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The projective representation of groups was introduced in 1904 by Issai Schur in
his paper [6]. It differs from the normal representation of groups (introduced by
his tutor Ferdinand Georg Frobenius at the suggestion of Richard Dedekind) by
a twisting factor, which we call Schur function in this paper and which is called
sometimes multipliers or normalized factor set in the literature (other names
are also used). It starts with a group T and a Schur function f for T . This
is a scalar valued function on T × T satisfying the conditions f(1, 1) = 1 and
|f(s, t)| = 1 , f(r, s)f(rs, t) = f(r, st)f(s, t) for all r, s, t ∈ T . The projective
representation of T twisted by f is a unital C*-subalgebra of the C*-algebra
L(l2(T )) of operators on the Hilbert space l2(T ). This representation can be
used in order to construct many examples of C*-algebras (see e.g. [1, Chapter
7]). By replacing the scalars R or C with an arbitrary unital (real or complex)
C*-algebra E, the field of applications is enhanced in an essential way. In this
case, l2(T ) is replaced by the Hilbert right E-module ⃝|

t∈T
E ≈ E ⊗ l2(T ) and

L(l2(T )) is replaced by LE(E ⊗ l2(T )), the C*-algebra of adjointable operators
of L(E ⊗ l2(T )). The projective representation of groups, which we present
in this paper, has some similarities with the construction of cross products with
discrete groups. It opens the way to create many K-theories. In a first section, we
introduce some results which are needed for this construction, which is developed
in the second section. In the third section, we present examples of C*-algebras
obtained by this method. Examples of a special kind (the Clifford algebras) are
presented in the last section.
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0. NOTATION AND TERMINOLOGY

Throughout this paper, we use the following notation: T is a group,
1 is its neutral element, M := l2(T ), 1M := idK := identity map of M , E
is a unital C*-algebra (resp. a W*-algebra), 1E is its unit, Ĕ denotes the
set E endowed with its canonical structure of a Hilbert right E-module ([1,
Proposition 5.6.1.5]),

L := Ĕ ⊗M ≈ ⃝|
t∈T

Ĕ , (resp.L := Ĕ⊗̄M ≈
W

⃝|
t∈T

Ĕ)

([3, Proposition 2.1], (resp. [3, Corollary 2.2])). In some examples, in which T
is additive, 1 will be replaced by 0.

The map

LE(Ĕ) −→ E, u 7−→ ⟨ u1E | 1E ⟩ = u1E

is an isomorphism of C*-algebras with inverse

E −→ LE(Ĕ), x 7−→ x · .

We identify E with LE(Ĕ) using these isomorphisms.

In general, we use the notation of [1]. For tensor products of C*-algebras
we use [8], for W*-tensor products of W*-algebras we use [7], for tensor prod-
ucts of Hilbert right C∗-modules we use [5], and for the exterior W*-tensor
products of selfdual Hilbert right W ∗-modules we use [2] and [3].

In the sequel, we give a list of notations used in this paper.
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1) K denotes the field of real numbers (:= R) or the field of complex
numbers (:= C). In general, the C*-algebras will be complex or real. H
denotes the field of quaternions, N denotes the set of natural numbers (0 ̸∈ N),
and for every n ∈ N ∪ {0} we put

Nn := { m ∈ N | m ≤ n } .

Z denotes the group of integers and for n ∈ N we put Zn := Z /(nZ).

2) For every set A, P(A) denotes the set of subsets of A, Pf (A) the set
of finite subsets of A, and Card A denotes the cardinal number of A. If f is a
function defined on A and B is a subset of A then f |B denotes the restriction
of f to B.

3) If A,B are sets then AB denotes the set of maps of B in A.

4) For all i, j we denote by δi,j Kronecker’s symbol:

δi,j :=

{
1 if i = j
0 if i ̸= j

.

5) If A,B are topological spaces then C(A,B) denotes the set of continu-
ous maps of A into B. If A is locally compact space and E is a C*-algebra then
C(A,E) (resp. C0(A,E)) denotes the C*-algebra of continuous maps A → E,
which are bounded (resp. which converge to 0 at the infinity).

6) For every set I and for every J ⊂ I we denote by eJ := eIJ the
characteristic function of J , i.e. the function on I equal to 1 on J and equal
to 0 on I \ J . For i ∈ I we put ei := (δi,j)j∈I ∈ l2(I).

7) If F is an additive group and S is a set then

F (S) :=
{
x ∈ FS

∣∣ { s ∈ S | xs ̸= 0 } is finite
}
.

8) If E,F are vector spaces in duality then EF denotes the vector space
E endowed with the locally convex topology of pointwise convergence on F ,
i.e. with the weak topology σ(E,F ).

9) If E is a normed vector space then E′ denotes its dual and E# denotes
its unit ball:

E# := { x ∈ E | ∥x∥ ≤ 1 } .
Moreover, if E is an ordered Banach space then E+ denotes the convex cone
of its positive elements. If E has a unique predual (up to isomorphisms), then
we denote by Ë this predual and so by EË the vector space E endowed with

the locally convex topology of pointwise convergence on Ë.
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10) The expressions of the form “..C*-...(resp. ..W*-...)”, which appear
often in this paper, will be replaced by expressions of the form “...C**-...”.

11) If F is a unital C*-algebra and A is a subset of F then we denote by
1F the unit of F , by Pr F the set of orthogonal projections of F , by

Ac := { x ∈ F | y ∈ A⇒ xy = yx } , Re F := { x ∈ F | x = x∗ } ,

and by Un F the set of unitary elements of F . If F is a real C*-algebra then
◦
F denotes its complexification.

12) If F is a C*-algebra then we denote for every n ∈ N by Fn,n the
C*-algebra of n × n matrices with entries in F . If T is finite then FT,T has a
corresponding signification.

13) Let F be a C*-algebra and H,K Hilbert right F -modules. We denote
by LF (H,K) the Banach subspace of L(H,K) of adjointable operators, by 1H
the identity map H → H which belongs to

LF (H) := LF (H,H) .

For (ξ, η) ∈ H ×K we put

η ⟨ · | ξ ⟩ : H −→ K , ζ 7−→ η ⟨ ζ | ξ ⟩

and denote by KF (H) the closed vector subspace of LF (H) generated by
{ η ⟨ · | ξ ⟩ | ξ, η ∈ H }.

14) Let F be a W*-algebra and H,K Hilbert right F -modules. We put
for a ∈ F̈ and (ξ, η) ∈ H ×K,

(̃a, ξ) : H −→ K , ζ 7−→ ⟨ ⟨ ζ | ξ ⟩ , a ⟩ ,

˜(a, ξ, η) : LF (H,K) −→ K , u 7−→ ⟨ ⟨ uξ | η ⟩ , a ⟩
and denote by Ḧ the closed vector subspace of the dual H ′ of H generated by{

(̃a, ξ)
∣∣∣ a ∈ F̈ , ξ ∈ H }

and by
...
H the closed vector subspace of LF (H,K)′ generated by{

˜(a, ξ, η)
∣∣∣ (a, ξ, η) ∈ F̈ ×H ×K } .

If H is selfdual then
...
H is the predual of LF (H) ([1, Theorem 5.6.3.5 b)]) and

Ḧ is the predual of H ([1, Proposition 5.6.3.3]). Moreover, a map defined on
F is called W*-continuous if it is continuous on FF̈ . If G is a W*-algebra
a C*-homomorphism φ : F → G is called a W*-homomorphism if the map
φ : FF̈ → GG̈ is continuous; in this case, φ̈ denotes the pretranspose of φ.
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15) If F is a C**-algebra and (Hi)i∈I a family of Hilbert right F -modules
then we put

⃝|
i∈I

Hi :=

{
ξ ∈

∏
i∈I

Hi

∣∣∣∣∣ the family ⟨ ξi | ξi ⟩i∈I is summable in F

}
respectively

W

⃝|
i∈I

Hi :=

{
ξ ∈

∏
i∈I

Hi

∣∣∣∣∣ the family ⟨ ξi | ξi ⟩i∈I is summable in FF̈

}
.

16) ⊙ denotes the algebraic tensor product of vector spaces.

17) If F,G are W*-algebras and H (resp. K) is a selfdual Hilbert right
F -module (resp. G-module) then we denote by H⊗̄K the W*-tensor product
of H and K, which is a selfdual Hilbert right F ⊗̄G-module ([2, Definition 2.3]).

18) ≈ denotes isomorphic.

If T is finite then (by [1, Theorem 5.6.6.1 f)])

LE(H) = ET,T = KT,T ⊗ E = KE(H) .

1. PRELIMINARIES

1.1. Schur functions

Definition 1.1.1. A Schur E-function for T is a map

f : T × T −→ Un Ec

such that f(1, 1) = 1E and

f(r, s)f(rs, t) = f(r, st)f(s, t)

for all r, s, t ∈ T . We denote by F(T,E) the set of Schur E-functions for T
and put

f̃ : T −→Un Ec , t 7−→ f(t, t−1)∗ ,

f̂ : T × T −→Un Ec , (s, t) 7−→ f(t−1, s−1)

for every f ∈ F(T,E).
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Schur functions are also called normalized factor set or multiplier or two-
co-cycle (for T with values in Un Ec) in the literature. We present in this
subsection only some elementary properties (which will be used in the sequel)
in order to fix the notation and the terminology. By the way, Un Ec can be
replaced in this subsection by an arbitrary commutative multiplicative group.

Proposition 1.1.2. Let f ∈ F(T,E).

a) For every t ∈ T ,
f(t, 1) = f(1, t) = 1E , f(t, t−1) = f(t−1, t) , f̃(t) = f̃(t−1) .

b) For all s, t ∈ T ,
f(s, t)f̃(s) = f(s−1, st)∗ , f(s, t)f̃(t) = f(st, t−1)∗ .

Proof. a) Putting s = 1 in the equation of f we obtain

f(r, 1)f(r, t) = f(r, t)f(1, t)

so
f(r, 1) = f(1, t)

for all r, t ∈ T . Hence
f(t, 1) = f(1, t) = f(1, 1) = 1E .

Putting r = t and s = t−1 in the equation of f we get

f(t, t−1)f(1, t) = f(t, 1)f(t−1, t) .

By the above,

f(t, t−1) = f(t−1, t) , f̃(t) = f̃(t−1).

b) Putting r = s−1 in the equation of f , by a),

f(s, t)f(s−1, st) = f(s−1, s)f(1, t) = f̃(s)∗,

f(s, t)f̃(s) = f(s−1, st)∗.

Putting now t = s−1 in the equation of f , by a) again,

f(r, s)f(rs, s−1) = f(r, 1)f(s, s−1) = f̃(s)∗,

f(r, s)f̃(s) = f(rs, s−1)∗ , f(s, t)f̃(t) = f(st, t−1)∗.

Definition 1.1.3. We put

Λ(T,E) := { λ : T −→ Un Ec | λ(1) = 1E }
and

λ̂ : T −→ Un Ec , t 7−→ λ(t−1),

δλ : T × T −→ Un Ec , (s, t) 7−→ λ(s)λ(t)λ(st)∗

for every λ ∈ Λ(T,E).



7 Projective representations of groups using Hilbert right C*-modules 205

Proposition 1.1.4. a) F(T,E) is a subgroup of the commutative mul-
tiplicative group (Un Ec)T×T such that f∗ is the inverse of f for every
f ∈ F(T,E).

b) f̂ ∈ F(T,E) for every f ∈ F(T,E) and the map

F(T,E) −→ F(T,E), f 7−→ f̂

is an involutive group automorphism.

c) Λ(T,E) is a subgroup of the commutative multiplicative group (Un Ec)T ,
δλ ∈ F(T,E) for every λ ∈ Λ(T,E), and the map

δ : Λ(T,E) −→ F(T,E) , λ 7−→ δλ

is a group homomorphism with kernel

{ λ ∈ Λ(T,E) | λ is a group homomorphism }

such that δ̂λ = δλ̂ for every λ ∈ Λ(T,E).

Proof. a) is obvious.

b) For r, s, t ∈ T ,

f̂(r, s)f̂(rs, t) = f(s−1, r−1)f(t−1, s−1r−1)

= f(t−1, s−1)f(t−1s−1, r−1) = f̂(r, st)f̂(s, t),

so f̂ ∈ F(T,E).
For f, g ∈ F(T,E),

f̂g(s, t) = (fg)(t−1, s−1) = f(t−1, s−1)g(t−1, s−1)

= f̂(s, t)ĝ(s, t) = (f̂ ĝ)(s, t).

Hence f̂g = f̂ ĝ.

f̂∗(s, t) = f̂(s, t)∗ = f(t−1, s−1)∗ = f∗(t−1, s−1) = f̂∗(s, t),

and therefore (f̂)∗ = f̂∗.

c) For r, s, t ∈ T , we have:

δλ(r, s)δλ(rs, t) = λ(r)λ(s)λ(rs)∗λ(rs)λ(t)λ(rst)∗ = λ(r)λ(s)λ(t)λ(rst)∗,

δλ(r, st)δλ(s, t) = λ(r)λ(st)λ(rst)∗λ(s)λ(t)λ(st)∗ = λ(r)λ(s)λ(t)λ(rst)∗

so δλ ∈ F(T,E).
For λ, µ ∈ F(T,E) and s, t ∈ T , we have:

δλ(s, t)δµ(s, t) = λ(s)λ(t)λ(st)∗µ(s)µ(t)µ(st)∗
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= (λµ)(s)(λµ)(t)(λµ)(st)∗ = δ(λµ)(s, t).

Therefore (δλ)(δµ) = δ(λµ).

δλ∗(s, t) = λ∗(s)λ∗(t)λ(st) = (δλ(s, t))∗ = (δλ)∗(s, t),

and hence δλ∗ = (δλ)∗. Therefore δ is a group homomorphism. The other
assertions are obvious.

Proposition 1.1.5. Let t ∈ T , m,n ∈ Z, and f ∈ F(T,E).

a) f(tm, tn) = f(tn, tm).

b) m ∈ N =⇒ f(tm, tn) =

(
m−1∏
j=0

f(tn+j , t)

)(
m−1∏
k=1

f(tk, t)∗
)
.

c) We define

λ : Z −→ Un Ec , n 7−→


n−1∏
j=1

f(tj , t)∗ if n ∈ N

−n∏
j=1

f(t−j , t) if n ̸∈ N
.

If tp ̸= 1 for every p ∈ N then

f(tm, tn) = λ(m)λ(n)λ(m+ n)∗

for all m,n ∈ Z.

Proof. a) We may assume m ∈ N because otherwise we can replace t by
t−1. Put

P (m,n) :⇐⇒ f(tm, tn) = f(tn, tm),

Q(m) :⇐⇒ P (m,n) holds for all n ∈ Z.

From
f(tm, tn−m)f(tn, tm) = f(tm, tn)f(tn−m, tm)

it follows
P (m,n)⇐⇒ P (m,n−m)⇐⇒ P (m,n− km)

for all k ∈ Z.
We prove the assertion by induction. P (m, 0) follows from Proposition

1.1.2 a). By the above
P (1, 0)⇐⇒ P (1, k)

for all k ∈ Z. Thus Q(1) holds.
Assume Q(p) holds for all p ∈ Nm−1. Then P (m, p) holds for all p ∈

Nm−1 ∪ {0}. Let n ∈ Z. There is a k ∈ Z such that

p := n− km ∈ Nm−1 ∪ {0} .
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By the above P (m,n) holds. Thus Q(m) holds and this finishes the inductive
proof.

b) We prove the formula by induction with respect to m. By a), the
formula holds for m = 1. Assume the formula holds for an m ∈ N. Since

f(tm, t)f(tm+1, tn) = f(tm, tn+1)f(t, tn)

we get by a),

f(tm+1, tn) = f(tm, tn+1)f(t, tn)f(tm, t)∗

=

m−1∏
j=0

f(tn+1+j , t)

(m−1∏
k=1

f(tk, t)∗

)
f(tn, t)f(tm, t)∗

=

 m∏
j=0

f(tn+j , t)

( m∏
k=1

f(tk, t)∗

)
.

Thus the formula holds also for m+ 1.

c) If m,n ∈ N then by b),

λ(m)λ(n)λ(m+ n)∗ =

(
m−1∏
k=1

f(tk, t)∗

)n−1∏
j=1

f(tj , t)∗

m+n−1∏
j=1

f(tj , t)


=

m−1∏
j=0

f(tn+j , t)

(m−1∏
k=1

f(tk, t)∗

)
= f(tm, tn).

If m,n ∈ N, n ≤ m− 1 then by b),

λ(m)λ(−n)λ(m− n)∗ =

m−1∏
j=1

f(tj , t)∗

 n∏
j=1

f(t−j , t)

m−n−1∏
j=1

f(tj , t)


=

m−1∏
j=0

f(t−n+j , t)

(m−1∏
k=1

f(tk, t)∗

)
= f(tm, t−n).

If m,n ∈ N, n ≥ m then by b),

λ(m)λ(−n)λ(m− n)∗ =

(
m−1∏
k=1

f(tk, t)∗

) n∏
j=1

f(t−j , t)

n−m∏
j=1

f(t−j , t)∗


=

 n∏
j=n−m+1

f(t−j , t)

(m−1∏
k=1

f(tk, t)∗

)
= f(tm, t−n).
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For all m,n ∈ N put

R(m,n) :⇐⇒ f(t−m, t−n) = λ(−m)λ(−n)λ(−m− n)∗ .

By the above and by Proposition 1.1.2 a),b),

λ(−1)λ(−1)λ(−2)∗ = f(t−1, t)f(t−2, t)∗ = f̃(t−1)∗f(t, t−2)∗ = f(t−1, t−1) ,

so R(1, 1) holds. Let now m,n ∈ N and assume R(m,n) holds. Then

λ(−m)λ(−n− 1)λ(−m− n− 1)∗

=

 m∏
j=1

f(t−j , t)

n+1∏
j=1

f(t−j , t)

m+n+1∏
j=1

f(t−j , t)∗


= f(t−m, t−n)f(t−n−1, t)f(t−m−n−1, t)∗ = f(t−m, t−n−1),

so R(m,n)⇒ R(m,n+ 1).

By symmetry and a), R(m,n) holds for all m,n ∈ N.

Corollary 1.1.6. The map

Λ(Z, E) −→ F(Z, E), λ 7−→ δλ

is a surjective group homomorphism with kernel

{ λ ∈ Λ(Z, E) | n ∈ Z =⇒ λ(n) = λ(1)n } .

Proof. By Proposition 1.1.4 c), only the surjectivity of the above map has
to be proved and this follows from Proposition 1.1.5 c).

1.2. E-C*-algebras

By replacing the scalars with the unital C*-algebra E we restrict the
category of C*-algebras to the subcategory of those C*-algebras which are
connected in a certain way with E. The category of unital C*-algebras is
replaced by the category of E-C*-algebras, while the general category of C*-
algebras is replaced by the category of adapted E-modules.

Definition 1.2.1. We call in this paper an E-module a C*-algebra F
endowed with the bilinear maps

E × F −→ F, (α, x) 7−→ αx ,

F × E −→ F, (x, α) 7−→ xα

such that for all α, β ∈ E and x, y ∈ F ,

(αβ)x = α(βx), α(xβ) = (αx)β, x(αβ) = (xα)β,
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α(xy) = (αx)y, (xy)α = x(yα), α ∈ Ec =⇒ αx = xα,

(αx)∗ = x∗α∗, (xα)∗ = α∗x∗, 1Ex = x1E = x.

If F,G are E-modules then a C*-homomorphism φ : F → G is called E-linear
if for all (α, x) ∈ E × F ,

φ(αx) = α(φx), φ(xα) = (φx)α.

For all (α, x) ∈ E × F ,

∥αx∥2 = ∥x∗α∗αx∥ ≤ ∥x∥2 ∥α∥2 , ∥xα∥2 = ∥α∗x∗xα∥ ≤ ∥α∥2 ∥x∥2

so
∥αx∥ ≤ ∥α∥ ∥x∥ , ∥xα∥ ≤ ∥x∥ ∥α∥ .

Definition 1.2.2. An E-C**-algebra is a unital C**-algebra F for which
E is a canonical unital C**-subalgebra such that Ec defined with respect to E
coincides with Ec defined with respect to F , i.e. for every x ∈ E, if xy = yx
for all y ∈ E then xy = yx for all y ∈ F . Every closed ideal of an E-C*-algebra
is canonically an E-module.

Let F,G be E-C**-algebras. A map φ : F −→ G is called an E-C**-
homomorphism if it is an E-linear C**-homomorphism. If in addition φ is
a C*-isomorphism then we say that φ is an E-C*-isomorphism and we use
in this case the notation ≈E . A C**-subalgebra F0 of F is called E-C**-
subalgebra of F if E ⊂ F0.

With the notation of the above Definition (α− φα)φx = 0 for all α ∈ E
and x ∈ F . Thus φ is unital iff φα = α for every α ∈ E. The example

K −→ K×K, x 7−→ (x, 0)

shows that an E-C*-homomorphism need not be unital.
If we put IT := { z ∈ C | |z| = 1 }, E := C( IT,C), and

x : IT −→ C , z 7−→ z

and if we denote by λ the Lebesgue measure on IT then L∞(λ) is an E-C*-
algebra, x ∈ Un E, and x is homotopic to 1E in Un L∞(λ) but not in
Un C( IT,C).

Definition 1.2.3. We denote by CE (resp. by C1
E) the category of E-C*-

algebras for which the morphisms are the E-C*-homomorphisms (resp. the
unital E-C*-homomorphisms).

Proposition 1.2.4. Let F be an E-module.

a) We denote by F̌ the vector space E × F endowed with the bilinear map

(E × F )× (E × F ) −→ E × F, ((α, x), (β, y)) 7−→ (αβ, αy + xβ + xy)
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and with the conjugate linear map

E × F −→ E × F, (α, x) 7−→ (α∗, x∗).

F̌ is an involutive unital algebra with (1E , 0) as unit.

b) The maps

π : F̌ −→ E , (α, x) 7−→ α,

λ : E −→ F̌ , α 7−→ (α, 0),

ι : F −→ F̌ , x 7−→ (0, x)

are involutive algebra homomorphisms such that π ◦ λ is the identity
map of E, λ and ι are injective, and λ and π are unital. If there is
a norm on F̌ with respect to which it is a C*-algebra (in which case such
a norm is unique), then we call F adapted. We denote by ME the
category of adapted E-modules for which the morphism are the E-linear
C*-homomorphisms.

c) If F is adapted then F̌ is an E-C*-algebra by using canonically the in-
jection λ and for all α ∈ E and x ∈ F ,

∥α∥ ≤ ∥(α, x)∥ ≤ ∥α∥+ ∥x∥ , ∥(0, x)∥ = ∥x∥ ≤ 2 ∥(α, x)∥ ,

∥(α, 0)(0, x)∥ ≤ ∥α∥ ∥x∥ , ∥(0, x)(α, 0)∥ ≤ ∥x∥ ∥α∥ .
In particular, F (identified with ι(F )) is a closed ideal of F̌ .

d) If E and F are C*-subalgebras of a C*-algebra G in such a way that the
structure of E-module of F is inherited from G then

φ : F̌ −→ E ×G , (α, x) 7−→ (α, α+ x)

is an injective involutive algebra homomorphism, φ(F̌ ) is closed, F is
adapted, and for all α ∈ E and x ∈ F ,

∥(α, x)∥E×F = sup{∥α∥ , ∥α+ x∥} .

In particular, every closed ideal of an E-C*-algebra is adapted and CE is
a full subcategory of ME.

e) A closed ideal G of an adapted E-module F , which is at the same time
an E-submodule of F , is adapted.

f) If F is unital then it is adapted and

F̌ −→ R+, (α, x) 7−→ sup{∥α∥ , ∥α1F + x∥}

is the C*-norm of F̌ .
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g) If
lim
y,F
∥αy − yα∥ = 0

for all α ∈ E+, where F denotes the canonical approximate unit of F ,
then F is adapted and

F̌ −→ R+, (α, x) 7−→ sup

{
∥α∥ , lim sup

y,F
∥αy + x∥

}
is the C*-norm of F̌ . In particular F is adapted if E is commutative.

h) If F is an adapted E-module then (with the notation of b))

0 −→ F
ι−→ F̌

π−→
λ←−
E −→ 0

is a split exact sequence in the category ME.

Proof. a) and b) are easy to see.

c) Since λ and ι are injective and

π(α, x) = α , (α, x) = (α, 0) + (0, x) ,

(α, 0)(0, x) = (0, αx) , (0, x)(α, 0) = (0, xα)

we get the first and the last two inequalities as well as the identity ∥(0, x)∥ =
∥x∥. It follows

∥(0, x)∥ ≤ ∥(α, x)∥+ ∥(α, 0)∥ = ∥(α, x)∥+ ∥λπ(α, x)∥

≤ ∥(α, x)∥+ ∥(α, x)∥ = 2 ∥(α, x)∥ .
d) It is easy to see that φ is an injective involutive algebra homomorphism.

