M is the extension of L to a
selfdual Hilbert right G-module. By [3, Corollary 1.5] a1 = ag, L* is dense in
M7

N

b) By a) and [3, Proposition 1.4 e)], the map
Lr(L) — Log(M), X+— X
is an injective C*-homomorphism. By [3, Proposition 1.9 b)], its image is dense

c) Denote by N the vector subspace of M generated by
{ (a,&,m) ‘ (a,€6,m) € G x L x L} .
By a) and [3, Proposition 1.9 a)], N is dense in A so by Corollary c),
Lo(ME = La(M)F,
For (a,€,m) € G4 x L x L and X € Lp(L), by Proposition c),
Pena(X) =[{((X¢[n),a)|=

= {(X¢[n) s a)| < peayja)(X) (| n), lal)
where a = x|a| is the polar representation of a, so the map

N

Lp(L)E — Lo(ME, X— X

is continuous. [
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LEMMA 1.3.10. LetneN, e () E, and
1€Ny,

x = [§0j1)ijen, € Enp

Then ||z|| = [[&]]-
Proof. Forne () E andieN,,
i€EN,
$77 i = Z Lzl = Z gz 31T = 51"’717
jeEN, JEN,
(an|@n) =Y (@)l (@n)i) =D (&Gml&m) =Y ni&ém
i€EN, i€EN, IS\
=M (Z 5:&) m =7 (1 &) m < [€1Pnim.
€Ny,

Hence [|zn||” < [[]* m | < €17 In]|* and therefore [|z]| < [|£]|-
On the other hand, if we put ¢ := (;,11g)ien, then for i € N,,,

(‘TC)z = Z xzij Z & ],11E =&,

JEN, JEN,
(x¢| ) =D (@)= > &&= (€] ¢).
€Ny, i€Ny,

We deduce that ||z|| > [|z¢]| = ||€]|, and hence |z|| = ||&||. O

LEMMA 1.3.11. Let F,G be unital C**-algebras, ¢ : F — G a surjective
C**-homomorphism, I a set,

= QF~FelI), M= QG~Gald),
el el

and for every £ € L put & = (p&i)icr-
a) If¢&,n € L and x € F then
geM, g <nan, @) =@px, (€]7)=vlelnm.

b) For every n € M there is a &€ € L with € =, €1l = 1Inll-
c) In the W*-case, the map

1S continuous.
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Proof. a) For J € B¢(1),

(ki eni) = (en) (0&) =0 > i .

icJ icJ icJ

)EHSMH,< ‘ > (&| n). Moreover for i € I,

(€x); = p(€x)i = p(&ix) = (&) () = Ei(px),  Ex = E(p).

b) Case 1. {ieI| n #0} is finite
For simplicity, we assume { i € I | n; # 0} = N,, for some n € N. We put

It follows & € M,

0: Fon — Gnn,  [Tiglijen, = [9Tijlijen, -
6 is obviously a surjective C*-homomorphism. So if we put
Yy = [nidj1lijen, € Gnn,
then there is an x € F), , with 6z =y, ||z|| = |ly|| ([4, Theorem 10.1.7]). If we
put
. 5 . il if 1€ Nn
il —F, ZH{ 0 if iel\N,
and z := [xijdjl]iyjeNn S an then
0z = [p(xi01)ijen, = [Vijdjlijen, =y
and by [I, Theorem 5.6.6.1 a)], ||z]| < ||lz|. We get for i € N,,,
& = & = i1 = yi1 = 7.
By a) and Lemma [1.3.10| [l¢]l = |2/ < [lal = yll = inll = €] < l¢ll, nence
1€l = [lmll -

CASE 2. 7 arbitrary in the W*-case
We may assume ||n|| = 1. We put for every J € P (I),

ny: I —G, z>—>{ 0 if icI\J

By Case 1, for every J € B¢(I) there is a {; € L with €7 =mnyand &) =
Insll < 1. Let § be an ultrafilter on P¢(I) finer than the upper section filter
of PB¢(I). By [I, Proposition 5.6.3.3] a = b,

=1
3 1%1 &
exists in L?. For 7 € I,

&=t = @1}%1(&)@' = l}fél ©(&r)i = mi
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so & =1. By a), 1= [l = & < llgll < 1. so ligll = Il

CASE 3. n arbitrary in the C*-case
We put for every J € P¢(I) and every ( € M,

b, {5 0I5,

Moreover, we denote by §r the upper section filter of P (1), set
My:={CeM|{iel| (#0} is finite},

and denote by M the vector subspace of K (M) generated by the set

{G(1¢) | GéeM}.
Let G be the vector subspace of Kp(L) generated by the set
{a(-18)[a,fel}.
G is an involutive subalgebra of Kp(L). Let (ag)qeq, (Bq)qeq be finite families

in L such that
Z ag (| Bg) =

)
Let further o/, 8 € My. By Case 1, there are a, 3 € L with & = o/ ,3 = '
and we get by a),

<Zaq<ﬁ'iéq> a'>=z<aq|o/><ﬁ’\5q>=z<aqra><@

qeQ q€Q q€eQ

=S (agla) (86, | = < S ag (-1 6y | 8 a> 0.

) q€eQ
It follows ([I, Proposition 5.6.4.1 e)])
qu< | Bq>:0~
q€Q
Thus the linear map
0:G— Ka(M), D ag (- 8) — Do (| 5)
q€Q q€Q

is well-defined and it is easy to see (by a)) that 1 is an involutive algebra
homomorphism.

STEP 1. |[¢]| < 1.
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We extend 1 by continuity to a map ¢ : Kp(L) = Kg(M). Let

u *Zo‘q (-1B4)€G
qeQ

and let ¢ € Mg#. By Case 1, there is an o« € L# with @ = . By a),

()¢ =3 ag (a1 By ) =D dge{al B) =3 ag(al fy) =

qeqQ q€Q q€Q
[(u)d]l = flue| < [luel| < Juf -
Since My is dense in M ([1, Proposition 5.6.4.1 e)]), it follows
[ull < lull, ¥l <1

STEP 2. M is dense in Kg(M).
Let a, 8 € M. By [}, Proposition 5.6.4.1 e)],
a=limay, = lim
s, F=lmbs

so by [1, Proposition 5.6.5.2 a)],
af - =limay (- ,
(-18) i g (-1 Br)
which proves the assertion.

STEP 3. 1 is a surjective C*-homomorphism.
By Step 1, ¢ is a C*-homomorphism. Since its image contains M (by
Case 1) it is surjective by Step 2.

STEP 4. The assertion.
Let j € I. By Step 3 and [4, Theorem | 10.1.7 (and [1, Proposition 5.6.5.2
a)]), there is a u € Kr(L) with

Yu=n(-lla®e;), [ull = In (- 1lc @e;)|l = [nl -
From
V(uw((lr@e) (| 1lr®e;))) =M [le®e))(le®@ej) (-] la ®e;))
=n{-|lc®e;),

Il = lln (-1 1o ®@ej) |l < [u((lr ®@ej) (-] 1r @ ¢;))]
< lulll[(1r @e5) (-] 1r @ i)l = [lull = Inll,

[u((lr @ej) (- [ 1r @)l = |Inl

we see that we may assume

=u((lp@ej) (| 1p@e;)) .
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Then
u=(u(lp®e;)) (| lr®ej) .
If we put £ :=u(lp ®e;) € Lthenu=¢(-| 1p®e;), |0l = [lull = [[£]],

(-l le®e;)=vu=E(-|1g®e;)),
n=n({lg®ej| la®e;)=E(lg®ej| lg®e;) =¢.

¢) Let (a,m0) € G x M. By b), there is a & € L with & =mno. By a), for

§eL,
(eayay=

<5a(a,7lo)> <<€~’770>,a>
(p(€l &), a)= (€l &), ¢a) = (¢, (o) ).

We put
0:L— M, &E—¢
and denote by ¢ : M’ — L' its transpose. By the above, 0(a,n9) € L. Since

¢’ is continuous, '(M) C L and this proves the assertion. [

PROPOSITION 1.3.12. We use the notation of Lemma [1.3.11]
a) If X € Lp(L) and € € L with € = 0 then )?2 = 0; we define
X:M— M, n— )?/f,
where € € L with € = n (Lemma b)).
b) For every X € Lp(L), X belongs to Lg(M) and the map
Lp(L) — Lg(M), X+— X

is a surjective C**-homomorphism continuous with respect to the topolo-
gies Ty, with k € {1,2,3}.

c) For¢,nelL,

and

ICG(M):{X‘ Xe/cF(L)}.

Proof. a) Fori € I, p& = & =0 so by Lemmal|1.3.11 a),

P e N g

X(ei&i) = (Xei)& = (Xe)p& = 0.
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By [Il, Proposition 5.6.4.1 e)] (resp. [I, Proposition 5.6.4.6 c)] and [I, Proposi-
tion 5.6.3.4 c)]),

i i
X=X (E e@-) = X(ei&), <resp. Xe=X(D eli| =) X(eigi))

el iel il el

so by Lemma |1.3.11| a) (resp. ¢)),

e~

——

Xe=)" X(ei&) = ZX/@E) =0
icl icl
i Mo
(l"eSp~ XE=) X(ei&i) =Y X(eii) = 0)~
icl icl

b) For X,Y € Lp(L) and &,n € L, by Lemma [1.3.11] a),
<5(5‘ ﬁ>=<55£‘ ﬁ>=<ﬁ(X§!n>
= (1 X = (& X)) = (€] X)),
XVE=XVE=X(Ve) = (XV)E = XVE
By Lemma [1.3.11]b), X € Lo(M), (X)* = X*, and XY = XY, i.e. the map

is a C*-homomorphism. )
For X € Lp(L) and {,n € L (resp. and a € M), by Lemma [1.3.11| a),

peq(%) = ||{ €[ 7)| = [ Xe| 7)) = e ¢ X1 < pey(X)

(resp. pg o (X) = [(( XE| i) a)| = [(w(Xeln) ,a))

= (X&), ¢a)| = penpa(X)),

so by Lemma|1.3.11|b), the map is continuous with respect to the topology ¥.
The proof for the other topologies is similar.

c¢) For ( € L, by Lemma|1.3.11{a),

—_ I/~ e/~

—_—N—. —— ——
(18 ¢=m-18)C=n{c[&)
—ie(¢le) =a(¢[&)=(a(-1€))¢
so by Lemma [1.3.11] b),

w1y =n(-1€).

The last assertion follows now from b). [
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2. MAIN PART

Throughout this section, we fix f € F(T, F).

2.1. The representations

We present here the projective representation of the groups and its main
properties.
Definition 2.1.1. We put for every t € T and £ € H,
w:E—H, (—(Qe,
Vie: T — E, s— f(t,t7 )t s) .

If we want to emphasize the role of f then we put th instead of V;. For
x e F,
(2Rl : T — E, s+ f(t,t71s)zE(t 7 s) .

PROPOSITION 2.1.2. Let s,t €T,z € E, (€ E, and £ € H.

a) V&€ H.
b) ViV = (f(5,)®1k)Var-
c) Vi(C®@es) = (f(t,5)C) @ ers.
d) Vi(z®1g) = (2®1k)V;.
e) VieUn £E(H), Vt* = (f(t)él[()‘/;—l.
f) (z@1x)Vi(C @ es) = (f(t,5)2¢) @ ess.
g) If T is infinite and § denotes the filter on T' of cofinite subsets, i.e.
F:={S]5eP@), T\SeP(T)},
then
limV; =0
t,§
in Lp(H)z,.

Proof. a) For R € P¢(T),
Z < (‘/tf)r | (‘/tf)r> = Z < f(tat_lr)gtflr ‘ f(tat_lr)ft*1r> =

reR €ER

=D (&Gl &) =) (&1&)<(E]€)

reR reR
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so V£ € H.
b) For r € T,
(ViVi€)r = [, 1) (Vi€) g1, = f(s, 87 ') f (1,07 s )61,
= f(s,0) f(st,t ™ s e 11, = f5,8)(Varl)r = ((f (5, )@ 11) Vit

SO _
VeVi = (f(s,)®1K) V.
c)ForreT,
(Vi(C®@es))r = f(t, 1) (( @ es)p-1y
= 5s,t—1rf(t7 75—17")( = r,tsf(t7 S)C = ((f(tv S)C) & ets)r
SO

Vil @es) = (f(t,8)C0) @ exs -

d) We have
(Ve(a®1K)€)s = f(t. 17 s)(@@1K)E)15 = (8,87 8)2€p-1, = (2@1K) Vik)s

SO
Vi(z®1g) = (2@1k)V; .

e) For n € H, by Proposition a),b),

(Vi€In) =D ((Vi)sl ns) =D _{ ft.t7' )14 ] ms)

seT seT

=3 (G ) = Do (& | FOFE )
reT reT

=S (& 1 (FOFVemr ) = (€1 (FOEL) Vi )
rel

so Vi € Lp(H) with V;* = (f(t)®1k)V,-1. By b) and d),
ViV = (F)@1k) Vi Ve = (F(O@1k) (f(E )@1K) Vg = id

ViV = Vi f(t)@1k) Vi1 = (f(1)D1k) ViV
= (fO)@1K)(f(t,t @1k Vi1 = idp.

f) follows from c).
g) Let us consider first the C*-case. Let {,n € H, t € T, and ¢ > 0.
There is an S € P¢(T") such that HUGT\SH <e. Bye),

[ ( Vi€l ners ) | < IVigll [[ners|| < e ll€]



232 C. Constantinescu 34

SO

Pen(Ve) = [{ Vi€ n) | < [ (Vi€ nes) [+ Vi€l nerys ) | < [{ Vi&| nes) | +e.
From
(Viglmes) =Y nif(t,t " s)61,

seS
it follows

lim (Vig| mes) =0, limpe,(Vi) =0.
The W*-case can be proved similarly. [
Remark. By e), ¥ cannot be replaced by Ty in g).
ProrosITION 2.1.3. Let s,t € T.
a) w € Lp(E,H), uw={(- |1pg®Qe).
b) wiur = ds1p.

c) usuy = 1E(§>(< | e)es).

Lz
d) > upul =idy.
reT

Proof. a) For ( € Fand ¢ € H,

(wC €)= (C@el €) =S EC@e)s =EC=(C| &)

seT
SO

w € Lp(E H), ufé=&= (& 1p@e) .
b) For ¢ € E, by a),
ugu =uz((®er) =((Re| lp®es) = s
SO Ukuy :5s,t1E-v
c)For( € Fandr €T, by a),
usuf (C® er) = usdrsC = 0,4(C @ es)
=(@(e|e)es=1eR(( | e)es))C Deyp),

so (by a) and [I, Proposition 5.6.4.1 ¢)] (resp. [I, Proposition 5.6.4.6 ¢) and
Proposition 5.6.3.4 ¢)]) usu; = 1E<§~§>(( | er)es).
d) For £ € H (resp. and a € E1) and S € P¢(T), by ¢),

1/2
Pe (Zutu: —z'dH) = > (¢l¢)

tesS teT\S
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(resp. Péa (Z upuy — idH> = << Z(utuf{ —idg)€ Z(utu;‘ - idH)£>,a>

tesS tesS tesS

= (X ((gl€)an?)

teT\S

and the assertion follows. [

PROPOSITION 2.1.4. Let s,t €T and z € E.

a) Viur = ug f(s,t).

)
b) uiVi = f(t, ¢ s)ul,,.
c) (:U®1K)ut = U

) @

d = ul (z@1g).

Proof. a) For ( € E, by Proposition c),
‘/sutg = ‘/S(C 029 et) = (f(svt)C) D est = uStf(svt)C

so Vsur = uge f(s,1) .
b) For ( € Fandr € T, by Proposition@c) and Proposition a),

u:V}(C ® eT) - u:((f(t7 T)C) ® etr) = 6s,trf(t7 T)C
= 5t*15,rf(t> t_ls)g = f(t7 t_ls)uzlls(g & er)

so uiVy = f(t, 6 s)ul ..
¢) For ¢ € E,

(@1 )¢ = (2®1x)(( @ er) = (2€) ® e = wpa(

0 (@1 g )us = upe.
d) follows from c). O

Definition 2.1.5. We put for all s,t € T (Proposition[2.1.5 a))
0st: Lp(H) — Lp(E)~ E, X — u!Xu
and set Xy 1= ¢y 1X for every X € Lg(H).
ProproOSITION 2.1.6. Let s,t € T.
a) Qsy is linear with ||s¢| = 1.

b) For X € Lp(H) and x,y € E,
((psiX)z|y) = (X(z@er) [ y®es) .
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c) The map
vsi: Lp(H)z, — E (resp. Ej)
1S continuous.

d) ¢ty is involutive and completely positive.
e) Forre€T andz € E,

Pst(x@1)V3) = Gspif (ryt)z .
£) If (x)rer € E) and

X =) (0:01k)V;
reT
then
st X = f(st_l,t):rstfl , X = .

g) For X € Lg(H) and z,y € E,
P51 ((2B1) X (yB1K)) = z(ps 1 X)y,
((2®15) X (y&1K))e = 2 Xy -

Proof. a) follows from Proposition a),b).
b) We have

((psiX)z|y) = (U Xwz|y) = (Xwz|usy) = (X(@@e)| y@es) .

c) The C*-case.
By b), for X € Lg(H),

st X[ =1 (s XN 1) ={ XAz @) | 18 ® e5)|| = P1pge1poe. (X))

The W*-case.

Let a € E and let a = z|a| be its polar representation. By b), for

X e ﬁE(H),
[ (s X a) | = [({ (e X)1p| 1E) , zla]) [ = [(((¢s X)z | 1E) , la]) |
[{((X(z®e) | lp®@es) , |al) | = Poge1p@es (X))

d) For X € Lg(H),
(e X)" = (up Xug)™ = uy X up = pr1(X7)
S0 ¢y ¢ is involutive. For n € N, X € ((Lg(H))nn)+, and ¢ € E",

> < > (e Xi)S5) Ci> = > (X | G) =

i€eNp \ jeN, 1,jENy
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= ) (X | wéi) =0
i,jENR
([, Theorem 5.6.6.1 f)] and [I, Theorem 5.6.1.11 ¢; = ¢3]) so ¢y is completely
positive ([I Theorem 5.6.6.1 f)] and [I, Theorem 5.6.1.11 ¢3 = ¢1]).

e) By Proposition a),d) and Proposition b),
g057t((x(§~§>1K)VT) = u:(xélK)V}ut = zuzVeur = zujup f(r,t) = 05 e f (1, t) .
f) By e) (and Proposition a)),

et X = Z s (2, O1K)Vr) = Zés,rtf(r7 tya, = f(st™ g,

reT reT
Xt = th’lX = f(t, 1)3315 = Tt.

g) By Proposition c),d),

st (21 K) X (y@1k)) = uj(2®@1) X (YO )ur
= vug Xuy = v(ps 1 X)y.

O

Definition 2.1.7. We put

R(f) = { Z(xtg@ll()%

teT

(x¢)ter € EM } )

T3 Rl
S(f) :=R(f), S (f) :=R(f) -
Moreover, we put S¢(f) := S(f) in the C*-case and Sy (f) := S(f) in the
WH-case. If F' is a subset of E then we put

S(f,.F)={XeS(f)|teT = X, € F}
and use similar notation for the other S.

By Proposition b),d),e), R(f) is an involutive unital E-subalgebra
of Lg(H) (with V4 as unit). In particular, S, (f) is an E-C*-subalgebra of
Lp(H). If T is finite then R(f) = S(f). By Corollary e), Sc(f)z, is

complete.

T
PROPOSITION 2.1.8. For X €R(f) and s,t € T,

st X = f(st™ ) X 1 .
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Proof. Let § be a filter on R(f) converging to X in the ¥;-topology. By
Proposition c),f) (and Corollary d)),

#seX =lim s, Y =lim Flst™ )Yy = f(st™',1) lim Y,
= f(st™ ) lim o, Y = f(st™h o1 X = f(st ) X

O]

T

THEOREM 2.1.9. Let X €R(f).

a) If (x¢)ier s a family in E such that

%1

X =) (@),
teT

then Xy = xy for every t € T'. In particular, if T is finite then the map
ET — S(f), =+ Z(:ct ® 1)V

teT
is bijective and E-linear (Proposition d)).
b) We have
T3
X =Y (Xi®1k)Vi € S(f) -
teT
¢) (X*)y = f(t)(X;=1)* for every t € T and
T3 ~ 3
X' = (X" @1V, €R(f) -
teT
T To

d) S(f) =R(f)=R(f)-
e) Foré e H andteT,

(XE) = S fls, 57 1)Xoburn,

seT

f) If T is finite and if we identify Lp(H) with Err then X is identified
with the matrix

[f(8t717 t)Xst—l]s,tGT )
and for every r € T, V, is identified with the matrix

[f(St_la t)(ss,rt]s,tET .
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g) If X, Y € S(f) andt € T then XY € S(f) and

XYt_Zf sTH) X Y1y,

seT
V)= fls, ) XY, (XY™ =) f(t,s) XuY7,
seT - 8/6\7;
(X*Y) =D X1V,  (XY) =) X.\Y).
seT seT

h) The map
E— S8(f), z+— 2@l
is an ingective unital C**-homomorphism and so S(f) is an E-C**-
subalgebra of Lp(H) and ReS(f) is closed in S(f)<,. In the W*-case,
Sw(f) is the W*-subalgebra of Lp(H) generated by R(f) and R(f)* is
dense in ‘S'W(f)?1 = SW(f)z, which is compact.

i) If E is a W*-algebra then Sc(f) may be identified canonically with a
unital C*-subalgebra of Sy (f) by using the map of Proposition b).
By this identification Sc(f) generates Sw(f) as W*-algebra.

i) If F' is a closed ideal of E (resp. of Ej, ) then S(f, F) is a closed ideal
of S(f) (resp. ofS(f)A)
S(f)

k) If F is a unital C**-subalgebra of E such that f(s,t) € F for all s,t €T
then S(f, F') is a unital C**-subalgebra of S(f) and the map

T3

S(f.F) — S(g), X+— Y (Xi®1g)V
teT

is an injective C**-homomorphism, where
g:TxT—UnF°, (st)— f(s,t).
This map induces a C*-isomorphism S).(f, F) — S| (g)-
) (X,Y) €5()), = (X1,Y1) eéﬂ.
Proof. a) By Proposition [2.1.6 ¢),e),

X =pr1X = Z%l (zs@1K)V; Z5tsf5 Lz
seT seT
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b), ¢), and d)
To .

STEP 1. X = > (Xi®1K)V;.
teT

By Proposition d), Corollary d), Proposition and Propo-

sition b),d)
To To T o
= (Z usu:> X (Z uwf) = Z Zusu:XutuI

seT teT seT teT
Ty To T2 T2
_ZZUS Ps X )uy = Zzusf (st ) Xy 1uf
seT teT s€T teT
‘3:2 ‘22 T2 ‘32
D) WETTREBIIIS ) WAL
seT reT seT reT
TQ 52 TQ TZ
S (ALY = S (zm@mvt) S ALV
seT reT seT te’T teT
STEP 2.

By Step 1, Corollary a), and Proposition d),e) (and Proposition
11.7a)),

T * T
X = (Z(XS@K)Vs) =) (X®1k)Vy

seT seT
T T
= Z (X:@1K)(F(8)@1K)Vemr = D ((f(r) X} 1)@1K)V; €R(S) -
seT reT

By a),
(X)e = fFO)(Xp=1)"
By Step 1 and Proposition e) (and Proposition a)),

Tg T2
X' =3 (X)@1)Ve = Y (K1) @) (f(1)S1x) Vi
teT teT
%o
= Z (X )" @1V = ) (X)) @1k)Vy
teT teT
Together with Step 1 this proves
Ts TS

X=) (Xl eS(f), X'=) (X) @1V €S(f).

teT teT
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i) T
In particular S(f) =R(f)=R(f).
e) By b) and Corollary b), in the C*-case,

%1
(X&) = < <Z(Xs®1K)VS> §l 1l ®e > = Z( (X@1x)Vil| 1@ e )

seT seT

=3 Xof (5,57 &1, =Y fs, 87 ) X by

seT seT

The proof is similar in the W*-case.
f) For ¢ € H and s € T', by e),

(X5 =D [t ) Xebmry =D flsr™ ') X1y

teT reT
g) By b), Corollary b),d), and Proposition b),d)

Ts T2
XY = (Z(Xséll()vs> (Z(Xt@)llc)‘/t)

seT teT
To %o To o
=Y D (X PI)VL(V@1) Vi = Y Y (X @1k)(Vi®1k)VaVi
seT teT seT teT
Ty To
=3 ) (K@) (Vi@1k)(f (5, )DLk Vit
seT teT
To o
=> > ((f " XY, 1,)01) V.
seT reT
Since by d),
T2
D ((fs,87 ') X Yom1,)@1K) Vs € S(f)

reT
for every s € T we get XY € S(f), again by d). By Corollary b) and

Proposition m c)

(XY): = ¢11(XY) ZZ% 1 IT‘)XSY;—IT)élK)‘/T
seT reT
= Zz5t,rf(r’ 1)f( X Y —1lp = Zf _lt X Y —1¢.
seT reTl seT
By the above, c), and Proposition [1.1.2] _ 2 b),
(x* Yt—Zf s (X)SY- 1t—Zf s F(5)(X 1) Yoy

seT seT
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=S 5 (Ke) Ve = S (s, 8 XV,

seT seT
(XY*)e =) f(s,s )XY ) g1, = Y _fls,8 )X f (s 1) (YVir,)"
seT seT
= Ft ) Xo(Vimn)" = > f(t )" Xis Y7
seT seT

It follows by Proposition m a),

(X*Y)1 =) XiYe, (XY*) =) XV,
seT seT
h) By ¢) and g), S(f) is an involutive unital subalgebra of Lr(H). Be-
ing closed (resp. closed in Lg(H)y (d) and Corollary [1.3.7 - ) it is a C**-
subalgebra of Lg(H) (resp. generated by R(f) [I, Theorem 5.6. 3 5 b)] and [I}
Corollary 4.4.4.12 a)] and by [II, Corollary 6.3.8.7] R(f)* is dense in SW(f)é,
which is compact by Corollary c¢)). The assertion concerning E follows

from Proposition d) and Lemma ¢). By Corollary a), ReS(f)
is a closed set of S(f)x,

i) The assertion follows from h), Proposition b), and Lemma m
c) = a).

j)For X e S(f,F),Y € S(f),and t € T, by g), (XY),(YX), € S(f,F)
so S(f, F) is an ideal of S(f). The closure properties follow from Proposition
)

k) By ¢) and g), S(f, F') is a unital involutive subalgebra of S(f) and by
Proposition 6 c), S(f, F) is a C**-subalgebra of S(f). The last assertion
follows from the fact that the image of the map contains R(g).

1) There are U,V € S(f) with

(X,Y) = (U, V) (U,V) = (U*, ~V*)(U,V) = (U*U + V*V,U*V — V*U).
ForteT,

0 < (U, Vi)* (U, Vi) = (U, = Vi) (U, Vi) = (U Uy + ViV, UV = ViEUY)
By g),

= (U U+V* V)1 =Y (UU + Vi Vi),

tel
= UV =VU) =) (UVi = V;U)
o - teT
(X1, Y1) =Y (UfUs + Vi Vi, USVe = ViUy) €Ey

teT
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Remark. It may happen that by the identification of i), Sc(f) # Sw(f)

(Remark of Proposition [2.1.23]).

COROLLARY 2.1.10.

a) If (x¢)ier is a family in E such that (||x¢||)ier is summable then

(@1 x) Ve )rer

is norm summable in Lr(H) and

Z(ﬂvt@lK

teT

<>l -

teT

b) The set

A:—{Xesmr Zuxtrmo}

tel
is a dense involutive unital subalgebra of Sy (f) with

Do)l =D Xl

tel teT

D NEXY )] < <ZHXtH> (ZID@H)

teT teT teT
for all X, Y € A.

c) A endowed with the norm

A—Ry, XY X
teT

is an involutive Banach algebra and S| (f) is its C*-hull.

Proof. a) For S € P¢(T'), by Proposition e),

Z(fﬁt@lK < Z |ze@1k]| IVell = Z [l

tesS tesS tesS

and the assertion follows.

b) By Theorem c), X* € S(f) and
Xl = [ (Xe=) "l = ([ X ]

DYl =D 1Xpal = 1]l -

teT teT teT

for all t € T so
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By Theorem g), XY € §(f) and

Zf sTH) XY,

seT

(XY)e =

<D IXHY -l

seT

for every t € T' so

DNVl <D0 IXl 1Yo-sll = D 11Xl (Z HYsltH>

teT teT seT seT teT
Y (zum) _ (zuxtn) (zum) |
seT teT teT teT

c) is easy to see. [

Remark. There may exist X € S (f) for which (X¢®1K)Vi)ier is not
norm summable, as it is known from the theory of trigonometric series (see
Proposition [3.5.1). In particular, the inclusion A C S (f) may be strict.

COROLLARY 2.1.11. Let F be a unital C**-algebra and 7 : E — F a
positive continuous (resp. W*-continuous) unital trace.

a) T o1 is a positive continuous (resp. W*-continuous) unital trace.
b) If T is faithful then T o 11 is faithful and Vi is finite.
c) In the W*-case, Sw(f) is finite iff E is finite.

Proof. a) Let X,Y € S(f). By Theorem m g) (and Proposition m
a)),

Te1(XY) =7 (if(t, t‘l)Xth—1> =7 (if(t,t—l)xt_lyt>

teT teT
= Zr HX,Y) ZT Y, X,1)
teT teT
=7 (Zf(t,tl)Y}Xt1> = 7011(Y X).
teT

Thus 7 o ¢ is a trace which is obviously positive, continuous (resp. W*-
continuous), and unital (Proposition c),d)).

b) By Theorem m g), 1,1 is faithful, so 7 o ¢ is also faithful. Let
X € 8(f) with X*X =V;. By a),

To11(XX") =70011(X*X) =7011V1 = 1p
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S0
T§0171(V1—XX*):1F—1F:O, V1:XX*,
and V7 is finite.
c¢) By b), if E is finite then Sy (f) is also finite. The reverse implication
follows from the fact that E®1x is a unital W*-subalgebra of Sy (f) (Theorem

p19h). O
COROLLARY 2.1.12. Assume T finite and for every ' € (E")T put

7 S(f) — K, X>—>Z<Xt,x2> .
teT

a) ' € S(f) and

I'/

sup |z < [[#/] < 3 [lat]
teT teT
for every 2’ € (E')T and the map
o (BN — S(f), 2/
18 an isomorphism of involutive vector spaces such that
p(za’) = (z®@ 1k)(pz'),  w(a'z) = (p2)(z ® 1K)
([T, Proposition 2.2.7.2]) for every x € E and x' € (E")T.

b) If E is a W*-algebra then the map

¥ (E) — :9-2?), (at)ter = (@t)ter

18 an isomorphism of involutive vector spaces such that

Y(za) = (z @ 1k)(Ya),  ¢(az) = (Ya)(z @ 1)

for every x € E and a € (E)T.

COROLLARY 2.1.13. Assume T finite and let M be a Hilbert right S(f)-
module. M endowed with the right multiplication

MxE— M, (&z)— E(2®1k)
and with the inner-product
MxM-—E, (&n)— (&)

is a Hilbert right E-module denoted by M, Ls(p)(M) is a unital C*-subalgebra
of L(M), and M is selfdual if M is so.
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Proof. By Proposition d),g) and Theorem g)l), for X,V €
S(f)and x € E,

e1.1(X(2®1K)) = (p11X)z, X >0=¢11X >0,

o

~ = o
(X,Y) eS(f) = (11X, 011Y) €E4,
inf { o1, X] | X € S(f )+7HXH 1}>
and the assertion follows from Proposition a),c),d) and [I, Proposition
5.6.2.5 a),c),d)]. O

COROLLARY 2.1.14. Let n € N and let ¢ : S(f) — Epn be an E-C*-
homomorphism. Then (oV;)i; € E€ for allt € T and all i,j € N,,.

Proof. For x € E, by Proposition d) and Theorem h),
2(pVe) = p(z®1k)(¢Ve) = p((2B1k)Vi) =

= p(Vi(2®1K)) = (pVe)p(2®1K) = (pVp)z
lo} (gDV}/)Z"j € EkC. ]

COROLLARY 2.1.15. Let S be a group and g € F(S,S(f)). If we put
h:(TXS)X(TXS)HUnS(f)C, ((tl,sl),(tg,SQ))l—>

(f(t1,t2)®1K)g(s1, 52)
then h € F(T x S,S(f)).

Proof. The assertion follows from Theorem h). O

COROLLARY 2.1.16. Let X € S(f) (resp. X e S””(f))
a) For every S C T,

T I
Y (X@1lx)Vs €S(f)  (vesp. Y (Xe@1x)Vi € S (f))
s€S ses
and
v = sup{ Z(XtélK)Vt SE‘,Bf(T)} <00 .
tesS

b) We put for every o € [°°(T)
aX:T—FE, tr— aX;.
Then aX € S(f) (resp. aX € Sy (f)) for every o € I°°(T) and the map
1°(T) — S(f) (vesp. Sy (f)), ar—aX

1S norm-continuous.
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c) Assume E is a W*-algebra and let I°°(T, E) be the C*-direct product of
the family (E)wer, which is a W*-algebra ([I, Proposition 4.4.4.21 a)]).
We put for every a € [*°(T, E),

OéXZT—)E, tHOétXt.
Then aX € Sw(f) for every a € I°°(T, E) and the map
(T, B) — Sw(f), ar aX

is continuous and W*-continuous.

Proof. a) In the C*-case the family ((Xs ® 1x)Vs)ses is summable since
Sc(f)=, is complete. By Banach-Steinhaus Theorem, + is finite.

In the W*-case the summability follows now from Corollary b),c)
and Theorem [2.1.9b).

b) Let G be the vector subspace { a € I°°(T') | «(T) is finite } of I*°(T).
By a), the map

G — S(f) (resp. SH”(f)), ar— aX

is well-defined, linear, and continuous. The assertion follows by continuity.
¢)Let z € E, S CT,and a := zeg. For £,n € H and a € E, by a) and
Lemma [1.3.2) _ b) (and Theorem [2.1.9] “ 9 b))

<aX,(a,£,n)> ((aX&ln), <Zm (esX)E >

teT

E
= Z x, ((esX)&)an; ) = <QZ, Z((eSX)f)tcmf > :
teT teT
Let G be the involutive subalgebra { a € {*°(T, E) | «(T) is finite } of (T, E)
and let G be its norm-closure in [*°(T’, E'), which is a C*-subalgebra of [°°(T, E).
By [I, Proposition 4.4.4.21 a)], G is dense in I*°(T', E) jz, where F := [*(T, E).
Let a € I°°(T,E)*” and let § be a filter on G converging to a in
I*°(T,E) ([1, Corollary 6.3.8.7]). By the above (and by Theorem [2.1.9|h)),

lim X = aX
8,5 b

in Sw(f) .. andsoaX € Sy(f). The assertion follows. [
Sw(f)

COROLLARY 2.1.17. Let S be a subgroup of T. Put
=fl(S§x8), Kg:=I1*(), G:={XeS(f)|teT\S=X,=0}.
a) fs € F(S,E).
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b) G is an E-C**-subalgebra of S(f).

c) For every X €G, the family ((XSQNQIKS)VJS)Ses is summable in Lg(Kg)z,
and the map
T3
0:G—8(fs), XD (XBlkg)Vs
seS
is an injective E-C**-homomorphism.

d) If X egn SH.”(f) then pX € SH.”(fg) and the map
g ﬂSH.”(f) — S”,H(fs), X +— X

s an E-C*-isomorphism.

e) If S is finite then the map
G— S(fs), Xr— ) (X ® 1gg)V/*
tes
18 an E-C*-isomorphism.
Proof. a) is obvious.

b) By Theorem c),g), G is an involutive unital subalgebra of S(f)

and by Proposition a) (resp. Proposition c¢) and Corollary c))
and Theorem h), it is an E-C**-subalgebra of S(f).

c) follows from Theorem b) and Corollary [2.1.16|a).

d) follows from c).
e) is contained in d). [

Definition 2.1.18. We denote by &7 the set of finite subgroups of T and
call T locally finite if &1 is upward directed and

U s=1.
SeGr

T is locally finite iff the subgroups of T generated by finite subsets of T’
are finite.

COROLLARY 2.1.19. Assume T locally finite. We put fs := f|(S x 9)
for every S € St and identify S(fs) with { X € S(f) | teT\S= X, =0}
(Corollary [2.1.17] e)).

a) For every X € Sy (f) and ¢ > 0 there is an S € &1 such that
Y (X @1V - X|| <e
teR

for every R € & with S C R.




49 Projective representations of groups using Hilbert right C*-modules 247

b) 8. (f) is the norm closure of Usee,;S(fs) and so it is canonically iso-
morphic to the inductive limit of the inductive system { S(fs) | S € &}
and for every S € &r the inclusion map S(fs) — ). (f) is the associ-
ated canonical morphism.

Proof. a) There is a Y € R(f) with [[X =Y < §. Let S € &7 with

Y € S(fs). By Corollary [2.1.17|b), for R € &p with S C R,

S (X - Y)@1k)Ve
teR

<|x-v|<:Z
2
SO

S (Xi@1)V; - X|| <

teR

> (X = V)®1K)V,

teR
b) follows from a). [

e €
Y - X —+-—=c.
+ | H<2—i-2 €

Remark. The C*-algebras of the form S (f) with T locally finite can be
seen as a kind of AF-FE-C*-algebras.

ProrosiTION 2.1.20. The following are equivalent for all t € T with
t?=1landacUnE.

a) $(Vi + (a®1k)V;) € PrS(f).
b) a? = f(1).
Proof. By Proposition b),d),e),
V)" = (FO@1)Ve,  (V)? = (f(O) @1x)Vi

SO

S0+ @BV = SV + (o F)E LV

(1(V SOV = (st FONFLOV + L (aBLm;
5 (V1 +(a®1)Ve) | = 2 (g + o f())@1x)V1 + 5 (a®lk)Ve

Thus a) is equivalent to a*f(t) = a and a?f(t)* = 1p, which is equivalent to
b). O
COROLLARY 2.1.21. Let t € T such that t* =1 and f(t) = 1g. Then
1
s(i£V) e Prs(f), M+ -V)=0.

Proof. The assertion follows from Proposition [2.1.20 [
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COROLLARY 2.1.22. Let a,f € Un E, s,t € T with s> =1t> =1, st = ts,

= %(a*ﬁf(s, st)* + Braf(t,st)*), + = %(aﬁ*f(st,t)* + pa* f(st,s)"),
and

X = %((aélK)Vs + (BR1K)VL) -

a

f(s,st)f(t,st) = f(st,t)f(st,s) = f(st)*.
st) = f(st,s)f(t,st).

)

b) (s,

) X*X =1(Vi+ (y®1g)Var), XX*=3(Vi+ (V®1k)Var).
)

flst,t)f

d) The following are equivalent.

d1) X*X € PrS(f).

do) XX* e PrS(f).

d3) a*Bf(t,st) = G af(s, st).

ds) a*Bf(st,t) = Faf(st,s).
Proof. a) and b) follow from the equation of Schur functions (Defini-

tionl.1.1)) and Proposition a).
c¢) By Proposition b),e) and Proposition b),

X = L@ Fe) Ve + (5 FO) LV

XX = JVi+ 1 (0" BF(6)F(s,0) + Baf (1)1 (t,5) B Ve

1

= SV (@B (5,5t)” + 8 af (b5t )BL)Var = 5 (Vi + (711 Var),

XX = Vit (@8 F0)(5,0) + Ba” F(5)1(t,9) i) Vi

= %Vl + %((aﬁ*f(st,t)*—i- Ba* f(st,s)*)@1k) Ve = %(V1 + (V&1 Vi)

dy & ds is known.

dy < ds. By a), we have
P (st) = (0" 0" B (s, s1)° + BB af (1, st)" + 21 (s,1)" (1, 51)°)

— Flo s (1, 0)” = (0" (s, ) — Bauf(t,5t)°)”
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By Proposition [2.1.20 d;) is equivalent to 72 = f(st) so, by the above, since
a*Bf(s,st)* — B*af(t,st)* is normal, it is equivalent to

a*Bf(s,st)" =G af(t,st)* orto [raf(s,st)=a*ff(t,st).
ds < dy follows from b). [

PROPOSITION 2.1.23. Let X € S(f).
a) > XiXy = (X"X), 3 (XeX{) = (XX

teT teT
b) (Xt)tET ’ (Xzi,k)tET € CD E;
teT
[(X)eerl < I1XI 51X )eer|l < [1X]] -

c) If T is finite and f is constant then there is an X € S(f) with

IX| > VCard T |(Xe)ier|l ,  [IX]| > VCard T [|(X; )ser| -
d) If T is infinite and locally finite and f is constant then the map

S(f) — Eév X (Xi)ter
teT

18 not surjective.

Proof. a) follows from Theorem [2.1.9] g).
b) By a), N
(Xt)ier, (X her € D E
teT
and by Proposition a), ©
1X)eerll® = llpra (XX < 1IX* X = [ X,

* 2 * * 2
(XD eer|” = o (XXT)[| < [|[X X7 = [| X7
c¢) Let n:= Card T and for every t € T put X; := 1g, & := 1g. Then
II(Xt)teTll2 = (X erl?=n, [(E)erl®=n.
For t € T, by Theorem [2.1.9|e),
th—Zf s X1y = nlp

seT
SO

(X¢| XE)=n1p, n|X|? =X €? > 1XE)* =

2 2
IX1° = nll(Xower™,  1X1 = Vi l(Xderll-

d) follows from c), Theorem a), and the Principle of Inverse Oper-
ator. [
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Remark. If E is a W*-algebra then it may exist a family (z;)¢cr in E such
that the family ((2;@1x)Vi)ier is summable in Lg(H)g, in the W*-case but
not in the C*-case as the following example shows. Take T := Z, f constant,
E :=1"(Z), and x; := (6;,s)ser € E for every t € T. By Proposition 2.1.23]b),
((xt ® 1) Vi)ter is not summable in Lg(H )z, in the C*-case. In the W*-case
for £ € H and s,t €T,

((@@1)Vi€)s | (@@1x)Vil)s) = erlésil?,
(2 @1x)Vié | (@@1r)Vi€) = ex €]1* -

T2
X =) (2®1k)V; € Sw(f) .

teT
Using the identification of Theorem i), we get X € Sw(f)\ Sc(f).

COROLLARY 2.1.24. Let X € S(f).

Thus

a) X € { 2@k | z€ B} iff X, € E° forallt € T.
b) X e{Vi| teT}°iff
X1y = f(s,57 )" [(t,8)Xe = f(s™" ) (L, 5) [ (5) X
for all s,t € T.
c) X e S(f)iff forall s,t €T
Xi € B, Xy = f(s,5 t8) f(t,s)Xe = f(s™ 1 ts)f(t,8) f(s) X -

In particularif f(s,t) = f(t,s) forall s,t € T then X € S(f)¢ iff X € E¢
forallteT.

d) @1,1(5(f)c) = k"

e) If the conjugacy class of t € T (i.e. the set { s7s ‘ s € T}) is infinite
and X € { V; | t € T }* then X; = 0.

f) If the conjugacy class of every t € T \ {1} is infinite then
{(Vi|teT}Y ={a®lx |z E}, S(f)={a®lg|zcE} .
Thus in this case S(f) is a kind of E-factor.
g) The following are equivalent:

g1) S(f) is commutative.

g2) T and E are commutative and f(s,t) = f(t,s) for all s,t € T.
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Proof. For s,t € T,z € E,and Y := (z®1x)Vs, by TheoremMg),

(XY), —Zf )X, Y, - 1’5_Zf )X, 6510 = fts™', 8) Xy,

reT reT
YX)e=> flrr )Y, Xy =Y frr )0 X1y = f(s,5  a X, .
reT reT

a) follows from the above by putting s := 1 (Proposition [1.1.2]a)).

b) follows from the above by putting x := 1p and ¢t := rs (Proposition
1.1.9).

c) follows from a),b), and Corollary d). The last assertion follows
using Proposition m a).

d) follows from c¢) (and Proposition a)).

e) follows from b) and Proposition b).

f) follows from c), e), and Proposition d).

g1 = g2. By a), E is commutative. By Proposition b),

f(s,0)Var = VsVi = ViV = f(t, )ViVi = [(t, 5)Vis

and so by Theorem a), st =ts and f(s,t) = f(t,s).
g2 = g1 follows from ¢). [

COROLLARY 2.1.25. If K =R then the following are equivalent:

a) S(f)°=S8(f) =Re S(f).
b) T is commutative, E° = E = Re E, and
fs,t) = f(t,s), ft)=1p, t*=1
for all s,t €T.