Let (α, x) ∈ φ(F̌ ). There are sequences (αn)n∈N and (xn)n∈N in E and F ,
respectively, such that

lim
n→∞

(αn, αn + xn) = (α, x) .

It follows

α = lim
n→∞

αn ∈ E , x− α = lim
n→∞

xn ∈ F , (α, x) = φ(α, x− α) ∈ φ(F̌ ) .

Thus φ(F̌ ) is closed, which proves the assertion by pulling back the norm of
E ×G.

e) By c), F is a closed ideal of F̌ so G is a closed ideal of F̌ (use an
approximate unit of F ). Since G is an E-submodule of F its structure of
E-module is inherited from F̌ . By d), G is adapted.

f) The map

F̌ −→ E × F, (α, x) 7−→ (α, α1F + x)
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is an isomorphism of involutive algebras and so we can pull back the norm of
E × F .

g) It is easy to see that the above map is a norm. Since

sup{∥α∥ , 1
2
∥x∥} ≤ ∥(α, x)∥ ≤ ∥α∥+ ∥x∥

for all (α, x) ∈ E × F , F̌ endowed with this norm is complete. For (α, x) ∈
E × F ,

(α, x)∗(α, x) = (α∗α, α∗x+ x∗α+ x∗x) ,

∥(α, x)∗(α, x)∥ = sup{∥α∥2 , lim sup
y,F

∥α∗αy + α∗x+ x∗α+ x∗x∥} .

For y ∈ F#
+ ,∥∥∥(αy 1

2 + x)∗(αy
1
2 + x)− (α∗αy + α∗x+ x∗α+ x∗x)

∥∥∥
≤
∥∥∥y 1

2α∗α− α∗αy
1
2

∥∥∥+ ∥∥∥y 1
2α∗x− α∗x

∥∥∥+ ∥∥∥x∗αy 1
2 − x∗α

∥∥∥
so

lim
y,F

∥∥∥(αy 1
2 + x)∗(αy

1
2 + x)− (α∗αy + α∗x+ x∗α+ x∗x)

∥∥∥ = 0 .

Since the map F+ → F+, y 7→ y
1
2 maps F into itself and

∥αy + x∥2 = ∥yα∗αy + yα∗x+ x∗αy + x∗x∥

we have by the above,

∥(α, x)∥2 = sup

{
∥α∥2 , lim sup

y,F

∥∥∥αy 1
2 + x

∥∥∥2}

= sup

{
∥α∥2 , lim sup

y,F

∥∥∥(αy 1
2 + x)∗(αy

1
2 + x)

∥∥∥}
= sup{∥α∥2 , lim sup

y,F
∥α∗αy + α∗x+ x∗α+ x∗x∥} = ∥(α, x)∗(α, x)∥ .

Thus the above norm is a C*-norm and F is adapted.

h) ι is an injective E-C*-homomorphism and its image is equal to Ker π.

Corollary 1.2.5. Let F an E-module, G a C*-algebra, and ⊗σ the spa-
tial tensor product.

a) F ⊗σ G is in a natural way an E-module the multiplication being given
by

α(x⊗ y) = (αx)⊗ y, (x⊗ y)α = (xα)⊗ y
for all α ∈ E, x ∈ F , and y ∈ G.
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b) If F is an E-C*-algebra and G is unital then the map

E −→ F ⊗σ G, α 7−→ α⊗ 1G

is an injective C*-homomorphism. In particular, the E-module F ⊗σ G
is an E-C*-algebra.

c) If F is an adapted E-module then the E-module F ⊗σ G is adapted and

∥(α, z)∥ = sup{∥α∥ , ∥α+ z∥}

for all (α, z) ∈ E × (F ⊗σ G).

d) If F is an adapted E-module and G := C0(Ω) for a locally compact space
Ω then C0(Ω, F ) is adapted and

∥(α, x)∥ = sup{∥α∥ , ∥αeΩ + x∥}

for all (α, x) ∈ E × C0(Ω, F ).

Proof. a) and b) are easy to see.

c) If G̃ denotes the unitization of G then by b), F̌⊗σ G̃ is an E-C*-algebra
and F ⊗σ G is a closed ideal of it, so the assertion follows from Proposition
1.2.4 d),e).

d) follows from c).

Proposition 1.2.6. a) If F,G are E-modules and φ : F → G is an E-
linear C*-homomorphism then the map

φ̌ : F̌ −→ Ǧ , (α, x) 7−→ (α,φx)

is an involutive unital algebra homomorphism, injective or surjective if φ
is so. If F = G and if φ is the identity map then φ̌ is also the identity
map.

b) Let F1, F2, F3 be E-modules and let φ : F1 → F2 and ψ : F2 → F3 be

E-linear C*-homomorphisms. Then
ˇ︷ ︸︸ ︷

ψ ◦ φ = ψ̌ ◦ φ̌.

Proposition 1.2.7. Let G be an E-module, F an E-submodule of G
which is at the same time an ideal of G, and φ : G→ G/F the quotient map.

a) G/F has a natural structure of E-module and φ is E-linear.

b) If G is adapted then G/F is also adapted. Moreover if ψ : Ǧ → Ǧ/F
denotes the quotient map (where F is identified to {(0, x)| x ∈ F}) then

there is an E-C*-isomorphism θ :
ˇ︷︸︸︷

G/F → Ǧ/F such that ψ = θ ◦ φ̌.
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Proof. a) is easy to see.

b) Let (α, z) ∈
ˇ︷︸︸︷

G/F and let x, y ∈
−1
φ (z). Then ψ(α, x) = ψ(α, y) and we

put θ(α, z) := ψ(α, x). It is straightforward to show that θ is an isomorphism
of involutive algebras. By pulling back the norm of Ǧ/F with respect to θ we
see that G/F is adapted.

Lemma 1.2.8. Let {(Fi)i∈I , (φij)i,j∈I)} be an inductive system in the cat-
egory of C*-algebras, {F, (φi)i∈I} its inductive limit, G a C*-algebra, for ev-
ery i ∈ I, ψi : Fi → G a C*-homomorphism such that ψj ◦ φji = ψi for
all i, j ∈ I, i ≤ j, and ψ : F → G the resulting C*-homomorphism. If
Ker ψi ⊂ Ker φi for every i ∈ I then ψ is injective.

Proof. Let i ∈ I. Since Ker φi ⊂ Ker ψi is obvious, we have Ker φi =
Ker ψi. Let ρ : Fi → Fi/Ker ψi be the quotient map and

φ′
i : Fi/Ker ψi −→ F , ψ′

i : Fi/Ker ψi −→ G

the injective C*-homomorphisms with

φi = φ′
i ◦ ρ , ψi = ψ′

i ◦ ρ .

Then
ψ′
i ◦ ρ = ψi = ψ ◦ φi = ψ ◦ φ′

i ◦ ρ .
For x ∈ Fi, since ψ′

i and φ
′
i are norm-preserving,

∥ρx∥ =
∥∥ψ′

iρx
∥∥ =

∥∥ψφ′
iρx
∥∥ ≤ ∥∥φ′

iρx
∥∥ = ∥ρx∥ ,

∥ψφix∥ =
∥∥ψφ′

iρx
∥∥ =

∥∥φ′
iρx
∥∥ = ∥φix∥ .

Thus ψ preserves the norms on ∪i∈Iφi(Fi). Since this set is dense in F , ψ is
injective.

Proposition 1.2.9. Let {(Fi)i∈I , (φij)i,j∈I} be an inductive system in
the category ME and let (F, (φi)i∈I) be its inductive limit in the category of
E-modules (Proposition 1.2.4 c)).

a) F is adapted.

b) Let (G, (ψi)i∈I) be the inductive limit in the category C1
E of the inductive

system {(F̌i)i∈I , (φ̌ij)i,j∈I} (Proposition 1.2.6 a),b)) and let ψ : G → F̌
be the unital C*-homomorphism such that ψ ◦ ψi = φ̌i for every i ∈ I .
Then ψ is an E-C*-isomorphism.

Proof. a) Put

F0 :=

{
(α, x) ∈ F̌

∣∣ α ∈ E, x ∈⋃
i∈I

φi(Fi)

}
,
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p : F0 −→ R+ , (α, x) 7−→ inf { ∥(α, xi)∥ | i ∈ I, xi ∈ Fi, φixi = x } .
F0 is an involutive unital subalgebra of F̌ . p is a norm and by Proposition
1.2.4 c),

q(α, x) := lim
(α,y)∈F0

y→x

p(α, y)

exists and
∥α∥ ≤ q(α, x) ≤ ∥α∥+ ∥x∥ , ∥x∥ ≤ 2q(α, x)

for every (α, x) ∈ F̌ .
Let (α, x) ∈ F0. Let further i ∈ I, xi, yi ∈ Fi with φixi = x, φiyi =

α∗x+ x∗α+ x∗x. Then

(0, φi(α
∗xi + x∗iα+ x∗ixi − yi)) = φ̌i((α, xi)

∗(α, xi)− (α∗α, yi)) = 0

so
inf
i≤j
∥φji(α∗xi + x∗iα+ x∗ixi − yi)∥ = 0 .

For ϵ > 0 there is a j ∈ I, i ≤ j, with
∥φji(α∗xi + x∗iα+ x∗ixi − yi)∥ < ϵ .

We get

p(α, x)2 ≤ ∥(α,φjixi)∥2 = ∥(α,φjixi)∗(α,φjixi)∥
= ∥(α∗α, α∗φjixi+(φjix

∗
i )α+φji(x

∗
ixi))∥=∥(α∗α,φji(α

∗xi+x
∗
iα+x

∗
ixi))∥

≤ ∥(α∗α,φjiyi)∥+ ∥(0, φji(α∗xi + x∗iα+ x∗ixi − yi))∥ < ∥(α∗α,φjiyi)∥+ ϵ.

By taking the infimum on the right side it follows, since ϵ is arbitrary,

p(α, x)2 ≤ p(α∗α, α∗x+ x∗α+ x∗x) = p((α, x)∗(α, x))

and this shows that p is a C*-norm. It is easy to see that q is a C*-norms.
By the above inequalities, F̌ endowed with the norm q is complete, i.e. F̌ is a
C*-algebra and F is adapted.

b) Let i ∈ I and let (α, x) ∈ Ker φ̌i. Then
0 = φ̌i(α, x) = (α,φix)

so

α = 0, φix = 0, inf
j∈I, j≥i

∥φjix∥ = 0,

∥φ̌ji(0, x)∥ = ∥(0, φjix)∥ = ∥φjix∥ ,
∥ψi(α, x)∥ = inf

j∈I, j≥i
∥φ̌ji(0, x)∥ = 0, (α, x) ∈ Ker ψi.

By Lemma 1.2.8, ψ is injective.
Let (β, y) ∈ F̌ and let ε > 0. There are i ∈ I and x ∈ Fi with ∥φix− y∥ <

ε. Then

ψψi(β, x) = φ̌i(β, x) = (β, φix),
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∥ψψi(β, x)− (β, y)∥ = ∥φ̌i(β, x)− (β, y)∥ = ∥φix− y∥ < ε.

Thus ψ(G) is dense in F̌ and ψ is surjective. Hence ψ is a C*-isomorphism.

Corollary 1.2.10. We put ΦE(F ) := F̌ for every E-module F and
similarly ΦE(φ) := φ̌ for every E-linear C*-homomorphism φ.

a) ΦE is a covariant functor from the category ME in the category C1
E.

b) The categories C1
E and ME possess inductive limits and the functor ΦE

is continuous with respect to the inductive limits.

Proof. a) follows from Proposition 1.2.6.

b) follows from Proposition 1.2.9.

Remark. The category CE does not possess inductive limits in general.
This happens for instance if φij = 0 for all i, j ∈ I.

1.3. Some topologies

In this subsection, T is only a set.

If the group T is infinite then different topologies play a certain role in
the construction of the projective representations of T . It will be shown that
all these topologies conduct to the same construction, but the use of them
simplifies the manipulations.

We introduce the following notation in order to unify the cases of C*-
algebras and (resp. W*-algebras).

Definition 1.3.1.

⃝̃| :=⃝| (resp. ⃝̃| :=
W

⃝| ) ,

⊗̃ := ⊗ (resp. ⊗̃ := ⊗̄ ) ,∑̃
:=
∑

(resp.
∑̃

:=

Ë∑
) .

If T is a Hausdorff topology on LE(H) then for every G ⊂ LE(H), GT denotes

the set G endowed with the relative topology T and
T

Ḡ denotes the closure of G

in LE(H)T. Moreover
T∑

denotes the sum with respect to T.
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Lemma 1.3.2. For x ∈ E, by the above identification of E with LE(Ĕ),

x⊗̃1K : H −→ H , ξ 7−→ (xξt)t∈T

is well-defined and belongs to LE(H).

a) The map
φ : E −→ LE(H) , x 7−→ x⊗̃1K

is an injective unital C*-homomorphism.

b) Assume E is a W*-algebra. Then for every (a, ξ, η) ∈ Ë × H × H, the
family (ξt a η

∗
t )t∈T is summable in ËE and for every x ∈ E,〈

φx , ˜(a, ξ, η)
〉
=

〈
x ,

E∑
t∈T

ξt a η
∗
t

〉
.

Thus φ is a W*-homomorphism ([1, Theorem 5.6.3.5 d)]) with

φ̈ ˜(a, ξ, η) =
E∑
t∈T

ξt a η
∗
t ,

where φ̈ denotes the pretranspose of φ.

c) If we consider E as a canonical unital C**-subalgebra of LE(H) by using
the embedding of a) then LE(H) is an E-C**-algebra.

Proof. a) follows from [5, page 37] (resp. [3, Proposition 1.4]).
b) We have〈
x⊗̄1K , ˜(a, ξ, η)

〉
= ⟨ ⟨ (x⊗̄1K)ξ | η ⟩ , a ⟩ =

〈
Ë∑
t∈T

η∗t x ξt , a

〉
=

=
∑
t∈T
⟨ η∗t x ξt , a ⟩ =

∑
t∈T
⟨x , ξt a η∗t ⟩ .

Thus the family (ξt a η
∗
t )t∈T is summable in ËE and〈
φx , ˜(a, ξ, η)

〉
=

〈
x ,

E∑
t∈T

ξt a η
∗
t

〉
.

If φ′ : LE(H)→ E′ denotes the transpose of φ then

φ′ ˜(a, ξ, η) =
E∑
t∈T

ξt a η
∗
t ∈ Ë .

By continuity φ′

( ..︷ ︸︸ ︷
LE(H)

)
⊂ Ë and φ is a unital W*-homomorphism.



218 C. Constantinescu 20

c) Let x ∈ Ec and ξ, η ∈ LE(H). By [1, Proposition 3.17 d)],〈
(x⊗̃1K)ξ

∣∣ η 〉 = ∑̃
t∈T

η∗t ((x⊗̃1K)ξ)t =
∑̃
t∈T

η∗t xξt =

=
∑̃
t∈T

xη∗t ξt = x
∑̃
t∈T

η∗t ξt = x ⟨ ξ | η ⟩ .

Thus for u ∈ LE(H),〈
u(x⊗̃1K)ξ

∣∣ η 〉 = 〈 (x⊗̃1K)ξ
∣∣ u∗η 〉 = x ⟨ ξ | u∗η ⟩ = x ⟨ uξ | η ⟩ ,

u(x⊗̃1K) = (x⊗̃1K)u ,

and so x⊗̃1K ∈ LE(H)c.

Definition 1.3.3. We put for all ξ, η ∈ H (resp. and a ∈ Ë+)

pξ,η : LE(H) −→ R+ , X 7−→ ∥⟨ Xξ | η ⟩∥ ,
(resp. pξ,η,a : LE(H) −→ R+ , X 7−→ | ⟨ ⟨ Xξ | η ⟩ , a ⟩ |),

pξ : LE(H) −→ R+ , X 7−→ ∥Xξ∥ = ∥⟨ Xξ | Xξ ⟩∥1/2 ,

(resp. pξ,a : LE(H) −→ R+ , X 7−→ ⟨ ⟨ Xξ | Xξ ⟩ , a ⟩1/2),
qξ : LE(H) −→ R+ , X 7−→ pξ(X

∗),

(resp. qξ,a : LE(H) −→ R+ , X 7−→ pξ,a(X
∗)).

and denote, respectively, by T1 ,T2 ,T3 the topologies on LE(H) generated by
the set of seminorms

{ pξ,η | ξ, η ∈ H } ,
(
resp.

{
pξ,η,a | ξ, η ∈ H, a ∈ Ë+

})
,

{ pξ | ξ ∈ H } ,
(
resp.

{
pξ,a | ξ ∈ H, a ∈ Ë+

})
,

{ pξ | ξ ∈ H } ∪ { qξ | ξ ∈ H } ,(
resp.

{
pξ,a | ξ ∈ H, a ∈ Ë+

}
∪
{
qξ,a | ξ ∈ H, a ∈ Ë+

})
.

Moreover ∥·∥ denotes the norm topology on LE(H).

Of course T2 ⊂ T3. In the C*-case, T2 is the topology of pointwise
convergence. If E is finite-dimensional then the C*-case and the W*-case
coincide.

Proposition 1.3.4. Let X ∈ LE(H) and ξ, η ∈ H (resp. and a ∈ Ë).

a) pξ,η(X) = pη,ξ(X
∗) (resp. pξ,η,|a|(X) = pη,ξ,|a|(X

∗)).

b) pξ,η(X) ≤ pξ(X) ∥η∥.
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c) If E is a W*-algebra and a = x|a| is the polar representation of a then

pξx,η,|a|(X) =
∣∣∣〈X , ˜(a, ξ, η)

〉∣∣∣ ≤ pξx,|a|(X) ⟨ ⟨ η | η ⟩ , |a| ⟩1/2 .

d) If Y, Z ∈ LE(H) then

pξ,η(Y XZ) = pZξ,Y ∗η(X) (resp. pξ,η,|a|(Y XZ) = pZξ,Y ∗η,|a|(X)),

pξ(Y XZ) ≤ ∥Y ∥ pZξ(X) (resp. pξ,|a|(Y XZ) ≤ ∥Y ∥ pZξ,|a|(X)).

Proof. a) From

⟨ Xξ | η ⟩ = ⟨ ξ | X∗η ⟩ = ⟨ X∗η | ξ ⟩∗

it follows

pξ,η(X) = ∥⟨ Xξ | η ⟩∥ = ∥⟨ X∗η | ξ ⟩∥ = pη,ξ(X
∗),

(resp. pξ,η,|a|(X) = | ⟨ ⟨ X∗η | ξ ⟩ , |a| ⟩ | = pη,ξ,|a|(X
∗)).

b) pξ,η(X) = ∥⟨ Xξ | η ⟩∥ ≤ pξ(X) ∥η∥.

c) We have

pξx,η,|a|(X) = | ⟨ ⟨ X(ξx) | η ⟩ , |a| ⟩ | = | ⟨ ⟨ Xξ | η ⟩x , |a| ⟩ | =

= | ⟨ ⟨ Xξ | η ⟩ , x|a| ⟩ | = | ⟨ ⟨ Xξ | η ⟩ , a ⟩ | =
∣∣∣〈X , ˜(a, ξ, η)

〉∣∣∣ .
By Schwarz’ inequality ([1, Proposition 2.3.3.9]),

| ⟨ ⟨ X(ξx) | η ⟩ , |a| ⟩ |2 ≤ ⟨ ⟨ X(ξx) | X(ξx) ⟩ , |a| ⟩ ⟨ ⟨ η | η ⟩ , |a| ⟩ ,

so

pξx,η,|a|(X) ≤ pξx,|a|(X) ⟨ ⟨ η | η ⟩ , |a| ⟩1/2 .

d) The first equation follows from

pξ,η(Y XZ) = ∥⟨ Y XZξ | η ⟩∥ = ∥⟨ XZξ | Y ∗η ⟩∥ = pZξ,Y ∗η(X)

(resp. pξ,η,|a|(Y XZ) = | ⟨ ⟨ Y XZξ | η ⟩ , |a| ⟩ |
= | ⟨ ⟨ XZξ | Y ∗η ⟩ , |a| ⟩ | = pZξ,Y ∗η,|a|(X))

and the second from

pξ(Y XZ) = ∥Y XZξ∥ ≤ ∥Y ∥ ∥XZξ∥ = ∥Y ∥ pZξ(X)

(resp. pξ,|a|(Y XZ) = ⟨ ⟨ Y XZξ | Y XZξ ⟩ , |a| ⟩1/2

≤ ∥Y ∥ ⟨ ⟨ XZξ | XZξ ⟩ , |a| ⟩1/2 = ∥Y ∥ pZξ,|a|(X)).
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Lemma 1.3.5. Let n ∈ N and (xi)i∈Nn a family in E. Then(∑
i∈Nn

xi

)∗(∑
i∈Nn

xi

)
≤ n

∑
i∈Nn

x∗ixi .

Proof. We prove the relation by induction with respect to n. By [1,
Corollary 4.2.2.4] and by the hypothesis of the induction,(∑

i∈Nn

xi

)∗(∑
i∈Nn

xi

)
=

x∗n + ∑
i∈Nn−1

x∗i

xn + ∑
i∈Nn−1

xi


= x∗nxn +

∑
i∈Nn−1

(x∗nxi + x∗ixn) +

 ∑
i∈Nn−1

xi

∗ ∑
i∈Nn−1

xi


≤ x∗nxn +

∑
i∈Nn−1

(x∗nxn + x∗ixi) + (n− 1)
∑

i∈Nn−1

x∗ixi = n
∑
i∈Nn

x∗ixi.

Lemma 1.3.6. Let n ∈ N, x ∈ En,n, and for every j ∈ Nn put

ηj := (δji1E)i∈Nn ∈ ⃝|
i∈Nn

Ĕ.

Then

∥x∥ ≤
√
n sup
j∈Nn

∥xηj∥ .

Proof. For ξ ∈

(
⃝|
i∈Nn

Ĕ

)#

, by Lemma 1.3.5,

⟨ xξ | xξ ⟩ =
∑
i∈Nn

⟨ (xξ)i | (xξ)i ⟩ =
∑
i∈Nn

∑
j∈Nn

xijξj

∗∑
j∈Nn

xijξj


≤ n

∑
i∈Nn

∑
j∈Nn

(xijξj)
∗(xijξj)=n

∑
i∈Nn

∑
j∈Nn

ξ∗jx
∗
ijxijξj=n

∑
j∈Nn

ξ∗j

(∑
i∈Nn

x∗ijxij

)
ξj .

For i, j ∈ Nn,

(xηj)i =
∑
k∈Nn

xikηjk = xij ,

⟨ xηj | xηj ⟩ =
∑
i∈Nn

(xηj)
∗
i (xηj)i =

∑
i∈Nn

x∗ijxij ,
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so

⟨ xξ | xξ ⟩ ≤ n
∑
j∈Nn

ξ∗j ⟨ xηj | xηj ⟩ ξj ≤ n
∑
j∈Nn

∥xηj∥2 ξ∗j ξj

≤ n sup
j∈Nn

∥xηj∥2
∑
j∈Nn

ξ∗j ξj ≤ n sup
j∈Nn

∥xηj∥2 1E .

Hence ∥x∥2 ≤ n supj∈Nn
∥xηj∥2 .

Corollary 1.3.7.

a) The map
LE(H)T1 −→ LE(H)T1 , X 7−→ X∗

is continuous. In particular, ReLE(H) is a closed set of LE(H)T1.

b) T1 ⊂ T2 ⊂ T3 ⊂ norm topology.

c) If E is a W*-algebra then the identity map

LE(H) ...
H
−→ LE(H)T1

is continuous so
LE(H)#T1

= LE(H)#...
H

is compact.

d) For Y, Z ∈ LE(H) and k ∈ {1, 2}, the map

LE(H)Tk
−→ LE(H)Tk

, X 7−→ Y XZ

is continuous.

e) LE(H)T3 is complete in the C*-case.

f) If T is finite then T2 is the norm topology in the C*-case.

g) KE(H) is dense in LE(H)T3.

Proof. a) follows from Proposition 1.3.4 a).

b) T1 ⊂ T2 follows from Proposition 1.3.4 b),c). T2 ⊂ T3 ⊂ norm topol-
ogy is trivial.

c) follows from Proposition 1.3.4 c) (and [1, Theorem 5.6.3.5 a)]).

d) follows from Proposition 1.3.4 d).

e) Let F be a Cauchy filter on LE(H)T3 . Put

Y : H −→ H , ξ 7−→ lim
X,F

(Xξ) ,
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Z : H −→ H , ξ 7−→ lim
X,F

(X∗ξ) ,

where the limits are considered in the norm topology of H. For ξ, η ∈ H,

⟨ Y ξ | η ⟩ = lim
X,F
⟨ Xξ | η ⟩ = lim

X,F
⟨ ξ | X∗η ⟩ = ⟨ ξ | Zη ⟩ ,

so Y,Z ∈ LE(H) and Z = Y ∗. Thus F converges to Y in LE(H)T3 and
LE(H)T3 is complete.

f) follows from b) and Lemma 1.3.6.

g) Let X ∈ LE(H) and ξ ∈ H. For every S ∈ Pf (T ) put

PS :=
∑
s∈S

es ⟨ · | es ⟩ ∈ Pr KE(H)

and let FT be the upper section filter or Pf (T ). Then PSX ∈ KE(H) for every
S ∈ Pf (T ) and

lim
S,FT

PSXξ = Xξ

in H (resp. in HḦ) ([1, Proposition 5.6.4.1 e)] (resp. [1, Proposition 5.6.4.6
c)])). Thus

lim
S,FT

PSX = X

with respect to the topology T2. Since the same holds for X∗, it follows that
X belongs to the closure of KE(H) in LE(H)T3 .