Proof. a = b. By Corollary g1 = go, T is commutative, £ = E°,
and f(s,t) = f(t,s) forall s,¢ € T. Since E is isomorphic with a C*-subalgebra
of S(f) (Theorem h)), E = Re E. By Proposition [2.1.2]e),

Vi =V = (f(t)@1k) Vi

so by Theorem a), t=t"1, f(t)=1g, so t? = 1.
b = a. By Corollary [2.1.24] go = g1, S(f)¢ = S(f). For X € S(f) and
t € T, by Theorem c),

(X = f(O)(X1)" = (X0)" = X,
so X* = X (Theorem[2.1.9/a)). O
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PROPOSITION 2.1.26. Let (E;);er be a family of unital C**-algebras such
that E is the C*-direct product of this family. For every i € I, we identify E;
with the corresponding closed ideal of E (resp. of Ej;) and put

fi:TxT —UnE;, (st)r— f(s,t);.

a) For everyi €1, f; € F(T,E;). We put (by Theorem [2.1.9 b))
%o
i S(f) — S(f), X — > (X)i®1g)V"
tel

w; 18 a surjective C**-homomorphism.

b) In the C*-case, if T is finite then R(f) = Sy |(f) = Sc(f) is isomorphic
to the C*-direct product of the family

(R(fi) = Sy (fi) = Sc(fi))ier -

c) In the C*-case, if I is finite then Sc(f) (resp. S).|(f)) is isomorphic to
[1 Sc(fi) (resp. H Sy (fi))-

el

d) In the W*-case, Sw(f) is isomorphic to the C*-direct product of the
family (Sw(f:))ier-

Remark. The C*-isomorphisms of b) and c¢) cease to be surjective in
general if T and I are both infinite. Take T := (Z2)N, I := N, E; := K for
every i € I, and E :=[* (i.e. E is the C*-direct product of the family (E;);cr).
For every n € N put t,, := (0p, n)meN € T. Assume there is an X € S¢(f)
(resp. X € §)(f)) with X = (V] "Yier (resp. X = (thl)ze[), where ¢ and
¢ are the maps of b) and c), respectlvely Then (Xy,); = 0y for all i,n € N

and this implies (X;);er € (D E, which contradicts Proposition [2.1.23|b).
teT

PROPOSITION 2.1.27. Let S be a finite group, K' :=1?(S), K" := I?(S x
T), and g € F(S,S(f)) such that g(s1,s2) € Un E¢ (where Un E€ is identified
with (Un E€)®@1x C Un S(f)¢) for all s1,s2 € S and put

h:(SxT)x(SxT)— UnE°, ((s1,t1),(s2,t2)) —> g(s1,2)f(t1,t2) .
a) he F(SxT,E); for everyX € S(g) put
X = ZZ @1V € S(h) .
seS teT

b) ¢:8(9) — S(h) is an E-C*-isomorphism.
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Proof. a) is obvious.
b) For X,Y € S(g) and (s,t) € S x T, by Theorem c),g) and
Proposition )

res
= Zg(r,r_ls)Zf(q, q_lt)(XT)(I(Y;*ls)qflt
resS q€eT
= Z h((T, Q)ﬂ(n Q)il(‘s?t))X(r,q)}/(r,q)*l(s,t) :((SOX)((PY))(s,t)a

(r,q)eSxT

s0  is a C*-homomorphism. If pX = 0 then X, = 0 for all (s,t) € S x T,
so X =0 and ¢ is injective. Let Z € S(h). For every s € S put

T3

Xs =Y (Zep@l)V € 8(f),
teT

X =) (X, ®1g)VI € S(g) .
s€sS

Then pX = Z and ¢ is surjective. [

PROPOSITION 2.1.28. If T is infinite and X € S(f)\ {0} then X (H?) is
not precompact.

Proof. Let t € T with X; # 0. There is an 2/ € E, (vesp. 2’ € E) with
(X;X¢, 2’y >0. We put t; := 1 and construct a sequence (t,)nen recursively
in T such that for all m,n € N, m < n,

’<f(t,tm)*f(ttmtgl,tn)Xthtmt# : x’>‘ < %(X;‘Xt, 'y .

Let n € N\ {1} and assume the sequence was constructed up to n — 1. Since

(Proposition [2.1.23 a))

* /
E <Xttm5*1Xttm871 , LT > < 0
seT

for all m € N,,_; there is a t,, € T with

* 1 * /
< ttmtﬁlXttmty_Ll , 3_’:,> < Z <Xt Xt, X >
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for all m € N,_;. By Schwarz’ inequality ([I, Proposition 2.3.4.6 c)]) for
m & Nn—17

2
<f(t, t) f (it ) X7 Xy 1 x/>‘

1 2
* / * / * /
< (XX, @) (X, XKy 7)< (XX, a )
This finishes the recursive constructlon.
For r;s € T, by Theorem [2.1.9|e),

(X(IE ® 67« s = Zf 4.9 X 5 = f(sr_lvr)Xsr*1 s
qeT

< X(lE ® 67") ‘ Xt ® es> = f(sr_lﬂq)X:Xsr*l .
For m,n € N, m < n, it follows

(X(1g®ew,) | Xi®eu,, ) = [t tn) Xi Xy,

((X(Ap®e,)| Xi®ew, ), ' ft,tm)" ) = (X[ X;, 2" ),
(X(Ilg®e,)| Xi®ew,, ) = f(ttmty ' tn) X/ X, 1

[((X(p®e)| Xi@ew, ) » @' f(t,tm)")]
* — * 1 *
= ’<f(t,tm) fttmtrt ) X Xy o1 a:'>‘ <3 (XX, 2y,
' [[ 11X (1e ® et,,) = X (1 @ e, )| | Xe]
> ‘< (Ig®e,) —X(1g®ew,)| Xi®@ew,, ) $/f(t,tm)*>’

>[((X(lp®e,)| Xi®ew,, ), o' f(t,tm)" >‘—
|< (lg®@ey,)| Xi@eu,, ), ' f(t, tm) >|

> (XiXi,a!) = 5 (XiXe, o) = 5 (XiXr, o)

Thus the sequence (X (1g ®ey, ))nen has no Cauchy subsequence and therefore
X (H#) is not precompact. [

PROPOSITION 2.1.29. Assume T finite and let € be a compact space,
wp € £,

g:TxXT—UnC(LE), (st)— f(s,t)lq,
A={XeS(g) |teT t#1= Xi(wy) =0},

B={YecCQS8(f)|teT t#1 = Y(w)=0}.



57 Projective representations of groups using Hilbert right C*-modules 255

Then g € F(T,C(S, E)) and we define for every X € A andY € B,

gOX:Q—)S , UJ'—)ZXt ®1KVt,
teT
VY =) (Y( ) ®1g)V,
teT
Then A (resp. B) is a unital C*-subalgebra of S(g) (resp. of C(2,S(f)))
p:A— B, Yv:B— A

are C*-isomorphisms, and ¢ = 1p~1.

Proof. 1t is easy to see that A (resp. B) is a unital C*-subalgebra of S(g)
(resp. of C(Q2,S8(f))) and that go and 1) are well-defined. For X, X' € A, te T,
and w € Q, by Theorem [2.1.9 ¢),g) and Proposition e),

(X)) (X)) (W) =D f(s,s~ X)(@)s((pX) (W) 514
seT
= Zf(s, Silt)XS(w) éflt(w) = Z(f( 71t)X Xs 1) (w)
seT seT

= (XXN)i(w) = (p(XX") (@),

(PX)w) = D (X)s(@)) @ 1)V =D () (Xgm1)" (@) ® L)V

seT seT
=S (x @ 1) (V) =D (Xe(w)* @ 1) (V)" = (0X)*(w)
seT seT

so ¢ is a C*-homomorphism and we have
(WXt = (pX)t = Xi .
Moreover for Y € B,
(@YY )e(w) = (¥Y)(w)): = Vi(w)

which proves the assertion. [J

2.2. Variation of the parameters

In this subsection, we examine the changes produced by the replacement
of the groups and of the Schur functions.

Definition 2.2.1. We put for every A € A(T, E) (Definition|1.1.5)
Uy:H— H, f — ()\(t)ft)teT .
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It is easy to see that Uy, is well-defined, Uy € Un Lg(H), and the map
AT, E) — Un Lg(H), A— U,

is an injective group homomorphism with Uy = Uy- (Proposition c)).
Moreover

1UX = Upll < 1A = pill o
for all \,u € A(T, E).

PROPOSITION 2.2.2. Let f,g € F(T,E) and A € A(T, E).

a) The following are equivalent:

a1) g = foA.

az) There is a (unique) E-C*-isomorphism

p:S8(f) — S(9)

continuous with respect to the To-topologies such that for allt € T
and x € F,

PV = (M) BV
(we call such an isomorphism an S-isomorphism and denote it by
st)

b) If the above equivalent assertions are fulfilled then for X € S(f) and
tefT,

X =U XUy, (0X)i=At)"X;.
c) There is a natural bijection
{SH I feFTE)} ) ms— F(T,E)/{ A e MT E)} .

Proof. By Proposition c), 0N € F(T,E) for every A € A(T, E).

a;) = ag) and b).

For s,t € T and ¢ € E, by Proposition c),
URVIUNC @ e5) = RV ((A(3)Q) @ €5) = UR((f (1, 5)A(5)0) © exs)

= (A(ts)" f(t, )A(5)C) ® ers = (A(£)"g(t, 5)C) @ ers = (M) @1x) V(¢ @ €5)
so (by Proposition e))
U3V Uy = (@) @1K) VY .
Thus the map
0:S(f) —S(g), X +— UxXU,

is well-defined. It is obvious that it has the properties described in ay). The
uniqueness follows from Theorem b).
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‘We have
P(XBLOV) = (XBLRAG BLOVE = (M) X)B1x) VY

5o (pX): = A(t)* Xs.
ag) = a1). Put h:= fo\. By the above, for t € T,
ALV = oV = A@) @1V
so V7 = V;* and this implies g = h.

c) follows from a). [

Remark. Not every E-C*-isomorphism S(f) — S(g) is an S isomorphism
(see Remark of Proposition [3.2.3)).

COROLLARY 2.2.3. Let
A(T,E):={ A€ A(T,E) | Xis a group homomorphism }
and for every \ € Ao(T, E) put
or:S() — S(f), X —s UIXU, |

Then the map \ — @) is an injective group homomorphism.

Proof. By Proposition c), Ao(T, E) is the kernel of the map
A(T,E) —s F(T,E), X+ A

so by Proposition ©y is well-defined. Thus only the injectivity of the
map has to be proved. For t € T and { € E, by Proposition c),

UxViUa((®e1) = UxVi((®e1) = UX(( ® &)
= (A®)" Q) @ e = (AB)' LK) V(¢ @ ex).

So if @) is the identity map then A(¢) = 1p for every t € T. [

PROPOSITION 2.2.4. Let I be a unital C**-algebra, ¢ : E — F a surjec-
tive C**-homomorphism, g == po f € F(T,F), and L := () F. We put for

teT
alé e H nel, and X € Li(H),
gz:((pfi)iEIelﬁ Xn::ﬂeLa

where ¢ € H with { = n (Lemmal1.3.11|a),b) and Proposition|1.3.12]a)). Then

T3

X =) ((pX)@1K)V € S(g)
teT

for every X € S(f) and the map
$:8(f) — Slg), X— X
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is a surjective C**-homomorphism, continuous with respect to the topologies
Tk, k€ {1,2,3} such that

Kerog={XeS(f)|teT= X;€ Kery} .

Proof. For s,t €T and £ € H,

e~ —~——

— — -
(X @1V E | s = (Xi@1r)VI€)s = 0((Xi@1 1)V, €,

= o(f(t, 17" 8) Xi&p1s) = g8, ¢ 8) (0 X0)Ep1s = (X)) VIE) s
so by Lemma b),

/—N/% _
(X 216V = (pX)®1) VY .

By Theorem b),
T3
X =) (x@1g)V
teT
so by the above and by Proposition b),

T3

X =) ((pX)@1x)V € S(g) -
teT

By Proposition [1.3.12 b), ¢ is a surjective C**-homomorphism, continuous
with respect to the topologies Ty (k € {1,2,3}). The last assertion is easy to
see. [

COROLLARY 2.2.5. Let F be a unital C*-algebra, ¢ : E — F a unital
C*-homomorphism such that o(Un E€) C F° g == po f € F(T,F), and

L:= () F. Then the map
teT

G Sp(f) — Spyle), X — Y ((pXe) @ 1)V
teT

18 C*-homomorphism.

Proof. Put G := E/Ker ¢ and denote by ¢1 : E — G the quotient
map and by @2 : G — F the corresponding injective C*-homomorphism. By
Proposition 2.2.4] the corresponding map

@1 : S (f) — Sy (p10 f)
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is a C*-homomorphism and by Theorem k), the corresponding map
@22 S| lwrof) — S (9)
is also a C*-homomorphism. The assertion follows from ¢ = g0 @y. [

PROPOSITION 2.2.6. Let T' be a group, K' := I2(T"), H' := EQK', ¢ :
T — T a surjective group homomorphism such that

-1
sup Card ¥ (t') € N,
t'eT’
and ' € F(T', E) such that "o (¢ x ¢) = f. If we put

1{/ = Z Xt
eV ()
for every X e S(f) and t' €T’ then the family ((XélélK/)th/)t/GT/ is summable
in Lg(H' )<, for every X € S(f) and the map

%1
G:S(f) — S, X X'= > (X)@1g)V/]
t'eT’

is a surjective E-C**-homomorphism.
We may drop the hypothesis that v is surjective if we replace S by S,

Proof. Let X € S(f). By Corollary [2.1.16| a), since v is surjective and

-1
sup Card ¥(t') € N

t'eT’

it follows that the family ((X ®1K/)th/)t’eT/ is summable in Lg(H')z, and
therefore X' € S(f').
Let X,Y € §(f). By Theorem c),g), for t' € T,

*

(X" = () Xpa)" = FE) | Y X| =) D (X

te:ﬂl(t/—l) sezbl(t’)
= Y fEOX) = D> (X = (X,
sew () € ()

(X'Y") t/_Zf STHNXLY) L,
s'eT’
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:Zf /1t Z—XS }/7"

s'eT’ -1 —1
s€ v (s) rey (s'-11)

= SCRATL D Sl S

s'eT’ -1 -1
s€Y (s') e ()

=2 | X X SesToXY

s'eT’
se () te b (1)

= Z Zf sTX Y= > (XY) = (XY}
ey )°C ey @)

Thus ¢ is a C*-homomorphism. The other assertions are easy to see.
The last assertion follows from Corollary [2.1.17/d). O

COROLLARY 2.2.7. If we use the notation of Proposition and Corol-
lary and define ¢’ and ' in an obvious way then ¢' oY =Y’ o P.

Proof. For X € S§(f) and t' € T',
(X )y = p(D X)) = ¢ Z X = Z ©Xy,

te w (t") te?ﬁl(y)
WeX)y = > (@X)i= Y. ¢Xi,
te (1) te (¢
SO _ B _
pop =Yoo

O]

PROPOSITION 2.2.8. Let F be a unital C*-subalgebra of E such that
f(s,t) € F for all s,t € T. We denote by ¢ : F — E the inclusion map
and put

T xT —UnFe¢, (st)— f(s,1),
HY = (DF'%FW@K,
teT

(e " — H, & (V& )ter-
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Moreover, we denote for all s,t € T by uf’, V,I', and gogt the corresponding

operators associated with F (f¥ € F(T, F)). Let X € Sc(f) such that X (9€) €
V(HT) for every ¢ € HY and put

X" H" — HY, t— ¢,
where €& € HY with & = X(p¢), and XF = Wy XFul € F (by the
canonical identification of F with Lp(F')) for everyt € T.
a) &n e HF = (G¢|dn) =w (¢l n).

b) 1; 1s linear and continuous with HIZJH =1.

¢) X¥ is linear and continuous with | X*|| = || X

d) Fors,teT,

vl X =0 X, oXf =X, oL XF= st nxE, .
e) X' e S(fF).
5 Il -
f) €€ H = X(€) = Y (X; ® 1) Vi (4€).

teT

Proof. a), b), and c) are easy to see.
d) By a) and Proposition b),

L X = (XF(lp@e)| lr®es ),

el X7 = (X (lr@e) | 1r@es) = (X (lr @ e))| dlr@e,))
=(X(1pg®e)| lg®es) = ps i X.

In particular,
VX[ =1, X = 01X = X,
and by Proposition [2.1.8
Vo XT = 0t X = fst™ )X g1 = w(fF (st ) X50),
Ps tXF fF( t_l t)Xst L-
e) By c¢) and Proposition [2.1.3|d), for £ € HY
Il

> ufwf)yre=¢,

teT
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Il II
XFe= XY uf(uf e =Y X uf ()¢,
teT teT

xFe= Zu Pyxte = ZZu Fuf ) (uf)*e

seT seT teT
By d) and Proposition b),d)

XFe = ZZuFf (st L) XE_ (ulyre = ZZ“FXstl ) VE ¢

sET teT s€T teT
-0 111 -1 111

=SS dEXF @)y Ve =YY WF (W) (XF @ 1)V

seT reT seT reT
[l Il Il
=D ul () Y (X[ olnViie =Y (X[ o1k)V/e

seT teT teT
by Proposition d), again. Thus
T2

XF=NM(xf o1V e So(fF).
teT

f) For s,t € T, by d),
WX @ 1x)VFE))s = v(X] @ 1) ViF )y = p(fF (8,47 8) X[ €-1,)
= f(t, 17 9) Xe(h€) 15 = (Xi @ 15) Vi),
S((X] @ 1K)V, = (X @ 1k) Vi
so by b) and e),
X(9¢) = d(x"¢) =4 Z”}Xf“ ®1x)V;"¢
teT

I Il
=X @ 1)ViTe) = (X @ 1) Vi(e).

teT teT
O

PROPOSITION 2.2.9. Let F be a W*-algebra such that E is a unital C*-
subalgebra of F' generating it as W*-algebra, ¢ : E — F the inclusion map,
and & := (p&)ter € L for every & € H, where

W ~ A —
teT
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a) o(Un E°) CUn F° and g:=ypo fe F(T,F).
b) If
is the injective C*-homomorphism defined in Proposition b), then

V(Sc(f)) € Swlg), v(Sc(f)) generates Sw(g) as W*-algebra, and for
every X € Sc(f) and t € T we have (X); = pX;.

c) The following are equivalent for every Y € Sy (g):

c1) Y € ¢(Sc(f))-
) E€eH=YEeH.
If these conditions are fulfilled then
cs) (Ye)ier € H.
ca) (Y{)er € H.
|

) E€EH=YE= Y (V@) e H.
teT

Proof. a) follows from the density of ¢(F) in F: (Lemma a=c).
b)Forze E,teT,and { € H,

((p2)@1K)VIE)s = gt t's) (pm)Es1,
= o(f(t,t7 " s)x&-15) = ((z @ 1) Vi)

S0
(p2) @1V = (2@ 1)V
Let now X € S(f). By Theorem [2.1.9b),
%o
X =Y (X ®1k)V/
teT
so by the above and by Proposition ¢) (and Theorem d)),
B Tl T1
X =3 (K@ lV =3 (pX)@16)V] € Sw(g)
teT teT

so Y(Sc(f)) € Sw(f). By Theorema), (X); = pX; for every t € T.
Since p(E) is dense in Fj; (Lemma a) = ¢)) it follows that

T
R(g) Ce(R(f))
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so ¥(S(f)) is dense in S(g) and therefore generates S(g) as W*-algebra

~~
S(9)
(Lemma c=a).
c1) = c2) follows from the definition of .
9) = c¢1) follows from Proposition e).
c2) = c3) and c4) follows from Proposition [2.1.23| b).
c2) = c5) follows from Proposition f). O

LEMMA 2.2.10. Let E, F be W*-algebras, G := EQF, and
w 9 Vo
L:= O G~GRK.

a) If z € G* then 2®1f belongs to the closure of
{wRlg | we EOF, |w[| <1}
in ‘CG(L)E'
b) For every y € F, the map
EZf — Ga, T ITRY

1s continuous.

Proof. a) By [1, Corollary 6.3.8.7], there is a filter § on
{weEOF| |w| <1}

converging to z in Gﬁ By Lemma [1.3.2|b), for (a,§,n) € GxLxL,

(201k, (@&m) ) = <z ZG:&aWZ“>

teT

_hm< thant>—hm<w®1l(a(;_§7)>

teT

which proves the assertion.
b) Let (a;, b;)ics be a finite family in E x F. For z € E,

<x®y,2ai®bi> :Z@c,ai)(y,bi):<x,z<y,bi>ai> )
el el i€l

Since { r®y| zeE? } is a bounded set of GG, the above identity proves the
continuity. [
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PROPOSITION 2.2.11. Let F be a unital C**-algebra, S a group, and g €
F(S,F). We denote by ®, the spatial tensor product and put

G =FE®,F (resp. G .= EQF),
L= () F~FRS), M= () G=GIATxS),
ses (t,s)€TxS
h:(Tx8)x(TxS)—UnG°, ((t1,s1),(t2,s2)) — f(t1,t2) ® g(s1,52) .

a) h € F(T x S,QG), M~ HRL,
Lp(H)®qy Lr(L) C La(M) in the C*-case,
Lp(H)QLp(L) ~ L;(M) in the W*-case .

b) ForteT,se S, x€E,yeF,
(@®1er)Vi) © (81e(s)VE) = (2 © 9)Brws) Vil -
c) In the C*-case, S (f)®s8).(9) = S (h) and Sc(f)®sSc(g) = Sc(h).
d) In the W*-case, if 2 € G* and (t,s) € T x S then (z@llz(sz))V(];s) be-
longs to the closure of {(w®ll2(T><S))‘/(}tl,s) we (EoF)* } in La(M);
e) In the W*-case, Sw(f)@Sw(g) =~ Sw(h).

Proof. a) h € F(T x S, Q) is obvious.
Let us treat the C*-case first. For £, € H and n,n' € L,

(on|con)=(El&)a (1 |n)

= (Zf?&) ® (Znﬁné) = Y (&) e )

teT ses (t,s)eTxS
= Y, GoemEen) = Y (Gon)(Eon),
(t,s)eTxS (t,s)€TxS

so the linear map
HOL-— M, £@n+— (§&®ns),s)erxs

preserves the scalar products and it may be extended to a linear map ¢ :
H ® L — M preserving the scalar products.
Let z € G, (t,s) € T'x S, and € > 0. There is a finite family (x;, yi)ies in

FE x F such that
Ziﬂi@yi—z

el

<e€.
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Then

Z(xz Re) ® (Y @es) —2@epg || <€
i€l
S0 2® e € p(H® L) = o(H ® L). Tt follows that ¢ is surjective and so
H®L~M.

The proof for the inclusion Lg(H) ®, Lr(L) C Lg(M) can be found in
[5, page 37].

Let us now discus the W*-case. EQF =~ G follows from [2, Proposition 1.3
e)], M ~ HRL follows from [3, Corollary 2.2], and Lg(H)®Lp(L) =~ La(M)
follows from [2, Theorem 2.4 d)] or [3, Theorem 2.4].

b) For t1,ty € T, 51,80 € S, £ € E, and n € F', by Proposition [2.1.2] f)
and [3 Corollary 2.11],

(@@12) VDB ((y&125) VI (E @ e1,) @ (n @ es,))
= (@®1p) Vi) (€ ® e1)B((y212(5) V) (0 @ e,)),

(z @ 9)@Lrxs))Vi ) (E@N) © e(ry.5,))

= (h((t1, 51), (t2,52))(x @ Y)(E ®N)) @ €(1,15,5150)
((f(t1,t2)xE) ® (g(s1,52)ym)) @ ey, @ €55

= (@B Vi) (€ ® e0,))B((yBL12(5)) VE) (0 @ €5,)).-

We put
U= ((3@112@))Wf)é((yélﬂ(sﬂvsg) — (2@ Y)BL2(rxs)) Vi € La(M) .

By the above, u(¢ ® e,.) = 0 for allCEE@F’amdr el xS.

Let us consider the C*-case first. Since £ ® F' is dense in G , we get
u(z®e,) =0forall z€ Gand r e T xS. For ( € M, by [I, Proposition
5.6.4.1 e)],

UCZU< Z (<r®er)> = Z U(€r®€r):0,

reT xS reTxS

which proves the assertion in this case.
Let us consider now the W*-case. Let z € G# and r € T x S and let § be
a filter on (E ® F)# converging to z in G ([1, Corollary 6.3.8.7]). For n € M,

aeG andreT xS,
(z@er, (am)) = ({26l n),a) =z, a) = (=, an)

:lirrgl<w,a77;f>:lim<w®er, (E,Ty)>,

WS
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Hence

lin§w®er =zQe,
w,
in My;. Since u : My, — My, is continuous ([Il, Proposition 5.6.3.4 c)]), we

get by the above u(z ®e,) = 0. For ( € M it follows by [I, Proposition 5.6.4.6
c)] that
M M
u¢ =u Z(Cr@)er) = Z u(r®er) =0
reTxS reT xS
which proves the assertion in the W*-case.

¢) By b), R(f) ® R(g) C R(h) so by a),
S ©Syylg) < Spy(h),  Se(f) ©Sclg) C Sc(h),
S| (f) @ Sy(9) C Sp(h), Self) ®e Sc(g) C Sc(h).

Let z € G#, (t,5) € T x S, and & > 0. There is a finite family (2, y;)ies in
E x F such that

Z(%@lﬂ) <1, Z(%@yi)—z <e.
il icl
By b),
D (@ @ Tpmy) V) ® (1 ® Lizs) V) = (2@ Lizrws) Vi || < €
icl
and so by a),

I T
R(h) CR(f) ©R(g) € R(f) © R(9),

Sj(h) € S (f) @0 Spi(g),  Sc(h) C Se(f) ®s Sc(g)-
d) By a) and Lemma a), there is a filter § on

{ w@llz(sz) ‘ w e (E@F)#}

converging to 2@l (rxg) in La(M);;. For {,n € M and a € G,

< (Z®1ZQ(T><S))‘/(]Z75) ) (aa 3 77) > = <Z®1l2(T><S) ) ‘/(?75) ((17 3 77) >

= g{% < w®1l2(T><S)‘/(ZS) ’ (CL, 57 77) > = 1“1;17%1< (w®1l2(T><S))Vv(?75) 5 (CL, 57 77) > ;

which proves the assertion.

e) By Theorem h),

H \# L #
(R(f)) — Sw()* C Lp(H). (R@) _ Swlg)* C Lr(L).
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By b), R(f) ®R(g) C R(h), so by Lemma [2.2.10]b),
Sw(f)* oR(9)* c Sw(h)¥,  Sw(f)* @ Sw(g)* c Sw(h)*.

Sw(f) @ Swlg) € Sw(h)
By [3), Proposition 2.5],

i
Sw(f)@Sw(g) = Sw(f) @ Sw(g)C Sw(h) .

Forx € E,y € F, and (t,s) € T x S, by b),
(2 ® Y)®Lirxs) Vb = (@@L Vi E((yS1i2(5))VE) € Sw(f)ESw (9) -
Let z € G¥. By d), there is a filter § on

{ @8Blpes)Viy | we (Bo P}
converging to (2®112(TX5))V(? 5 In L (M), so by the above

(2@12(rx ) Vi ) € Sw()@Sw(g) -

We get
R(h) C Sw(f)@Sw(g),  Sw(h) CSw(f)@Sw(g),

Sw(h) = Sw(f)2Sw(9).

COROLLARY 2.2.12. Letn € N and

g:TxT —Un(E,n)°, (s,t)—[0i;f(s,t)]ijen, -

a) (S(f))nn~8(9), (S(f))nn =Sy (9) -

b) Let us denote by p : S(g) = (S(f))n,n the isomorphism of a). For X €
S(g9), teT, andi,j € Ny,

(pX)ij)t = (Xt)iy -

Proof. a) Take F' := K, and S := {1} in Proposition [2.2.11] Then
G~ E,, and

g:TxT—UnG (s,t)— f(s,t)@1p.
By Propositionc),e),
S(9) = S(f) @ Knpn = (S(f))nn
Si1(9) & Sy () © Ko & (S (F)nn -
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b) By Theorem b),

T3
X =) (XB1x)VE
seT

SO
T3

(pX)ij = Y _(Xe)ij@1x) VY,

sEt
((pX)ij)e = (Xt)i
by Theorem a). O

COROLLARY 2.2.13. Let n € N. If K = C (resp. if n = 4™ for some
m € N) then there is an f € F( Zy X Zn, E) (resp. f € F( (Z2)*™, E)) such
that

Proof. By [1, Proposition 7.1.4.9 b),d)] (resp. [I, Theorem 7.2.2.7 i),k)])
there is a g € F( Zy X Zy,C) (resp. g € F( (Z2)*™,K)) such that

S(g) = Cppn  (resp. S(g) = Kpn).
If we put
fi(Zp X Zy) X (Zp X Zp)) — Un E¢,  (s,t) — g(s,t) @ 1g

(vesp. f @ (Z2)*™ x (Z2)™ — Un E°,  (s,t) — g(s,1) ® 1)

then by Proposition [2.2.11]a).e), f € F( Zy X Zn, E) (vesp. f € F( (Z2)*™ E))
and

S(fi=rS(g) @ E~K,,QE=~E,,.
O
COROLLARY 2.2.14. Let F be a unital C**-algebra, G :== EQF, and
h:TxT—UnG®, (s,t)— f(s,t) R 1p.
Then h € F(T,G) and
Sty =S (HeF,  Sh)=S(fBF.

COROLLARY 2.2.15. If E is a W*-algebra then the following are equiva-
lent:

a) E is semifinite.

b) Sw(f) is semifinite.
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Proof. a) = b). Assume first that there are a finite W*-algebra F' and a
Hilbert space L such that E ~ FRL(L). Put

g:TxT —UnF°, (st)— f(s,t).

By Corollary
Sw(f) = Sw(g)@L(L).
By Corollary c), Sw(g) is finite and so Sy (f) is semifinite.
The general case follows from the fact that E is the C*-direct product of
W-algebras of the above form ([7, Proposition V.1.40]).
b) = a). E is isomorphic to a W*-subalgebra of Sy (f) (Theorem [2.1.9]
h)) and the assertion follows from [7, Theorem V.2.15]. [

PROPOSITION 2.2.16. Let S,T be finite groups and g € F(S,S(f)) and
put L :=1%(S), M :=12(S x T), and

h: (S X T) X (S X T) —Un S(f)c, ((Sl,tl), (Sg,tQ)) — f(tl,tg)g(sl,SQ) .
Then h € F(S xT,S(f)) and the map

¢:8(g) — Sh), Xr— Z t®1M)V(h)
(st)€S><T

is an S(f)-C*-isomorphism.

Proof. For X,Y € S(g), Z € S(f), and (s,t) € S x T, by Theorem [2.1.9]

= f{ ()(Xs=1)¢-1)
= (s, ) ((X) (s 10-1))" = A5, (X ) (s.p1) " = (X)) (5.9
(X)) (Y ) (s) = h((r, ), (r;w) ™ (8, 0))(0X) () (LY ) ()1 (5,1)
(ru)eSxT
= Z g(T‘,’l“ ls)f(u u lt)(Xr)u(Y;’—ls)u—lt - Zg(T,T_IS)(XTY;—%)t
(ru)eSxT res
(Zg XY, ) — (XY)) = (0(XY)) ey
res t

(@(Z2X) sy = (ZX)s)e = (ZX)s) = (ZXs)e = Z(Xs)e = Z(0X)(s,0)

P(X7) = (pX)*,  p(XY) = (pX)(¢Y), @(ZX)=Zp(X)
and ¢ is an S(f)-C*-homomorphism.

SO
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If X € S(g) with X =0 then for (s,t) € S x T,
(Xs)t = (QDX>(S,t) =0, Xs=0, X=0,

so ¢ is injective.
Let x € E and (s,t) € S x T. Put

Z:=(al)V] €S(f), X:=(Za1,)VeS().
Then for (r,u) € S x T,
(SOX)(T,U,) = (Xr)u = 67",5Zu = 5r,55u,t$

SO
X = (z@ L)V,
and ¢ is surjective. [

PROPOSITION 2.2.17. Let S be a finite subgroup of T and g := f|(S x 5).
We identify S(g) with the E-C**-subalgebra { Z € S(f) | t € T\ S = Z; =0}

of S(f) (Corollary 2.1.17e)). Let X € S(f)NS(9)¢, Py := X*X, and P_ :=
XX* and assume Py € Pr S(f).

a) P, e S(g)c.

b) The map
o+ :8(9) — PxS(f)Pr, Y vr— PLY Py
is a unital C**-homomorphism.

c) For every Z € ¢, (S(g9)), XZX* € ¢_(S(g)) and the map
Vi (8(9) — ¢-(S(9)), Zr— XZX”
is a C*-isomorphism with inverse
0 (S(9)) — ¢+(S(9), Z+— X"ZX
such that p_ =1 o p,.
d) If p € PrS(g) then

(X(p4p))" (X(p1p)) = 4p,  (X((040)(X(p1p))" =-p.
e) If o4 is injective then ¢_ is also injective, the map
E — P.S(f)Pr, x+— Pi(z®@1g)Ps

is an injective unital C**homomorphism, PLS(f)Py is an E-C**algebra,
v+(S(g)) is an E-C**-subalgebra of it, and o+ and ¢ are E-C**-homo-
morphisms.
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f) The above results still hold for an arbitrary subgroup S of T if we replace
S by Sy

Proof. a) follows from the hypothesis on X.
b) follows from a).
c) Let Y € S(g) with Z = P.Y P,. By the hypotheses of the Proposition,

XZX* = XP,YP.X* = XX*XYX*XX*
= XX*'YXX*XX*=P_YP_ € ¢p_(S(g))

and 1 is a C*-homomorphism. The other assertions follow from
X" (XZX")X =P.ZP; =P, YP; .
d) By b) and c¢),
(X (p+p)) (X (1)) = (p42) X" X (p+p) = (0+P) Pr(01p) = ¢+,

(X(040)(X(040)" = X(040) (p40)" X" = X(p4p) X" = poyp =0 _p.
e) follows from b), ¢), and Lemma[l.3.2]

f) follows from Corollary d). O
Remark. Even if ¢4 is injective PLS(f) P4 is not an E-C*-subalgebra of
S(f)

THEOREM 2.2.18. Let S be a finite subgroup of T, L := [*(S), g =
fI(S x 8), w: Zg X Zg — T an injective group homomorphism such that
Sﬂw(Zg X Zg) = {1},

a:=w(l,0), b:=w(0,1), c:=w(l,1), a1:=f(a,a), a2:= f(b,b),
B1, B2 € Un E€ such that o157 + asf5 = 0,

- %(ammg — a31B5) = a}BBa = —aBBif

1 ~ -
X = S(BBLOVL + (3810, Pr=X'X, Poi= XX,

We assume f(s,c) = f(e¢,s) and cs = sc for every s € S, and f(a,b) =
—f(bya) = 1g. Moreover, we consider S(g) as an E-C**-subalgebra of S(f)
(Corollary 2.1.17] e)).

a) We have
f(a,c) = —f(C, (I) = oy, f(b7 C) = _f(ca b) = —Q2, f(ca C) = —0109,
7 = —ajas, vl eS(g)”.
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b)

We have
1 ~
Py = 5 (W £ (1@1)VY) € S(9)'nPrS8(f), PotP-=V{, PLP_=0,

X?=0,XP,=X,PX=X,P,X=XP =0, X+X*eUnS(f),
Y €S(g) = XYX=0.

The map

E — P:S(f)Py, o+ (2®1k)Ps
is a unital injective C**-homomorphism; we shall consider PyS(f)Px+ as
an E-C**-algebra using this map.

The maps
o1+ :8(9) — PyS(f)Py, Y r— PLYPy,
- :8(9g) — P_S(f)P-, Y +— XY X"

are orthogonal injective E-C**-homomorphisms and o4 +p_ is an injec-
tive E-C*-homomorphism. If Y1,Ys € Un S(g) (resp. Y1,Y2 € Pr S(g))
then o Y1+p_Yo € Un S(f) (resp. o+Y1+p_Yo € Pr S(f)). Moreover,
the map

v:S(f) —S(f), Zr— (X+X")Z(X+X")
is an E-C**-isomorphism such that
V=1, O(PyS(f)Py) =P-S()P-,  dops=p-.

IfK = C then X+ X* is homotopic to Vlf inUn S(f) and 1 is homotopic
to the identity map of S(f). Using this homotopy we find that Y is
homotopic in the above sense to ¢_Y for every Y € S(g) and p1+Y7 +
oY, oY1+ o1 Yo, o (V1Y) + P_, and ¢ (Y2Y1 + P— are homotopic
in the above sense for all Y1,Y2 € S(g).

Let s € S such that sa = as. Then
sb =bs, f(se,0)f(s,¢) = —a1a9,
f(sa,0)f(e,sa)" = =1p,  [f(a,s)f(s,a)" = f(b,s)f(s,b)" .
If sa = as for every s € S then the map
S X (Zy xZa) — T, (s,7)r— s(wr)

18 an tnjective group homomorphism.
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g) If T is generated by SUw(Zgy X Z2) and sa = as for every s € S then ¢4
and Y_ are E-C*-isomorphisms with inverse

PiS(f)Pr — S(g), Z+—2) (Z.21L)VY,
seS

where
Y—PYP_.

Y- :S8(g) — P-S(f)P-,

h) If sa = as and f(a,s) = f(s,a) for every s € S then X € §(g9)¢, p_-Y =
P_Y for everyY € S(g), and there is a unique S(g)-C**-homomorphism

¢ :85(g9)22 = S(f) such that

0 0]
¢[(a1512)®1L 0}_)('

¢ is injective and
vl ol 0o 0 |

i) If sa = as and f(a,s) = f(s,a) for all s € S and if T is generated by
SUw(Zy x Zs) then ¢ is an S(g)-C*-isomorphism and

o~V = [ 1E(§)1L 1E(9&1L } Rah [ 7*%& —7*0®1L }
Vi = [ (Bav*) @ 1p _BT()@ ! } ’
o = [ (51’)”"?@ 1p _5§0® ’ } ’
vy 0}7 ¢1P_:{8 ‘919}’

-1 .
¢ P+_[ 0 0
and for every s € S
2]
-1 f: s

j) The above results still hold for an arbitrary subgroup S of T if we replace

S with S||.||.

Proof. a) By the equation of the Schur functions,
f(a7 a) = f<a7 C)f(a7 b): f(a7 b)f(c7 a) - f(a7 C)f(b7 a)7 f(aa b)f(cv b) = f(b7 b)a
f(b,a)f(c,b) = f(b,c)f(a,b), f(a,b)f(c,c) = f(a,a)f(b,c),
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and so
ar = f(a,c¢), fle,a) =—fla,c) = —a1, f(c,b) = aq,
—ag = —f(c,b) = f(b,c), fle,¢) =a1f(b,c)=—araa.
For s € S, by Proposition b),
VIVE = (fle,9)810) Vi = (5, 0@1k) Vil = VIV
and so Vi/ € 8(g)° (by Proposition d))
b) By Proposition [2.1.2b),d),e) (and Corollary c))

X = L(@iBnEIVE + (038160,

Py = 2@V (0181 B)B1)VE — (03838)81)VY) = 2(V + (18 Li0)V).
P_= 1@V +((510383) 1K)V~ ((Ba0iBD)O1K)VY) = 5 (W —(@160)VY) -
By a),

P = S0/ + (8L (~ajad) B1)VY) = P

P2 = i(vlf +2(v@1k) VY + (VP 01k)((—ara2)®15)VY ) =

1 -
= SV £ (®10)VY) = P
so, by a) again, Py € S(g)° N PrS(f). By Proposition b),d)
1 =~ ~
X2 — Z(((ﬂ%m + 53@2)®1K){/1f + ((ﬁlﬂz)@lK)(Vaf‘@f + V})fVaf)) —0,

(X 4+ X=X+ XX"+ XX +X?=P, +P =V/.
For the last relation we remark that by the above,
XYX =X(P, + P)YX = XP,YX = XYP, X =0.
¢) follows from b) and Lemma [.3.2]
d) By b) and ¢), the map ¢4 is an E-C**-homomorphism. Let Y € S(g)
with ¢4 Y = 0. By b), Y = $Y(fy<£~§>1K)ch so by Proposition b),d) and

Theorem m b),

Y VBV = FY (1@1)V =) (Yevf(s,0)@1k) V4.,
seS seS

which implies Y5 = 0 for every s € S (Theorem a)). Thus ¢4 is injective.

It follows that ¢ 4+ @_ is also injective.
Assume first Y7,Y2 € Un S(g). By b),

(o1 Y1+ 0 Y2) (o Y1 +9_Yo) = (04 YT + 0 Y5 ) (01 Y1 + p_Y3)
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= (YY) + o (Y5Yz) = Py + P =V
Similarly (04 Y1 + oY) (04 Y1 + ¢ Ya)* = V//. The case ¥1,Ys € Pr S(g) is

easy to see.

By b), ¢ is an E-C**-isomorphism with

v =9, PP =(X+XHX*X(X+X")=XX"XX*"=P_.
Moreover for Y € S(g),

Yo Y = (X 4+ X )PLYP (X 4+ X)) =XYX " =¢ Y.

Assume now K = C. By b), X + X* € Un S(f). Being selfadjoint its
spectrum is contained in {—1,+1} and so it is homotopic to Vlf in Un S(f).

e) We have sb = sac = asc = acs = bs. By a),

f(s,e)f(sc,c) = f(s,1)f(¢,¢) = —anay,
f(s,a)f(sa,c) = f(s,0)f(a,c) = a1 f(s,b),
fle,as)f(a,s) = f(c,a)f(b,s) = —a1f(b,s),
fle,bs)f(b,s) = f(c,0)f(a,s) = aaf(a,s),
f(s,0)f(sc,b) = f(s,a)f(c,b) = a2 f(s,a),
( f(e,sb)f(s,b)

f(e,s)f(es,b) =

SO

f(sa,c)f(c,as)™ = —f(s,b)f(s,a)" f(b,s)" f(a,s)
= —f(c,s)f(es,b)f(c,sb)*aaf(s,c)* f(se,b) a5 f(c,bs) = —1E.

From

f(37c>f(sc7 a) - f(87 b)f(c, a)u f(C, a)f(b, S) - f(C, as)f(a, 3) )
f(C, S)f(csa a) = f(C, sa)f(s, (L)

f(a’v S)f(s’a)* = f(bv S)f(S, b)*
f) Since S and w(Zg X Z3) commute, the map is a group homomorphism.
If s(wr) =1 for (s,7) € S x (Za x Zs) then wr = s~ € SNw(Zy x Zs), which
implies s = 1 and r = (0,0). Thus this group homomorphism is injective.
g) By e) and the hypothesis of f), for every ¢ € T' there are uniquely s € S
and d € {1,a,b,c} with t = sd. Let Z € P+S(f)P+. By b) and Theorem [2.1.9]

b) (and Corollary d)),
Z = +(y®1K) 2V = +(v@1x)VS Z
By Proposition [2.1.2) m b),

Z‘/cf = Z((Z f(S Cc ®1K Z saf sa, C ®1K)V:9ch)
sesS seS

we get
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+Z sbf Sb C ®1K Z scf sc, c ®1K)V

SES SES
VIZ =3 ((fle.s)Z)@1) Vi + Z (¢, 50) Zoa)B1 )V,
seS sES
+Z (c,sb)Zg ®1K Z (¢,8¢)Zsc) ®1K)Vf
seS seS

and so by Theorem a),
Zs = tvf(sc,c)Zse = £vf(c,8¢) Zse,
Zse =+7f(s,0)Zs = £7f(c,8)Zs
Zsa = £7[(sb,¢)Zsy = £7f(c, Sb) sbs
Zgy = vf(sa,c)Zsq = £7f(c, 5a) Zsq.
By e), Zsq = Zg, = 0 for every s € S. We get (by a), d), and Proposition

ET3)

(2D (ZB1L)VE) =Y (ZBLi)VI £ (v@1x)V D (Z:81k) VI =

SES seS seS
=D (Z&@L)VI £ ((1f (e, 9)Zs)1k)Vi, =
seS seS
seS seS

Thus ¢4 is an E-C*-isomorphism with the mentioned inverse.
h) is a long calculation using e).
i) follows from h).
j) follows from Corollary d). O

Remark. An example in which the above hypotheses are fulfilled is given
in Theorem 1.7

2.3. The functor S

Throughout this subsection, we assume T finite.

In this subsection, we present the construction in the frame of category
theory. Some of the results still hold for T locally finite.

Definition 2.3.1. The above construction of S(f) can be done for an arbi-
trary E-module F', in which case we shall denote the result by S(F'). Moreover,
we shall write V,!" instead of th in this case.
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If F is an E-module then S(F') is canonically an EF-module. If, in addition,
F is adapted then S(F') is adapted and isomorphic to S(F', F'). If F'is an E-
C*-algebra then S(F') is also an E-C*-algebra.