Remark. The inclusions in b) can be strict as it is known from the case
E := K.

Lemma 1.3.8. Let G be a W*-algebra and F a C*-subalgebra of G. Then
the following are equivalent.

a) F generates G as a W*-algebra.

b) F# is dense in G#

G̈
.

c) F is dense in GG̈.

Proof. a =⇒ b follows from [1, Corollary 6.3.8.7].
b =⇒ c is trivial.
c =⇒ a follows from [1, Corollary 4.4.4.12 a)].

Proposition 1.3.9. Let G be a W*-algebra, F a C*-subalgebra of G
generating it as W*-algebra, I a set, and

L := ⃝|
i∈I

F̆ , M :=
W

⃝|
i∈I

Ğ .
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a) M is the extension of L to a selfdual Hilbert right G-module ([2, Propo-

sition 1.3 f)]) and L# is dense in M#

M̈
.

b) If we denote for every X ∈ LF (L) by X̄ ∈ LG(M) its unique extension
([3, Proposition 1.4 a)]) then the map

LF (L) −→ LG(M), X 7−→ X̄

is an injective C*-homomorphism and its image is dense in LG(M) ...
M
.

c) The map

LF (L)#T2
−→ LG(M)#T1

, X 7−→ X̄

is continuous.

Proof. a) By Lemma 1.3.8 a ⇒ b, F# is dense in G#

G̈
so F̆# is dense

in Ğ#
¨̆
G

and Ğ is the extension of F̆ to a selfdual Hilbert right G-module ([3,

Corollary 1.5 a2 ⇒ a1]). By [3, Proposition 1.8], M is the extension of L to a
selfdual Hilbert right G-module. By [3, Corollary 1.5] a1 ⇒ a2, L

# is dense in

M#

M̈
.

b) By a) and [3, Proposition 1.4 e)], the map

LF (L) −→ LG(M), X 7−→ X̄

is an injective C*-homomorphism. By [3, Proposition 1.9 b)], its image is dense
in LG(M) ...

M
.

c) Denote by N the vector subspace of
...
M generated by{

˜(a, ξ, η)
∣∣∣ (a, ξ, η) ∈ G̈× L× L} .

By a) and [3, Proposition 1.9 a)], N is dense in
...
M so by Corollary 1.3.7 c),

LG(M)#T1
= LG(M)#N .

For (a, ξ, η) ∈ G̈+ × L× L and X ∈ LF (L), by Proposition 1.3.4 c),

pξ,η,a(X̄) = |
〈 〈

X̄ξ
∣∣ η 〉 , a 〉 | =

= | ⟨ ⟨ Xξ | η ⟩ , a ⟩ | ≤ pξx,|a|(X) ⟨ ⟨ η | η ⟩ , |a| ⟩
1
2 ,

where a = x|a| is the polar representation of a, so the map

LF (L)#T2
−→ LG(M)#T1

, X 7−→ X̄

is continuous.
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Lemma 1.3.10. Let n ∈ N, ξ ∈ ⃝|
i∈Nn

Ĕ, and

x := [ξiδj,1]i,j∈Nn ∈ En,n .

Then ∥x∥ = ∥ξ∥.

Proof. For η ∈ ⃝|
i∈Nn

Ĕ and i ∈ Nn,

(xη)i =
∑
j∈Nn

xijηj =
∑
j∈Nn

ξiδj,1ηj = ξiη1,

⟨ xη | xη ⟩ =
∑
i∈Nn

⟨ (xη)i | (xη)i ⟩ =
∑
i∈Nn

⟨ ξiη1 | ξiη1 ⟩ =
∑
i∈Nn

η∗1ξ
∗
i ξiη1

= η∗1

(∑
i∈Nn

ξ∗i ξi

)
η1 = η∗1 ⟨ ξ | ξ ⟩ η1 ≤ ∥ξ∥

2 η∗1η1.

Hence ∥xη∥2 ≤ ∥ξ∥2 ∥η1∥2 ≤ ∥ξ∥2 ∥η∥2 and therefore ∥x∥ ≤ ∥ξ∥ .
On the other hand, if we put ζ := (δi,11E)i∈Nn then for i ∈ Nn,

(xζ)i =
∑
j∈Nn

xijζj =
∑
j∈Nn

ξiδj,11E = ξi ,

⟨ xζ | xζ ⟩ =
∑
i∈Nn

(xζ)∗i (xζ)i =
∑
i∈Nn

ξ∗i ξi = ⟨ ξ | ξ ⟩ .

We deduce that ∥x∥ ≥ ∥xζ∥ = ∥ξ∥, and hence ∥x∥ = ∥ξ∥ .

Lemma 1.3.11. Let F,G be unital C**-algebras, φ : F → G a surjective
C**-homomorphism, I a set,

L := ⃝̃|
i∈I
F̆ ≈ F̆ ⊗̃l2(I) , M := ⃝̃|

i∈I
Ğ ≈ Ğ⊗̃l2(I) ,

and for every ξ ∈ L put ξ̃ := (φξi)i∈I .

a) If ξ, η ∈ L and x ∈ F then

ξ̃ ∈M ,
∥∥∥ξ̃∥∥∥ ≤ ∥ξ∥ , (̃ξx) = (ξ̃)φx ,

〈
ξ̃
∣∣∣ η̃ 〉 = φ ⟨ ξ | η ⟩ .

b) For every η ∈M there is a ξ ∈ L with ξ̃ = η, ∥ξ∥ = ∥η∥.

c) In the W*-case, the map

LL̈ −→MM̈ , ξ 7−→ ξ̃

is continuous.
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Proof. a) For J ∈ Pf (I),∑
i∈J
⟨ φξi | φηi ⟩ =

∑
i∈J

(φηi)
∗(φξi) = φ

∑
i∈J

η∗i ξi .

It follows ξ̃ ∈M,
∥∥∥ξ̃∥∥∥ ≤ ∥ξ∥ , 〈 ξ̃ ∣∣∣ η̃ 〉 = φ ⟨ ξ | η ⟩. Moreover for i ∈ I,

(ξ̃x)i = φ(ξx)i = φ(ξix) = (φξi)(φx) = ξ̃i(φx), ξ̃x = ξ̃(φx).

b) Case 1. { i ∈ I | ηi ̸= 0 } is finite
For simplicity, we assume { i ∈ I | ηi ̸= 0 } = Nn for some n ∈ N. We put

θ : Fn,n −→ Gn,n , [xij ]i,j∈Nn 7−→ [φxij ]i,j∈Nn .

θ is obviously a surjective C*-homomorphism. So if we put

y := [ηiδj,1]i,j∈Nn ∈ Gn,n,

then there is an x ∈ Fn,n with θx = y, ∥x∥ = ∥y∥ ([4, Theorem 10.1.7]). If we
put

ξ : I −→ F̆ , i 7−→
{
xi1 if i ∈ Nn
0 if i ∈ I \ Nn

and z := [xijδj1]i,j∈Nn ∈ Fn,n then

θz = [φ(xijδj1)]i,j∈Nn = [yijδj1]i,j∈Nn = y

and by [1, Theorem 5.6.6.1 a)], ∥z∥ ≤ ∥x∥. We get for i ∈ Nn,

ξ̃i = φξi = φxi1 = yi1 = ηi.

By a) and Lemma 1.3.10, ∥ξ∥ = ∥z∥ ≤ ∥x∥ = ∥y∥ = ∥η∥ =
∥∥∥ξ̃∥∥∥ ≤ ∥ξ∥, hence

∥ξ∥ = ∥η∥ .

Case 2. η arbitrary in the W*-case
We may assume ∥η∥ = 1. We put for every J ∈ Pf (I),

ηJ : I −→ G , i 7−→
{
ηi if i ∈ J
0 if i ∈ I \ J .

By Case 1, for every J ∈ Pf (I) there is a ξJ ∈ L with ξ̃J = ηJ and ∥ξJ∥ =
∥ηJ∥ ≤ 1. Let F be an ultrafilter on Pf (I) finer than the upper section filter
of Pf (I). By [1, Proposition 5.6.3.3] a⇒ b,

ξ := lim
J,F

ξJ

exists in L#

L̈
. For i ∈ I,

ξ̃i = φξi = φ lim
J,F

(ξJ)i = lim
J,F

φ(ξJ)i = ηi
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so ξ̃ = η. By a), 1 = ∥η∥ =
∥∥∥ξ̃∥∥∥ ≤ ∥ξ∥ ≤ 1, so ∥ξ∥ = ∥η∥.

Case 3. η arbitrary in the C*-case

We put for every J ∈ Pf (I) and every ζ ∈M ,

ζJ : I −→ G , i 7−→
{
ζi if i ∈ J
0 if i ∈ I \ J .

Moreover, we denote by FI the upper section filter of Pf (I), set

M0 := { ζ ∈M | { i ∈ I | ζi ̸= 0 } is finite } ,

and denote byM the vector subspace of KG(M) generated by the set

{ ζ1 ⟨ · | ζ2 ⟩ | ζ1, ζ2 ∈M0 } .

Let G be the vector subspace of KF (L) generated by the set

{ α ⟨ · | β ⟩ | α, β ∈ L } .

G is an involutive subalgebra of KF (L). Let (αq)q∈Q, (βq)q∈Q be finite families
in L such that ∑

q∈Q
αq ⟨ · | βq ⟩ = 0.

Let further α′, β′ ∈ M0. By Case 1, there are α, β ∈ L with α̃ = α′ , β̃ = β′

and we get by a),〈∑
q∈Q

α̃q

〈
β′
∣∣ β̃q 〉

∣∣∣∣∣∣ α′

〉
=
∑
q∈Q

〈
α̃q | α′ 〉 〈 β′ ∣∣ β̃q 〉 =

∑
q∈Q
⟨ α̃q | α̃ ⟩

〈
β̃
∣∣∣ β̃q 〉

= φ

∑
q∈Q
⟨ αq | α ⟩ ⟨ β | βq ⟩

 = φ

〈 ∑
q∈Q

αq ⟨ · | βq ⟩

β

∣∣∣∣∣∣ α
〉 = 0.

It follows ([1, Proposition 5.6.4.1 e)])∑
q∈Q

α̃q

〈
· | β̃q

〉
= 0.

Thus the linear map

ψ : G −→ KG(M) ,
∑
q∈Q

αq ⟨ · | βq ⟩ 7−→
∑
q∈Q

α̃q

〈
· | β̃q

〉
is well-defined and it is easy to see (by a)) that ψ is an involutive algebra
homomorphism.

Step 1. ∥ψ∥ ≤ 1.
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We extend ψ by continuity to a map ψ : KF (L)→ KG(M). Let

u :=
∑
q∈Q

αq ⟨ · | βq ⟩ ∈ G

and let ζ ∈M#
0 . By Case 1, there is an α ∈ L# with α̃ = ζ. By a),

(ψu)ζ =
∑
q∈Q

α̃q

〈
α̃ | β̃q

〉
=
∑
q∈Q

α̃qφ ⟨ α | βq ⟩ =
∑
q∈Q

˜︷ ︸︸ ︷
αq ⟨ α | βq ⟩ = ũα ,

∥(ψu)ζ∥ = ∥ũα∥ ≤ ∥uα∥ ≤ ∥u∥ .
Since M0 is dense in M ([1, Proposition 5.6.4.1 e)]), it follows

∥ψu∥ ≤ ∥u∥ , ∥ψ∥ ≤ 1.

Step 2. M is dense in KG(M).
Let α, β ∈M . By [1, Proposition 5.6.4.1 e)],

α = lim
J,FI

αJ , β = lim
J,FI

βJ

so by [1, Proposition 5.6.5.2 a)],

α ⟨ · | β ⟩ = lim
J,FI

αJ ⟨ · | βJ ⟩ ,

which proves the assertion.

Step 3. ψ is a surjective C*-homomorphism.
By Step 1, ψ is a C*-homomorphism. Since its image contains M (by

Case 1) it is surjective by Step 2.

Step 4. The assertion.
Let j ∈ I. By Step 3 and [4, Theorem ] 10.1.7 (and [1, Proposition 5.6.5.2

a)]), there is a u ∈ KF (L) with

ψu = η ⟨ · | 1G ⊗ ej ⟩ , ∥u∥ = ∥η ⟨ · | 1G ⊗ ej ⟩∥ = ∥η∥ .

From

ψ(u((1F ⊗ ej) ⟨ · | 1F ⊗ ej ⟩)) = (η ⟨ · | 1G ⊗ ej ⟩)((1G ⊗ ej) ⟨ · | 1G ⊗ ej ⟩)
= η ⟨ · | 1G ⊗ ej ⟩ ,

∥η∥ = ∥η ⟨ · | 1G ⊗ ej ⟩∥ ≤ ∥u((1F ⊗ ej) ⟨ · | 1F ⊗ ej ⟩)∥
≤ ∥u∥ ∥(1F ⊗ ej) ⟨ · | 1F ⊗ ej ⟩∥ = ∥u∥ = ∥η∥ ,

∥u((1F ⊗ ej) ⟨ · | 1F ⊗ ej ⟩)∥ = ∥η∥

we see that we may assume

u = u((1F ⊗ ej) ⟨ · | 1F ⊗ ej ⟩) .
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Then

u = (u(1F ⊗ ej)) ⟨ · | 1F ⊗ ej ⟩ .
If we put ξ := u(1F ⊗ ej) ∈ L then u = ξ ⟨ · | 1F ⊗ ej ⟩, ∥η∥ = ∥u∥ = ∥ξ∥,

η ⟨ · | 1G ⊗ ej ⟩ = ψu = ξ̃ ⟨ · | 1G ⊗ ej ⟩) ,

η = η ⟨ 1G ⊗ ej | 1G ⊗ ej ⟩ = ξ̃ ⟨ 1G ⊗ ej | 1G ⊗ ej ⟩ = ξ̃ .

c) Let (a, η0) ∈ G̈×M . By b), there is a ξ0 ∈ L with ξ̃0 = η0. By a), for
ξ ∈ L,〈

ξ̃ , (̃a, η0)
〉
=
〈〈

ξ̃
∣∣∣ η0 〉 , a〉 =

〈〈
ξ̃
∣∣∣ ξ̃0 〉 , a〉 =

= ⟨φ ⟨ ξ | ξ0 ⟩ , a ⟩ = ⟨ ⟨ ξ | ξ0 ⟩ , φ̈a ⟩ =
〈
ξ , ˜(φ̈a, ξ0)

〉
.

We put

θ : L −→M , ξ 7−→ ξ̃

and denote by θ′ : M ′ → L′ its transpose. By the above, θ′(̃a, η0) ∈ L̈. Since
θ′ is continuous, θ′(M̈) ⊂ L̈ and this proves the assertion.

Proposition 1.3.12. We use the notation of Lemma 1.3.11.

a) If X ∈ LF (L) and ξ ∈ L with ξ̃ = 0 then X̃ξ = 0; we define

X̃ :M −→M , η 7−→ X̃ξ ,

where ξ ∈ L with ξ̃ = η (Lemma 1.3.11 b)).

b) For every X ∈ LF (L), X̃ belongs to LG(M) and the map

LF (L) −→ LG(M), X 7−→ X̃

is a surjective C**-homomorphism continuous with respect to the topolo-
gies Tk with k ∈ {1, 2, 3}.

c) For ξ, η ∈ L,
˜︷ ︸︸ ︷
η ⟨ · | ξ ⟩ = η̃

〈
· | ξ̃

〉
and

KG(M) =
{
X̃
∣∣∣ X ∈ KF (L)} .

Proof. a) For i ∈ I, φξi = ξ̃i = 0 so by Lemma 1.3.11 a),

X̃(eiξi) = ˜(Xei)ξi = (̃Xei)φξi = 0 .
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By [1, Proposition 5.6.4.1 e)] (resp. [1, Proposition 5.6.4.6 c)] and [1, Proposi-
tion 5.6.3.4 c)]),

Xξ = X

(∑
i∈I

eiξi

)
=
∑
i∈I

X(eiξi),
(
resp. Xξ = X

 L̈∑
i∈I

eiξi

 =

L̈∑
i∈I

X(eiξi)
)

so by Lemma 1.3.11 a) (resp. c)),

X̃ξ =

˜︷ ︸︸ ︷∑
i∈I

X(eiξi) =
∑
i∈I

X̃(eiξi) = 0

(
resp. X̃ξ =

˜︷ ︸︸ ︷
L̈∑
i∈I

X(eiξi) =
M̈∑
i∈I

X̃(eiξi) = 0
)
.

b) For X,Y ∈ LF (L) and ξ, η ∈ L, by Lemma 1.3.11 a),〈
X̃ξ̃
∣∣∣ η̃ 〉 =

〈
X̃ξ
∣∣∣ η̃ 〉 = φ ⟨ Xξ | η ⟩

= φ ⟨ ξ | X∗η ⟩ =
〈
ξ̃
∣∣∣ X̃∗η

〉
=
〈
ξ̃
∣∣∣ X̃∗η̃

〉
,

X̃Ỹ ξ̃ = X̃Ỹ ξ = X̃(Y ξ) = (̃XY )ξ = X̃Y ξ̃.

By Lemma 1.3.11 b), X̃ ∈ LG(M), (X̃)∗ = X̃∗, and X̃Ỹ = X̃Y , i.e. the map
is a C*-homomorphism.

For X ∈ LF (L) and ξ, η ∈ L (resp. and a ∈ M̈+), by Lemma 1.3.11 a),

pξ̃,η̃(X̃) =
∥∥∥〈 X̃ξ̃ ∣∣∣ η̃ 〉∥∥∥ =

∥∥∥〈 X̃ξ ∣∣∣ η̃ 〉∥∥∥ = ∥φ ⟨ Xξ | η ⟩∥ ≤ pξ,η(X)

(resp. pξ̃,η̃,a(X) =
∣∣∣〈 〈 X̃ξ̃ ∣∣∣ η̃ 〉 , a〉∣∣∣ = | ⟨φ ⟨ Xξ | η ⟩ , a ⟩ |

= | ⟨ ⟨ Xξ | η ⟩ , φ̈a ⟩ | = pξ,η,φ̈a(X)),

so by Lemma 1.3.11 b), the map is continuous with respect to the topology T1.
The proof for the other topologies is similar.

c) For ζ ∈ L, by Lemma 1.3.11 a),

˜︷ ︸︸ ︷
η ⟨ · | ξ ⟩ ζ̃ =

˜︷ ︸︸ ︷
(η ⟨ · | ξ ⟩)ζ =

˜︷ ︸︸ ︷
η ⟨ ζ | ξ ⟩

= η̃ φ ⟨ ζ | ξ ⟩ = η̃
〈
ζ̃
∣∣∣ ξ̃ 〉 =

(
η̃
〈
· | ξ̃

〉)
ζ̃

so by Lemma 1.3.11 b),
˜︷ ︸︸ ︷
η ⟨ · | ξ ⟩ = η̃

〈
· | ξ̃

〉
.

The last assertion follows now from b).
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2. MAIN PART

Throughout this section, we fix f ∈ F(T,E).

2.1. The representations

We present here the projective representation of the groups and its main
properties.

Definition 2.1.1. We put for every t ∈ T and ξ ∈ H,

ut : Ĕ −→ H , ζ 7−→ ζ ⊗ et ,

Vtξ : T −→ Ĕ , s 7−→ f(t, t−1s)ξ(t−1s) .

If we want to emphasize the role of f then we put V f
t instead of Vt. For

x ∈ E,
(x⊗̃1K)Vtξ : T −→ Ĕ , s 7−→ f(t, t−1s)xξ(t−1s) .

Proposition 2.1.2. Let s, t ∈ T , x ∈ E, ζ ∈ Ĕ, and ξ ∈ H.

a) Vtξ ∈ H.

b) VsVt = (f(s, t)⊗̃1K)Vst.

c) Vt(ζ ⊗ es) = (f(t, s)ζ)⊗ ets.

d) Vt(x⊗̃1K) = (x⊗̃1K)Vt.

e) Vt ∈ Un LE(H) , V ∗
t = (f̃(t)⊗̃1K)Vt−1.

f) (x⊗̃1K)Vt(ζ ⊗ es) = (f(t, s)xζ)⊗ ets.

g) If T is infinite and F denotes the filter on T of cofinite subsets, i.e.

F := { S | S ∈ P(T ) , T \ S ∈ Pf (T ) } ,

then
lim
t,F

Vt = 0

in LE(H)T1.

Proof. a) For R ∈ Pf (T ),∑
r∈R
⟨ (Vtξ)r | (Vtξ)r ⟩ =

∑
r∈R

〈
f(t, t−1r)ξt−1r

∣∣ f(t, t−1r)ξt−1r

〉
=

=
∑
r∈R
⟨ ξt−1r | ξt−1r ⟩ =

∑
r∈R
⟨ ξr | ξr ⟩ ≤ ⟨ ξ | ξ ⟩
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so Vtξ ∈ H.

b) For r ∈ T ,

(VsVtξ)r = f(s, s−1r)(Vtξ)s−1r = f(s, s−1r)f(t, t−1s−1r)ξt−1s−1r

= f(s, t)f(st, t−1s−1r)ξt−1s−1r = f(s, t)(Vstξ)r = ((f(s, t)⊗̃1K)Vstξ)r

so
VsVt = (f(s, t)⊗̃1K)Vst.

c) For r ∈ T ,

(Vt(ζ ⊗ es))r = f(t, t−1r)(ζ ⊗ es)t−1r

= δs,t−1rf(t, t
−1r)ζ = δr,tsf(t, s)ζ = ((f(t, s)ζ)⊗ ets)r

so
Vt(ζ ⊗ es) = (f(t, s)ζ)⊗ ets .

d) We have

(Vt(x⊗̃1K)ξ)s = f(t, t−1s)((x⊗̃1K)ξ)t−1s = f(t, t−1s)xξt−1s = ((x⊗̃1K)Vtξ)s

so
Vt(x⊗̃1K) = (x⊗̃1K)Vt .

e) For η ∈ H, by Proposition 1.1.2 a),b),

⟨ Vtξ | η ⟩ =
∑̃
s∈T
⟨ (Vtξ)s | ηs ⟩ =

∑̃
s∈T

〈
f(t, t−1s)ξt−1s

∣∣ ηs 〉
=
∑̃
r∈T
⟨ f(t, r)ξr | ηtr ⟩ =

∑̃
r∈T

〈
ξr | f̃(t)f(t−1, tr)ηtr

〉
=
∑̃
r∈T

〈
ξr | (((f̃(t)⊗̃1K)Vt−1)η)r

〉
=
〈
ξ | ((f̃(t)⊗̃1K)Vt−1)η

〉
so Vt ∈ LE(H) with V ∗

t = (f̃(t)⊗̃1K)Vt−1 . By b) and d),

V ∗
t Vt = (f̃(t)⊗̃1K)Vt−1Vt = (f̃(t)⊗̃1K)(f(t−1, t)⊗̃1K)Vt−1t = idH ,

VtV
∗
t = Vt(f̃(t)⊗̃1K)Vt−1 = (f̃(t)⊗̃1K)VtVt−1

= (f̃(t)⊗̃1K)(f(t, t−1)⊗̃1K)Vtt−1 = idH .

f) follows from c).

g) Let us consider first the C*-case. Let ξ, η ∈ H, t ∈ T , and ε > 0.
There is an S ∈ Pf (T ) such that

∥∥ηeT\S∥∥ < ε. By e),

|
〈
Vtξ | ηeT\S

〉
| ≤ ∥Vtξ∥

∥∥ηeT\S∥∥ ≤ ε ∥ξ∥
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so

pξ,η(Vt) = | ⟨ Vtξ | η ⟩ | ≤ | ⟨ Vtξ | ηeS ⟩ |+ |
〈
Vtξ | ηeT\S

〉
| < | ⟨ Vtξ | ηeS ⟩ |+ ε.

From
⟨ Vtξ | ηeS ⟩ =

∑
s∈S

η∗sf(t, t
−1s)ξt−1s

it follows
lim
t,F
⟨ Vtξ | ηeS ⟩ = 0 , lim

t,F
pξ,η(Vt) = 0.

The W*-case can be proved similarly.

Remark. By e), T1 cannot be replaced by T2 in g).