PROPOSITION 2.3.2. If F,G are E-modules and ¢ : F — G is an E-linear
C*-homomorphism then the map

S(p): S(F) — S(G), X r— > ((pX)) @ 1)V
tesS

is an E-linear C*-homomorphism, injective or surjective if o is so.
Proof. The assertion follows from Theorem a),c),g). O

COROLLARY 2.3.3. Let F1, Fy, F3 be E-modules and let ¢ : F1 — Fb,
Y Fy — F3 be E-linear C*-homomorphisms.

a) S(¢) o S(p) = S(Y o).

b) If the sequence

0—F 5B -5 F
s exact then the sequence

0— S(F) ¥ s(m) W s(my)

1s also exact.
¢) The covariant functor S : My — Mg is exact.

Proof. a) is obvious.
b) Let Y € Ker S(¢). Forevery t € T, Y; € Keryp = Im . If we identify
Fy with Im ¢ then Y; € Fy. It follows Y € ImS(p), Ker S(¢) = ImS(yp).
c) follows from b) and Proposition O
COROLLARY 2.3.4. Let F' be an adapted E-module and put
1 F—F, z+(02),
7:F—E, (oz)— a,
M E—F, ar—(a,0).

Then the sequence

. S(ﬂ')
0— S(F g S(F S(,\)S E)—0

is split exact.
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PROPOSITION 2.3.5. The covariant functor S : My — Mg (resp. S :
¢l — ¢L) (Proposition [2.3.2] Corollary [2.3.3|a)) is continuous with respect to
the inductive limits (Proposition|1.2.9(a),b)).

Proof. Let {(F;)icr, (¢ij)ijer} be an inductive system in the category
My (resp. €L) and let {F, (¢;)ier} be its limit in the category Mg (resp. €1).
Then {(S(Fi))icr, (S(¢ij)ijer)} is an inductive system in the category Mg
(resp. €L). Let {G, (¥)icr} be its limit in this category and let ¢ : G — S(F)
be the E-linear C*-homomorphism such that ¢ o ¢; = S(y;) for every i € I.
In the @E case, fora € F and i €1,

PYa®lg)=vo(a®lk) = (S(pi))(a®1g) =a® 1k

so that ¢ is an E-C*-homomorphism.
Let ¢ € I and let X € KerS(p;). Then ¢;X; = 0 for every t € T. Since
T is finite, for every € > 0 there is a j € I, j > ¢, with

e
DXl <
ngjl t|| < CardT

for every t € T. Then

S ((piiXe) © 1)V,

teT

1(S(psi)) X1 = <e.

It follows
[v: X || = mf>l 1(S(wji)) X || =0,

X =0, XE¢€ Kem/}“ Ker S(p;) C Ker;.
By Lemma [1.2.8] 1 is injective. Since

UImS(cpi) c Imy,
el

Im1 is dense in S(F). Thus v is surjective and so an E-C*-isomorphism. [

PROPOSITION 2.3.6. Let 6 : F' — G be a surjective morphism in the cat-
egory Qﬁ}g. We use the notation of Theorem and mark with an exponent
if this notation is used with respect to F or to G. For every Y € Un S(g%),
there is a Z € S(g*") such that

7°Z =P, S0)Z =Y.

Proof. By Proposition c), S() is surjective and so there is a Zj €
S(g") with || Zo|| = 1 and S(0)Zo = Y. Put

7 :=PF 2y + XF(1 - Z; Zy)2.
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By Theorem [2.2.18|b),
77 = PEZ3 20 + (1 — Z5 Z0)2 (XF)* XF (1 — 75 7y) 2
= PLZ;Zy+ PE(1 - Z§ Zy) = PL.

Since
SOY1—2Z2y)=1-Y*Y =0
we get
SO)(1 - Z;Z0)2 =0, S(0)Z=PEY =Y.
OJ

PROPOSITION 2.3.7. Let F' be an adapted E-module and 2 a locally com-
pact space. We define for X € S(Co(2, F)) (see Corollary d)) and
Y € Co(Q,S(F)),

X : Q — S(F), w»—>ZXt ®1KVt,
teT
PY =Y (Y()e @ 1) VO,
teT

Then
P S(CO(QﬂF)) — CO(st(F))7
are E-linear C*-isomorphisms and o = 1p~1.

Let wy € Q and assume F is an E-C*-algebra. Then the above maps ¢
and 1 induce the following E-C*-isomorphisms

SE X €Co(,F) | X(wo) € E})<:> {Y €Co(,8(F)) | Y(w) € S(E)}.

Proof. Let X, X' € S(Cp(Q2, F)) and Y, Y’ € Co(Q, S(F)). By Proposition
2.1.23|b) and Corollary a),

pX € Co(,S(F)),  ¢Y €S(Co(Q, F))

and it is easy to see that ¢ and ¢ are E-linear. By Theorem c),g), for
teT and w € (,

(X)) (@) = FO(eX) (@)i-1))"
= [ X1 ()" = (X* (W) = (pX*) (@),
(X)X N(@))e =D f(s,8 X)(@))s((0X)(w)) 51
seT
=3 F(s 5T )X (@) X] 1y (Zf STHXXL ) ®)
seT seT
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= (XX")i(w) = ((X X)) (@),
=)
(PX) =X, (pX)(pX') = p(XX)
and ¢ is a C*-homomorphism. Similarly

(VY )e(w) = (Y (W) = FO)(Y (w)1)" = FO(Y )1 (w)" = (Y))e(w),

(WY)WY"))e(w) = (Zf sTH) (YY) (DY), —u) (w)

seT

=D flssT Y )s(@) (@Y )e1e(w) = Y fls, 87 Y (W)sY (w)ey

seT seT
= Y (W)Y (W)t = ((YY'))(w)
VYT =@Y)",  (@Y)@Y') =YY
and 1 is a C*-homomorphism. Moreover
(e X)e(w) = (e X)(W))e = Xp(w),  (pYY)(w))e = (WY )e(w) = (Y (w))s,

so Y X = X and pyY =Y which proves the assertion.
The last assertion is easy to see. [

PROPOSITION 2.3.8. Let F' be an adapted E-module,

0—F-%F- S FE—0,

Lo = o
0—S(F)—S(F)—FE—0
the associated exact sequences (Proposition h)), and

j:E—8E), a— (a®1g)V{¥,

0:S(F) — S(F), (a,X)r—SOX + (a® 1)V
Then ¢ is an injective E-C*-homomorphism and S(mw) o ¢ = j o m.

PROPOSITION 2.3.9. If E is commutative and F' is an E-module then the
map
0:S(E)9F — 8(F), X@zr— Y (X@)®1)VF
teT
is a surjective C*-homomorphism. If in addition E = K then ¢ is a C*-

isomorphism with inverse

Y:S(F) —SE)oF, Y—>» (VFav).
teT
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Proof. Tt is obvious that ¢ is surjective. For XY € S(E) and z,y € F,

by Theorem c),g) and Proposition b),d),e
P(X @2)") = p(X*@2%) =Y ((X*)*) @ 1) V"

teT
=) ((f ') @ LV =) ((G-)"2") @ 1) (V)
teT teT
=) ((@(X)) @ 1) (V)" = (p(X @ 2))",

teT

p(X @)Y @y) = Y (XaYiy) @ 1x) VSV
s,teT

= 3" (s, ) XuaViy) ® 1)V
s,teT

=> ) (s M XY,xy) @ 1) VE

rel seT

= (XY),zy) @ 1)V = p((X @ 2)(Y @ 1))
reT

so ¢ is a C*-homomorphism.
Assume now F =K and let X € S(F) and = € F'. Then

Yo(X ® ) ¢Z (Xpx) ® 1g)ViF th ® (Xiz) =

teT teT
_ (zxtv;ff) oo-Xeoa
teT

which proves the last assertion (by using the first assertion). [

3. EXAMPLES
We draw the reader’s attention to the fact that in additive groups the
neutral element is denoted by 0 and not by 1.
3.1.T:=127o

PROPOSITION 3.1.1. a) The map
Y F(Zy, E) — Un E°, f+— f(1,1)

18 a group isomorphism.
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b) Y({ A | A€ A(Zs, E)}) ={ 2% | 2 €Un E°}.

c) If there is an © € E¢ with x®> = f(1,1) (in which case v € Un E°) then
the map

(pS(f)—)EXE, Xi—>(X0—|-JJX1,X0—.%'X1)

s an E-C*-isomorphism.

d) If K=C and if A is a connected and simply connected compact space or
a totally disconnected compact space then for every x € Un C(A) there is
ay€C(AC) withx = ev.

e) Assume K =R.

e1) There are uniquely p,q € Pr E° with
p+aq=1g, pf(1,1) =p, af(1,1) = —q.

e2) The map

o

01 S(f) — (E) x (pE) x 7B, X — X,

A~
where qE  denotes the complexification of the C*-algebra ¢FE and
X = (p(Xo + X1),p(Xo — X1), (¢X0,¢X1))

for every X € S(f), is an E-C*-isomorphism. In particular, if
f(1,1) = —1g then S(f) is isomorphic to the complezification of E.

f) Assume K = C, let o(E°) be the spectrum of E°, and let Fi1 be the
function of C(c(E°),C) corresponding to fi1 by the Gelfand transform.
Then

{”] 6er e fri(o(E) }
1s the spectrum of V7.

Proof. a) follows from Proposition a) (and Proposition a) ).
b) follows from Definition

c) For X,Y € S(f), by Theorem c),g) (and Proposition a)),
(X0 = (Xo)", (X" = (")*(X2)",

(XY)o = XoYp + 22X1Y1, (XY); = XoY1 + X1Y0,
SO

P(X*) = ((Xo)* +a(2")*(X1)", (Xo)" — z(2*)*(X1)")
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= ((X0)" +27(X1)", (Xo)" — 2™(X1)") = (¢X)7,

(eX)(¢Y) = ((Xo + 2X1) (Yo + 2Y1), (Xo — 2X1) (Yo — 2Y1))
= (XoYo + 2XoY1 + 2X1Yp + 2° X1 Y1, XoYy — 2XoY1 — 2X1 Y + 22 X1 V7)
=((XY)o+2(XY)1,(XY)o —2(XY); = p(XY)

i.e. p is an E-C*-homomorphism. ¢ is obviously injective.
Let (y,2) € E x E. If we take X € S(f) with
1 1,
Xp = §(y+z), X = 2% (y —2)
then pX = (y, z), i.e. ¢ is surjective.
d) is known.
e1) follows by using the spectrum of E°.
e2) Put

08U B X (X0aX)
For X,Y € S(f), by Theorem [2.1.9c),g),

Y(X™) = (¢(X )0, ¢(X™)1) = (¢(Xo)", af(1,1)"(X1)")
= ((¢Xo)", —(¢X1)*) = (vX)*,
(W X)(WY) = (¢Xo,qX1)(qY0,qY1)
= (¢(XoYo — X1Y1), (¢(XoY1 + X1Y0))) = ¥ (XY)

so ¢ is an E-C*-homomorphism. Thus by c¢), ¢ is an E-C*-homomorphism.
The bijectivity of ¢ is easy to see.

f) By Proposition e), V1 is unitary so its spectrum is contained in
{e?| R} For§ e Rand X € S(f),

(619‘/'0_‘/1))( :X(eze_‘/l>
= ((€9X0) @ 1x)Vo + (€ X1) @ 1x)Vi— (X0 @ 1)Vi— ((f11X1) ® 1)Vi
= ((e"Xo — f11X1) @ L)V + (¢ X1 — Xo) ® 1) VA

Thus X is the inverse of e®Vy — V4 iff Xy = e X; and e X, — f11X1 =1g,
ie. (e 210 — f11)X1 = 1g. Therefore eV — V; is invertible iff e2¢ — f11 does
not vanish on o(E¢). O

COROLLARY 3.1.2. Assume K := R and let S be a group, F' a unital
C*-algebra, g € F(S,F), and

h:(SxZs) x (S XZy) — Un F€,

R e P
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a) h € F(S X Zo, F).
f'/o\\ /—L
b) S(h) = S(g), Sy (h) =Sy (9)-
Proof. Put E := R in the above Proposition and define f € F(Zy,R) by
f(1,1) = —1 (Proposition a)). By this Proposition ez), S(f) ~ C. Thus
by Proposition c),e),

—_— —_
S(h) = S(g) @ S(f) = S(g), S| (k) = Sy (9) @ S (f) = S (9) -

O]

Definition 3.1.3. We put
T:={ze€C| |2|=1}.
Example 3.1.4. Let E :=C(T,C) and f € F(Zo, E) with
f(1,1):T—UnC, z+——=z.

If we put ~
X:T—C, z+— Xo(2%) +2X1(2%)
for every X € S(f) then the map

0:S(f)—E, X+—X

is an isomorphism of C*-algebras (but not an E-C*-isomorphism).

Proof. For X, Y € S(f), by Theorem c),g),
(X0 = (Xo)", (X")1=/f(1,1)(X1)",

(XY)[) :XQYE)‘Ff(l,l)XlYi, (XY)l = XoY1 + X1Y)
so for z € T,

X*(2) = X5(2%) + 222 X5 (22) = Xo(22) + 2X1(22) = X*(2),

(X(2)(Y(2) = (Xo(*) + 2X1(2%)) (Yo(2?) + 2Y1(2%))
= Xo(2H)Yo(2%) + 2X0(2*)Y1(2?) + 2X1(22)Yo(2?) + 22 X1 (22 V1 (2?)
= (XY)o(22) + 2(XY)1(22) = XY (2),
X— X', XV =XV,
i.e. ¢ is a C*-homomorphism. If X = 0 then for z € T,
Xo(23) +2X1(2%) =0
S0, successively,

Xo(2%) = 2X1(2%) =0, Xo(2%) = X1(2°) =0, Xo=X; =0, X =0
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and ¢ is injective.
Put

{chz | Ckkezé(c()}CE.

keZ
T ::chzk €eg

kEZ

Let

and take X € S(f) with

Xy = Zc%zk, X = Zc2k+1zk

keZ keZ
Then
X = E czkz% +z E 02k+122k ==z
keZ keZ

s0 G C p(S(f)). Since G is dense in E, ¢(S(f)) = E and ¢ is surjective. [

Definition 3.1.5. For every x € C(T,C) which does not take the value 0

we put
1 d 1
w(z) := winding number of x := — o —[log z(e))i=2" € 7.
2m J, 2 2me

If A is a connected compact space and 7 is a cycle in A (i.e. a continuous
map of T in A), which is homologous to 0 (or more generally, if a multiple of
~v is homologous to 0), then for every x € C(A,Un C) we have w(z o) = 0.
If A is a compact space and z € C(A,Un C) such that w(z o) = 0 for every
cycle v in A then there is a y € C(A,C) with z = €Y.

Example 3.1.6. Let E :=C(T,C), f € F(Z2,E), and n := w(f(1,1)).

a) If n is even then there is an x € Un E with winding number equal to %

such that the map
S(f) — ExE, X+ (Xo+2X1,X0—2X1)
is an E-C*-isomorphism.
b) If n is odd then S(f) is isomorphic to E.
c¢) The group F(Za, E)/A(Z3, E) is isomorphic to Zs and
Card ({ S(g) | g € F(Z2,E) }/ms) = 2.

d) There is a complex unital C*-algebra E and a family (fs)sepa) in
F(Zs, E) such that for distinct 5,7 € P(N), S(fz) % S(f5).
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Proof. Put
a:T—UnC, z+r—z.
Since w(f(1,1)a™™) = 0, there is a y € Un E with w(y) = 0 and
f(1, )™ =42

a) If we put z := ya'2 then w(z) = 2 and f(1,1) = 22 and the assertion
follows from Proposition c).

b) We put z := ya%. Then f(1,1) = az?. Take g € F(Zy, E) with
g(1,1) = @ and \ € A(Zs, E) with (6)\)(1,1) = 22 (Proposition [3.1.1] a),b)).
Then f = géA. By Example S(g) is isomorphic to E and by Proposition
2.2.2/a; = a2, S(f) is also isomorphic to E.

c) follows from Proposition b) and Proposition a),c).

d) Denote by E the C*-direct product of the sequence (C(T,Cy, ))nen
and for every B € {0,1} define fz € F(Zs, E) by

f3(1,1):N— Un E°, n+— aﬁ(")lcn’n .

By a) and b), for distinct 8,7 € {0,1}, S(f5) # S(f,) (Proposition
a)). O

Example 3.1.7. Let I, J be finite disjoint sets and for all © € I U J and
Jj € Jput A; := B; :=T. We define the compact spaces A and B in the
following way. For A we take first the disjoint union of the spaces A; for all
1 € I U J and identify then the points 1 € A; for all ¢ € I U J. For B we take
first the disjoint union of all the spaces A; for all « € IUJ and of the spaces B;
for all j € J and identify first the points 1 € A; for all ¢ € I U J and identify
then also the points —1 € A; forall¢ € I and 1 € B; for all j € J.

Let E :=C(A,C) and f € F(Zs, F) with

z if ze€eA;withiel

f(1,1): A—UnC, Z'_>{1 if ze A withieJ

For every X € S(f) define X € C(B,C) by

) Xo(22) +2X1(2%) if z€ Ajwithiel
X:B—C, z+— Xo(z) + X1(z) if ze€e A, withielJ
Xo(z) —Xi(2) if zeBjwithjeJ

Then the map
v:S8(f) —C(B,C), X— X
is an isomorphism of C*-algebras.
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Proof. Let X,Y € S(f). By Theorem c),8),
(X%)o = (Xo0)*, (X7 =[f(1,1)(X1)",
(XY)o = XoYo + f(1,1)X Y1, (XY), = XoY1 + X1Yo.
For z € A; with i € I,
X*(2) = (X*)o(2%) + 2(X)1(22) = Xo(22) + 22°X1(22)
= Xo(2%) + 2X1(22) = (X)*(2),

X(2)Y (2) = (Xo(2?) + 2X1(2%) (Yo
= Xo(22)Yo(2%)+ 2Xo(2?
= (XY)o(2%) + 2(XV)1(2%) = XV (2).

For z € A or z € B; with j € J,

X*(2) = (X")o(2) £ (X")1(2) = Xo(2) £ Xu(2) = (X)(2),

RV (2) = (Xo(2) + X1 (2))(Yo(2) £ Yi(2))
= Xo(2)Yo(z) £ Xo(2)Y1(2) £ X1(2)Yo(2) + X1(2)Y1(2)
= (XY)o(2) £ (XY)1(2) = XY (2).
Thus ¢ is a C*-homomorphism. Assume X = 0. For z € A; with i € I,
Xo(2%) +2X1(2%) =0

so, successively,

Xo(2%) — 2X1(2%) =0, Xo(z%) =X1(2*)=0, X(z)=0.
For z € A; with j € J,

SO

Thus ¢ is injective.
Let z € C(B, C) such that for every i € I there is a family (¢; i )rez € Cc@

with
x(z) = ZCi,ka

kEZ
for all z € A;. Define Xy, X1 € F in the following way. If z € A; with i € I we

put

Xo(z) == Zci’gkzk, Xi(z) = Zcmkﬂzk.

keZ keZ
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If z € Aj with j € J then we put 2’ := z € Bj,

Xo(2) = %(az(z) Fa),  Xu(z) = %@(2) ~ ().

It is easy to see that Xy and X; are well defined. Then

X(2) =Y cmw?™ +2)  ciopn 2™ = (2)

k€EZ keZ

for all z € A; with i € I and X (z) = z(2) for all 2 € A; U B; with j € J. Since
the elements x of the above form are dense in C(B, C), ¢ is surjective. [

Ezample 3.1.8. Let E :=C(T%,C) and f,g € F(Zs, E) with

f(L,1): T2 — UnC, (21,2)+— 21
g(1,1) ‘T2 — UnC, (21,22) — 2o

Then the maps

S(f) —E, Xr— XO(Z%,ZQ) + Zle(Z%,ZQ)
S(g) — E, X+— Xo(zl,zg) + ZQXl(Zl,Z%)

are isomorphisms of C*-algebras.

Remark. S(f) and S(g) are isomorphic but not E-C*-isomorphic.

Ezample 3.1.9. Let E := C(T%,C) and f € F(Zs, E) with

f(1,1): T2 — UnC, (21,2)+— 212 .
If we put
X: T2 —C, (21,2) — Xo(22,23) + 120X (23, 22)
for every X € S(f) then the map
0:S(f) — E, X+— X
is an injective unital C*-homomorphism with
eS(f))=G:={x€E]| (21,20) €T? = x(21,22) = x(—21,—22) } .

In particular S(f) is isomorphic to E.

Proof. Let X,Y € S(f). By Theorem c),8),
(XMo = (Xo)*, (X" = f(L1)(X1)",

(XY)o = XoYo + f(1,1)X1Y1, (XY)1 =XoY1+X1Y)
so for (z1,22) € T,

X (21, 22) = X (o1, 23) + 212221 2 X7 (o1, 23)
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= XO(Zla 22) + ZlZ2X1(Z1aZ2) X(zla 22),

(X (21,22))(Y (21, 22))
= (Xo(27,23) + 2122 X1 (1, 23)) (Yo (27, 23) + 21221 (24, 23))
= Xo(21, 23)Yo(21, 23) + 2120 X0 (27, 23) Vi (21, 23)
+ 2120 X1(21, 25)Yo(21, 23) + 2123 X1 (27, 23) Vi (27, 23)
= (XY)o(2, 23) + 2120(XY)1(2F, 23) = XV (21, 22),
i.e. ¢ is a unital C*-homomorphism. If X = 0 then for (21, zp) € T2,
Xo(22,22) + 2120 X1 (23, 23) = 0
S0, successively,
Xo(21,73) — 2122X1(24, 23) = 0, X0<21722) Xi(+,73) =0,

Xo=X1=0, =0
and ¢ is injective.
The inclusion S(f) C G is obvious. Let (a;x)jrez, (bjk)jrez € C(Zx2)

and ) -
T = E aj’kzljzgk + E bj k2 It 2k+1 €g.
7,kEZ 7,kEZ
Define
o Ik L J .k
Xo = g aj k2125 , X; = g bj k123 -
J,kEZ j,kEZ

Then X = z. Since the elements of the above form are dense in G, ¢(S(f)) = G.
If we consider the equivalence relation ~ on T? defined by

(2’1,22> ~ (wl,wg) == 2] = —Wi, 2 = —W2Q

then the quotient space T?/~ is homeomorphic to T2, Thus S(f) is isomorphic
to . O

Ezample 3.1.10. Let E := C(T?,C).

a) Forx € Un E and z € T, w(z(-, 2)) and w(z(z, -)) do not depend on z,
where w denotes the winding number (Definition [3.1.5]).

b) If z € Un E and if
w(z(-,1)) = w(z(l,-)) =0
then there is a y € Un E with x = y%.
c) Let f € F(Zs, FE) and put
a:T—T?, 2+ (2,1), :T—T%, 2+ (1,2),

m:=w(f(1,1)oa), n:=w(f(1,1)0p).
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c1) If m+n is odd then S(f) is isomorphic to E.
co) If m and n are even then S(f) is isomorphic to E x E.

cg) If m and n are odd then S(f) is isomorphic to E.
d) The group F(Zz, FE)/A(Z2, E) is isomorphic to Zg x Zz and
Card ({ S(f) | f € F(Z2,E) } / =s) = 4.