Proposition 2.1.3. Let s, t ∈ T .

a) ut ∈ LE(Ĕ,H) , u∗t = ⟨ · | 1E ⊗ et ⟩.

b) u∗sut = δs,t1E.

c) usu
∗
t = 1E⊗̃(⟨ · | et ⟩ es).

d)
T2∑
r∈T

uru
∗
r = idH .

Proof. a) For ζ ∈ Ĕ and ξ ∈ H,

⟨ utζ | ξ ⟩ = ⟨ ζ ⊗ et | ξ ⟩ =
∑̃
s∈T

ξ∗s (ζ ⊗ et)s = ξ∗t ζ = ⟨ ζ | ξt ⟩

so
ut ∈ LE(Ĕ,H) , u∗t ξ = ξt = ⟨ ξ | 1E ⊗ et ⟩ .

b) For ζ ∈ Ĕ, by a),

u∗sutζ = u∗s(ζ ⊗ et) = ⟨ ζ ⊗ et | 1E ⊗ es ⟩ = δs,tζ

so u∗sut = δs,t1E .
c) For ζ ∈ Ĕ and r ∈ T , by a),

usu
∗
t (ζ ⊗ er) = usδr,tζ = δr,t(ζ ⊗ es)

= ζ ⊗ ⟨ er | et ⟩ es = (1E⊗̃(⟨ · | et ⟩ es))(ζ ⊗ er),
so (by a) and [1, Proposition 5.6.4.1 e)] (resp. [1, Proposition 5.6.4.6 c) and
Proposition 5.6.3.4 c)]) usu

∗
t = 1E⊗̃(⟨ · | et ⟩ es).

d) For ξ ∈ H (resp. and a ∈ Ë+) and S ∈ Pf (T ), by c),

pξ

(∑
t∈S

utu
∗
t − idH

)
=

∥∥∥∥∥∥
∑
t∈T\S

⟨ ξ | ξ ⟩

∥∥∥∥∥∥
1/2
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(
resp. pξ,a

(∑
t∈S

utu
∗
t − idH

)
=

〈〈∑
t∈S

(utu
∗
t − idH)ξ

∣∣∣∣∣ ∑
t∈S

(utu
∗
t − idH)ξ

〉
, a

〉 1
2

= (
∑
t∈T\S

⟨ ⟨ ξ | ξ ⟩ , a ⟩)
1
2

)
and the assertion follows.

Proposition 2.1.4. Let s, t ∈ T and x ∈ E.

a) Vsut = ustf(s, t).

b) u∗sVt = f(t, t−1s)u∗t−1s.

c) (x⊗̃1K)ut = utx.

d) xu∗t = u∗t (x⊗̃1K).

Proof. a) For ζ ∈ Ĕ, by Proposition 2.1.2 c),

Vsutζ = Vs(ζ ⊗ et) = (f(s, t)ζ)⊗ est = ustf(s, t)ζ

so Vsut = ustf(s, t) .
b) For ζ ∈ Ĕ and r ∈ T , by Proposition 2.1.2 c) and Proposition 2.1.3 a),

u∗sVt(ζ ⊗ er) = u∗s((f(t, r)ζ)⊗ etr) = δs,trf(t, r)ζ

= δt−1s,rf(t, t
−1s)ζ = f(t, t−1s)u∗t−1s(ζ ⊗ er)

so u∗sVt = f(t, t−1s)u∗t−1s.

c) For ζ ∈ Ĕ,

(x⊗̃1K)utζ = (x⊗̃1K)(ζ ⊗ et) = (xζ)⊗ et = utxζ

so (x⊗̃1K)ut = utx.
d) follows from c).

Definition 2.1.5. We put for all s, t ∈ T (Proposition 2.1.3 a))

φs,t : LE(H) −→ LE(Ĕ) ≈ E , X 7−→ u∗sXut

and set Xt := φt,1X for every X ∈ LE(H).

Proposition 2.1.6. Let s, t ∈ T .

a) φs,t is linear with ∥φs,t∥ = 1.

b) For X ∈ LE(H) and x, y ∈ Ĕ,

⟨ (φs,tX)x | y ⟩ = ⟨ X(x⊗ et) | y ⊗ es ⟩ .
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c) The map
φs,t : LE(H)T1 −→ E (resp. EË)

is continuous.

d) φt,t is involutive and completely positive.

e) For r ∈ T and x ∈ E,

φs,t((x⊗̃1K)Vr) = δs,rtf(r, t)x .

f) If (xr)r∈T ∈ E(T ) and

X :=
∑
r∈T

(xr⊗̃1K)Vr

then
φs,tX = f(st−1, t)xst−1 , Xt = xt .

g) For X ∈ LE(H) and x, y ∈ E,

φs,t((x⊗̃1K)X(y⊗̃1K)) = x(φs,tX)y ,

((x⊗̃1K)X(y⊗̃1K))t = xXty .

Proof. a) follows from Proposition 2.1.3 a),b).
b) We have

⟨ (φs,tX)x | y ⟩ = ⟨ u∗sXutx | y ⟩ = ⟨ Xutx | usy ⟩ = ⟨ X(x⊗ et) | y ⊗ es ⟩ .

c) The C*-case.
By b), for X ∈ LE(H),

∥φs,tX∥=∥⟨ (φs,tX)1E | 1E ⟩∥=∥⟨ X(1E ⊗ et) | 1E ⊗ es ⟩∥ = p1E⊗et,1E⊗es(X).

The W*-case.
Let a ∈ Ë and let a = x|a| be its polar representation. By b), for

X ∈ LE(H),

| ⟨φs,tX , a ⟩ | = | ⟨ ⟨ (φs,tX)1E | 1E ⟩ , x|a| ⟩ | = | ⟨ ⟨ (φs,tX)x | 1E ⟩ , |a| ⟩ |
= | ⟨ ⟨ X(x⊗ et) | 1E ⊗ es ⟩ , |a| ⟩ | = px⊗et,1E⊗es,|a|(X).

d) For X ∈ LE(H),

(φt,tX)∗ = (u∗tXut)
∗ = u∗tX

∗ut = φt,t(X
∗)

so φt,t is involutive. For n ∈ N, X ∈ ((LE(H))n,n)+, and ζ ∈ Ĕn,∑
i∈Nn

〈 ∑
j∈Nn

((φt,tXij)ζj)

∣∣∣∣∣∣ ζi
〉

=
∑
i,j∈Nn

⟨ u∗tXijutζj | ζi ⟩ =
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=
∑
i,j∈Nn

⟨ Xijutζj | utζi ⟩ ≥ 0

([1, Theorem 5.6.6.1 f)] and [1, Theorem 5.6.1.11 c1 ⇒ c2]) so φt,t is completely
positive ([1, Theorem 5.6.6.1 f)] and [1, Theorem 5.6.1.11 c2 ⇒ c1]).

e) By Proposition 2.1.4 a),d) and Proposition 2.1.3 b),

φs,t((x⊗̃1K)Vr) = u∗s(x⊗̃1K)Vrut = xu∗sVrut = xu∗surtf(r, t) = δs,rtf(r, t)x.

f) By e) (and Proposition 1.1.2 a)),

φs,tX =
∑
r∈T

φs,t((xr⊗̃1K)Vr) =
∑
r∈T

δs,rtf(r, t)xr = f(st−1, t)xst−1 ,

Xt = φt,1X = f(t, 1)xt = xt.

g) By Proposition 2.1.4 c),d),

φs,t((x⊗̃1K)X(y⊗̃1K)) = u∗s(x⊗̃1K)X(y⊗̃1K)ut

= xu∗sXuty = x(φs,tX)y.

Definition 2.1.7. We put

R(f) :=

{∑
t∈T

(xt⊗̃1K)Vt

∣∣∣∣∣ (xt)t∈T ∈ E(T )

}
,

S(f) :=
T3

R(f) , S∥·∥(f) :=
∥·∥
R(f) .

Moreover, we put SC(f) := S(f) in the C*-case and SW (f) := S(f) in the
W*-case. If F is a subset of E then we put

S(f, F ) := { X ∈ S(f) | t ∈ T =⇒ Xt ∈ F }

and use similar notation for the other S.

By Proposition 2.1.2 b),d),e), R(f) is an involutive unital E-subalgebra
of LE(H) (with V1 as unit). In particular, S∥·∥(f) is an E-C*-subalgebra of
LE(H). If T is finite then R(f) = S(f). By Corollary 1.3.7 e), SC(f)T3 is
complete.

Proposition 2.1.8. For X ∈
T1

R(f) and s, t ∈ T ,

φs,tX = f(st−1, t)Xst−1 .
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Proof. Let F be a filter on R(f) converging to X in the T1-topology. By
Proposition 2.1.6 c),f) (and Corollary 1.3.7 d)),

φs,tX = lim
Y,F

φs,tY = lim
Y,F

f(st−1, t)Yst−1 = f(st−1, t) lim
Y,F

Yst−1

= f(st−1, t) lim
Y,F

φst−1,1Y = f(st−1, t)φst−1,1X = f(st−1, t)Xst−1 .

Theorem 2.1.9. Let X ∈
T1

R(f).

a) If (xt)t∈T is a family in E such that

X =

T1∑
t∈T

(xt⊗̃1K)Vt

then Xt = xt for every t ∈ T . In particular, if T is finite then the map

ET −→ S(f), x 7−→
∑
t∈T

(xt ⊗ 1K)Vt

is bijective and E-linear (Proposition 2.1.2 d)).

b) We have

X =

T3∑
t∈T

(Xt⊗̃1K)Vt ∈ S(f) .

c) (X∗)t = f̃(t)(Xt−1)∗ for every t ∈ T and

X∗ =

T3∑
t∈T

((Xt)
∗⊗̃1K)V ∗

t ∈
T3

R(f) .

d) S(f) =
T1

R(f)=
T2

R(f).

e) For ξ ∈ H and t ∈ T ,

(Xξ)t =
∑̃
s∈T

f(s, s−1t)Xsξs−1t .

f) If T is finite and if we identify LE(H) with ET,T then X is identified
with the matrix

[f(st−1, t)Xst−1 ]s,t∈T ,
and for every r ∈ T , Vr is identified with the matrix

[f(st−1, t)δs,rt]s,t∈T .
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g) If X,Y ∈ S(f) and t ∈ T then XY ∈ S(f) and

(XY )t =
∑̃
s∈T

f(s, s−1t)XsYs−1t ,

(X∗Y )t =
∑̃
s∈T

f(s, t)∗X∗
sYst , (XY ∗)t =

∑̃
s∈T

f(t, s)∗XtsY
∗
s ,

(X∗Y )1 =
∑̃
s∈T

X∗
sYs , (XY ∗)1 =

∑̃
s∈T

XsY
∗
s .

h) The map
E −→ S(f), x 7−→ x⊗̃1K

is an injective unital C**-homomorphism and so S(f) is an E-C**-
subalgebra of LE(H) and ReS(f) is closed in S(f)T1. In the W*-case,
SW (f) is the W*-subalgebra of LE(H) generated by R(f) and R(f)# is

dense in SW (f)#T1
= SW (f)#...

H
, which is compact.

i) If E is a W*-algebra then SC(f) may be identified canonically with a
unital C*-subalgebra of SW (f) by using the map of Proposition 1.3.9 b).
By this identification SC(f) generates SW (f) as W*-algebra.

j) If F is a closed ideal of E (resp. of EË ) then S(f, F ) is a closed ideal

of S(f) (resp. of S(f) ..︷︸︸︷
S(f)

).

k) If F is a unital C**-subalgebra of E such that f(s, t) ∈ F for all s, t ∈ T
then S(f, F ) is a unital C**-subalgebra of S(f) and the map

S(f, F ) −→ S(g), X 7−→
T3∑
t∈T

(Xt⊗̃1K)V g
t

is an injective C**-homomorphism, where

g : T × T −→ Un F c , (s, t) 7−→ f(s, t) .

This map induces a C*-isomorphism S∥·∥(f, F )→ S∥·∥(g).

l) (X,Y ) ∈
◦︷︸︸︷
S(f)+=⇒ (X1, Y1) ∈

◦
E+.

Proof. a) By Proposition 2.1.6 c),e),

Xt = φt,1X =
∑̃
s∈T

φt,1((xs⊗̃1K)Vs) =
∑̃
s∈T

δt,sf(s, 1)xs = xt .
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b), c), and d)

Step 1. X =
T2∑
t∈T

(Xt⊗̃1K)Vt.

By Proposition 2.1.3 d), Corollary 1.3.7 d), Proposition 2.1.8, and Propo-
sition 2.1.4 b),d),

X =

(
T2∑
s∈T

usu
∗
s

)
X

(
T2∑
t∈T

utu
∗
t

)
=

T2∑
s∈T

T2∑
t∈T

usu
∗
sXutu

∗
t

=

T2∑
s∈T

T2∑
t∈T

us(φs,tX)u∗t =

T2∑
s∈T

T2∑
t∈T

usf(st
−1, t)Xst−1u∗t

=

T2∑
s∈T

T2∑
r∈T

usXrf(r, r
−1s)u∗r−1s =

T2∑
s∈T

T2∑
r∈T

usXru
∗
sVr

=

T2∑
s∈T

T2∑
r∈T

usu
∗
s(Xr⊗̃1K)Vr =

T2∑
s∈T

usu
∗
s

(
T2∑
t∈T

(Xt⊗̃1K)Vt

)
=

T2∑
t∈T

(Xt⊗̃1K)Vt.

Step 2.

By Step 1, Corollary 1.3.7 a), and Proposition 2.1.2 d),e) (and Proposition
1.1.2 a)),

X∗ =

(
T1∑
s∈T

(Xs⊗̃1K)Vs

)∗

=

T1∑
s∈T

(X∗
s ⊗̃1K)V ∗

s

=

T1∑
s∈T

(X∗
s ⊗̃1K)(f̃(s)⊗̃1K)Vs−1 =

T1∑
r∈T

((f̃(r)X∗
r−1)⊗̃1K)Vr ∈

T1

R(f) .

By a),

(X∗)t = f̃(t)(Xt−1)∗ .

By Step 1 and Proposition 2.1.2 e) (and Proposition 1.1.2 a)),

X∗ =

T2∑
t∈T

((X∗)t⊗̃1K)Vt =

T2∑
t∈T

((Xt−1)∗⊗̃1K)(f̃(t)⊗̃1K)Vt

=

T2∑
t∈T

((Xt−1)∗⊗̃1K)V ∗
t−1 =

T2∑
t∈T

((Xt)
∗⊗̃1K)V ∗

t .

Together with Step 1 this proves

X =

T3∑
t∈T

(Xt⊗̃1K)Vt ∈ S(f) , X∗ =

T3∑
t∈T

((Xt)
∗⊗̃1K)V ∗

t ∈ S(f) .
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In particular S(f) =
T1

R(f)=
T2

R(f).
e) By b) and Corollary 1.3.7 b), in the C*-case,

(Xξ)t =

〈 (
T1∑
s∈T

(Xs⊗̃1K)Vs

)
ξ

∣∣∣∣∣ 1E ⊗ et
〉

=
∑
s∈T

〈
(Xs⊗̃1K)Vsξ

∣∣ 1E ⊗ et 〉
=
∑
s∈T

Xsf(s, s
−1t)ξs−1t =

∑
s∈T

f(s, s−1t)Xsξs−1t.

The proof is similar in the W*-case.
f) For ξ ∈ H and s ∈ T , by e),

(Xξ)s =
∑
t∈T

f(t, t−1s)Xtξt−1s =
∑
r∈T

f(sr−1, r)Xsr−1ξr .

g) By b), Corollary 1.3.7 b),d), and Proposition 2.1.2 b),d),

XY =

(
T2∑
s∈T

(Xs⊗̃1K)Vs

)(
T2∑
t∈T

(Xt⊗̃1K)Vt

)

=

T2∑
s∈T

T2∑
t∈T

(Xs⊗̃1K)Vs(Yt⊗̃1K)Vt =

T2∑
s∈T

T2∑
t∈T

(Xs⊗̃1K)(Yt⊗̃1K)VsVt

=

T2∑
s∈T

T2∑
t∈T

(Xs⊗̃1K)(Yt⊗̃1K)(f(s, t)⊗̃1K)Vst

=

T2∑
s∈T

T2∑
r∈T

((f(s, s−1r)XsYs−1r)⊗̃1K)Vr.

Since by d),
T2∑
r∈T

((f(s, s−1r)XsYs−1r)⊗̃1K)Vr ∈ S(f)

for every s ∈ T we get XY ∈ S(f), again by d). By Corollary 1.3.7 b) and
Proposition 2.1.6 c),e),

(XY )t = φt,1(XY ) =
∑̃
s∈T

∑̃
r∈T

φt,1((f(s, s
−1r)XsYs−1r)⊗̃1K)Vr

=
∑̃
s∈T

∑̃
r∈T

δt,rf(r, 1)f(s, s
−1r)XsYs−1r =

∑̃
s∈T

f(s, s−1t)XsYs−1t.

By the above, c), and Proposition 1.1.2 b),

(X∗Y )t =
∑̃
s∈T

f(s, s−1t)(X∗)sYs−1t =
∑̃
s∈T

f(s, s−1t)f̃(s)(Xs−1)∗Ys−1t
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=
∑̃
s∈T

f(s−1, t)∗(Xs−1)∗Ys−1t =
∑̃
s∈T

f(s, t)∗X∗
sYst,

(XY ∗)t =
∑̃
s∈T

f(s, s−1t)Xs(Y
∗)s−1t =

∑̃
s∈T

f(s, s−1t)Xsf̃(s
−1t)(Yt−1s)

∗

=
∑̃
s∈T

f(t, t−1s)∗Xs(Yt−1s)
∗ =

∑̃
s∈T

f(t, s)∗XtsY
∗
s .

It follows by Proposition 1.1.2 a),

(X∗Y )1 =
∑̃
s∈T

X∗
sYs , (XY ∗)1 =

∑̃
s∈T

XsY
∗
s .

h) By c) and g), S(f) is an involutive unital subalgebra of LE(H). Be-
ing closed (resp. closed in LE(H) ...

H
(d) and Corollary 1.3.7 c))) it is a C**-

subalgebra of LE(H) (resp. generated by R(f) [1, Theorem 5.6.3.5 b)] and [1,

Corollary 4.4.4.12 a)] and by [1, Corollary 6.3.8.7] R(f)# is dense in SW (f)#T1
,

which is compact by Corollary 1.3.7 c)). The assertion concerning E follows
from Proposition 2.1.2 d) and Lemma 1.3.2 c). By Corollary 1.3.7 a), ReS(f)
is a closed set of S(f)T1 .

i) The assertion follows from h), Proposition 1.3.9 b), and Lemma 1.3.8
c)⇒ a).

j) For X ∈ S(f, F ), Y ∈ S(f), and t ∈ T , by g), (XY )t, (Y X)t ∈ S(f, F )
so S(f, F ) is an ideal of S(f). The closure properties follow from Proposition
2.1.6 c).

k) By c) and g), S(f, F ) is a unital involutive subalgebra of S(f) and by
Proposition 2.1.6 c), S(f, F ) is a C**-subalgebra of S(f). The last assertion
follows from the fact that the image of the map contains R(g).

l) There are U, V ∈ S(f) with
(X,Y ) = (U, V )∗(U, V ) = (U∗,−V ∗)(U, V ) = (U∗U + V ∗V,U∗V − V ∗U) .

For t ∈ T ,
0 ≤ (Ut, Vt)

∗(Ut, Vt) = (U∗
t ,−V ∗

t )(Ut, Vt) = (U∗
t Ut + V ∗

t Vt, U
∗
t Vt − V ∗

t Ut) .

By g),

X1 = (U∗U + V ∗V )1 =
∑̃
t∈T

(U∗
t Ut + V ∗

t Vt) ,

Y1 = (U∗V − V ∗U)1 =
∑̃
t∈T

(U∗
t Vt − V ∗

t Ut)

so

(X1, Y1) =
∑̃
t∈T

(U∗
t Ut + V ∗

t Vt, U
∗
t Vt − V ∗

t Ut) ∈
◦
E+ .
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Remark. It may happen that by the identification of i), SC(f) ̸= SW (f)
(Remark of Proposition 2.1.23).

Corollary 2.1.10.

a) If (xt)t∈T is a family in E such that (∥xt∥)t∈T is summable then

((xt⊗̃1K)Vt)t∈T

is norm summable in LE(H) and∥∥∥∥∥∑
t∈T

(xt⊗̃1K)Vt

∥∥∥∥∥ ≤∑
t∈T
∥xt∥ .

b) The set

A :=

{
X ∈ S(f) |

∑
t∈T
∥Xt∥ <∞

}
is a dense involutive unital subalgebra of S∥·∥(f) with∑

t∈T
∥(X∗)t∥ =

∑
t∈T
∥Xt∥ ,

∑
t∈T
∥(XY )t∥ ≤

(∑
t∈T
∥Xt∥

)(∑
t∈T
∥Yt∥

)
for all X,Y ∈ A.

c) A endowed with the norm

A −→ R+, X 7−→
∑
t∈T
∥Xt∥

is an involutive Banach algebra and S∥·∥(f) is its C*-hull.

Proof. a) For S ∈ Pf (T ), by Proposition 2.1.2 e),∥∥∥∥∥∑
t∈S

(xt⊗̃1K)Vt

∥∥∥∥∥ ≤∑
t∈S

∥∥xt⊗̃1K∥∥ ∥Vt∥ =∑
t∈S
∥xt∥

and the assertion follows.

b) By Theorem 2.1.9 c), X∗ ∈ S(f) and

∥(X∗)t∥ = ∥(Xt−1)∗∥ = ∥Xt−1∥

for all t ∈ T so ∑
t∈T
∥(X∗)t∥ =

∑
t∈T
∥Xt−1∥ =

∑
t∈T
∥Xt∥ .
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By Theorem 2.1.9 g), XY ∈ S(f) and

∥(XY )t∥ =

∥∥∥∥∥∑̃
s∈T

f(s, s−1t)XsYs−1t

∥∥∥∥∥ ≤∑
s∈T
∥Xs∥ ∥Ys−1t∥

for every t ∈ T so∑
t∈T
∥(XY )t∥ ≤

∑
t∈T

∑
s∈T
∥Xs∥ ∥Ys−1t∥ =

∑
s∈T
∥Xs∥

(∑
t∈T
∥Ys−1t∥

)

=
∑
s∈T
∥Xs∥

(∑
t∈T
∥Yt∥

)
=

(∑
t∈T
∥Xt∥

)(∑
t∈T
∥Yt∥

)
.

c) is easy to see.

Remark. There may exist X ∈ S∥·∥(f) for which ((Xt⊗̃1K)Vt)t∈T is not
norm summable, as it is known from the theory of trigonometric series (see
Proposition 3.5.1). In particular, the inclusion A ⊂ S∥·∥(f) may be strict.

Corollary 2.1.11. Let F be a unital C**-algebra and τ : E → F a
positive continuous (resp. W*-continuous) unital trace.

a) τ ◦ φ1,1 is a positive continuous (resp. W*-continuous) unital trace.

b) If τ is faithful then τ ◦ φ1,1 is faithful and V1 is finite.

c) In the W*-case, SW (f) is finite iff E is finite.

Proof. a) Let X,Y ∈ S(f). By Theorem 2.1.9 g) (and Proposition 1.1.2
a)),

τφ1,1(XY ) = τ

(∑̃
t∈T

f(t, t−1)XtYt−1

)
= τ

(∑̃
t∈T

f(t, t−1)Xt−1Yt

)

=
∑̃
t∈T

τ(f(t, t−1)Xt−1Yt) =
∑̃
t∈T

τ(f(t, t−1)YtXt−1)

= τ

(∑̃
t∈T

f(t, t−1)YtXt−1

)
= τφ1,1(Y X).

Thus τ ◦ φ1,1 is a trace which is obviously positive, continuous (resp. W*-
continuous), and unital (Proposition 2.1.6 c),d)).

b) By Theorem 2.1.9 g), φ1,1 is faithful, so τ ◦ φ is also faithful. Let
X ∈ S(f) with X∗X = V1. By a),

τφ1,1(XX
∗) = τ ◦ φ1,1(X

∗X) = τφ1,1V1 = 1F
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so

τφ1,1(V1 −XX∗) = 1F − 1F = 0 , V1 = XX∗ ,

and V1 is finite.

c) By b), if E is finite then SW (f) is also finite. The reverse implication
follows from the fact that E⊗̄1K is a unital W*-subalgebra of SW (f) (Theorem
2.1.9 h)).

Corollary 2.1.12. Assume T finite and for every x′ ∈ (E′)T put

x̃′ : S(f) −→ K , X 7−→
∑
t∈T

〈
Xt , x

′
t

〉
.

a) x̃′ ∈ S(f)′ and
sup
t∈T

∥∥x′t∥∥ ≤ ∥∥∥x̃′∥∥∥ ≤∑
t∈T

∥∥x′t∥∥
for every x′ ∈ (E′)T and the map

φ : (E′)T −→ S(f)′ , x′ 7−→ x̃′

is an isomorphism of involutive vector spaces such that

φ(xx′) = (x⊗ 1K)(φx′) , φ(x′x) = (φx′)(x⊗ 1K)

([1, Proposition 2.2.7.2]) for every x ∈ E and x′ ∈ (E′)T .

b) If E is a W*-algebra then the map

ψ : (Ë)T −→
..︷︸︸︷
S(f) , (at)t∈T 7−→ (ãt)t∈T

is an isomorphism of involutive vector spaces such that

ψ(xa) = (x⊗ 1K)(ψa) , ψ(ax) = (ψa)(x⊗ 1K)

for every x ∈ E and a ∈ (Ë)T .

Corollary 2.1.13. Assume T finite and let M be a Hilbert right S(f)-
module. M endowed with the right multiplication

M × E −→M, (ξ, x) 7−→ ξ(x⊗̃1K)

and with the inner-product

M ×M −→ E, (ξ, η) 7−→ ⟨ ξ | η ⟩1

is a Hilbert right E-module denoted by M̃ , LS(f)(M) is a unital C*-subalgebra

of LE(M̃), and M is selfdual if M̃ is so.
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Proof. By Proposition 2.1.6 d),g) and Theorem 2.1.9 g),l), for X,Y ∈
S(f) and x ∈ E,

φ1,1(X(x⊗̃1K)) = (φ1,1X)x , X ≥ 0 =⇒ φ1,1X ≥ 0 ,

(X,Y ) ∈
◦︷︸︸︷
S(f)+=⇒ (φ1,1X,φ1,1Y ) ∈

◦
E+ ,

inf { ∥φ1,1X∥ | X ∈ S(f)+ , ∥X∥ = 1 } > 0
and the assertion follows from Proposition 2.1.6 a),c),d) and [1, Proposition
5.6.2.5 a),c),d)].

Corollary 2.1.14. Let n ∈ N and let φ : S(f) → En,n be an E-C*-
homomorphism. Then (φVt)i,j ∈ Ec for all t ∈ T and all i, j ∈ Nn.

Proof. For x ∈ E, by Proposition 2.1.2 d) and Theorem 2.1.9 h),

x(φVt) = φ(x⊗̃1K)(φVt) = φ((x⊗̃1K)Vt) =

= φ(Vt(x⊗̃1K)) = (φVt)φ(x⊗̃1K) = (φVt)x
so (φVt)i,j ∈ Ec.

Corollary 2.1.15. Let S be a group and g ∈ F(S,S(f)). If we put

h : (T × S)× (T × S) −→ Un S(f)c , ((t1, s1), (t2, s2)) 7−→
(f(t1, t2)⊗̃1K)g(s1, s2)

then h ∈ F(T × S,S(f)).

Proof. The assertion follows from Theorem 2.1.9 h).

Corollary 2.1.16. Let X ∈ S(f) (resp. X ∈ S∥·∥(f)).

a) For every S ⊂ T ,
T3∑
s∈S

(Xs⊗̃1K)Vs ∈ S(f) (resp.

∥·∥∑
s∈S

(Xs⊗̃1K)Vs ∈ S∥·∥(f))

and

γ := sup

{ ∥∥∥∥∥∑
t∈S

(Xt⊗̃1K)Vt

∥∥∥∥∥
∣∣∣∣∣ S ∈ Pf (T )

}
<∞ .

b) We put for every α ∈ l∞(T )

αX : T −→ E , t 7−→ αtXt .

Then αX ∈ S(f) (resp. αX ∈ S∥·∥(f)) for every α ∈ l∞(T ) and the map

l∞(T ) −→ S(f) (resp. S∥·∥(f)), α 7−→ αX

is norm-continuous.
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c) Assume E is a W*-algebra and let l∞(T,E) be the C*-direct product of
the family (E)t∈T , which is a W*-algebra ([1, Proposition 4.4.4.21 a)]).
We put for every α ∈ l∞(T,E),

αX : T −→ E , t 7−→ αtXt .

Then αX ∈ SW (f) for every α ∈ l∞(T,E) and the map

l∞(T,E) −→ SW (f), α 7−→ αX

is continuous and W*-continuous.

Proof. a) In the C*-case the family ((Xs ⊗ 1K)Vs)s∈S is summable since
SC(f)T3 is complete. By Banach-Steinhaus Theorem, γ is finite.

In the W*-case the summability follows now from Corollary 1.3.7 b),c)
and Theorem 2.1.9 b).

b) Let G be the vector subspace { α ∈ l∞(T ) | α(T ) is finite } of l∞(T ).
By a), the map

G −→ S(f) (resp. S∥·∥(f)), α 7−→ αX

is well-defined, linear, and continuous. The assertion follows by continuity.
c) Let x ∈ E, S ⊂ T , and α := xeS . For ξ, η ∈ H and a ∈ Ë, by a) and

Lemma 1.3.2 b) (and Theorem 2.1.9 b)),〈
αX ,

˜︷ ︸︸ ︷
(a, ξ, η)

〉
= ⟨ ⟨ αXξ | η ⟩ , a ⟩ =

〈
Ë∑
t∈T

η∗t x((eSX)ξ)t , a

〉

=
∑
t∈T
⟨x , ((eSX)ξ)taη

∗
t ⟩ =

〈
x ,

E∑
t∈T

((eSX)ξ)taη
∗
t

〉
.

Let G be the involutive subalgebra { α ∈ l∞(T,E) | α(T ) is finite } of l∞(T,E)
and let Ḡ be its norm-closure in l∞(T,E), which is a C*-subalgebra of l∞(T,E).
By [1, Proposition 4.4.4.21 a)], G is dense in l∞(T,E)F̈ , where F := l∞(T,E).

Let α ∈ l∞(T,E)# and let F be a filter on G# converging to α in
l∞(T,E)F̈ ([1, Corollary 6.3.8.7]). By the above (and by Theorem 2.1.9 h)),

lim
β,F

βX = αX

in SW (f) ..︷ ︸︸ ︷
SW (f)

and so αX ∈ SW (f). The assertion follows.

Corollary 2.1.17. Let S be a subgroup of T . Put

fS := f |(S × S) , KS := l2(S) , G := { X ∈ S(f) | t ∈ T \ S =⇒ Xt = 0 } .

a) fS ∈ F(S,E).
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b) G is an E-C**-subalgebra of S(f).

c) For every X∈G, the family ((Xs⊗̃1KS
)V fS
s )s∈S is summable in LE(KS)T3

and the map

φ : G −→ S(fS) , X 7−→
T3∑
s∈S

(Xs⊗̃1KS
)V fS
s

is an injective E-C**-homomorphism.

d) If X ∈ G ∩ S∥·∥(f) then φX ∈ S∥·∥(fS) and the map

G ∩ S∥·∥(f) −→ S∥·∥(fS), X 7−→ φX

is an E-C*-isomorphism.

e) If S is finite then the map

G −→ S(fS), X 7−→
∑
t∈S

(Xt ⊗ 1KS
)V fS
t

is an E-C*-isomorphism.

Proof. a) is obvious.
b) By Theorem 2.1.9 c),g), G is an involutive unital subalgebra of S(f)

and by Proposition 2.1.6 a) (resp. Proposition 2.1.6 c) and Corollary 1.3.7 c))
and Theorem 2.1.9 h), it is an E-C**-subalgebra of S(f).

c) follows from Theorem 2.1.9 b) and Corollary 2.1.16 a).
d) follows from c).
e) is contained in d).

Definition 2.1.18. We denote by ST the set of finite subgroups of T and
call T locally finite if ST is upward directed and⋃

S∈ST

S = T .

T is locally finite iff the subgroups of T generated by finite subsets of T
are finite.

Corollary 2.1.19. Assume T locally finite. We put fS := f |(S × S)
for every S ∈ ST and identify S(fS) with { X ∈ S(f) | t ∈ T \ S ⇒ Xt = 0 }
(Corollary 2.1.17 e)).

a) For every X ∈ S∥·∥(f) and ε > 0 there is an S ∈ ST such that∥∥∥∥∥∑
t∈R

(Xt ⊗ 1K)Vt −X

∥∥∥∥∥ < ε

for every R ∈ ST with S ⊂ R.
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b) S∥·∥(f) is the norm closure of ∪s∈ST
S(fS) and so it is canonically iso-

morphic to the inductive limit of the inductive system { S(fS) | S ∈ ST }
and for every S ∈ ST the inclusion map S(fS) → S∥·∥(f) is the associ-
ated canonical morphism.

Proof. a) There is a Y ∈ R(f) with ∥X − Y ∥ < ε
2 . Let S ∈ ST with

Y ∈ S(fS). By Corollary 2.1.17 b), for R ∈ ST with S ⊂ R,∥∥∥∥∥∑
t∈R

((Xt − Yt)⊗̃1K)Vt

∥∥∥∥∥ ≤ ∥X − Y ∥ < ε

2

so∥∥∥∥∥∑
t∈R

(Xt⊗̃1K)Vt −X

∥∥∥∥∥ ≤
∥∥∥∥∥∑
t∈R

((Xt − Yt)⊗̃1K)Vt

∥∥∥∥∥+ ∥Y −X∥ < ε

2
+
ε

2
= ε .

b) follows from a).

Remark. The C*-algebras of the form S∥·∥(f) with T locally finite can be
seen as a kind of AF-E-C*-algebras.

Proposition 2.1.20. The following are equivalent for all t ∈ T with
t2 = 1 and α ∈ Un E.

a) 1
2(V1 + (α⊗̃1K)Vt) ∈ Pr S(f).

b) α2 = f̃(t).

Proof. By Proposition 2.1.2 b),d),e),

(Vt)
∗ = (f̃(t)⊗̃1K)Vt , (Vt)

2 = (f̃(t)∗⊗̃1K)V1

so
1

2
(V1 + (α⊗̃1K)Vt)

∗ =
1

2
(V1 + ((α∗f̃(t))⊗̃1K)Vt) ,(

1

2
(V1 + (α⊗̃1K)Vt)

)2

=
1

4
((1E + α2f̃(t)∗)⊗̃1K)V1 +

1

2
(α⊗̃1K)Vt .

Thus a) is equivalent to α∗f̃(t) = α and α2f̃(t)∗ = 1E , which is equivalent to
b).

Corollary 2.1.21. Let t ∈ T such that t2 = 1 and f̃(t) = 1E. Then

1

2
(V1 ± Vt) ∈ Pr S(f) , (V1 + Vt)(V1 − Vt) = 0 .

Proof. The assertion follows from Proposition 2.1.20.
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Corollary 2.1.22. Let α, β ∈ Un E, s, t ∈ T with s2 = t2 = 1, st = ts,

γ :=
1

2
(α∗βf(s, st)∗ + β∗αf(t, st)∗) , γ′ :=

1

2
(αβ∗f(st, t)∗ + βα∗f(st, s)∗) ,

and

X :=
1

2
((α⊗̃1K)Vs + (β⊗̃1K)Vt) .

a) f(s, st)f(t, st) = f(st, t)f(st, s) = f̃(st)∗.

b) f(st, t)f(s, st) = f(st, s)f(t, st).

c) X∗X = 1
2(V1 + (γ⊗̃1K)Vst) , XX∗ = 1

2(V1 + (γ′⊗̃1K)Vst).

d) The following are equivalent.

d1) X
∗X ∈ Pr S(f).

d2) XX
∗ ∈ Pr S(f).

d3) α
∗βf(t, st) = β∗αf(s, st).

d4) α
∗βf(st, t) = β∗αf(st, s).

Proof. a) and b) follow from the equation of Schur functions (Defini-
tion1.1.1) and Proposition 1.1.2 a).

c) By Proposition 2.1.2 b),e) and Proposition 1.1.2 b),

X∗ =
1

2
(((α∗f̃(s))⊗̃1K)Vs + ((β∗f̃(t))⊗̃1K)Vt),

X∗X =
1

2
V1 +

1

4
((α∗βf̃(s)f(s, t) + β∗αf̃(t)f(t, s))⊗̃1K)Vst

=
1

2
V1 +

1

4
((α∗βf(s, st)∗ + β∗αf(t, st)∗)⊗̃1K)Vst =

1

2
(V1 + (γ⊗̃1K)Vst),

XX∗ =
1

2
V1 +

1

4
((αβ∗f̃(t)f(s, t) + βα∗f̃(s)f(t, s))⊗̃1K)Vst

=
1

2
V1 +

1

4
((αβ∗f(st, t)∗+ βα∗f(st, s)∗)⊗̃1K)Vst =

1

2
(V1 + (γ′⊗̃1K)Vst).

d1 ⇔ d2 is known.

d1 ⇔ d3. By a), we have

γ2 − f̃(st) = 1

4
(α∗βα∗βf(s, st)∗2 + β∗αβ∗αf(t, st)∗2 + 2f(s, st)∗f(t, st)∗)

− f(s, st)∗f(t, st)∗ = 1

4
(α∗βf(s, st)∗ − β∗αf(t, st)∗)2.
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By Proposition 2.1.20 d1) is equivalent to γ2 = f̃(st) so, by the above, since
α∗βf(s, st)∗ − β∗αf(t, st)∗ is normal, it is equivalent to

α∗βf(s, st)∗ = β∗αf(t, st)∗ or to β∗αf(s, st) = α∗βf(t, st) .

d3 ⇔ d4 follows from b).

Proposition 2.1.23. Let X ∈ S(f).

a)
∑̃
t∈T

X∗
tXt = (X∗X)1 ,

∑̃
t∈T

(XtX
∗
t ) = (XX∗)1.

b) (Xt)t∈T , (X
∗
t )t∈T ∈ ⃝̃|

t∈T
Ĕ,

∥(Xt)t∈T ∥ ≤ ∥X∥ , ∥(X∗
t )t∈T ∥ ≤ ∥X∥ .

c) If T is finite and f is constant then there is an X ∈ S(f) with
∥X∥ ≥

√
Card T ∥(Xt)t∈T ∥ , ∥X∥ ≥

√
Card T ∥(X∗

t )t∈T ∥ .

d) If T is infinite and locally finite and f is constant then the map

S(f) −→ ⃝̃|
t∈T

Ĕ, X 7−→ (Xt)t∈T

is not surjective.

Proof. a) follows from Theorem 2.1.9 g).
b) By a),

(Xt)t∈T , (X
∗
t )t∈T ∈ ⃝̃|

t∈T
Ĕ

and by Proposition 2.1.6 a),

∥(Xt)t∈T ∥2 = ∥φ1,1(X
∗X)∥ ≤ ∥X∗X∥ = ∥X∥2 ,

∥(X∗
t )t∈T ∥

2 = ∥φ1,1(XX
∗)∥ ≤ ∥XX∗∥ = ∥X∥2 .

c) Let n := Card T and for every t ∈ T put Xt := 1E , ξt := 1E . Then

∥(Xt)t∈T ∥2 = ∥(X∗
t )t∈T ∥

2 = n , ∥(ξt)t∈T ∥2 = n .

For t ∈ T , by Theorem 2.1.9 e),

(Xξ)t =
∑
s∈T

f(s, s−1t)Xsξs−1t = n1E

so

⟨ Xξ | Xξ ⟩ = n31E , n ∥X∥2 = ∥X∥2 ∥ξ∥2 ≥ ∥Xξ∥2 = n3,

∥X∥2 ≥ n ∥(Xt)t∈T ∥2 , ∥X∥ ≥
√
n ∥(Xt)t∈T ∥ .

d) follows from c), Theorem 2.1.9 a), and the Principle of Inverse Oper-
ator.
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Remark. If E is a W*-algebra then it may exist a family (xt)t∈T in E such
that the family ((xt⊗̃1K)Vt)t∈T is summable in LE(H)T2 in the W*-case but
not in the C*-case as the following example shows. Take T := Z, f constant,
E := l∞(Z), and xt := (δt,s)s∈T ∈ E for every t ∈ T . By Proposition 2.1.23 b),
((xt ⊗ 1K)Vt)t∈T is not summable in LE(H)T2 in the C*-case. In the W*-case
for ξ ∈ H and s, t ∈ T ,

⟨ ((xt⊗̄1K)Vtξ)s | ((xt⊗̄1K)Vtξ)s ⟩ = et|ξs−t|2 ,

⟨ (xt⊗̄1K)Vtξ | (xt⊗̄1K)Vtξ ⟩ = et ∥ξ∥2 .
Thus

X :=

T2∑
t∈T

(xt⊗̄1K)Vt ∈ SW (f) .

Using the identification of Theorem 2.1.9 i), we get X ∈ SW (f) \ SC(f).

Corollary 2.1.24. Let X ∈ S(f).

a) X ∈
{
x⊗̃1K

∣∣ x ∈ E }c iff Xt ∈ Ec for all t ∈ T .

b) X ∈ { Vt | t ∈ T }c iff

Xs−1ts = f(s, s−1ts)∗f(t, s)Xt = f(s−1, ts)f(t, s)f̃(s)Xt

for all s, t ∈ T .

c) X ∈ S(f)c iff for all s, t ∈ T

Xt ∈ Ec , Xs−1ts = f(s, s−1ts)∗f(t, s)Xt = f(s−1, ts)f(t, s)f̃(s)Xt .

In particular if f(s, t) = f(t, s) for all s, t ∈ T then X ∈ S(f)c iff Xt ∈ Ec
for all t ∈ T .

d) φ1,1(S(f)c) = Ec.

e) If the conjugacy class of t ∈ T (i.e. the set
{
s−1ts

∣∣ s ∈ T }) is infinite
and X ∈ { Vt | t ∈ T }c then Xt = 0.

f) If the conjugacy class of every t ∈ T \ {1} is infinite then

{ Vt | t ∈ T }c =
{
x⊗̃1K

∣∣ x ∈ E } , S(f)c =
{
x⊗̃1K

∣∣ x ∈ Ec } .

Thus in this case S(f) is a kind of E-factor.

g) The following are equivalent:

g1) S(f) is commutative.

g2) T and E are commutative and f(s, t) = f(t, s) for all s, t ∈ T .
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Proof. For s, t ∈ T , x ∈ E, and Y := (x⊗̃1K)Vs, by Theorem 2.1.9 g),

(XY )t =
∑̃
r∈T

f(r, r−1t)XrYr−1t =
∑̃
r∈T

f(r, r−1t)Xrδs,r−1tx = f(ts−1, s)Xts−1x ,

(Y X)t =
∑̃
r∈T

f(r, r−1t)YrXr−1t =
∑̃
r∈T

f(r, r−1t)δr,sxXr−1t = f(s, s−1t)xXs−1t .

a) follows from the above by putting s := 1 (Proposition 1.1.2 a)).

b) follows from the above by putting x := 1E and t := rs (Proposition
1.1.2).

c) follows from a),b), and Corollary 1.3.7 d). The last assertion follows
using Proposition 1.1.5 a).

d) follows from c) (and Proposition 1.1.2 a)).

e) follows from b) and Proposition 2.1.23 b).

f) follows from c), e), and Proposition 2.1.2 d).

g1 ⇒ g2. By a), E is commutative. By Proposition 2.1.2 b),

f(s, t)Vst = VsVt = VtVs = f(t, s)VtVs = f(t, s)Vts

and so by Theorem 2.1.9 a), st = ts and f(s, t) = f(t, s).

g2 ⇒ g1 follows from c).

Corollary 2.1.25. If K = R then the following are equivalent:

a) S(f)c = S(f) = Re S(f).

b) T is commutative, Ec = E = Re E, and

f(s, t) = f(t, s) , f̃(t) = 1E , t2 = 1

for all s, t ∈ T .

Proof. a ⇒ b. By Corollary 2.1.24 g1 ⇒ g2, T is commutative, E = Ec,
and f(s, t) = f(t, s) for all s, t ∈ T . Since E is isomorphic with a C*-subalgebra
of S(f) (Theorem 2.1.9 h)), E = Re E. By Proposition 2.1.2 e),

Vt = V ∗
t = (f̃(t)⊗̃1K)Vt−1

so by Theorem 2.1.9 a), t = t−1 , f̃(t) = 1E , so t
2 = 1.

b ⇒ a. By Corollary 2.1.24 g2 ⇒ g1, S(f)c = S(f). For X ∈ S(f) and
t ∈ T , by Theorem 2.1.9 c),

(X∗)t = f̃(t)(Xt−1)∗ = (Xt)
∗ = Xt

so X∗ = X (Theorem 2.1.9 a)).
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Proposition 2.1.26. Let (Ei)i∈I be a family of unital C**-algebras such
that E is the C*-direct product of this family. For every i ∈ I, we identify Ei
with the corresponding closed ideal of E (resp. of EË) and put

fi : T × T −→ Un Eci , (s, t) 7−→ f(s, t)i .

a) For every i ∈ I, fi ∈ F(T,Ei). We put (by Theorem 2.1.9 b))

φi : S(f) −→ S(fi) , X 7−→
T2∑
t∈T

((Xt)i⊗̃1K)V fi
t .

φi is a surjective C**-homomorphism.

b) In the C*-case, if T is finite then R(f) = S∥·∥(f) = SC(f) is isomorphic
to the C*-direct product of the family

(R(fi) = S∥·∥(fi) = SC(fi))i∈I .

c) In the C*-case, if I is finite then SC(f) (resp. S∥·∥(f)) is isomorphic to∏
i∈I
SC(fi) (resp.

∏
i∈I
S∥·∥(fi)).

d) In the W*-case, SW (f) is isomorphic to the C*-direct product of the
family (SW (fi))i∈I .

Remark. The C*-isomorphisms of b) and c) cease to be surjective in
general if T and I are both infinite. Take T := (Z2)

N, I := N, Ei := K for
every i ∈ I, and E := l∞ (i.e. E is the C*-direct product of the family (Ei)i∈I).
For every n ∈ N put tn := (δm,n)m∈N ∈ T . Assume there is an X ∈ SC(f)
(resp. X ∈ S∥·∥(f)) with ψX = (V fi

ti
)i∈I (resp. φX = (V fi

ti
)i∈I), where ψ and

φ are the maps of b) and c), respectively. Then (Xtn)i = δi,n for all i, n ∈ N
and this implies (Xt)t∈T ̸∈ ⃝|

t∈T
Ĕ, which contradicts Proposition 2.1.23 b).

Proposition 2.1.27. Let S be a finite group, K ′ := l2(S), K ′′ := l2(S ×
T ), and g ∈ F(S,S(f)) such that g(s1, s2) ∈ Un Ec (where Un Ec is identified
with (Un Ec)⊗̃1K ⊂ Un S(f)c) for all s1, s2 ∈ S and put

h : (S × T )× (S × T ) −→ Un Ec , ((s1, t1), (s2, t2)) 7−→ g(s1, s2)f(t1, t2) .

a) h ∈ F(S × T,E); for every X ∈ S(g) put

φX :=
∑
s∈S

T3∑
t∈T

((Xs)t⊗̃1K′′)V h
(s,t) ∈ S(h) .

b) φ : S(g) −→ S(h) is an E-C*-isomorphism.
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Proof. a) is obvious.

b) For X,Y ∈ S(g) and (s, t) ∈ S × T , by Theorem 2.1.9 c),g) and
Proposition 2.1.6 g),

(φX∗)(s,t) = ((X∗)s)t = g̃(s)((Xs−1)∗)t

= g̃(s)f̃(t)((Xs−1)t−1)∗ = h̃(s, t)(X(s,t)−1)∗ = ((φX)∗)(s,t),

(φ(XY ))(s,t) = ((XY )s)t =
∑
r∈S

g(r, r−1s)(XrYr−1s)t

=
∑
r∈S

g(r, r−1s)
∑̃
q∈T

f(q, q−1t)(Xr)q(Yr−1s)q−1t

=
∑̃

(r,q)∈S×T

h((r, q),(r, q)−1(s, t))X(r,q)Y(r,q)−1(s,t) =((φX)(φY ))(s,t),

so φ is a C*-homomorphism. If φX = 0 then X(s,t) = 0 for all (s, t) ∈ S × T ,
so X = 0 and φ is injective. Let Z ∈ S(h). For every s ∈ S put

Xs :=

T3∑
t∈T

(Z(s,t)⊗̃1K)V f
t ∈ S(f) ,

X :=
∑
s∈S

(Xs ⊗ 1K′)V
g
s ∈ S(g) .

Then φX = Z and φ is surjective.

Proposition 2.1.28. If T is infinite and X ∈ S(f) \ {0} then X(H#) is
not precompact.