Proof. a) follows by continuity.
b) follows from a).
c) Let g € F(Zs, E) with
g(1,1): T2 — UnC, (21,2) — 225 .
Then
w(g(L,)oa)=m, w(y(l,
By b), there is an z € Un E with f(1,1) = 2%g(
and Proposition a; = ag, S(f) = S(g).

c1) Assume m even and put

m n—1

y:T?2 — UnC, (21,22) > 2 2,°
If h € F(Zs, E) with
h(1,1) : T2 — Un C, (21,2) — 20
then ¢g(1,1) = y2h(1,1). By Proposition b) and Proposition a] =ag,
S(g) = S(h) and by Example a; = ag, S(h) = E. Thus S(f) ~ E.
co) If we put
y:T? — UnC, (21,2)+— zl%zgg

then g(1,1) = y? and the assertion follows from Proposition c).
c3) We put

m—1 n-—1

y:T?2 — UnC, (21,20) —> 2,2 2,2
and take h € F(Zy, E) with
h(1,1) T2 — Un C, (21,22) — 2122

then ¢(1,1) = y2h(1,1) so by Proposition b) and Proposition a; =
az, S(g) =~ S(h). By Example S(h)~ E,so S(f) = E.
d) follows from b), Proposition b), and Proposition[2.2.2/a),c). O

Remark. In a similar way, it is possible to show that for every n € N,
F(Za,T")/A(Z2,T") is isomorphic to (Z2)™ and

Card({ S(f) | f € F(Z2,T") } ) =s) =2".
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Example 3.1.11. Let I, J, K be finite pairwise disjoint sets and for every
ie IUJUK and k € K put A; := By, :=T?. We define the compact spaces
A and B in the following way. For A we take first the disjoint union of the
spaces A; with ¢ € T U J U K and then identify the points (1,1) € A; for all
i € ITUJUK. For B we take first the disjoint union of the spaces A; with
1 € I UJ UK and of the spaces By with k € K. Then we identify the points
(1,1) € A; for all i € IUJ U K and then we identify for every j € J the points
(21, 22) € A; with the points (—z1, —22) € A; and finally we identify the points
(—1,1) € A; for all i € I U J with the points (1,1) € By, for all k € K.

Let E :=C(A,C) and f € F(Zy, A) such that

21 if (21, 22) € A, withiel
f(,1):A—UnC, (21,22)—{ 2122 if (z1,29) € A; withie J .
1 if (Zl,ZQ) € A, withie K
We define for every X € S(f) amap X : B — C by
Xo(Z%, 22) + Zle(Z%, 2’2) if (21, ZQ) € A;withiel
Xo(23,23) + 2120X1 (23, 23) if  (21,22) € A; withi e J
XQ(Zl,ZQ) + Xl(zl,ZQ) if (21722) c A, withie K
X()(Zl,ZQ) — Xl(zl,zz) if (21,22) € B, with k € K

(Zl, 2’2) —

Then the map ~
is an isomorphism of C*-algebras.

The proof is similar to the proof of Example [3.1.7]

Ezample 3.1.12. If n € N, E := C(T",C), and f € F(Z2,C(T",C)) then
S(f) is isomorphic either to C(T",C) or to C(T",C) x C(IT", C).

Ezample 3.1.13. Assume E := C(A,C), where A denotes Moebius’s band
(resp. Klein’s bottle), i.e. the topological space obtained from [0, 27] x [—, 7]
by identifying the points (0, ) and (27, —«) for all o € [—m, 7] (resp. and the
points (6, —m) and (0, 7) for all & € [0,27]). We put B :=T x [—m, 7| (resp.
B :=T?) and

#:00,27] x [m, 7] — C,  (6,0) —> { o (92(39%‘)3‘7)_&) ! 9966[7[2’27:1]
for every z € F.
a) 7 is well-defined and belongs to C(B,C) for every z € E.
b) If f11(0,a) = € for all (A, a) € [0,2n] x [~, 7] then the map
¢:S(f) —C(B,C), X Xo+e'X;

is a C*-isomorphism.
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c) Let z € Un E. If w(z(-,0)) =0 (where w denotes the winding number)
then there is a y € F with e¥ = x.

d) Let z € Un E and put n := w(z(-,0)). Then there is a y € E with
e¥ = e My,

e) The group F(Z2, A)/A(Z2, A) is isomorphic to Zs.
f) If w(fi,1(-,0)) is even (resp. odd) then S(f) is isomorphic to E x E
(resp. to C(B,C)).
Proof. a) For a € [—m, 7],
Z(m,a) =227, ) = z(0, —a) = T(7, a)
so Z is well-defined. Moreover
2(0,a) = (0, 0) = z(2m, —0) = (27, @)

and in the case of Klein’s bottle

{ z(0,—m) = x(20,—m) = x(20, ) = Z(
z(0,—m)=z(2(0 —7),7) = x(2(0 —7),—7
ie. z€C(B,C).

b) For X,Y € S(f) and (0, ) € [0,2n] x [—m, 7], by Theorem[2.1.9|c),g),

—_~—

(X*)(0,a) = (X*)o(8, a) + e (X*)1(6, )

0,) it 6el0,n]
y=x(0,7) if 0 € [r,2n]

P

= (Xo)*(6. ) + (e (X1)") (6, a)

B { X0(20,a) + e?(e29 X, (20, a)) if  6€]0,7]

T X0(2(0 — 1), —a) + € (e7 20N X, (2(0 — 1), —)) if 0 € [m,2n]

. X()(QQ,OC) +€i6X1(29,Oé) if #¢€ [O,W] — OX(0.a
B { Xo(2(0 — ), —) + €0 X,(2(0 — 7)), —) if O€[m2n] pX(6,0),

(X)(pY) = (Xo+€“X1)(Yo+eY1) = XoYo+ € XoV1 4+ X1Y0+ €20 X117,
P(XY) = (XY)o +(XY),
= XoYp + e X Y1 + € (XoY1 + X1Y0) = (9X)(9Y),
i.e. ¢ is a C*-homomorphism. If pX = 0 then for a € [, 7],

X0(20,a) +¢e?X1(20,a) =0 if 6¢cl0,n]
Xo(2(0 — 7), —a) + ¥ X1 (20 — 7),—a) =0 if 6 € [r,27]

so for 6 € [0, 7], replacing 6 by # + 7 and a by —« in the second relation,
X0(20,0) — e X1(20,0) =0 .
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It follows successively
Xo(20,a) = X1(20,0) =0,
Xo=X1=0, X=0.
Thus ¢ is injective.
Let y € C(B,C). Put
XO : [07 277] X [_ﬂ—?ﬂ-] — C7 (07 CM) — %(%(g ) + y(g + ™, —Oé))
Xi:00,27] x [-m, 7] — C, (0,a) — 2e7'2

For a € [—m, 7],

{ X0(0,@) = 3(y(0, @) + y(7, —a))
Xo(2m, —a) = %(y(ﬂ', —a) +y(2m, a))

{ X1(0,a) = 5(y(0, @) — y(m, —av))
X127, —a) = —5(y(r, —a) — y(27, @)

so Xo, X1 € E. Moreover for (0, a) € [0,2n] x [—m, 7],
Xo(0,0) + € X1(0, )
B X0(20, @) + e X1 (26, o) if 6el0,n]
Tl X020 —7), —a) +e?X1(2(0 — 1), —a) if 6 € [r, 2n]
— %(y(ev a) + y(0 + T, —Oé) + y(ea CY) - y(@ + T, —Oé)) lf 0 € [07 7T]
20—, —a) +y(0,a) —y(0 — 7, —a) +y(0,a)) if 6 € [r,27]
= y(ea Oé)
i.e. @ is surjective.
c) If A is Moebius’s band then the assertion is obvious so assume A is
Klein’s bottle. The winding numbers of
[0,271] — C, a+— z(0,«)
[0,27] — C, a+— z(27,«)
are equal by homotopy, but their sum is equal to 0. Thus these winding
numbers are equal to 0. The paths 6 and o on A generate the homotopy group
of A. Thus the winding number of x on any path of A is 0 and the assertion

follows.
d) The winding number of

[0,27] — C, 0+— e~™M92:(6,0)

is 0 and the assertion follows from c).
e) The assertion follows from d) and Proposition b).
f) The assertion follows from b), d), Proposition a; = az, and

Proposition c). O
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3.2. T := 7o X Zo

PROPOSITION 3.2.1. Let E be a unital C*-algebra and let a,b,c be the
three elements of (Za X Z2) \ {(0,0)}. Put

A= { (o, B,7,¢€) € (Un E°)* ‘ g2 = 1E}

and for every o € A and o € (Un E°)? denote by fo and g, the functions
defined by the following tables:

[fellal b [c] oo a [ & | ¢ |

a||By| v | B a | o |aBy*[ayp*

blley|eay| a b |l apy* | B% | Bya*
=B | ca [oB ¢ [arF [ Bra | 72

a) fo € F(Zy x Ly, E) for every o € A and the map
A— F(Zy x Lo, E), o0+— [,
1s bijective.
b) go € { A | A € A(Zg x Zo, E)} for every o € (Un E€)® and the map
(Un E? — { 6N | A€ ANZy X Zs, E)}, 0+ gy
1s bijective.
c) The following are equivalent for all 0 := (o, B,7v,¢) € A and ¢ :=
(o, B,4,€) e A:
c1) S(fo) s S(fe)-
c2) € =¢' and there are x,y,z € Un E° with
2= B8, P =ad . P =adBp
c3) € =€’ and there are x,y € Un E¢ with
2 = PR ",y = ad iy
d) The following are equivalent for all o := (a, 8,7, € A) and X € S(f,):
di) Xe{thQ teZQxZQ}C.

dz) t €Zo X Ly — cXi = X4.

e) The following are equivalent for all o := (v, B,7v,e € A) and X € S(f,):
e1) X e S(fg)c
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eg) t € Zo X Lo — Xy = Xy € E€.

f) For o := (a,f,7,e) € A and X,Y € S(f,),
(X)o =X, (XM)a=B"7"Xg, (X )y =ea™y" Xy, (X)e=a"f"XC,

XY)o = XoYo + By XaYa + eayXp Yy + aBXcYe,
XY), = XoYa + Xo Yo + aXpYe + ca X, Yy,
XY)
XY)

Y), = XoYy + BX Yo + Xp Yo + XYy,
Y c X()Yc + PYXCLK) + EfYXbYa + XcYb .

—~ o~~~

g) Assume K = C, let o(E®) be the spectrum of E¢, and for every 6 € E°
let & be its Gelfand transform. Then

o(Va)={ e | 0 e R, & € By(a(EY)) } .
o) ={ | heR, & edo(E) ],
o(V,) = { e ‘ 0 cR, ¥ ¢ oTﬁ(a(EC))} .

Proof. a) is a long calculation.

b) is easy to verify.

¢1 = c¢o By Proposition az = aj there is a A € A(Zg X Zz, E) with
fo = fy6A. By b), there is a 0 := (2,y,2) € (Un E°)? with f, = fygo. We
get e = ¢’ and

ad* =2yz, BB* =ay*z, Y =ayt.
It follows xyz = aa™*BB*yy™* so
2= B8, P = adtyyt, 2= adBpt
co = c3 is trivial.

c3 = co If we put z := zyy*y’ then

Ix %2

Z2 — /86/*7'7/*@@,*77 ~y ,7/2 _ OéO/*BB,*.
¢y = ¢ follows from b) and Proposition al = as.
d) follows from Corollary [2.1.24]b).

e) follows from Corollary [2.1.24] c).
)

f) follows from Theorem c),g).
g) follows from f). [

COROLLARY 3.2.2. We use the notation of Proposition 3.2.1] and take
0= (a,B,7,¢) € A.
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a) Assume ¢ = 1g and there are x,y € Un E with 2% = By,y? = ay. Put
z = xyy*.
a1) =,y,z € Un E°, 22 = af.
ag) For every A\, u € {—1,1} the map
oap:S(fo) — E, X +— Xo+ X, + pyXy + ApuzX,
is an E-C*-homomorphism.
az) The map
S(fy) — EY, X+ (011X, 011X, 0-11X.p-1-1X)
is an E-C*-isomorphism.
b) Assume K :=R,e = 1g, and there are x,y € Un E with

o= —By, y'=ay, (resp.y’=-ay).

Put z .= xyy*. Then x,y,z € Un E°, 22 = —af (resp. 2% = af), and
the maps

S(f,) — (B)? X +— (Xo+izX,+yXptizXe, Xo+iz X, —yXp—izX,)

S(fo) — (B)?, X +— (Xo+izX,+iyXy—2X., Xo+iz Xo—iyXp+2X.)
are respectively E-C*-isomorphisms (where % denotes the complezifica-
tion of E).
c) Assume K :=R, ¢ = —1g, and there are x,y € E¢ with 2> = — v, y* =
avy. Put z := xyy*. Then z,y,z € Un E¢, 2°> = —af3, and the map
S(fo)) mH®E, X+— Xo+izXq+ jyXy+kzX,,

where i, j, k are the canonical units of H, is an E-C*-isomorphism.

d) If e = —1g and there is an © € Un E° with 2> = af then for every
0 € Un E° the map

Xo+2X, V0¥ (BX, — 2 Xp)

S(fo) = Fapy X =l sy L ag'X,)  Xo - aX.
is an E-C*-isomorphism.

The proof is a long calculation using Proposition f).

Remarks. d) is contained in Proposition ¢). An example withe = 1
but different from a) is presented in Proposition [3.3.2}
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ProPOSITION 3.2.3. We use the notation of Proposition and take
0:=(a,B,7,¢) € A.
a) Let ¢ : S(f,) = E22 be an E-C*isomorphism and put
Ay B
FRAR
for every t € Zo x Zo \ {(0,0)}. Then e = —1g, Ay, By, Cy, Dy € E° and
Ai+ Dy =0 for every t € Zy x Za \ {(0,0)}, and
A, =B Au, Ay=-—a™Ay, AL=a"BAc,
B, =B"7"Ca, By =-a"y"Cy, B=a"B"Ce,
A2+ BuCa=py, A} +ByCy=—ay, Al+B.Ce=ap,
A2 =By(1g — [Bu?), A} = —ay(1g — |By?), A% = aB(lp —|Bc[?),
2A,Ay + B,Cy + ByC,, =0, 24,A.+ ByC.+ B.C, =0,
2A.A4 + B.Cy + B,C. =0,
aA, = ApAc+ ByC., aBg, = ApyB. — AcBy, oaCy = ACy — ApCe,
BAy = AoAc+ BoCe, BBy = AuBe — AcBo,  BCy = AcCq — Ao,
YA = AgAp + ByCy, vBe= AuBy — ApBy, ~7Ce= ApCq — AuChy,
[Aa| + [Ap| + [Ac| # 0, [Ba| + [By| + |Be| # 3.1k.

b) Let (Ai)ier, (Bi)ter, (Ci)ier, (Di)ier be families in E€ satisfying the
above conditions and put

X' = Ay Xy + ApXp + AcXo, X" := BoX, + By Xy + BeX.,

X" =Co X, + Cp Xy + Ce X,
for every X € S(f,). If e = —1f then the map

|:X0+X, Xl/ :|

S(fo) — E2p, X +— X Xo— X'

s an E-C*-isomorphism.

c) Lete = —1g and assume there is an x € E° with x*> = Bv. Lety € Un E°
and put z ;== ~v*xy. Then x,y,z € Un E° and the map

Xo+2X, a(yXp + 2X.)
vy Xy + 2" X.  Xo—2X,

is an E-C*-isomorphism such that

o0+ @ s tov) = | o o |

QD:S(fg)—>E2’2, Xl—>[

0 0
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In particular (by the symmetry of a,b,c), if ¢ = —1g and if there is an
x € B¢ with 22 = By, or 2* = —ary, or 22 = af then S(f,) ~g E22.

Remark. Take 0 = (1E71E71E7_1E)a Q’ = (1E,1E,’yl,—1E). By C),

S(fo) = S(fy) and by Proposition c1 = c2, S(fo) =s S(fy) implies the
existence of an x € Un E°¢ with 22 = 4/,

COROLLARY 3.2.4. We use the notation of Proposition [3.2.3] and take
E=K, a=1,and B=v=¢=—1. Let S be a group, F' a unital C*-algebra,
g€ F(S,F), and

h:((S x (Z)?) x (8 x (Z3)?)) — Un F°
((s1,t1), (s2,t2)) = fo(t1,t2)g(s1, 52)-

a) h e F(S x (Zn), F).
b) S(h) = S(g9)22, S (h) = S (9)2.2-

Proof. By Proposition c), S(f) = Ka2, so by Proposition

c).e),

S(h) = Koo ®@S8(g9) = S(9)22,  Sjj.(h) = Koo @ S (9) = S| (9)2,2-
]

Ezample 3.2.5. Let K := C and E :=C(T,C).

a) With the notation of Proposition if o := (o, 8,7,—1) € A then
S(fo) =k Eap.

b) Card ({ S(f) | f € F(Zy x Z2,E) } | =s) = 16.
Proof. Put

m:=w(a), n:=w(l), p:=w(y),
where w denotes the winding number. By Proposition a] = ag, we may
assume o = 2", = 2", vy = 2P.
a) If n + p is even then the assertion follows from Proposition c). If
n+ p is odd then either m + p or m + n is even and the assertion follows again

from Proposition c).
b) follows from Proposition a),c). O

Remark. Assume K := R and let E be the real C*-algebra C(T,C) ([I}
Theorem 4.1.1.8 a)]), e = —1g,

a:T—C, z+—z,
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B:T—C, z+— —z¢,
v:T—C, z+—2
and ¢ := (a, 3,7,¢). Then by Corollary B.2.2|c), S(f,) * H® E.
Ezample 3.2.6. We put E :=C(T?,C), v := 1,
a:T? —C, (21, 22) — 21, 8:1T?2 — C, (21, 22) — 29,
and (with the notation of Proposition 0:=(a,B,7,—1g) € A.

a) S(f,) is not commutative and not E-C*-isomorphic to E2 9.

b) If we put
51?2 — C, (21,22) — 2(22,23)
for every x € E then the map
XO + Oéﬁ)?c BXa - aXb
S — FE X — ~ =0 -
(Fo) 22 BX, +aX, Xo-—aBX.

is a C*-isomorphism.
) Bz~ S(fo) #Ee Eap.

Proof. a) By Proposition d), S(f,) is not commutative. Assume
S(fo) =E E22 and let us use the notation of Proposition a).
StEP 1. {4, # 0} C {A, =0}.
Assume {A, # 0} N {A;, # 0} # 0. By Proposition a),
2A,A, + B,Cy + ByC, = 0, BZ = 6*Ca, BZ = —a*"Cy
so B, # 0 and By, # 0 on this set. We put
A, =: |Aa|eiA“, Ap =: |Ab|eiAb, B, =: \Ba\eiéa, By =: \Bb|eiBb,

0 . 10
Y, zg=re?

with A,, Ay, Ba, By € R. By Proposition a), 24, = 0y, 24, = 0, + m,
BaCh + ByCa = —ayBoBi + ByByB: = | By||By| (/02 Br=Ba) _ ilb1+Ba=Fu))

| Bl | Byl ™5 (¢ H B Ba) _ ("5 4 Ba B

z1 =:€"

Oy — 01 -~ o~ oo
— 2B,||By|sin( 2L 4 By — By)el mF

Since 2A4,A, = —(B,Cy + BpC,,) there is a k € Z with

@+91+7T_91+92+7T
2 2 2

+ (2k + )7
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which is a contradiction.

STEP 2. {A, # 0} C {A. =0}.
The assertion follows from Step 1 by symmetry.

STEP 3. {4, #0} = {4, = A. =0}.

The assertion follows from Steps 1 and 2 and from |A,| + | 4| + | Ac| # O.

STEP 4. The contradiction.

By Step 3 and by the symmetry, the sets {4, # 0}, {4, # 0}, and
{A. # 0} are clopen and by |A,| + |A| + |Ac| # 0 their union is equal to T.
So there is exactly one of these sets equal to T? which implies

Az =2y, oOr Ag = —2; or Ag = 2129

and no one of these identities can hold.

b) is a direct verification.
c) follows from a) and b). O

3.3. T := (Z2)™ with n € N

Example 3.3.1. Assume f constant and put

n

(a1 ) = [ (=)@

i=1
for all s,t € T' (where Zs is identified with {0,1}) and

o S(f) — FE, X»—>Z<t] s) Xs
seT
for all t € T'. Then the map

¢:8(f) — E¥, X+ (0 X)ier
is an E-C*-isomorphism.
Proof. For r,s,t €T,
t+t=0, (s[t)=(t]s), (r+s[t)=(r[t)(s|1),
(rls+t)y=_(rls)(r|t).
For t € T and X,Y € S(f), by Theorem [2.1.9 c),g),
Pe(X*) = (] s) (XM= (t]s) (X)) = (@ X)",

seT seT

(peX)(@Y) =D (tlr)(tls) XY= D (t]r)(tlq—7)X Y,
r,s€T q,reT
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= > ()Xo Yo =) (t]q) (XY)g = pi(XY)

q,reT qeT

so ¢ and ¢ are F-C*-homomorphisms.

We have
> o(oft)y=2".
teT
We want to prove
> (s|t)y=0
teT

for all s € T, s # 0, by induction with respect to Card{ie€ N, | s(i) #0}.
Let i € N,, with s(i) # 0 and put r := s + ¢;,

To:={teT|tli)=0}, Ty:={teT|tli)=1} .
Then
D o(slty=>Y (rlty, D (slty==>_(rlt).
teTy teTpy teTy teTy
But
d(rlty=>Y (rlt)y=2""
teTy teTy

if r = 0. By the hypothesis of the induction
dolrlty=> (rlt)=0
teTy et

if r # 0 (with N,, replaced by Ny, \ {i}, since r(7) = 0). This finishes the proof
by induction.
For r € T and X € S(f), by the above,

S rltyeX = 3 (e[ 6) (ts) X = 3 (r4s]t) X,

teT s,teT steT
= > D (r+s|t)Xe+> (0[t) X, =2"X,.
s€T\{r} teT teT

Hence ¢ is bijective. [

Ezample 3.3.2. Let E := C(I",C), denote by z := (21,22, -+, 2n) the
points of T", and put 2% = (22,22,---,22) for every z € T". We identify

(Zo)™ with P(N,,) by using the bijection
;'B(Nn) — (Zz)n, I+—e;

and denote by
INT :=({I\J)U(J\I)
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the addition on PB(N,,) corresponding to this identification. We put Ar := [] 2

el
for every I C N, and
[iPBNp) X BN,) — Un B, (I, J) — Ainy -
Then f € F((Z2)™, E) and, if we put
X = ) M(2)X()) € E
ICN,
for every X € S(f), the map
0:S(f)—E, X+—X
is an isomorphism of C*-algebras.
Proof. Let X,Y € S(f). By Theorem c),8),
= > M) =D AMNXF =X,
ICN, ICN,
XY = STONEY)(E) =Y A Y FLIADPX Y ar
ICN, ICN, JCNp
> NarMNar XYk = > AAX Vi = XY
JKCN, JKCN,
so ¢ is a C*-homomorphism.
We put for k € N,,, i € Z", and I C N,,,
g 2 +1 if kel ST Y S n
Uk _{ 2Zk’ if kENn\I ) voi= (211227 ) n)eZ
and
{ Z (IZZ?Z%Q . Z:Z” (ai)iezn € (C(Zn) } .
1EL™
Let
x = Zalzilzéz ez eG
i€Z"
and for every I C N, put
X] —ZCLIZ?Z%Z c X = Z(X[@l]{)V].
lGZn ICNn

Then ¢ X = x and so G C ¢(S(f)). Since G is dense in E, it follows that ¢ is
surjective.
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We prove that ¢ is injective by induction with respect to n € N. The
case n = 1 was proved in Example Assume the assertion holds for n — 1.

Let X € Kery. Then
D Mi(2)Xi(2%) =0.

ICN,
By replacing z, by —z, in the above relation, we get

S MEX(E) - ) ME)X(2H) =0

ICN,_1 nelCNy,

and so
S MEX(P) = ) M()X(%)=0.
ICN,_1 nelCNy,

By the induction hypothesis, we get X; = 0 for all I C N,, and so X = 0. Thus
¢ is injective and a C*-isomorphism. []

Ezample 3.3.3. Let f € F((Z9)3, E), put
a:=(0,0,1), b:=(0,1,0), c:=(0,1,1), s:=(1,0,0),
and denote by g the element of F(Zsa, E') defined by ¢(1,1) := f(s,s) Proposi-

tion a).

a) There is a family (a;, Bi, %, €i)ien, in (Un E€)* such that f is given by
the attached table and such that e% = 1 for every 7 € Ny and
€3 = €1€2, &5 = E€1&4, Eg = €284, &7 = E182&4,
a3 = £28401 05040672, @5 = a6P1Ya, Q7 = U,
B2 = Bimvs, B3 =eajasf1, P4 = c162840105047173,
Bs = eacnaz06, P = caiasa6175 ., Pr = €1628401 0506,
V3 = 20140671, V4 = €2E4020047Y1Y2, V5 = €1€4Q2Q671,

* *
V6 = €420, Y7 = €1€284020431.

f H a ‘ b ‘ c ‘ S \a+s‘ b+ s ‘c—i—sH
a |Bfim| m b1 V2 B2 V3 3
b
c

€1 | f10171 | o V4 Vs Ba s
e1fr| o |a1Bi| e 7 B7 Bs
S €272 €474 €676 | €20:272 Q2 Oy (&7
a+s | efe| 575 | €ryr | 200 | 2B | a7 as
b+s | e3vs | €1va | €77 | €aaq | €77 | E30373 | Q3
c+s | e3B3| e5B85 | €686 | €6bs | esas | €303 | azf3
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b) If e = —1p, &2 = €4, 71 = lg, and there is an 2 € E¢ with 22 =
a1 Bf then there are Py € (E®1k)°N PrS(f) with Py + P_ = Vlf and
(Theorem [2.2.18 b))

PLS(f)Py ~p S(g) =g P-S(f)P- .

c) If ey = —1p, 62 = e4 = 91 = 1g, and there is an x € E¢ with 22 = a1}
then S(f) =g S(9)2,2-

d) Assume €1 = —1lp, ea = &4 = a1 = 1 =71 = 1lg, 12 = &}, and
0/2L = ai = o = 1p and put g+ : S(f) — Ea2

Xo+ Xeo & Xy & Xops Xo— Xp+ 0B Xgps F ol Xpss

X —
Xo+ Xp 05 X04+s £ ) Xpts Xo— Xe+ XoF Xeys

Then the map
S(f) — B2 X Ezp, X +— (o4 X, 0-X)

is an E-C*-isomorphism.

Proof. a) is a long calculation.

b) and c¢) follow from a) and Theorem [2.2.18|e).

d) is a long calculation using a). [

34. T := Z,, withn € N

PROPOSITION 3.4.1. Put A :=Un E°¢ and for every o € A" ! put

p+q—1 q—1
fo:ZnxZyp— A, (po)— | ] o (H%)
Jj=p k=1

where Z,, and N, are canonically identified and oy, = 1g.

a) For every f € F(Zn,E) and X € S(f), X € S(f)° iff X; € E€ for all
t € T. In particular, S(f) is commutative if E is commutative.

b) fo € F(Zn, E) for every a € A"~ and the map
A" — F(Zn, B), a— f,
18 a group isomorphism.

c¢) The following are equivalent for all o, 3 € A"~ 1.

c1) S(fa) ms S(fa)-



306 C. Constantinescu 108

c2) There is a v € A such that
H (537)

c3) There is a X € A(Zy, E) such that fo = fzd.

If these equivalent conditions are fulfilled then the map
S(fa) — S(fs), X — UxXU,

18 an S-isomorphism and

n—1 p—1
A" = [](B85) =", p€Zn=>Ap) =MV [[(a}8)) -
j=1 j=1

d) Let a € A" and put
1 if j<n—1
N, — A, j+— n—l n-l
SRS g (Ha;;> if j=n—1

k=1
Then o and 8 fulfill the equivalent conditions of c).

e) There is a natural bijection
(S(f)| f € F(ZuE)} ) ~s — Af{a" | z€ A},
If E:=C(I™,C) for some m € N then
Card({ S(f) | f € F(Zn,E) }/ ~s) = mn.

n—1
f) Let « € A" ', B € A such that B" = [] o,
j=1

I

o | E ¥ K=C
"1 E if K=R

o
where E denotes the complexification of E, and

n Jj—1 g
wiS(fo) — F, X+ (H a,) X

j=1 =1

for every k € N,,(= Zy,).
f;) If K= C then the map

S(fa) — E", X +— (Wi X)pez,

s an E-C*-isomorphism.
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fo) If K=R and n is odd then we may take 5 € R and the map
© n—1
S(fa) m Ex(E) 2, Xvr— (woX,(wpX)ken, _,)
n_1
is an E-C*-isomorphism.

n—1
f3) If K=R, n is even, and H aj = —1 then the map
1

Jj=
S(fa) — (B)?, X — (wi1X)reny

is an E-C*-isomorphism.
-1
fy) If K=R, n is even, and H aj =1, and B =1 then the map

=1
S(fo) — EXEx(E)2™", X — (w,X,wn X, (wrX)keny ;)
is an E-C*-isomorphism.

fs) If n is even then there is a v € A such that fo(%, %) =~>.

Ezample 3.4.2. Let E := C(T,C), r € Z"', 2 : T — C the canonical
inclusion, and

ptg—-1 q—1
> r-—Zr)
f %y X Ly — Un E, (p,Q)*—>2<j‘p B

where Z,, and N,, are canonically identified. Then f € F(Z,, E). Let further S

n—1
be the subgroup of Z,, generated by p( > ;), where p : Z — Zy, is the quotient
.:1
map, ’ N
27
m:=Card S, h:=—, w_en,
m’
n—1
oc:N, —7Z, p»—)erJ mZT],
]:1 =
and .

vr:S(f) — F, Xr—>ZX 0 2M) 2 P) Pk

p=1
for every k € Nj. Then the map

0:8(f) — E", X (o6 X)ren,
is an E-C*-isomorphism.

The next example shows that the set { S(f) | f € F(Zy,C(T,C)) } is not
reduced by restricting the Schur functions to have the form indicated in Ex-

ample
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Ezample 3.4.3. Let £ :=C(T,C) and g € F(Z,, E). Put
n—1

¢:[0,27[— R, 6+ log H(g(J} 1))(e"),

where we take a fixed (but arbitrary) branch of log. If we define

lim p(f) — (0) if j=1
Ny T s Jm o(8) —p(0) if
0 if j#1

then there is a A € A(Z,, E) such that g = foA, where f is the Schur function
defined in Ezample In particular, S(f) ~s S(g).

35. T =7

Example 3.5.1. Let f € F(Z,E).
a) S (f) =C(T, E).
b) If E is a W*-algebra then
Sw(f) = EQL™(p) = L™ (u, E),
where p denotes the Lebesgue measure on T.

Proof. By Corollary c¢) and Proposition a; = a2, we may
assume f constant. By Proposition [2.2.10| ¢),e), we may assume F := C. Let

a : T — C be the inclusion map. Then

P(Z) — LA (n), €— ) &a”
nez
is an isomorphism of Hilbert spaces. If we identify these Hilbert spaces using
this isomorphism then V; becomes the multiplicator operator

L*(p) — L*(n), n+—> an

w0 R(f) — L>®(p), Xvr— ZXnoz"

€z,
is an injective, involutive algebra homomorphisr?a. The assertion follows. [

4. CLIFFORD ALGEBRAS
4.1. The general case
Throughout this subsection, I is a totally ordered set, (T;);c; is a family

of groups, and (f;)ier € [[ F(Ti, E). We put
el
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EZ{Z€I|tZ7£1Z}

for every t € [[ 1; (where 1; denotes the neutral element of ;) and
iel

T::{tEHTi

iel

t‘isﬁnite}, T :={teT |t =1}.

An associated f € F(T, E) will be defined in Proposition b).

T is a subgroup of [] 7;. We canonically associate to every element ¢ € T
i€l
in a bijective way the "word” ¢;,t;, - - - ¢;,,, where
{il,iQ,"',Z.n}:{ and 1 <tg < - <l
and use sometimes this representation instead of ¢ (to 1 € T' we associate the
"empty word”).
PROPOSITION 4.1.1. a) Let t; t;, ---t;, be a finite sequence of letters with
ti; € Ti; \{1i;} for every j € N, and use transpositions of successive let-
ters with distinct indices in order to bring these indices in an increasing
order. If T denotes the number of used transpositions then (—1)7 does
not depend on the manner in which this operation was done.

b) Let s,t € T and let
Si15i9 " Sigy s ti’ltié ce ti;l
be the canonically associated words of s and t, respectively. We put for
every k € I, 8 :=s;; if there is a j € Ny, with k =i; and 8y := 1y if the

above condition is not fulfilled and define t in a similar way. Moreover,

we put (Proposition a))
FCHENCN | FAGHAR
kel
where T denotes the number of transpositions of successive letters with
distinct indices in the finite sequence of letters
S, 849 " Simti’ltié s tz‘/n

in order to bring the indices in an increasing order. Then f € F(T, E).

c) Let Iy be a subset of I, Ty the subgroup {t €T |t C Iy} of T, and fy
the element of F(To, E) defined in a similar way as f was defined in b).
Then fo = f|(To x Ty) and the map

[l Il
Spy(fo) — S, D (XK@l VP — Y (Xi®1k)V

teTy teTy
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is an injective E-C**-homomorphism with image

{XeS(f)| teT&X;#0)=>teTy} .

Proof. a) We define a new total order relation on the indices of the given
word by putting for all j, k € N,

ij < i = ((Z] < Zk) or (ij =1 andj < k)) .

Let P be a sequence of transpositions of successive letters in order to bring the
indices in an increasing form with respect to the new order and let 7 be the
number of used transpositions. Then 7 — 7/ is even and so (—1)7 = (=1).
By the theory of permutations (—1)7/ does not depend on P, which proves the
assertion.

b) By a), f is well-defined. Let r,s,t € T and let
Ti1Tig " Vi s 8§t Sify * " St tz-/lrtilzl e tig

be the words canonically associated to r, s, and ¢, respectively. There are
a, € {—1,+1} such that

Fr9)f(rs,t) = o [ ] (i, 3) (s, )
i€l
f(T' St BHf’L T2731 z 527tz) .

el
Write the finite sequence of letters

TirTig "+ Tip Sif Sity Si’nti'{tig e tig

and use transpositions of successive letters with distinct indices in order to
bring the indices in an increasing order. We can do this acting first on the
letters of r and s only and then in a second step also on the letters of £. Then
a = (—=1)*, where p denotes the number of all performed transpositions. For
B we may start first with the letters of s and ¢ and then in a second step also
with the letters of r. Then 5 = (—1)”, where v is the number of all effectuated
transpositions. By a), a = (—=1)* = (=1)” = . The rest of the proof is
obvious.
c) follows from Corollary d). O

COROLLARY 4.1.2. If I :== Ny then for all s,t € T,

fi(s1,t1) if s9 =1y
f(s,t) = fa(s2,1t2) if t1=1
—fi(s1,t1) fa(s2,ta) if so# 1la,t1 # 14

PropPOSITION 4.1.3. Let s,t € T.
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a) f(s,1) = (—1)Card (5x0)=Card (576) f(y ),
b) st =ts iff ViVi = (— )Card(sxt) Card (500) 1/,

c) Assume 5 C t. If Cards is even or if Cardt is odd then f(s,t) = f(t,s).
If in addition st = ts then ViV; = Vi V5.

d) If Cardl is an odd natural number and T is commutative then V; € S(f)¢
for everyt € T witht=1.
e) Assumet € T'. If n:= Cardt and o := [] fi(ti, t;) then
i€t

e = (D", f)= ()" e,
(Vt)2 = (—1)"("2*1) (aélK)Vh V= (_1)n(n 1)( ®1K)V |

Proof. a) For i € 3,

| B ( )Cardtf(t Si) if i¢ t
f(sut)_{ ( )C ard t— lf(t,Si) if Z’et_

SO _ o
f(S,t) _ (_1)Card (sxt)—Card (sﬂt)f(t’ 5).

b) By Proposition b),
ViV = (f(s,001K)Var,  ViVe = (f(t,8)®1k)Ves -
Thus if st = ts then by a),
ViVi = ((f(s, ) f (%, s)*)élK)VtVs _ (_1)Card(sxf)—Card(ng)WVs )
Conversely, if this relation holds then by a),
Vit = (f(5,0)" @1x) VsV = (—1) Ot ©&O-Cad 00 (£ (1 5)* @1 ) VLV
= (f(t,s)"®1K)ViVs = Vi

and we get st = ts by Theorem a).
c) follows from a) and b).

d) follows from ¢) (and Proposition d)).
e) We have
n(n—1)

fltt) = (-1t = ()T a
By Proposition b),e)
(V)? = (F(t )1V = (—1) "5 (a@l)Vi ,

- n(n—1)

= f(OVirr = F(.0) Vi = (-1)"T (0" BLx)Vie
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PROPOSITION 4.1.4. Let S be a finite subset of T'\ {1} such that st = ts
and Card (5§ x t) — Card (§Nt) is odd for all distinct s,t € S and for every
te S let ar,er € Un E° and X; € E be such that

ei=1g, (V) =(ulx)\Vi, X;=ouX,

1
DX = 1LE
tes

P = %Vl + Z((Etxt)é)ll{)‘/t € Pr S(f)7
tesS

1 -
Vi-P=_Vi+ D (e X)@1k)Vi € PrS(f) .
tesS
b) If s € S and B € E° such that X; = 0 and > = as then P is homotopic

in Pr S(f) to
%(Vl + ((Bes)@15) V) -

Proof. a) By Proposition b),e),

1 ~ 1 -
P =Vit ;((etxfaz‘)@lmvt =i+t ;S((etxt)ommvz =P,

1 g ~
P* = ZVl + Z(Xt2®1f<)(Vt)2 + Z((EtXt)@)lK)Vt
tes tcs

+ Y ((ee8 X X)®1k) (VAV; + ViVe)

s,tesS
s#t

1 ~ -
= Vit ;«xfat)@lmvl + ;((a—txt)@m)vt

1 -~ -
=i+ tEZS(XtP@K)vl + ;((atXt)éi)lK)Vt - P

b) Remark first that 5 € Un E¢ and put

1
Y:[0,1] — ES, urs (Glp—u? > [Xif?)2,
4
tes
Z:00,1] — E°, uw+— [esY (u),

Q:00,1] — S(f), urs %vl FZ@E+ Y (e X)B1k)Vi
teS\{s}
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For u € [0, 1],
asZ(u) = BB esY (u) = fesY (u) = Z(u)",
2 2 1
Z@P+ Y Xl = 1
teS\{s}
so by a), Q(u) € PrS(f). Moreover
QO) = LW+ (Fe)BLV). Q) =P .

COROLLARY 4.1.5. Lets,t € T'\{1}, s # t, st = ts, as, n,e5,6¢ € Un E°
such that

ei=¢f=1p, (Vi)' = (a®1x)Vi, (V)? = (af®1K)V1,

and put
1 ~ 1 ~
P, = §(V1 + ((es05)®1K)Vs), Pp:= §(V1 + ((era)®@1K)Ve) -

a) Ps, P, € PrS(f); we denote by Ps APy the infimum of Ps and P, in S(f)+
(by b) and c) it exists).

b) If ViVi # ViVi then Py A Py = 0.

¢) If ViV, = V;V, then Py A P, = P,P, € PrS(f).

Proof. a) follows from Proposition [2.1.20{b = a.
b) By Proposition b), ViV = =ViV,. Let X € S(f)+ with X < P,
and X < P;. By [I, Proposition 4.2.7.1 d = ],

1. 1 _
X = PX = 5 X + () @15 VX,

X = ((esa5)@1g)VeX = ((eserata)) @1 ) Vs Vi X
—((eseratial) 1K) ViVeX = - X
so X =0and P;A P, =0.
c¢) We have P;P, = P,Ps so P,P, € PrS(f) and PsP, = P; A P, by [1l
Corollary 4.2.7.4 a = b&d]. O

COROLLARY 4.1.6. Let m,n € N, Ny, C I, ()ien,, € (Un E€)™, and
for every i € Ny, let t; € T" with t; := N, U{n + i} and t;t; = t;t; for all
1,7 € Ny If for every i € Ny,

(V)? = (o @ 1x)W

;(vlJrz @ 1K)V ) e PrS(f) .

ZeNm

then
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Proof. For distinct 7,5 € N,,,,
Card (t; x t;) — Card (t; Nt;)) = (n+ 1)  —n=nn+1) +1
is odd. For every ¢ € N,,, put Xj : Q\ﬁal Then

1
o? x 2 2
X, = = X7, |Xy = -le, ) X =
2v/m iéx
and the assertion follows from Proposition a). O
THEOREM 4.1.7. Let n € N such that No, is an ordered subset of I,
S:={teT|tCNo 2}, g:=Ff|(SxS),abecT such that a®> =b* =1,

a=Ng, 1, b=Ny, oU{2n}, i€ Ny 9= a;="0,

w: Zy X Ly — T the (injective) group homomorphism defined by w(1,0) :=a
w(0,1) := b, a1 = f(a,a), ag = f(b,b), B1,B2 € Un E° such that a1} +
05263 = O}

(@186 — 03818) = aifiB = s

1 ~ ~
X =S ((Bo1)Va + (B201K)V),  Pri=X"X, Poi=XX"
We consider S(g) as an E-C**-subalgebra of S(f) (Corollary e))

a) ab = ba, v? = —ajas. We put ¢ := ab = w(1,1).
b) X, Ve, P+ € S(9)°.
c) We have
Po= Vit GELOV) € PrS(f), Pr+ P =Vi, PyP =0,
X?=0, XP, =X, PX=X,P,X=XP =0, X+X*"cUnS(f).

d) The map
E— PiS(f)Pi, T — Pi(xélK)Pi
is an injective unital C**-homomorphism. We identify E with its image
with respect to this map and consider PrS(f)Py as an E-C**-algebra.

e) The map
O+ S(g) — P:tS(f)Pi s Y — PiYPi = PiY = YPi

is an injective unital C**-homomorphism. If Y1,Ys € Un S(g) then
oY1+ Ys € Un S(f).
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f) The map
v:S(f) —S(f), Zr— (X+X")Z(X+X")
is an E-C**-isomorphism such that
O =, Y(PrS(f)Pr) = P-S(/)P-, Yops =p—, bop- =p,.
IfY1,Y5 € S(g) then
P+Y1 4+ p-Ya = (oY1 + o-V1)(p1 Y2 + 9-V1).
g) If p € PrS(g) then
(X (p4+p)"(X(p4p)) =040,  (X(p40))(X(p4p))" =¢-p.

h) Let R be the subgroup {1,a,b,c} of T, h:= f|(R x R), d € T such that
d =Ny, o and d; = a; for every i € No,,_o, and
a:= f(d,d), o = fo,_1(2n—1,2n—1), o = fon(2n,2n).

Then a1 = ad', ag = ad”, —ad'a’ = (a*v*)?,

[A]a b ] c |

ad | « o
— aa// _a//
“d | | —dd”

is the table of h, Py € PrS(h), and the map

Zo+vZ., adZ,—av*Z, }

:S(h) — FEao, Zv+— . *
4 ( ) 22 |:Za+0/'7Zb Zo — V"2

s an E-C**-isomorphism. In particular

C[1g 0 [0 0
and Es 9 is E-C**-isomorphic to an E-C**-subalgebra of S(f).

i) Assume I = Ng, and Toy—1 = Top, = Za. Then T = S X Zo X Lo, p4 is
an E-C*-isomorphism with inverse

PiS(f)Pr — S(fo), Z+—2Y (Zu®1K)Vu,
u€Ty
and S(f) =g S(g)2.2

Proof. a) is easy to see.
b) follows from Proposition b).
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c) follows from a) and Theorem [2.2.18b),h).
d) follows from Theorem [2.2.18|c).

e) By b) and c), the map is well-defined. The assertion follows now from

Theorem [2.2.18[d),h).
f) follows from b), c¢), and Theorem [2.2.18 h).

g) follows from b) and Proposition d).

h) follows from c), d), Proposition a), Corollary d), and Propo-
sition c).

i) follows from Theorem f). O

PROPOSITION 4.1.8. We use the notation and the hypotheses of Theorem
and assume I := No, T} := Zs, and Ty := Za,, with m € N.

a) a= (170)7 b= (07m)7 c= (17m)7 a=1g, o= = fl(l,l), o =y =
fa(m,m), and
PiS(f)Pr={ (2®1g)Ps | z € E} .

b) If m = 1 then there are o, 3,7v,8 € Un E° such that f is given by the
following table:

L/ 101D][02][03)][10[wY] 1,2 | 13 |

(0,1) Q I5; ~ -1 | —« -8 —y
0,2) | B |a*By| o™y | =1 | =B | —a*By | —a*y
03| v [y | By | —1lg| —v | —a*y | =B%
(1,0) | 1g 1g 1g 5 ) ) )
(1,1) o I6; ~ -5 | —ad —B4 —vd
(1,2) B | a*By| a*y | =6 | =50 | —a*Byd | —a*vd
(L3) | v [y | By | =0 | =y | —a™yd | =f*y0

c) We assume K :=C and m :=1 and put for all j, k € {0,1}
ik :S(f) —E, Zv+— Zo+ (-1 Zy+ 7 Zy1)— 7 Zg 3
¢:S(f) — E*, Z+— (po0Z, v01Z, 10Z, p117) .
If we take o := 3 :=~:= —0 := 1 := B2 := 1g in b) then the map

Zo+Z Zao) — Z
S(f) — Eaa x EY,  Z+— ([ 0T 22 #(10) ] : Z)
() 2,2 Zaoy+ 2y Zo— Zag ¢

is an E-C**-isomorphism.