Proof. Let t ∈ T with Xt ̸= 0. There is an x′ ∈ E′
+ (resp. x′ ∈ Ë+) with

⟨X∗
tXt , x

′ ⟩ > 0. We put t1 := 1 and construct a sequence (tn)n∈N recursively
in T such that for all m,n ∈ N, m < n,∣∣∣〈 f(t, tm)∗f(ttmt−1

n , tn)X
∗
tXttmt

−1
n
, x′

〉∣∣∣ < 1

2

〈
X∗
tXt , x

′ 〉 .
Let n ∈ N \ {1} and assume the sequence was constructed up to n − 1. Since
(Proposition 2.1.23 a))∑

s∈T

〈
X∗
ttms−1Xttms−1 , x′

〉
<∞

for all m ∈ Nn−1 there is a tn ∈ T with〈
X∗
ttmt

−1
n
Xttmt

−1
n
, x′

〉
<

1

4

〈
X∗
tXt , x

′ 〉
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for all m ∈ Nn−1. By Schwarz’ inequality ([1, Proposition 2.3.4.6 c)]) for
m ∈ Nn−1,∣∣∣〈 f(t, tm)∗f(ttmt−1

n , tn)X
∗
tXttmt

−1
n
, x′

〉∣∣∣2
≤
〈
X∗
tXt , x

′ 〉 〈X∗
ttmt

−1
n
Xttmt

−1
n
, x′

〉
<

1

4

〈
X∗
tXt , x

′ 〉2 .
This finishes the recursive construction.

For r, s ∈ T , by Theorem 2.1.9 e),

(X(1E ⊗ er))s =
∑̃
q∈T

f(q, q−1s)Xqδr,q−1s = f(sr−1, r)Xsr−1 ,

⟨ X(1E ⊗ er) | Xt ⊗ es ⟩ = f(sr−1, r)X∗
tXsr−1 .

For m,n ∈ N, m < n, it follows

⟨ X(1E ⊗ etm) | Xt ⊗ ettm ⟩ = f(t, tm)X
∗
tXt,〈

⟨ X(1E ⊗ etm) | Xt ⊗ ettm ⟩ , x′f(t, tm)∗
〉
=
〈
X∗
tXt , x

′ 〉 ,
⟨ X(1E ⊗ etn) | Xt ⊗ ettm ⟩ = f(ttmt

−1
n , tn)X

∗
tXttmt

−1
n
,

|
〈
⟨ X(1E ⊗ etn) | Xt ⊗ ettm ⟩ , x′f(t, tm)∗

〉
|

=
∣∣∣〈 f(t, tm)∗f(ttmt−1

n , tn)X
∗
tXttmt

−1
n
, x′

〉∣∣∣ < 1

2

〈
X∗
tXt , x

′ 〉 ,∥∥x′∥∥ ∥X(1E ⊗ etm)−X(1E ⊗ etn)∥ ∥Xt∥
≥
∣∣〈 ⟨ X(1E ⊗ etm)−X(1E ⊗ etn) | Xt ⊗ ettm ⟩ , x′f(t, tm)∗

〉∣∣
≥
∣∣〈 ⟨ X(1E ⊗ etm) | Xt ⊗ ettm ⟩ , x′f(t, tm)∗

〉∣∣−
−
∣∣〈 ⟨ X(1E ⊗ etn) | Xt ⊗ ettm ⟩ , x′f(t, tm)∗

〉∣∣
>
〈
X∗
tXt , x

′ 〉− 1

2

〈
X∗
tXt , x

′ 〉 = 1

2

〈
X∗
TXT , x

′ 〉 .
Thus the sequence (X(1E⊗etn))n∈N has no Cauchy subsequence and therefore
X(H#) is not precompact.

Proposition 2.1.29. Assume T finite and let Ω be a compact space,
ω0 ∈ Ω,

g : T × T −→ Un C(Ω, E) , (s, t) 7−→ f(s, t)1Ω,

A := { X ∈ S(g) | t ∈ T, t ̸= 1 =⇒ Xt(ω0) = 0 } ,

B := { Y ∈ C(Ω,S(f)) | t ∈ T, t ̸= 1 =⇒ Y (ω0)t = 0 } .
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Then g ∈ F(T, C(Ω, E)) and we define for every X ∈ A and Y ∈ B,

φX : Ω −→ S(f) , ω 7−→
∑
t∈T

(Xt(ω)⊗ 1K)V f
t ,

ψY :=
∑
t∈T

(Y (·)t ⊗ 1K)V g
t .

Then A (resp. B) is a unital C*-subalgebra of S(g) (resp. of C(Ω,S(f)))

φ : A −→ B , ψ : B −→ A

are C*-isomorphisms, and φ = ψ−1.

Proof. It is easy to see that A (resp. B) is a unital C*-subalgebra of S(g)
(resp. of C(Ω,S(f))) and that φ and ψ are well-defined. For X,X ′ ∈ A, t ∈ T ,
and ω ∈ Ω, by Theorem 2.1.9 c),g) and Proposition 2.1.2 e),

(((φX)(φX ′))(ω))t =
∑
s∈T

f(s, s−1t)((φX)(ω))s((φX
′)(ω))s−1t

=
∑
s∈T

f(s, s−1t)Xs(ω)X
′
s−1t(ω) =

∑
s∈T

(f(s, s−1t)XsX
′
s−1t)(ω)

= (XX ′)t(ω) = (φ(XX ′)(ω))t,

(φX∗)(ω) =
∑
s∈T

(((X∗)s(ω))⊗ 1K)V f
s =

∑
s∈T

((f̃(s)((Xs−1)∗(ω)))⊗ 1K)V f
s

=
∑
s∈T

((Xs−1)(ω)∗ ⊗ 1K)(V f
s−1)

∗ =
∑
s∈T

(Xs(ω)
∗ ⊗ 1K)(V f

s )
∗ = (φX)∗(ω)

so φ is a C*-homomorphism and we have

(ψφX)t = (φX)t = Xt .

Moreover for Y ∈ B,

(φψY )t(ω) = ((ψY )(ω))t = Yt(ω)

which proves the assertion.

2.2. Variation of the parameters

In this subsection, we examine the changes produced by the replacement
of the groups and of the Schur functions.

Definition 2.2.1. We put for every λ ∈ Λ(T,E) (Definition 1.1.3)

Uλ : H −→ H , ξ 7−→ (λ(t)ξt)t∈T .
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It is easy to see that Uλ is well-defined, Uλ ∈ Un LE(H), and the map

Λ(T,E) −→ Un LE(H), λ 7−→ Uλ

is an injective group homomorphism with U∗
λ = Uλ∗ (Proposition 1.1.4 c)).

Moreover
∥Uλ − Uµ∥ ≤ ∥λ− µ∥∞

for all λ, µ ∈ Λ(T,E).

Proposition 2.2.2. Let f, g ∈ F(T,E) and λ ∈ Λ(T,E).

a) The following are equivalent:

a1) g = fδλ.

a2) There is a (unique) E-C*-isomorphism

φ : S(f) −→ S(g)

continuous with respect to the T2-topologies such that for all t ∈ T
and x ∈ E,

φV f
t = (λ(t)∗⊗̃1K)V g

t

(we call such an isomorphism an S-isomorphism and denote it by
≈S)

b) If the above equivalent assertions are fulfilled then for X ∈ S(f) and
t ∈ T ,

φX = U∗
λXUλ , (φX)t = λ(t)∗Xt .

c) There is a natural bijection

{ S(f) | f ∈ F(T,E) } / ≈S−→ F(T,E)/ { δλ | λ ∈ Λ(T,E) } .

Proof. By Proposition 1.1.4 c), δλ ∈ F(T,E) for every λ ∈ Λ(T,E).

a1)⇒ a2) and b).
For s, t ∈ T and ζ ∈ Ĕ, by Proposition 2.1.2 c),

U∗
λV

f
t Uλ(ζ ⊗ es) = U∗

λV
f
t ((λ(s)ζ)⊗ es) = U∗

λ((f(t, s)λ(s)ζ)⊗ ets)
= (λ(ts)∗f(t, s)λ(s)ζ)⊗ ets = (λ(t)∗g(t, s)ζ)⊗ ets = (λ(t)∗⊗̃1K)V g

t (ζ ⊗ es)

so (by Proposition 2.1.2 e))

U∗
λV

f
t Uλ = (λ(t)∗⊗̃1K)V g

t .

Thus the map
φ : S(f) −→ S(g) , X 7−→ U∗

λXUλ
is well-defined. It is obvious that it has the properties described in a2). The
uniqueness follows from Theorem 2.1.9 b).
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We have

φ((Xt⊗̃1K)V f
t ) = (Xt⊗̃1K)(λ(t)∗⊗̃1K)V g

t = ((λ(t)∗Xt)⊗̃1K)V g
t

so (φX)t = λ(t)∗Xt.
a2)⇒ a1). Put h := fδλ. By the above, for t ∈ T ,

(λ(t)∗⊗̃1K)V g
t = φV f

t = (λ(t)∗⊗̃1K)V h
t

so V g
t = V h

t and this implies g = h.
c) follows from a).

Remark. Not every E-C*-isomorphism S(f)→ S(g) is an S isomorphism
(see Remark of Proposition 3.2.3).

Corollary 2.2.3. Let

Λ0(T,E) := { λ ∈ Λ(T,E) | λ is a group homomorphism }

and for every λ ∈ Λ0(T,E) put

φλ : S(f) −→ S(f) , X 7−→ U∗
λXUλ .

Then the map λ 7→ φλ is an injective group homomorphism.

Proof. By Proposition 1.1.4 c), Λ0(T,E) is the kernel of the map

Λ(T,E) −→ F(T,E), λ 7−→ δλ

so by Proposition 2.2.2, φλ is well-defined. Thus only the injectivity of the
map has to be proved. For t ∈ T and ζ ∈ Ĕ, by Proposition 2.1.2 c),

U∗
λVtUλ(ζ ⊗ e1) = U∗

λVt(ζ ⊗ e1) = U∗
λ(ζ ⊗ et)

= (λ(t)∗ζ)⊗ et = (λ(t)∗⊗̃1K)Vt(ζ ⊗ e1).

So if φλ is the identity map then λ(t) = 1E for every t ∈ T .

Proposition 2.2.4. Let F be a unital C**-algebra, φ : E → F a surjec-

tive C**-homomorphism, g := φ ◦ f ∈ F(T, F ), and L := ⃝̃|
t∈T

F̆ . We put for

all ξ ∈ H, η ∈ L, and X ∈ LE(H),

ξ̃ := (φξi)i∈I ∈ L , X̃η := X̃ζ ∈ L ,

where ζ ∈ H with ζ̃ = η (Lemma 1.3.11 a),b) and Proposition 1.3.12 a)). Then

X̃ =

T3∑
t∈T

((φXt)⊗̃1K)V g
t ∈ S(g)

for every X ∈ S(f) and the map

φ̃ : S(f) −→ S(g) , X 7−→ X̃



258 C. Constantinescu 60

is a surjective C**-homomorphism, continuous with respect to the topologies
Tk, k ∈ {1, 2, 3} such that

Ker φ̃ = { X ∈ S(f) | t ∈ T =⇒ Xt ∈ Ker φ } .

Proof. For s, t ∈ T and ξ ∈ H, ˜︷ ︸︸ ︷
(Xt⊗̃1K)V f

t ξ̃

s = (
˜︷ ︸︸ ︷

(Xt⊗̃1K)V f
t ξ)s = φ((Xt⊗̃1K)V f

t ξ)s

= φ(f(t, t−1s)Xtξt−1s) = g(t, t−1s)(φXt)ξ̃t−1s = (((φXt)⊗̃1K)V g
t ξ̃)s

so by Lemma 1.3.11 b),

˜︷ ︸︸ ︷
(Xt⊗̃1K)V f

t = ((φXt)⊗̃1K)V g
t .

By Theorem 2.1.9 b),

X =

T3∑
t∈T

(Xt⊗̃1K)V f
t

so by the above and by Proposition 1.3.12 b),

X̃ =

T3∑
t∈T

((φXt)⊗̃1K)V g
t ∈ S(g) .

By Proposition 1.3.12 b), φ̃ is a surjective C**-homomorphism, continuous
with respect to the topologies Tk (k ∈ {1, 2, 3}). The last assertion is easy to
see.

Corollary 2.2.5. Let F be a unital C*-algebra, φ : E → F a unital
C*-homomorphism such that φ(Un Ec) ⊂ F c, g := φ ◦ f ∈ F(T, F ), and
L := ⃝|

t∈T
F̆ . Then the map

φ̃ : S∥·∥(f) −→ S∥·∥(g) , X 7−→
∥·∥∑
t∈T

((φXt)⊗ 1L)V
g
t

is C*-homomorphism.

Proof. Put G := E/Ker φ and denote by φ1 : E → G the quotient
map and by φ2 : G → F the corresponding injective C*-homomorphism. By
Proposition 2.2.4, the corresponding map

φ̃1 : S∥·∥(f) −→ S∥·∥(φ1 ◦ f)
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is a C*-homomorphism and by Theorem 2.1.9 k), the corresponding map

φ̃2 : S∥·∥(φ1 ◦ f) −→ S∥·∥(g)

is also a C*-homomorphism. The assertion follows from φ̃ = φ̃2 ◦ φ̃1.

Proposition 2.2.6. Let T ′ be a group, K ′ := l2(T ′), H ′ := Ĕ⊗̃K ′, ψ :
T → T ′ a surjective group homomorphism such that

sup
t′∈T ′

Card
−1
ψ(t′) ∈ N ,

and f ′ ∈ F(T ′, E) such that f ′ ◦ (ψ × ψ) = f . If we put

X ′
t′ :=

∑
t∈
−1
ψ (t′)

Xt

for every X∈S(f) and t′∈T ′ then the family ((X ′
t′⊗̃1K′)V

f ′

t′ )t′∈T ′ is summable
in LE(H ′)T2 for every X ∈ S(f) and the map

ψ̃ : S(f) −→ S(f ′) , X 7−→ X ′ :=

T1∑
t′∈T ′

(X ′
t′⊗̃1K′)V

f ′

t′

is a surjective E-C**-homomorphism.

We may drop the hypothesis that ψ is surjective if we replace S by S∥·∥.

Proof. Let X ∈ S(f). By Corollary 2.1.16 a), since ψ is surjective and

sup
t′∈T ′

Card
−1
ψ(t′) ∈ N ,

it follows that the family ((X ′
t′⊗̃1K′)V

f ′

t′ )t′∈T ′ is summable in LE(H ′)T2 and
therefore X ′ ∈ S(f ′).

Let X,Y ∈ S(f). By Theorem 2.1.9 c),g), for t′ ∈ T ′,

(X ′∗)t′ = f̃ ′(t′)(Xt′−1)∗ = f̃ ′(t′)

 ∑
t∈
−1
ψ (t′−1)

Xt


∗

= f̃ ′(t′)
∑

s∈
−1
ψ (t′)

(Xs−1)∗

=
∑

s∈
−1
ψ (t′)

f̃(s)(Xs−1)∗ =
∑

s∈
−1
ψ (t′)

(X∗)s = (X∗)′t′ ,

(X ′Y ′)t′ =
∑̃
s′∈T ′

f ′(s′, s′−1t′)X ′
s′Y

′
s′−1t′
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=
∑̃
s′∈T ′

f ′(s′, s′−1t′)

 ∑
s∈
−1
ψ (s′)

Xs


 ∑
r∈
−1
ψ (s′−1t′)

Yr



=
∑̃
s′∈T ′

f ′(s′, s′−1t′)

 ∑
s∈
−1
ψ (s′)

∑
t∈
−1
ψ (t′)

XsYs−1t



=
∑̃
s′∈T ′

 ∑
s∈
−1
ψ (s′)

∑
t∈
−1
ψ (t′)

f(s, s−1t)XsYs−1t


=

∑
t∈
−1
ψ (t′)

∑̃
s∈T

f(s, s−1t)XsYs−1t =
∑

t∈
−1
ψ (t′)

(XY )t = (XY )′t′ .

Thus ψ is a C*-homomorphism. The other assertions are easy to see.
The last assertion follows from Corollary 2.1.17 d).

Corollary 2.2.7. If we use the notation of Proposition 2.2.6 and Corol-
lary 2.2.5 and define φ̃′ and ψ̃′ in an obvious way then φ̃′ ◦ ψ̃ = ψ̃′ ◦ φ̃.

Proof. For X ∈ S(f) and t′ ∈ T ′,

(φ̃′ψ̃X)t′ = φ((ψ̃X)t′) = φ
∑

t∈
−1
ψ (t′)

Xt =
∑

t∈
−1
ψ (t′)

φXt ,

(ψ̃′φ̃X)t′ =
∑

t∈
−1
ψ (t′)

(φ̃X)t =
∑

t∈
−1
ψ (t′)

φXt ,

so
φ̃′ ◦ ψ̃ = ψ̃′ ◦ φ̃.

Proposition 2.2.8. Let F be a unital C*-subalgebra of E such that
f(s, t) ∈ F for all s, t ∈ T . We denote by ψ : F → E the inclusion map
and put

fF : T × T −→ Un F c , (s, t) 7−→ f(s, t),

HF := ⃝|
t∈T

F̆ ≈ F̆ ⊗K,

ψ̃ : HF −→ H , ξ 7−→ (ψξt)t∈T .
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Moreover, we denote for all s, t ∈ T by uFt , V
F
t , and φFs,t the corresponding

operators associated with F (fF ∈ F(T, F )). Let X ∈ SC(f) such that X(ψ̃ξ) ∈
ψ̃(HF ) for every ξ ∈ HF and put

XF : HF −→ HF , ξ 7−→ ξ′ ,

where ξ′ ∈ HF with ψ̃ξ′ = X(ψ̃ξ), and XF
t := (uF1 )

∗XFuFt ∈ F (by the
canonical identification of F with LF (F̆ )) for every t ∈ T .

a) ξ, η ∈ HF ⇒
〈
ψ̃ξ
∣∣∣ ψ̃η 〉 = ψ ⟨ ξ | η ⟩.

b) ψ̃ is linear and continuous with
∥∥∥ψ̃∥∥∥ = 1.

c) XF is linear and continuous with
∥∥XF

∥∥ = ∥X∥.

d) For s, t ∈ T ,

ψφFs,tX
F = φs,tX , ψXF

t = Xt , φFs,tX
F = fF (st−1, t)XF

st−1 .

e) XF ∈ S(fF ).

f) ξ ∈ HF ⇒ X(ψ̃ξ) =
∥·∥∑
t∈T

(Xt ⊗ 1K)Vt(ψ̃ξ).

Proof. a), b), and c) are easy to see.

d) By a) and Proposition 2.1.6 b),

φFs,tX
F =

〈
XF (1F ⊗ et)

∣∣ 1F ⊗ es 〉 ,
ψφFs,tX

F = ψ
〈
XF (1F ⊗ et)

∣∣ 1F ⊗ es 〉 = 〈 ψ̃(XF (1F ⊗ et))
∣∣∣ ψ̃(1F ⊗ es)〉

= ⟨ X(1E ⊗ et) | 1E ⊗ es ⟩ = φs,tX.

In particular,

ψXF
t = ψφF1,tX

F = φ1,tX = Xt

and by Proposition 2.1.8,

ψφFs,tX
F = φs,tX = f(st−1, t)Xst−1 = ψ(fF (st−1, t)XF

st−1) ,

φFs,tX
F = fF (st−1, t)XF

st−1 .

e) By c) and Proposition 2.1.3 d), for ξ ∈ HF ,

∥·∥∑
t∈T

uFt (u
F
t )

∗ξ = ξ ,
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XF ξ = XF

∥·∥∑
t∈T

uFt (u
F
t )

∗ξ =

∥·∥∑
t∈T

XFuFt (u
F
t )

∗ξ ,

XF ξ =

∥·∥∑
s∈T

uFs (u
F
s )

∗XF ξ =

∥·∥∑
s∈T

∥·∥∑
t∈T

uFs ((u
F
s )

∗XFuFt )(u
F
t )

∗ξ .

By d) and Proposition 2.1.4 b),d),

XF ξ =

∥·∥∑
s∈T

∥·∥∑
t∈T

uFs f
F (st−1, t)XF

st−1(u
F
t )

∗ξ =

∥·∥∑
s∈T

∥·∥∑
t∈T

uFs X
F
st−1(u

F
s )

∗V F
st−1ξ

=

∥·∥∑
s∈T

∥·∥∑
r∈T

uFs X
F
r (u

F
s )

∗V F
r ξ =

∥·∥∑
s∈T

∥·∥∑
r∈T

uFs (u
F
s )

∗(XF
r ⊗ 1F )V

F
r ξ

=

∥·∥∑
s∈T

uFs (u
F
s )

∗
∥·∥∑
t∈T

(XF
t ⊗ 1K)V F

t ξ =

∥·∥∑
t∈T

(XF
t ⊗ 1K)V F

t ξ

by Proposition 2.1.3 d), again. Thus

XF =

T2∑
t∈T

(XF
t ⊗ 1K)V F

t ∈ SC(fF ) .

f) For s, t ∈ T , by d),

(ψ̃((XF
t ⊗ 1K)V F

t ξ))s = ψ((XF
t ⊗ 1K)V F

t ξ)s = ψ(fF (t, t−1s)XF
t ξt−1s)

= f(t, t−1s)Xt(ψ̃ξ)t−1s = ((Xt ⊗ 1K)Vtψ̃ξ)s,

ψ̃((XF
t ⊗ 1K)V F

t ξ) = (Xt ⊗ 1K)Vtψ̃ξ
so by b) and e),

X(ψ̃ξ) = ψ̃(XF ξ) = ψ̃

 ∥·∥∑
t∈T

(XF
t ⊗ 1K)V F

t ξ


=

∥·∥∑
t∈T

ψ̃((XF
t ⊗ 1K)V F

t ξ) =

∥·∥∑
t∈T

(Xt ⊗ 1K)Vt(ψ̃ξ).

Proposition 2.2.9. Let F be a W*-algebra such that E is a unital C*-
subalgebra of F generating it as W*-algebra, φ : E → F the inclusion map,
and ξ̃ := (φξt)t∈T ∈ L for every ξ ∈ H, where

L :=
W

⃝|
t∈T

F̆ ≈ F̆ ⊗̄K .
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a) φ(Un Ec) ⊂ Un F c and g := φ ◦ f ∈ F(T, F ).

b) If

ψ : LE(H) −→ LF (L) , X 7−→ X̄

is the injective C*-homomorphism defined in Proposition 1.3.9 b), then
ψ(SC(f)) ⊂ SW (g), ψ(SC(f)) generates SW (g) as W*-algebra, and for
every X ∈ SC(f) and t ∈ T we have (X̄)t = φXt.

c) The following are equivalent for every Y ∈ SW (g):

c1) Y ∈ ψ(SC(f)).
c2) ξ ∈ H ⇒ Y ξ̃ ∈ H.

If these conditions are fulfilled then

c3) (Yt)t∈T ∈ H.

c4) (Y ∗
t )t∈T ∈ H.

c5) ξ ∈ H ⇒ Y ξ̃ =
∥·∥∑
t∈T

(Yt⊗̄1K)V g
t ξ̃ ∈ H.

Proof. a) follows from the density of φ(E) in FF̈ (Lemma 1.3.8 a⇒ c).

b) For x ∈ E, t ∈ T , and ξ ∈ H,

(((φx)⊗̄1K)V g
t ξ̃)s = g(t, t−1s)(φx)ξ̃t−1s

= φ(f(t, t−1s)xξt−1s) = φ((x⊗ 1K)Vtξs)

so

((φx)⊗̄1K)V g
t = (x⊗ 1K)V f

t .

Let now X ∈ S(f). By Theorem 2.1.9 b),

X =

T2∑
t∈T

(Xt ⊗ 1K)V f
t

so by the above and by Proposition 1.3.9 c) (and Theorem 2.1.9 d)),

X̄ =

T1∑
t∈T

(Xt ⊗ 1K)V f
t =

T1∑
t∈T

((φXt)⊗̄1K)V g
t ∈ SW (g)

so ψ(SC(f)) ⊂ SW (f). By Theorem 2.1.9 a), (X̄)t = φXt for every t ∈ T .
Since φ(E) is dense in FF̈ (Lemma 1.3.8 a)⇒ c)) it follows that

R(g) ⊂
T1

φ(R(f))
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so ψ(S(f)) is dense in S(g) ..︷︸︸︷
S(g)

and therefore generates S(g) as W*-algebra

(Lemma 1.3.8 c⇒ a).

c1)⇒ c2) follows from the definition of ψ.

c2)⇒ c1) follows from Proposition 2.2.8 e).

c2)⇒ c3) and c4) follows from Proposition 2.1.23 b).

c2)⇒ c5) follows from Proposition 2.2.8 f).

Lemma 2.2.10. Let E,F be W*-algebras, G := E⊗̄F , and

L :=
W

⃝|
t∈T

Ğ ≈ Ğ⊗̄K.

a) If z ∈ G# then z⊗̄1K belongs to the closure of

{ w⊗̄1K | w ∈ E ⊙ F, ∥w∥ ≤ 1 }

in LG(L)...L .

b) For every y ∈ F , the map

E#

Ë
−→ GG̈, x 7−→ x⊗ y

is continuous.