Proof. a) Use Corollary [4.1.2] and Proposition b).

b) Use Proposition [3.4.1] a) and Proposition
c) follows from b) and Proposition fi. O
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4.2. A special case

Throughout this subsection, we denote by S a totally ordered set, put
T := (Z3)®®, and fix a map p : S — Un E°. We define for every s € S,

fs € F(Zq, E) by putting fs(1,1) = p(s) (Proposition [3.1.1] a)). Moreover,
we denote by f, the Schur function f defined in Proposition 4.1.1b) (with I
replaced by S) and put Cl(p) := S(f,).

Remark. If S := Ny then T' = Zg x Zga so Cl(p) is a special case of the
example treated in Subsection 3.2. With the notation used in the left table of
Proposition this case appears for a := (1,0) and b := (0.1) exactly when

e=—1g, a=—pb), B =pla), and v = 1.
LEMMA 4.2.1. B+(S) endowed with the composition law

Br(S) x Py (S) — (), (A, B)— AAB:= (A\B)U(B\ 4)

is a locally finite commutative group (Definition [2.1.18|) with ) as neutral ele-
ment and the map

‘Bf(S) — T, Ar— €A
s a group isomorphism with inverse

T —Bs(S), zr—{seS|ax(s)=1}.

We identify T with B¢(S) by using this isomorphism and write s instead of
{s} for everyse€ S. For A,BeT,

fo(A, B) " II ets
s€EANB
where T is defined in Proposition b).
PROPOSITION 4.2.2. Assume S finite and let F' be an E-C*-algebra. Let

further (zs)ses be a family in F' such that for all distinct s,t € S and for every
yek,

Tslt = —TtTs, .’IJ? = )0<3>1F7 96: = P(S)*lis, TslY = YTs.
Then there is a unique E-C*-homomorphism ¢ : Cl(p) — F such that oVy = x4
for all s € S. If the family <H T is E-linearly independent (resp.
s€EA ACS

generates F' as an E-C*-algebra) then ¢ is injective (resp. surjective).

Proof. Put ¢Vy := xs,x, -+ x5, for every A := {s1,s92,-++,8m}, where
51 < S < -+ < Sm, and

p:Cl(p) — F, X>—>ZXAQDVA.
AcCS
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It is easy to see that (¢Vs)(eVi) = o(ViV;) and y pVy = (oVs)y for all s,t € S
and y € E (Proposition b)). Let A := {s1,82,--*,8m} C S, B =
{t1,t2,-- ,tn} C S, {ri,r2,--- ,rp} == AAB, where the letters are written in
strictly increasing order. Then

(‘pVA)(‘pVB) = Ts1 sy """ Lgy, Tty Tty * Tty = fp(A7 B)$r1$r2 c Ty,
= fo(A, B)pVanpg = ¢((fo(A, B)®1k)Vanp) = ¢(VaVa),

" " m(m—1) % % "
((PVA) =Tg, - $sgxsl = (_1) 2 Lg Lgy Ty,
m(m m(m—1) m(m m(m—1)
== H P(8i) s sy *++ Ts,,, = (—1) H p(si)*@Va
1€EN, S\

m(m 1) N

= o(( (I pls))@1K)Va) = @(ViD)
1€Nm,
by Proposition e).

For X,Y € Cl(p) (by Theorem c),g))

(PX)(pY) = <Z XAsaVA) (Z YB¢V3> = > XaYp(eVa)(eVi)

AeT BeT A,BET
= > XaYpe(VaVe) = > XaVsfo(A,B)pVans

ABeT ABET
> XaYancfo(A ANC)pVe = ) (Z fo(A, AAC)XAYAAC> Ve
ACeT CeT \AeT
=Y (XY)epVe = p(XY),
Cer
(@X)* =) Xi(eVa) = > Xhe(Va)*
AeT AeT
=Y (A (X afp(A)pVa =D (X*)apVa = o(X7)
AeT AeT

(Proposition e)) i.e. ¢ is an E-C*-homomorphism. The uniqueness and
the last assertions are obvious (by Theorem a)). O

PROPOSITION 4.2.3. Let m,n € NU{0}, S := Ny, S := Nopyp, K/ :=
(R(9)), (a)ien,, € (Un ES)™

L . pgs) if sesS
p S —UnE°, s'—>{a%fp(5) if s=2n+iwithi €N, ’

and A; := AU{2n+ i} for every A C S and i € N,,.
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a) = Nm — fp/(sl) = O[F? (Vs,?:)Q = (0%2 X 1[@)%,0’.

1 )

b) P:= v + 9 e% (af ® Lg)VE € Prei(p).

c) There is a unique injective E-C*-homomorphism ¢ : Cl(p) — PCl(p’)P
such that oVf = PVY P = PV = VI P for every s € S.

d) If m € Ny then ¢ is an E-C*-isomorphism.
Proof. a) By Proposition e),

Fr($0) = (1) @0 T] (o) = ( 20 T s ) 02, (9)" = ai?,
sES; seS
(VE)” = (of @ 1) VY’
b) follows from a) and Corollary -
¢) By Proposition 4.1.3/c), for s € S, V' V§ = VE VY for every i € Ny,
so VPP =PV, By b), for distinct s,t € S (Proposition m b)),
(PVENPVS) = PV = —PV'VE = —(PV/)(PVY),
(PVY)? = P(V')* = P(¢/ () ® L) Vi = (pls) © 150 P,
(PVE) = P(VI)" = P(p(s)" @ 1)V = (p(s) @ 1) PVL"
By Proposition [4.2.2] there is a unique E-C*-homomorphism ¢ : Cl(p) —

PCI(p')P with the given properties.
Let X € Cl(p) with pX = 0. Then

0= (Z (Xa® 1K')VA’0/> P

ACS

1 : ,
=3 Y (Xa@1g)VE + 2\F SN (Xa®@ 1) (A S)VEg)

ACS i€N,, ACS

and this implies X4 = 0 for all A C S (Theorem a)). Thus ¢ is injective.
d) THE CASE m = 1.
Let Y € PCI(p')P. Then (by Proposition b))

1 1 N /
Y=YP=_Y+ 2%;@/(&1 ® L)VLY

Y =3 (0 £ (S1, A)Ya) ® 1 )VE pa+
ACS

+ 3 (@ £ (S1, A1) Ya,) @ 1) VEn o
ACS
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S0
Ya=ajfy(S1,(SAA))Y(sna),
Ya, = @} fr(S1, SAA)Ysan
for every A C S. If we put
X:=2) (Ya®1k)VE €Cl(p)
ACS
then

1 . /
pX = SoX + ) (@1fy(S1, AYa) @ L) VE aa

AcCS
=S Va1V + 3 (0} (S1,SAA)Ysp4) @ L)V,
ACS ACS
=S a1V + 3 (Ya, @ 1g)Vf =Y.
ACS ACS

Thus ¢ is surjective.

THE CASE m = 2.
Let Y € PCi(p')P. Then

Y =PY =1y + ﬁ((a’{ ® 1)V + (3 ® 1K,)V§2)}/

V2Y = (@1 VE Y +(a3@ 1) VEY = (@ 1) Y VE + (3@ 15 )Y VE.
For every B C S put B, := BU{2n + 1}, B, := BU{2n + 2}, B, :=
BU{2n+1, 2n + 2}. Then

VEY =) ((Ypfy(S1,B) @1k Vispap, + D (VB fr (51, Ba) @ 1) Ving
BcCS BCS

+ Z ((YBbfp/(S17 Bb)) ® 1K’)V(F;AB)C+ Z ((YBcfp’(Slv BC)) ® 1K/)V(SAB),)>
BCS BCS
VEY =Y (Y fy(S2, BYOLk)Visnp), + 2 (VB fo (S2, B) @1k Vinp.
BCS BCS

+ > (VB £ (82, By) @ 1k Vi g + D (Vi f (82, Be)) @ Lk ) Vs p . »
BCS BCS

YVE =3 ((Yefr (B, S1)@1k)Vigap), + O (Yo Sy (Bay $1)@1x)Vinp
BCS BcCS

+ Z ((YBbfp’(Bba Sl))®1K’)V(gAB)C + Z ((YBcfp’(Bm Sl))®1K’>V(?9AB)ba
BCS BCS
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YVE =Y ((Yify(B,52)@1x)Visap, + > (Vb fy(Ba 52))01k)Visnp.
BCS BCS

+ Z (Y, £ (Bp, S2)) @ Lig))VEn g + Z (Y, fpr (Be, S2)) ® 1K/)V(§:AB)Q,
BCS BCS

V2Y = 3" (Y5, £ (S1, Ba) + a5Yp, £ (S2, By)) @ 1) Va5
BCS

+ > (@Y fy(S1,B) + 05Y5. fr (S5, Be)) @ Lk )V s p .
BcCS

+ > (@15, £ (S1, Be) + a3V fy (S5, B) @ 1) Vi pp,
BcCS

+ > (], £ (S1, By) + a3V, f (S2, Ba)) @ Lk) Vi)
BCS
V2Y = 3 (015, fr (Ba, S1) + 035, £ (By, 52)) @ 1) Vin g
BcCS

+ > (1Y [y (B, S1) + a3V, [y (Be, $2) @ 1k )V o .
BCs

+ > (@18, fy (Bey $1) + a3V fy (B, $2) @ 1) Vi o ),
BcCS

+ Z ((aIYBbfp’(Bb7 S1) + O‘;YBafp’(Bav S2)) ® 1K')V({)S‘AB)C’
BcCS

It follows for B C S,
V2Y5, = aiYsanfy (SAB, 51) + a5Y(sap). fy (SAB):, S2) .
V2Yp, = aiYsap). fo (SAB)e, S1) + a3Ysapfy (SAB, S2),
V2Yp, = aiY(san), fo (S1, (SAB),) + a3Y(sap), fr (S2, (SAB))
= a1Y(saB), [0 (SAB)y, S1) + a3Y(saB), [ (SAB)a, S2),
so by Proposition a),b), Yp. = 0. If we put

X =2 Z (Y ® 1x)VE € Cl(p)
BcCS

then

X = (2 S (v 1K,)vg’> P

BcCS

= Z (Yp ® 1) Vp Z Ypr (B,5S1))® 1K’)V581AB
BCS BCS
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f S ((05YBfy (B, S2) @ 1)V p g,
BcCS

and so for B C S,

(pX)B=YB, (¢X)B a1Ysapfy(SAB,S) =Yg, ,

_ 1
T2
1,
(pX)B, = E%YSApr'(SABv S2) =Yp,, (¢X)p.=0=7VYg,.
Thus ¢ X =Y and ¢ is surjective. [

Remark. If m = 3 then ¢ may be not surjective.
PROPOSITION 4.2.4. Let K:=R, n € NU{0}, S := Ny, and
p(s) if sesS

' : Na, E° -
P Nonpy — Un B2, SH{—fp(S) if s=2n+1

o

~ =
Let Cl(p) be the complezification of Cl(p), considered as a real E-C*-algebra
([, Theorem 4.1.1.8 a)]) by using the embedding

o

—~ =
E—Cl(p), =+ ((z@1K)V{,0).

~ = /
Then there is a unique E-C*-isomorphism ¢ : Cl(p") — Cl(p) such that oV =
(V£,0) for every s € S and oV, .1 = (0, —(f,(S) ® 1x)VE).
Proof. We put

o { (V¥£,0) if sesS
T 0, = (F(S) @ 1) VE) i s=2n+1

For s € S, by Proposition m 4.1.3/b),
zswant1 = (VE,0)(0, —(f,(8) © 1x)VE) = (0, —(f,(S) ® 1 )VLVE)
= (0, (fp(8) @ 1g)VEVYL) = (0. (fo(S) @ 1)VE)(VE, 0) = —w2ps1s.
By Proposition b),e)
Toni1 = (—((fo() ® 1x)VE)%,0)
= (—(fo(9)? @ 1K) (£o(S, 9) @ 1)V, 0) = (¢ (20 + 1) @ 1x) (V] 0),

a1 = (0, ((fo(S) ® L)VE)")
= (0,(fp(9)" @ 1K) (fo(S) @ 1x)VE) = (' (2n +1)" ® 1 )21,
and the assertion follows from Proposition O
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PROPOSITION 4.2.5. Let n € NU {0}, S := N,, S’ := N9, K' :=
2(B(S"), a1,0 € Un E¢, and

p(s) if se€S
oS8 —UnE°, s+ ol if s=n+1

—a2 if s=n+2
a) There is a unique E-C*isomorphism ¢ : Cl(p') — Cl(p)a2,2 such that

/ ||
[ S
90‘/8 |: 0 _‘/SP :|

for every s € S and

/ 0o vy / 0o -V’

Lur o (o) o L7 (V2o
@5( 0 +((Oé10é2)® K/) {n+1,n+2})_ 0 0|’

(N : 0 0
o3 0F = (@105) & 1V ) = [ 0 10 |-

T = Vgp 0
S O _Vgp

Proof. a) Put

for every s € S and

0o vr 0o -V’
Tptl 1= (051 X 1K) |: V@p Ow :| , Tpio = (042 ® 1}() |: pr Om :| .

For distinct s,t € S and 7 € No,

Ve o0
Toty = —mzs, 22 = (p/(s) ® 1g) [ g’ VP ] @y =(p(5) ® 1K) s,
0
) Ve 0
titnss = ~tnie, = orde1n| 0|
0
Ty = (P(n+1) @ 1K) Tnsi, Tl Tns2 = —Tnt2 Tntl-
By Proposition there is a unique E-C*-homomorphism ¢ : Cl(p') —
Cl(p)2,2 satistying the given conditions.
We put, for every A C S and i € Ny, |A| := Card A, A; := AU{n +i},
As:=AU{n+1,n+2}. For ACS,

/ Ve 0 0o vy
Vh =l e | g vnwﬁ}{%’g}
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|

SOV,Q); = (2 ® 1k)
= (0 ® 1) _

PVh, = ((a102) @
= ((a2) ®

Then for Y € Cl(p'),

(0Y )11 =
Acs
(pY )12 =
ACS
(pY )21 =
Acs
(©Y )22 = >
Acs

0 %4
| (-D)AVE o
vy 0 0o -V
0 (-pAvE vy o

0 A
L DAvE o

0 %4 0 -V

b Loy 0 ] [ o

Ve 0
W[ &g |

(Ya+ (@100)Ya,) @ 1)VE
((1Ya, — aoYn,) @ 1g)VY
(—D)AN)((a1Ya, + a2Ya,) ® 1)V
(

_1)|A|((YA —a1eYa,) @ 1)V .

It follows from the above identities that ¢ is bijective.

b) By the above,

PVt nrey =9V, = ((a102) ® 1k) [

and the assertion follows.

0
p
Y

p
I
0

|

O]

COROLLARY 4.2.6. Let m,n € NU{0}, S :=N,, (a;)ien,,, € (Un E°)?™,

and

0 :Nyiom — Un E°, 3|—>{ ~(

Then Cl(p') =g Cl(p)am am.

p(s)

“1Ya?

if seS
if s=n+i

PROPOSITION 4.2.7. Let K := R, n € NU {0}, S := Ng,,, S := Ngj 9,

ay,ae € Un E€, and

p S — UnE°, S'—>{

Then there is a unique E-C*-

sDVf'{

p(s)  if s€S
—alf,(S) if s=2n+Ilwithle Ny

isomorphism ¢ : Cl(p') — Cl(p) @ H such that

el if se8
((erfp(S)) @1)VE) @i if s=2n+1 ,
(2 fp(S) @1K)VEY® G if s=2n+2
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where 1, j, k are the canonical unitaries of H.

Proof. Put
Vgp ® 1g if ses
zs = (((a1fp(9) ®1k)VE) @i if s=2n+1
(2 fp(S) @1)VE)® G if s=2n+2
For distinct s,t € S and | € Ny, by Proposition m 4.1.3|b),
Ty = —T4Ts 2= (p(s)® 1) (VY ® 1m), = (p'(s) @ 1g)*xs,
TsTon il = —Tont1Ts, Tant1Tant2 = (((craaf,(S ))®1K)Vp) k= —xop ooy,
(zan11)* = (@7 £,(9)) @ 1K) (fp(S)" @ 1) V) @ (—1m)

= (p'(2n+1) @ 1x) (V) @ 1n),
(an1)" = (((0f £,(9)") @ 1K) (f,(S) @ 1 )VE) @ —(i or )
( (2n + l) & 1K) Lon+1-

By Proposition [£.2.2 there is a unique E-C*-homomorphism ¢ : Cl(p') —
Cl(p) ® H satisfying the given conditions.
For X € Cl(p'),

pX = (Z(XA ® 1K)V£> ® lg

AcCS

+ <Z((XAU{2n+1}a1fp(S)fp(A7 S)) @ 1K)VSAA> ® i

AcCS

+ <Z((XAU{2n+2}a2fp(S)fp(A7 S)) @ 1K)V§AA> ®j

AcCS

+ <Z ((XAU{Zn-i-l,2n+2}a1a2f~p(s)) & IK)V£> ® k

ACS
and so ¢ is bijective. [

PROPOSITION 4.2.8. Let n € NU{0}, S := Ny, A" := AU {2n + 1} for
every A C S,
p(s) if sesS
f(S) if s=2n+1 "~

Po=Y(V/ £VE), and by : O E— (D E defined by
ACS AcCS’

oS — Un E°, s»—){

(064 = ;55/*’ (B16) 0 = = \ffp(SAA 5)Esan
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for everyée (D E and ACS.

ACS

a)
fo(8)=1p, (VB =V{, PiePrcip),
Pi+P =V, VEecClp), VELPL—=+P;.

b) For AC S, fo(A,8)* = (S, A)* = £, (S, (SAAY).

)brelp( QO E O E)andforne () E and AC S,
ACS AcCsS’ ACS’

(0L0a = 504 £ (4.5) Misaay) = VAP
d) 0164 is the identity map of () E.
ACS
e) 0107 = Py.
f) For every AC S, 02VE0L =V Po = PLVE = PLVE Py
g) For every closed ideal F of E the map
0 :Cl(p,F) — PiCl(p', F)Py, X +— 0.X07
1s an E-C*-isomorphism with inverse
PCUp , F)Pr — Cl(p, F), Y — 01Y04
and the map ¢ : Cl(p/, F) — Cl(p, F) x Cl(p, F)
Y — (0L PLYPO,, 0P YP_§_)=(0.Y0,,0°Y0_)

is an E-C*-isomorphism.

Proof. a) By Propositionm d),e), Vs’f,, e Cl(p)e,

fr(8') = (-1 [T ()" = (-1 (H p<s>*> o2n 1) = 15,
ses’ s€S
VEy =y (W =Vi . ()P =7V =v
SO
Pi € Prei(p)e,  VEPy=+Ps.
b) By a), Proposition c),d), Proposition b), and Proposition
b),

Fo(A,8)" = fy(A,8)" = f(A,S)

= [y (8", A)" = [y (5", (SAA)) [y (') = [y (5", (SLA)).
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¢)Forée () E,

ACS
(01n)=">" nA £ fp (SAA, S)ésna
ACS ACS
Z 77A Z Msaay —=To(A,5)Ea
ACS ACS
= Z TIA £ fp(A, ) nsnay) éa
ics V2

solelg( () E, QO E)and
AcCS AcCS’

(0" = —=na=x fo(A,S) nsray) -

Sl

By a) and b),

1 1
(Pen)a = gna + §fp/(5', (SAA)Y )nesaay

1 * 1 *
= 5(ma = fo(A, S) nisaay) = \ﬁ(%ﬁ)A-

d)Forée () Eand AC S, byc),
ACS

(020+:8)a = ((95),4 + fo(A,9)"(0€)(snay)

ey

5 (€a+ fp(4,8)" fo(A, 5)€a) = €a.

e)Forne () Eand AC S, byb) and c),
ACS’

- éw:;m — (Pun)a

Jo(SAA,S)(05n)saa

(0+05m)

. 1
(0L0im)a =+

V2

1 . 1 1
= i§fp(5AA, S)(msaa £ [o(SAA,S) na) = iifp(SAAa S)nsaa + SN

1 1 , ,
= 5(77A/ + [ (S, SAA)NsAA) = 5((‘/@’) ma £ (V&N a) = (Pen)a

SO eiel = Pi.

fy Forne () E and B C S, by a),b),c),e) and Proposition
Bcs’

(and Corollary [2.1.17|e))
(V§ Pin)p = f (A AAB)(Pen)anp = fo(A, ADB)(0:050) anp

4.1.1
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1 1
= T34 ALB) L) ann =

* 1 *
(9iV£9in)B/ = iﬁfp(SAB) 5)(V£9j:77)SAB

1
- iﬁfp(SAB, S)fo(A, SAAAB)(0in)saans

= ££,(SAB, S)f,(A, SAAAB)(Pin)saans
= ££,(SAB, S)(VE Pin)sap = ££4(S', S'/ABYVE Pen)sinp:
= £(VEVE Pin) g = £(VEVE Pin)g = (V2 Pan)p

(Vi0in)g = (0+V10in) B,

so by a),
0.V, = VA Py = PV Py = PLVY
g) The assertion concerning ¢ as well as the identity in the definition of

¢ follow from a),d),e), and f). Thus ¢ is a surjective E-C*-homomorphism.

For Y € Ker,
1Yo, =60"Y0_=0,

P,Y=PY=0

so by a) and e),

and we get
Y=P,Y+PY=0
i.e. v is injective. [
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