Proof. a) By [1, Corollary 6.3.8.7], there is a filter F on

{ w ∈ E ⊙ F | ∥w∥ ≤ 1 }

converging to z in G#

G̈
. By Lemma 1.3.2 b), for (a, ξ, η) ∈ G̈× L× L,

〈
z⊗̄1K , ˜(a, ξ, η)

〉
=

〈
z ,

G∑
t∈T

ξt a η
∗
t

〉

= lim
w,F

〈
w ,

G∑
t∈T

ξt a η
∗
t

〉
= lim

w,F

〈
w⊗̄1K , ˜(a, ξ, η)

〉
which proves the assertion.

b) Let (ai, bi)i∈I be a finite family in Ë × F̈ . For x ∈ E,〈
x⊗ y ,

∑
i∈I

ai ⊗ bi

〉
=
∑
i∈I
⟨x , ai ⟩ ⟨ y , bi ⟩ =

〈
x ,
∑
i∈I
⟨ y , bi ⟩ ai

〉
.

Since
{
x⊗ y | x ∈ E#

}
is a bounded set of G, the above identity proves the

continuity.
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Proposition 2.2.11. Let F be a unital C**-algebra, S a group, and g ∈
F(S, F ). We denote by ⊗σ the spatial tensor product and put

G := E ⊗σ F (resp. G := E⊗̄F ) ,

L := ⃝̃|
s∈S

F̆ ≈ F̆ ⊗̃l2(S), M := ⃝̃|
(t,s)∈T×S

Ğ ≈ Ğ⊗̃l2(T × S) ,

h : (T × S)× (T × S) −→ Un Gc , ((t1, s1), (t2, s2)) 7−→ f(t1, t2)⊗ g(s1, s2) .

a) h ∈ F(T × S,G), M ≈ H⊗̃L,
LE(H)⊗σ LF (L) ⊂ LG(M) in the C*-case,

LE(H)⊗̄LF (L) ≈ LG(M) in the W*-case .

b) For t ∈ T , s ∈ S, x ∈ E, y ∈ F ,

((x⊗̃1l2(T ))V
f
t )⊗ ((y⊗̃1l2(S))V g

s ) = ((x⊗ y)⊗̃1l2(T×S))V h
(t,s) .

c) In the C*-case, S∥·∥(f)⊗σS∥·∥(g) ≈ S∥·∥(h) and SC(f)⊗σSC(g) ≈ SC(h).

d) In the W*-case, if z ∈ G# and (t, s) ∈ T × S then (z⊗̄1l2(T×S))V h
(t,s) be-

longs to the closure of
{
(w⊗̄1l2(T×S))V h

(t,s)

∣∣∣ w ∈ (E ⊙ F )#
}
in LG(M) ...

M

e) In the W*-case, SW (f)⊗̄SW (g) ≈ SW (h).

Proof. a) h ∈ F(T × S,G) is obvious.
Let us treat the C*-case first. For ξ, ξ′ ∈ H and η, η′ ∈ L,〈

ξ′ ⊗ η′
∣∣ ξ ⊗ η 〉 = 〈 ξ′ ∣∣ ξ 〉⊗ 〈 η′ ∣∣ η 〉

=

(∑
t∈T

ξ∗t ξ
′
t

)
⊗

(∑
s∈S

η∗sη
′
s

)
=

∑
(t,s)∈T×S

((ξ∗t ξ
′
t)⊗ (η∗sη

′
s))

=
∑

(t,s)∈T×S

(ξ∗t ⊗ η∗s)(ξ′t ⊗ η′s) =
∑

(t,s)∈T×S

(ξt ⊗ ηs)∗(ξ′t ⊗ η′s),

so the linear map

H ⊙ L −→M, ξ ⊗ η 7−→ (ξt ⊗ ηs)(t,s)∈T×S
preserves the scalar products and it may be extended to a linear map φ :
H ⊗ L→M preserving the scalar products.

Let z ∈ G, (t, s) ∈ T ×S, and ε > 0. There is a finite family (xi, yi)i∈I in
E × F such that ∥∥∥∥∥∑

i∈I
xi ⊗ yi − z

∥∥∥∥∥ < ε .
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Then ∥∥∥∥∥∑
i∈I

(xi ⊗ et)⊗ (yi ⊗ es)− z ⊗ e(t,s)

∥∥∥∥∥ < ε

so z ⊗ e(t,s) ∈ φ(H ⊗ L) = φ(H ⊗ L). It follows that φ is surjective and so
H ⊗ L ≈M .

The proof for the inclusion LE(H) ⊗σ LF (L) ⊂ LG(M) can be found in
[5, page 37].

Let us now discus the W*-case. Ĕ⊗̄F̆ ≈ Ğ follows from [2, Proposition 1.3
e)], M ≈ H⊗̄L follows from [3, Corollary 2.2], and LE(H)⊗̄LF (L) ≈ LG(M)
follows from [2, Theorem 2.4 d)] or [3, Theorem 2.4].

b) For t1, t2 ∈ T , s1, s2 ∈ S, ξ ∈ Ĕ, and η ∈ F̆ , by Proposition 2.1.2 f)
and [3, Corollary 2.11],

(((x⊗̃1l2(T ))V
f
t1
)⊗̃((y⊗̃1l2(S))V g

s1))((ξ ⊗ et2)⊗ (η ⊗ es2))

= (((x⊗̃1l2(T ))V
f
t1
)(ξ ⊗ et2))⊗̃(((y⊗̃1l2(S))V g

s1)(η ⊗ es2)),

((((x⊗ y)⊗̃1l2(T×S)))V h
(t1,s1)

)((ξ ⊗ η)⊗ e(t2,s2))

= (h((t1, s1), (t2, s2))(x⊗ y)(ξ ⊗ η))⊗ e(t1t2,s1s2)
= ((f(t1, t2)xξ)⊗ (g(s1, s2)yη))⊗ et1t2 ⊗ es1s2
= (((x⊗̃1l2(T ))V

f
t1
)(ξ ⊗ et2))⊗̃(((y⊗̃1l2(S))V g

s1)(η ⊗ es2)).

We put

u := ((x⊗̃1l2(T ))V
f
t )⊗̃((y⊗̃1l2(S))V g

s )− ((x⊗ y)⊗̃1l2(T×S))V h
t,s ∈ LG(M) .

By the above, u(ζ ⊗ er) = 0 for all ζ ∈ Ĕ ⊙ F̆ and r ∈ T × S.
Let us consider the C*-case first. Since Ĕ ⊙ F̆ is dense in Ğ , we get

u(z ⊗ er) = 0 for all z ∈ Ğ and r ∈ T × S. For ζ ∈ M , by [1, Proposition
5.6.4.1 e)],

uζ = u

( ∑
r∈T×S

(ζr ⊗ er)

)
=

∑
r∈T×S

u(ζr ⊗ er) = 0 ,

which proves the assertion in this case.
Let us consider now the W*-case. Let z ∈ G# and r ∈ T ×S and let F be

a filter on (E⊙F )# converging to z in GG̈ ([1, Corollary 6.3.8.7]). For η ∈M ,

a ∈ G̈, and r ∈ T × S,〈
z ⊗ er , (̃a, η)

〉
= ⟨ ⟨ z ⊗ er | η ⟩ , a ⟩ = ⟨ η∗rz , a ⟩ = ⟨ z , aη∗r ⟩

= lim
w,F
⟨w , aη∗r ⟩ = lim

w,F

〈
w ⊗ er , (̃a, η)

〉
,
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Hence
lim
w,F

w ⊗ er = z ⊗ er
in MM̈ . Since u : MM̈ → MM̈ is continuous ([1, Proposition 5.6.3.4 c)]), we
get by the above u(z⊗ er) = 0. For ζ ∈M it follows by [1, Proposition 5.6.4.6
c)] that

uζ = u

 M̈∑
r∈T×S

(ζr ⊗ er)

 =

M̈∑
r∈T×S

u(ζr ⊗ er) = 0

which proves the assertion in the W*-case.

c) By b), R(f)⊙R(g) ⊂ R(h) so by a),

S∥·∥(f)⊙ S∥·∥(g) ⊂ S∥·∥(h), SC(f)⊙ SC(g) ⊂ SC(h),
S∥·∥(f)⊗σ S∥·∥(g) ⊂ S∥·∥(h), SC(f)⊗σ SC(g) ⊂ SC(h).

Let z ∈ G#, (t, s) ∈ T × S, and ε > 0. There is a finite family (xi, yi)i∈I in
E × F such that∥∥∥∥∥∑

i∈I
(xi ⊗ yi)

∥∥∥∥∥ < 1 ,

∥∥∥∥∥∑
i∈I

(xi ⊗ yi)− z

∥∥∥∥∥ < ε .

By b),∥∥∥∥∥∑
i∈I

(((xi ⊗ 1l2(T ))V
f
t )⊗ ((yi ⊗ 1l2(S))V

g
s ))− (z ⊗ 1l2(T×S))V

h
(t,s)

∥∥∥∥∥ < ε

and so by a),

R(h) ⊂
∥·∥

R(f)⊙R(g) ⊂
T2

R(f)⊙R(g) ,
S∥·∥(h) ⊂ S∥·∥(f)⊗σ S∥·∥(g) , SC(h) ⊂ SC(f)⊗σ SC(g).

d) By a) and Lemma 2.2.10 a), there is a filter F on{
w⊗̄1l2(T×S)

∣∣ w ∈ (E ⊙ F )#
}

converging to z⊗̄1l2(T×S) in LG(M) ...
M
. For ξ, η ∈M and a ∈ G̈,〈

(z⊗̄1l2(T×S))V h
(t,s) ,

˜(a, ξ, η)
〉
=
〈
z⊗̄1l2(T×S) , V h

(t,s)
˜(a, ξ, η)

〉
= lim

w,F

〈
w⊗̄1l2(T×S)V h

(t,s) ,
˜(a, ξ, η)

〉
= lim

w,F

〈
(w⊗̄1l2(T×S))V h

(t,s) ,
˜(a, ξ, η)

〉
,

which proves the assertion.
e) By Theorem 2.1.9 h),( ...

H

R(f)
)#

= SW (f)# ⊂ LE(H),

( ...
L

R(g)
)#

= SW (g)# ⊂ LF (L) .



268 C. Constantinescu 70

By b), R(f)⊙R(g) ⊂ R(h), so by Lemma 2.2.10 b),

SW (f)# ⊙R(g)# ⊂ SW (h)#, SW (f)# ⊗ SW (g)# ⊂ SW (h)# .

SW (f)⊗ SW (g) ⊂ SW (h)

By [3, Proposition 2.5],

SW (f)⊗̄SW (g) ≈

...
M

SW (f)⊗ SW (g)⊂ SW (h) .

For x ∈ E, y ∈ F , and (t, s) ∈ T × S, by b),

((x⊗ y)⊗̄1l2(T×S))V h
(t,s) = ((x⊗̄1l2(T ))V

f
t )⊗̄((y⊗̄1l2(S))V g

s ) ∈ SW (f)⊗̄SW (g) .

Let z ∈ G#. By d), there is a filter F on{
(w⊗̄1l2(T×S))V h

(t,s)

∣∣∣ w ∈ (E ⊙ F )#
}

converging to (z⊗̄1l2(T×S))V h
(t,s) in LG(M) ...

M
, so by the above

(z⊗̄1l2(T×S))V h
(t,s) ∈ SW (f)⊗̄SW (g) .

We get

R(h) ⊂ SW (f)⊗̄SW (g), SW (h) ⊂ SW (f)⊗̄SW (g) ,

SW (h) = SW (f)⊗̄SW (g).

Corollary 2.2.12. Let n ∈ N and

g : T × T −→ Un (En,n)
c , (s, t) 7−→ [δi,jf(s, t)]i,j∈Nn .

a) (S(f))n,n ≈ S(g), (S∥·∥(f))n,n ≈ S∥·∥(g) .

b) Let us denote by ρ : S(g) → (S(f))n,n the isomorphism of a). For X ∈
S(g), t ∈ T , and i, j ∈ Nn,

((ρX)i,j)t = (Xt)i,j .

Proof. a) Take F := Kn,n and S := {1} in Proposition 2.2.11. Then
G ≈ En,n and

g : T × T −→ Un Gc , (s, t) 7−→ f(s, t)⊗ 1F .

By Proposition 2.2.11 c),e),

S(g) ≈ S(f)⊗Kn,n ≈ (S(f))n,n
S∥·∥(g) ≈ S∥·∥(f)⊗Kn,n ≈ (S∥·∥(f))n,n .
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b) By Theorem 2.1.9 b),

X =

T3∑
s∈T

(Xs⊗̃1K)V g
s

so

(ρX)i,j =

T3∑
s∈t

((Xs)i,j⊗̃1K)V f
s ,

((ρX)i,j)t = (Xt)i,j
by Theorem 2.1.9 a).

Corollary 2.2.13. Let n ∈ N. If K = C (resp. if n = 4m for some
m ∈ N) then there is an f ∈ F( Zn × Zn, E) (resp. f ∈ F( (Z2)

2m, E)) such
that

R(f) = S(f) ≈ En,n .

Proof. By [1, Proposition 7.1.4.9 b),d)] (resp. [1, Theorem 7.2.2.7 i),k)])
there is a g ∈ F( Zn × Zn,C) (resp. g ∈ F( (Z2)

2m,K)) such that

S(g) ≈ Cn,n (resp. S(g) ≈ Kn,n).

If we put

f : ( Zn × Zn)× ( Zn × Zn) −→ Un Ec , (s, t) 7−→ g(s, t)⊗ 1E

(resp. f : (Z2)
2m × (Z2)

2m −→ Un Ec , (s, t) 7−→ g(s, t)⊗ 1E)

then by Proposition 2.2.11 a),e), f ∈ F( Zn×Zn, E) (resp. f ∈ F( (Z2)
2m, E))

and

S(f) ≈ S(g)⊗ E ≈ Kn,n ⊗ E ≈ En,n.

Corollary 2.2.14. Let F be a unital C**-algebra, G := E⊗̃F , and

h : T × T −→ Un Gc , (s, t) 7−→ f(s, t)⊗ 1F .

Then h ∈ F(T,G) and

S∥·∥(h) ≈ S∥·∥(f)⊗ F , S(h) ≈ S(f)⊗̃F.

Corollary 2.2.15. If E is a W*-algebra then the following are equiva-
lent:

a) E is semifinite.

b) SW (f) is semifinite.
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Proof. a)⇒ b). Assume first that there are a finite W*-algebra F and a
Hilbert space L such that E ≈ F ⊗̄L(L). Put

g : T × T −→ Un F c , (s, t) 7−→ f(s, t).

By Corollary 2.2.14,

SW (f) ≈ SW (g)⊗̄L(L).
By Corollary 2.1.11 c), SW (g) is finite and so SW (f) is semifinite.

The general case follows from the fact that E is the C*-direct product of
W*-algebras of the above form ([7, Proposition V.1.40]).

b) ⇒ a). E is isomorphic to a W*-subalgebra of SW (f) (Theorem 2.1.9
h)) and the assertion follows from [7, Theorem V.2.15].

Proposition 2.2.16. Let S, T be finite groups and g ∈ F(S,S(f)) and
put L := l2(S), M := l2(S × T ), and

h : (S × T )× (S × T ) −→ Un S(f)c , ((s1, t1), (s2, t2)) 7−→ f(t1, t2)g(s1, s2) .

Then h ∈ F(S × T,S(f)) and the map

φ : S(g) −→ S(h) , X 7−→
∑

(s,t)∈S×T

((Xs)t ⊗ 1M )V h
(s,t)

is an S(f)-C*-isomorphism.

Proof. For X,Y ∈ S(g), Z ∈ S(f), and (s, t) ∈ S × T , by Theorem 2.1.9
c), g),

(φ(X∗))(s,t) = ((X∗)s)t = (g̃(s)(Xs−1)∗)t = ((g̃(s)∗Xs−1)∗)t

= f̃(t)((g̃(s)∗Xs−1)t−1)∗ = f̃(t)g̃(s)((Xs−1)t−1)∗

= h̃(s, t)((φX)(s−1,t−1))
∗ = h̃(s, t)((φX)(s,t)−1)∗ = ((φX)∗)(s,t),

((φX)(φY ))(s,t) =
∑

(r,u)∈S×T

h((r, u), (r, u)−1(s, t))(φX)(r,u)(φY )(r,u)−1(s,t)

=
∑

(r,u)∈S×T

g(r, r−1s)f(u, u−1t)(Xr)u(Yr−1s)u−1t =
∑
r∈S

g(r, r−1s)(XrYr−1s)t

=

(∑
r∈S

g(r, r−1s)XrYr−1s

)
t

= ((XY )s)t = (φ(XY ))(s,t),

(φ(ZX))(s,t) = ((ZX)s)t = ((ZX)s)t = (ZXs)t = Z(Xs)t = Z(φX)(s,t)
so

φ(X∗) = (φX)∗, φ(XY ) = (φX)(φY ), φ(ZX) = Zφ(X)

and φ is an S(f)-C*-homomorphism.
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If X ∈ S(g) with φX = 0 then for (s, t) ∈ S × T ,

(Xs)t = (φX)(s,t) = 0, Xs = 0, X = 0,

so φ is injective.

Let x ∈ E and (s, t) ∈ S × T . Put

Z := (x⊗ 1K)V f
t ∈ S(f), X := (Z ⊗ 1L)V

g
s ∈ S(g).

Then for (r, u) ∈ S × T ,

(φX)(r,u) = (Xr)u = δr,sZu = δr,sδu,tx

so

φX = (x⊗ 1M )V h
(s,t)

and φ is surjective.

Proposition 2.2.17. Let S be a finite subgroup of T and g := f |(S×S).
We identify S(g) with the E-C**-subalgebra { Z ∈ S(f) | t ∈ T \ S ⇒ Zt = 0 }
of S(f) (Corollary 2.1.17 e)). Let X ∈ S(f) ∩ S(g)c, P+ := X∗X, and P− :=
XX∗ and assume P± ∈ Pr S(f).

a) P± ∈ S(g)c.

b) The map

φ± : S(g) −→ P±S(f)P± , Y 7−→ P±Y P±
is a unital C**-homomorphism.

c) For every Z ∈ φ+(S(g)), XZX∗ ∈ φ−(S(g)) and the map

ψ : φ+(S(g)) −→ φ−(S(g)) , Z 7−→ XZX∗

is a C*-isomorphism with inverse

φ−(S(g)) −→ φ+(S(g)), Z 7−→ X∗ZX

such that φ− = ψ ◦ φ+.

d) If p ∈ Pr S(g) then

(X(φ+p))
∗(X(φ+p)) = φ+p , (X((φ+p))(X(φ+p))

∗ = φ−p .

e) If φ+ is injective then φ− is also injective, the map

E −→ P±S(f)P±, x 7−→ P±(x⊗̃1K)P±

is an injective unital C**-homomorphism,P±S(f)P± is an E-C**-algebra,
φ±(S(g)) is an E-C**-subalgebra of it, and φ± and ψ are E-C**-homo-
morphisms.
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f) The above results still hold for an arbitrary subgroup S of T if we replace
S by S∥·∥.

Proof. a) follows from the hypothesis on X.

b) follows from a).

c) Let Y ∈ S(g) with Z = P+Y P+. By the hypotheses of the Proposition,

XZX∗ = XP+Y P+X
∗ = XX∗XYX∗XX∗

= XX∗Y XX∗XX∗ = P−Y P− ∈ φ−(S(g))

and ψ is a C*-homomorphism. The other assertions follow from

X∗(XZX∗)X = P+ZP+ = P+Y P+ .

d) By b) and c),

(X(φ+p))
∗(X(φ+p)) = (φ+p)X

∗X(φ+p) = (φ+p)P+(φ+p) = φ+p ,

(X(φ+p))(X(φ+p))
∗ = X(φ+p)(φ+p)

∗X∗ = X(φ+p)X
∗ = ψφ+p = φ−p .

e) follows from b), c), and Lemma 1.3.2.

f) follows from Corollary 2.1.17 d).

Remark. Even if φ± is injective P±S(f)P± is not an E-C*-subalgebra of
S(f).

Theorem 2.2.18. Let S be a finite subgroup of T , L := l2(S), g :=
f |(S × S), ω : Z2 × Z2 → T an injective group homomorphism such that
S ∩ ω(Z2 × Z2) = {1},

a := ω(1, 0) , b := ω(0, 1) , c := ω(1, 1) , α1 := f(a, a) , α2 := f(b, b) ,

β1, β2 ∈ Un Ec such that α1β
2
1 + α2β

2
2 = 0,

γ :=
1

2
(α∗

1β
∗
1β2 − α∗

2β1β
∗
2) = α∗

1β
∗
1β2 = −α∗

2β1β
∗
2 ,

X :=
1

2
((β1⊗̃1K)V f

a + (β2⊗̃1K)V f
b ) , P+ := X∗X , P− := XX∗ .

We assume f(s, c) = f(c, s) and cs = sc for every s ∈ S, and f(a, b) =
−f(b, a) = 1E. Moreover, we consider S(g) as an E-C**-subalgebra of S(f)
(Corollary 2.1.17 e)).

a) We have

f(a, c) = −f(c, a) = α1 , f(b, c) = −f(c, b) = −α2 , f(c, c) = −α1α2 ,

γ2 = −α∗
1α

∗
2 , V f

c ∈ S(g)c .
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b) We have

P± =
1

2
(V f

1 ±(γ⊗̃1K)V f
c ) ∈ S(g)c∩Pr S(f), P++P− = V f

1 , P+P− = 0 ,

X2 = 0, XP+ = X, P−X = X, P+X = XP− = 0, X +X∗ ∈ Un S(f) ,
Y ∈ S(g) =⇒ XYX = 0 .

c) The map

E −→ P±S(f)P±, x 7−→ (x⊗̃1K)P±

is a unital injective C**-homomorphism; we shall consider P±S(f)P± as
an E-C**-algebra using this map.

d) The maps

φ+ : S(g) −→ P+S(f)P+ , Y 7−→ P+Y P+ ,

φ− : S(g) −→ P−S(f)P− , Y 7−→ XYX∗

are orthogonal injective E-C**-homomorphisms and φ++φ− is an injec-
tive E-C*-homomorphism. If Y1, Y2 ∈ Un S(g) (resp. Y1, Y2 ∈ Pr S(g))
then φ+Y1+φ−Y2 ∈ Un S(f) (resp. φ+Y1+φ−Y2 ∈ Pr S(f)). Moreover,
the map

ψ : S(f) −→ S(f) , Z 7−→ (X +X∗)Z(X +X∗)

is an E-C**-isomorphism such that

ψ−1 = ψ , ψ(P+S(f)P+) = P−S(f)P− , ψ ◦ φ+ = φ− .

If K = C then X+X∗ is homotopic to V f
1 in Un S(f) and ψ is homotopic

to the identity map of S(f). Using this homotopy we find that φ+Y is
homotopic in the above sense to φ−Y for every Y ∈ S(g) and φ+Y1 +
φ−Y2, φ−Y1 + φ+Y2, φ+(Y1Y2) + P−, and φ+(Y2Y1 + P− are homotopic
in the above sense for all Y1, Y2 ∈ S(g).

e) Let s ∈ S such that sa = as. Then

sb = bs , f(sc, c)f(s, c) = −α1α2 ,

f(sa, c)f(c, sa)∗ = −1E , f(a, s)f(s, a)∗ = f(b, s)f(s, b)∗ .

f) If sa = as for every s ∈ S then the map

S × (Z2 × Z2) −→ T, (s, r) 7−→ s(ωr)

is an injective group homomorphism.
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g) If T is generated by S ∪ω(Z2×Z2) and sa = as for every s ∈ S then φ+

and ψ− are E-C*-isomorphisms with inverse

P±S(f)P± −→ S(g), Z 7−→ 2
∑
s∈S

(Zs⊗̃1L)V g
s ,

where
ψ− : S(g) −→ P−S(f)P− , Y 7−→ P−Y P− .

h) If sa = as and f(a, s) = f(s, a) for every s ∈ S then X ∈ S(g)c, φ−Y =
P−Y for every Y ∈ S(g), and there is a unique S(g)-C**-homomorphism
ϕ : S(g)2,2 → S(f) such that

ϕ

[
0 0

(α1β
2
1)⊗ 1L 0

]
= X .

ϕ is injective and

ϕ

[
V g
1 0
0 0

]
= P+ , ϕ

[
0 0
0 V g

1

]
= P− .

i) If sa = as and f(a, s) = f(s, a) for all s ∈ S and if T is generated by
S ∪ ω(Z2 × Z2) then ϕ is an S(g)-C*-isomorphism and

ϕ−1V f
1 =

[
1E ⊗ 1L 0

0 1E ⊗ 1L

]
, ϕ−1V f

c =

[
γ∗ ⊗ 1L 0

0 −γ∗ ⊗ 1L

]
,

ϕ−1V f
a =

[
0 −β∗1 ⊗ 1L

(β2γ
∗)⊗ 1L 0

]
,

ϕ−1V f
b =

[
0 −β∗2 ⊗ 1L

(β1γ
∗)⊗ 1L 0

]
,

ϕ−1P+ =

[
V g
1 0
0 0

]
, ϕ−1P− =

[
0 0
0 V g

1

]
,

and for every s ∈ S

ϕ−1V f
s =

[
V g
s 0
0 V g

s

]
.

j) The above results still hold for an arbitrary subgroup S of T if we replace
S with S∥·∥.

Proof. a) By the equation of the Schur functions,

f(a, a) = f(a, c)f(a, b), f(a, b)f(c, a) = f(a, c)f(b, a), f(a, b)f(c, b) = f(b, b),

f(b, a)f(c, b) = f(b, c)f(a, b), f(a, b)f(c, c) = f(a, a)f(b, c),
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and so

α1 = f(a, c), f(c, a) = −f(a, c) = −α1, f(c, b) = α2,

− α2 = −f(c, b) = f(b, c), f(c, c) = α1f(b, c) = −α1α2.

For s ∈ S, by Proposition 2.1.2 b),

V f
c V

f
s = (f(c, s)⊗̃1K)V f

cs = (f(s, c)⊗̃1K)V f
sc = V f

s V
f
c

and so V f
c ∈ S(g)c (by Proposition 2.1.2 d)).

b) By Proposition 2.1.2 b),d),e) (and Corollary 2.1.22 c)),

X∗ =
1

2
(((α∗

1β
∗
1)⊗̃1K)V f

a + ((α∗
2β

∗
2)⊗̃1K)V f

b ) ,

P+ =
1

4
(2V f

1 +((α∗
1β

∗
1β2)⊗̃1K)V f

c −((α∗
2β

∗
2β1)⊗̃1K)V f

c ) =
1

2
(V f

1 +(γ⊗̃1K)V f
c ) ,

P− =
1

4
(2V f

1 +((β1α
∗
2β

∗
2)⊗̃1K)V f

c −((β2α∗
1β

∗
1)⊗̃1K)V f

c ) =
1

2
(V f

1 −(γ⊗̃1K)V f
c ) .

By a),

P ∗
± =

1

2
(V f

1 ± (γ∗⊗̃1K)((−α∗
1α

∗
2)⊗̃1K)V f

c ) = P±,

P 2
± =

1

4
(V f

1 ± 2(γ⊗̃1K)V f
c + (γ2⊗̃1K)((−α1α2)⊗̃1K)V f

1 ) =

=
1

2
(V f

1 ± (γ⊗̃1K)V f
c ) = P±,

so, by a) again, P± ∈ S(g)c ∩ Pr S(f). By Proposition 2.1.2 b),d),

X2 =
1

4
(((β21α1 + β22α2)⊗̃1K)V f

1 + ((β1β2)⊗̃1K)(V f
a V

f
b + V f

b V
f
a )) = 0 ,

(X +X∗)2 = X2 +XX∗ +X∗X +X∗2 = P+ + P− = V f
1 .

For the last relation we remark that by the above,

XYX = X(P+ + P−)Y X = XP+Y X = XY P+X = 0 .

c) follows from b) and Lemma 1.3.2.
d) By b) and c), the map φ± is an E-C**-homomorphism. Let Y ∈ S(g)

with φ±Y = 0. By b), Y = ∓Y (γ⊗̃1K)V f
c so by Proposition 2.1.2 b),d) and

Theorem 2.1.9 b),∑
s∈S

(Ys⊗̃1K)V f
s = ∓Y (γ⊗̃1K)V f

c = ∓
∑
s∈S

((Ysγf(s, c))⊗̃1K)V f
sc ,

which implies Ys = 0 for every s ∈ S (Theorem 2.1.9 a)). Thus φ± is injective.
It follows that φ+ + φ− is also injective.

Assume first Y1, Y2 ∈ Un S(g). By b),

(φ+Y1 + φ−Y2)
∗(φ+Y1 + φ−Y2) = (φ+Y

∗
1 + φ−Y

∗
2 )(φ+Y1 + φ−Y2)



276 C. Constantinescu 78

= φ+(Y
∗
1 Y1) + φ−(Y

∗
2 Y2) = P+ + P− = V f

1 .

Similarly (φ+Y1 + φ−Y2)(φ+Y1 + φ−Y2)
∗ = V f

1 . The case Y1, Y2 ∈ Pr S(g) is
easy to see.

By b), ψ is an E-C**-isomorphism with

ψ−1 = ψ , ψP+ = (X +X∗)X∗X(X +X∗) = XX∗XX∗ = P− .

Moreover for Y ∈ S(g),
ψφ+Y = (X +X∗)P+Y P+(X +X∗) = XYX∗ = φ−Y .

Assume now K = C. By b), X + X∗ ∈ Un S(f). Being selfadjoint its

spectrum is contained in {−1,+1} and so it is homotopic to V f
1 in Un S(f).

e) We have sb = sac = asc = acs = bs. By a),

f(s, c)f(sc, c) = f(s, 1)f(c, c) = −α1α2,

f(s, a)f(sa, c) = f(s, b)f(a, c) = α1f(s, b),

f(c, as)f(a, s) = f(c, a)f(b, s) = −α1f(b, s),

f(c, bs)f(b, s) = f(c, b)f(a, s) = α2f(a, s),

f(s, c)f(sc, b) = f(s, a)f(c, b) = α2f(s, a),

f(c, s)f(cs, b) = f(c, sb)f(s, b)

so

f(sa, c)f(c, as)∗ = −f(s, b)f(s, a)∗f(b, s)∗f(a, s)
= −f(c, s)f(cs, b)f(c, sb)∗α2f(s, c)

∗f(sc, b)∗α∗
2f(c, bs) = −1E .

From

f(s, c)f(sc, a) = f(s, b)f(c, a), f(c, a)f(b, s) = f(c, as)f(a, s) ,

f(c, s)f(cs, a) = f(c, sa)f(s, a)
we get

f(a, s)f(s, a)∗ = f(b, s)f(s, b)∗.

f) Since S and ω(Z2×Z2) commute, the map is a group homomorphism.
If s(ωr) = 1 for (s, r) ∈ S × (Z2 × Z2) then ωr = s−1 ∈ S ∩ ω(Z2 × Z2), which
implies s = 1 and r = (0, 0). Thus this group homomorphism is injective.

g) By e) and the hypothesis of f), for every t ∈ T there are uniquely s ∈ S
and d ∈ {1, a, b, c} with t = sd. Let Z ∈ P±S(f)P±. By b) and Theorem 2.1.9
b) (and Corollary 1.3.7 d)),

Z = ±(γ⊗̃1K)ZV f
c = ±(γ⊗̃1K)V f

c Z

By Proposition 2.1.2 b),

ZV f
c =

∑
s∈S

((Zsf(s, c))⊗̃1K)V f
sc +

∑
s∈S

((Zsaf(sa, c))⊗̃1K)V f
sb



79 Projective representations of groups using Hilbert right C*-modules 277

+
∑
s∈S

((Zsbf(sb, c))⊗̃1K)V f
sa +

∑
s∈S

((Zscf(sc, c))⊗̃1K)V f
s ,

V f
c Z =

∑
s∈S

((f(c, s)Zs)⊗̃1K)V f
sc +

∑
s∈S

((f(c, sa)Zsa)⊗̃1K)V f
sb

+
∑
s∈S

((f(c, sb)Zsb)⊗̃1K)V f
sa +

∑
s∈S

((f(c, sc)Zsc)⊗̃1K)V f
s

and so by Theorem 2.1.9 a),

Zs = ±γf(sc, c)Zsc = ±γf(c, sc)Zsc,
Zsc = ±γf(s, c)Zs = ±γf(c, s)Zs,
Zsa = ±γf(sb, c)Zsb = ±γf(c, sb)Zsb,
Zsb = ±γf(sa, c)Zsa = ±γf(c, sa)Zsa.

By e), Zsa = Zsb = 0 for every s ∈ S. We get (by a), d), and Proposition
2.1.2 b))

φ±(2
∑
s∈S

(Zs⊗̃1L)V g
s ) =

∑
s∈S

(Zs⊗̃1K)V f
s ± (γ⊗̃1K)V f

c

∑
s∈S

(Zs⊗̃1K)V f
s =

=
∑
s∈S

(Zs⊗̃1K)V f
s ±

∑
s∈S

((γf(c, s)Zs)⊗̃1K)V f
sc =

=
∑
s∈S

(Zs⊗̃1K)V f
s +

∑
s∈S

(Zsc⊗̃1K)V f
sc = Z .

Thus φ± is an E-C*-isomorphism with the mentioned inverse.

h) is a long calculation using e).

i) follows from h).

j) follows from Corollary 2.1.17 d).

Remark. An example in which the above hypotheses are fulfilled is given
in Theorem 4.1.7.

2.3. The functor S

Throughout this subsection, we assume T finite.

In this subsection, we present the construction in the frame of category
theory. Some of the results still hold for T locally finite.

Definition 2.3.1. The above construction of S(f) can be done for an arbi-
trary E-module F , in which case we shall denote the result by S(F ). Moreover,

we shall write V F
t instead of V f

t in this case.
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If F is an E-module then S(F ) is canonically an E-module. If, in addition,
F is adapted then S(F ) is adapted and isomorphic to S(F̌ , F ). If F is an E-
C*-algebra then S(F ) is also an E-C*-algebra.

Proposition 2.3.2. If F,G are E-modules and φ : F → G is an E-linear
C*-homomorphism then the map

S(φ) : S(F ) −→ S(G) , X 7−→
∑
t∈S

((φXt)⊗ 1K)V G
t

is an E-linear C*-homomorphism, injective or surjective if φ is so.

Proof. The assertion follows from Theorem 2.1.9 a),c),g).

Corollary 2.3.3. Let F1, F2, F3 be E-modules and let φ : F1 → F2,
ψ : F2 → F3 be E-linear C*-homomorphisms.

a) S(ψ) ◦ S(φ) = S(ψ ◦ φ).

b) If the sequence

0 −→ F1
φ−→ F2

ψ−→ F3

is exact then the sequence

0 −→ S(F1)
S(φ)−→ S(F2)

S(ψ)−→ S(F3)

is also exact.

c) The covariant functor S : ME →ME is exact.

Proof. a) is obvious.

b) Let Y ∈ Ker S(ψ). For every t ∈ T , Yt ∈ Ker ψ = Imφ. If we identify
F1 with Imφ then Yt ∈ F1. It follows Y ∈ ImS(φ), Ker S(ψ) = ImS(φ).

c) follows from b) and Proposition 2.3.2.

Corollary 2.3.4. Let F be an adapted E-module and put

ι : F −→ F̌ , x 7−→ (0, x),

π : F̌ −→ E , (α, x) 7−→ α,

λ : E −→ F̌ , α 7−→ (α, 0).

Then the sequence

0 −→ S(F ) S(ι)−→ S(F̌ )
S(π)
−→
S(λ)
←−
S(E) −→ 0

is split exact.
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Proposition 2.3.5. The covariant functor S : ME → ME (resp. S :
C1
E → C1

E) (Proposition 2.3.2, Corollary 2.3.3 a)) is continuous with respect to
the inductive limits (Proposition 1.2.9 a),b)).

Proof. Let {(Fi)i∈I , (φij)i,j∈I} be an inductive system in the category
ME (resp. C1

E) and let {F, (φi)i∈I} be its limit in the category ME (resp. C1
E).

Then {(S(Fi))i∈I , (S(φij)i,j∈I)} is an inductive system in the category ME

(resp. C1
E). Let {G, (ψi)i∈I} be its limit in this category and let ψ : G→ S(F )

be the E-linear C*-homomorphism such that ψ ◦ ψi = S(φi) for every i ∈ I.
In the C1

E case, for α ∈ E and i ∈ I,

ψ(α⊗ 1K) = ψ ◦ ψi(α⊗ 1K) = (S(φi))(α⊗ 1K) = α⊗ 1K

so that ψ is an E-C*-homomorphism.

Let i ∈ I and let X ∈ Ker S(φi). Then φiXt = 0 for every t ∈ T . Since
T is finite, for every ε > 0 there is a j ∈ I, j ≥ i, with

∥φjiXt∥ <
ε

Card T

for every t ∈ T . Then

∥(S(φji))X∥ =

∥∥∥∥∥∑
t∈T

((φjiXt)⊗ 1K)V
Fj

t

∥∥∥∥∥ < ε .

It follows

∥ψiX∥ = inf
j∈I,j≥i

∥(S(φji))X∥ = 0,

ψiX = 0, X ∈ Ker ψi, Ker S(φi) ⊂ Ker ψi.
By Lemma 1.2.8, ψ is injective. Since⋃

i∈I
ImS(φi) ⊂ Imψ ,

Imψ is dense in S(F ). Thus ψ is surjective and so an E-C*-isomorphism.

Proposition 2.3.6. Let θ : F → G be a surjective morphism in the cat-
egory C1

E. We use the notation of Theorem 2.2.18 and mark with an exponent
if this notation is used with respect to F or to G. For every Y ∈ Un S(gG),
there is a Z ∈ S(gF ) such that

Z∗Z = PF+ , S(θ)Z = φG+Y.

Proof. By Proposition 2.3.2 c), S(θ) is surjective and so there is a Z0 ∈
S(gF ) with ∥Z0∥ = 1 and S(θ)Z0 = Y . Put

Z := PF+Z0 +XF (1− Z∗
0Z0)

1
2 .
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By Theorem 2.2.18 b),

Z∗Z = PF+Z
∗
0Z0 + (1− Z∗

0Z0)
1
2 (XF )∗XF (1− Z∗

0Z0)
1
2

= PF+Z
∗
0Z0 + PF+ (1− Z∗

0Z0) = PF+ .

Since
S(θ)(1− Z∗

0Z0) = 1− Y ∗Y = 0
we get

S(θ)(1− Z∗
0Z0)

1
2 = 0, S(θ)Z = PG+ Y = φG+Y.

Proposition 2.3.7. Let F be an adapted E-module and Ω a locally com-
pact space. We define for X ∈ S(C0(Ω, F )) (see Corollary 1.2.5 d)) and
Y ∈ C0(Ω,S(F )),

φX : Ω −→ S(F ) , ω 7−→
∑
t∈T

(Xt(ω)⊗ 1K)V F
t ,

ψY :=
∑
t∈T

(Y (·)t ⊗ 1K)V
C0(Ω,F )
t .

Then

φ : S(C0(Ω, F )) −→ C0(Ω,S(F )),
ψ : C0(Ω,S(F )) −→ S(C0(Ω, F ))

are E-linear C*-isomorphisms and φ = ψ−1.
Let ω0 ∈ Ω and assume F is an E-C*-algebra. Then the above maps φ

and ψ induce the following E-C*-isomorphisms

S({ X ∈ C0(Ω, F ) | X(ω0) ∈ E })
−→
←−
{ Y ∈ C0(Ω,S(F )) | Y (ω0) ∈ S(E) } .

Proof. Let X,X ′ ∈ S(C0(Ω, F )) and Y, Y ′ ∈ C0(Ω,S(F )). By Proposition
2.1.23 b) and Corollary 2.1.10 a),

φX ∈ C0(Ω,S(F )) , ψY ∈ S(C0(Ω, F ))

and it is easy to see that φ and ψ are E-linear. By Theorem 2.1.9 c),g), for
t ∈ T and ω ∈ Ω,

((φX)∗(ω))t = f̃(t)(((φX)(ω)t−1))∗

= f̃(t)Xt−1(ω)∗ = (X∗(ω))t = ((φX∗)(ω))t,

(((φX)(φX ′))(ω))t =
∑
s∈T

f(s, s−1t)((φX)(ω))s((φX
′)(ω))s−1t

=
∑
s∈T

f(s, s−1t)Xs(ω)X
′
s−1t(ω) =

(∑
s∈T

f(s, s−1t)XsX
′
s−1t

)
(ω)
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= (XX ′)t(ω) = ((φ(XX ′))(ω))t,

so

(φX)∗ = φX∗ , (φX)(φX ′) = φ(XX ′)

and φ is a C*-homomorphism. Similarly

(ψY ∗)t(ω) = (Y ∗(ω))t = f̃(t)(Y (ω)t−1)∗ = f̃(t)((ψY )t−1(ω))∗ = ((ψY )∗)t(ω),

((ψY )(ψY ′))t(ω) =

(∑
s∈T

f(s, s−1t)(ψY )s(ψY
′)s−1t

)
(ω)

=
∑
s∈T

f(s, s−1t)(ψY )s(ω)(ψY
′)s−1t(ω) =

∑
s∈T

f(s, s−1t)Y (ω)sY
′(ω)s−1t

= (Y (ω)Y ′(ω))t = (ψ(Y Y ′)t)(ω)

so

ψY ∗ = (ψY )∗ , (ψY )(ψY ′) = ψ(Y Y ′)

and ψ is a C*-homomorphism. Moreover

(ψφX)t(ω) = ((φX)(ω))t = Xt(ω), ((φψY )(ω))t = (ψY )t(ω) = (Y (ω))t,

so ψφX = X and φψY = Y which proves the assertion.

The last assertion is easy to see.

Proposition 2.3.8. Let F be an adapted E-module,

0 −→ F
ι−→ F̌

π−→ E −→ 0 ,

0 −→ S(F ) ι0−→
ˇ︷ ︸︸ ︷
S(F ) π0−→ E −→ 0

the associated exact sequences (Proposition 1.2.4 h)), and

j : E −→ S(E) , α 7−→ (α⊗ 1K)V E
1 ,

φ :
ˇ︷ ︸︸ ︷
S(F ) −→ S(F̌ ) , (α,X) 7−→ S(ι)X + (α⊗ 1K)V F̌

1 .

Then φ is an injective E-C*-homomorphism and S(π) ◦ φ = j ◦ π0.

Proposition 2.3.9. If E is commutative and F is an E-module then the
map

φ : S(E)⊗ F −→ S(F ) , X ⊗ x 7−→
∑
t∈T

((Xtx)⊗ 1K)V F
t

is a surjective C*-homomorphism. If in addition E = K then φ is a C*-
isomorphism with inverse

ψ : S(F ) −→ S(E)⊗ F , Y 7−→
∑
t∈T

(V E
t ⊗ Yt) .
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Proof. It is obvious that φ is surjective. For X,Y ∈ S(E) and x, y ∈ F ,
by Theorem 2.1.9 c),g) and Proposition 2.1.2 b),d),e),

φ((X ⊗ x)∗) = φ(X∗ ⊗ x∗) =
∑
t∈T

(((X∗)tx
∗)⊗ 1K)V F

t

=
∑
t∈T

((f̃(t)(Xt−1)∗x∗)⊗ 1K)V F
t =

∑
t∈T

(((Xt−1)∗x∗)⊗ 1K)(V F
t−1)

∗

=
∑
t∈T

((x∗(Xt)
∗)⊗ 1K)(V F

t )∗ = (φ(X ⊗ x))∗,

φ(X ⊗ x)φ(Y ⊗ y) =
∑
s,t∈T

((XsxYty)⊗ 1K)V F
s V

F
t

=
∑
s,t∈T

((f(s, t)XsxYty)⊗ 1K)V F
st

=
∑
r∈T

∑
s∈T

((f(s, s−1r)XsYs−1rxy)⊗ 1K)V F
r

=
∑
r∈T

(((XY )rxy)⊗ 1K)V F
r = φ((X ⊗ x)(Y ⊗ y))

so φ is a C*-homomorphism.

Assume now E = K and let X ∈ S(E) and x ∈ F . Then

ψφ(X ⊗ x) = ψ
∑
t∈T

((Xtx)⊗ 1K)V F
t =

∑
t∈T

V E
t ⊗ (Xtx) =

=

(∑
t∈T

XtV
E
t

)
⊗ x = X ⊗ x

which proves the last assertion (by using the first assertion).

3. EXAMPLES

We draw the reader’s attention to the fact that in additive groups the
neutral element is denoted by 0 and not by 1.

3.1. T := Z2

Proposition 3.1.1. a) The map

ψ : F(Z2, E) −→ Un Ec , f 7−→ f(1, 1)

is a group isomorphism.
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b) ψ({ δλ | λ ∈ Λ(Z2, E) }) =
{
x2
∣∣ x ∈ Un Ec }.

c) If there is an x ∈ Ec with x2 = f(1, 1) (in which case x ∈ Un Ec) then
the map

φ : S(f) −→ E × E , X 7−→ (X0 + xX1, X0 − xX1)

is an E-C*-isomorphism.

d) If K = C and if A is a connected and simply connected compact space or
a totally disconnected compact space then for every x ∈ Un C(A) there is
a y ∈ C(A,C) with x = ey.

e) Assume K = R.

e1) There are uniquely p, q ∈ Pr Ec with

p+ q = 1E , pf(1, 1) = p, qf(1, 1) = −q .

e2) The map

φ : S(f) −→ (pE)× (pE)×
◦︷︸︸︷
qE , X 7−→ X̃ ,

where

◦︷︸︸︷
qE denotes the complexification of the C*-algebra qE and

X̃ := (p(X0 +X1), p(X0 −X1), (qX0, qX1))

for every X ∈ S(f), is an E-C*-isomorphism. In particular, if
f(1, 1) = −1E then S(f) is isomorphic to the complexification of E.

f) Assume K = C, let σ(Ec) be the spectrum of Ec, and let f̂11 be the
function of C(σ(Ec),C) corresponding to f11 by the Gelfand transform.
Then {

eiθ
∣∣∣ θ ∈ R, e2iθ ∈ f̂11(σ(Ec))

}
is the spectrum of V1.

Proof. a) follows from Proposition 1.1.2 a) (and Proposition 1.1.4 a) ).
b) follows from Definition 1.1.3.
c) For X,Y ∈ S(f), by Theorem 2.1.9 c),g) (and Proposition 1.1.2 a)),

(X∗)0 = (X0)
∗ , (X∗)1 = (x∗)2(X1)

∗,

(XY )0 = X0Y0 + x2X1Y1, (XY )1 = X0Y1 +X1Y0,

so

φ(X∗) = ((X0)
∗ + x(x∗)2(X1)

∗, (X0)
∗ − x(x∗)2(X1)

∗)
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= ((X0)
∗ + x∗(X1)

∗ , (X0)
∗ − x∗(X1)

∗) = (φX)∗,

(φX)(φY ) = ((X0 + xX1)(Y0 + xY1), (X0 − xX1)(Y0 − xY1))
= (X0Y0 + xX0Y1 + xX1Y0 + x2X1Y1, X0Y0 − xX0Y1 − xX1Y0 + x2X1Y1)

= ((XY )0 + x(XY )1, (XY )0 − x(XY )1 = φ(XY )

i.e. φ is an E-C*-homomorphism. φ is obviously injective.
Let (y, z) ∈ E × E. If we take X ∈ S(f) with

X0 :=
1

2
(y + z), X1 :=

1

2
x∗(y − z)

then φX = (y, z), i.e. φ is surjective.
d) is known.
e1) follows by using the spectrum of Ec.
e2) Put

ψ : S(f) −→
◦︷︸︸︷
qE , X 7−→ (qX0, qX1) .

For X,Y ∈ S(f), by Theorem 2.1.9 c),g),

ψ(X∗) = (q(X∗)0, q(X
∗)1) = (q(X0)

∗, qf(1, 1)∗(X1)
∗)

= ((qX0)
∗,−(qX1)

∗) = (ψX)∗,

(ψX)(ψY ) = (qX0, qX1)(qY0, qY1)

= (q(X0Y0 −X1Y1), (q(X0Y1 +X1Y0))) = ψ(XY )

so ψ is an E-C*-homomorphism. Thus by c), φ is an E-C*-homomorphism.
The bijectivity of φ is easy to see.

f) By Proposition 2.1.2 e), V1 is unitary so its spectrum is contained in{
eiθ
∣∣ θ ∈ R

}
. For θ ∈ R and X ∈ S(f),

(eiθV0 − V1)X = X(eiθ − V1)
= ((eiθX0)⊗ 1K)V0 + ((eiθX1)⊗ 1K)V1− (X0 ⊗ 1K)V1− ((f11X1)⊗ 1K)V1

= ((eiθX0 − f11X1)⊗ 1K)V0 + ((eiθX1 −X0)⊗ 1K)V1.

Thus X is the inverse of eiθV0 − V1 iff X0 = eiθX1 and eiθX0 − f11X1 = 1E ,
i.e. (e2iθ − f11)X1 = 1E . Therefore eiθV0 − V1 is invertible iff e2iθ − f̂11 does
not vanish on σ(Ec).

Corollary 3.1.2. Assume K := R and let S be a group, F a unital
C*-algebra, g ∈ F(S, F ), and

h : (S × Z2)× (S × Z2) −→ Un F c,

((s1, t1), (s2, t2)) 7→
{
−g(s1, s2) if (t1, t2) = (1, 1)
g(s1, s2) if (t1, t2) ̸= (1, 1)

.
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a) h ∈ F(S × Z2, F ).

b) S(h) ≈
◦︷︸︸︷
S(g) , S∥·∥(h) ≈

◦︷ ︸︸ ︷
S∥·∥(g).

Proof. Put E := R in the above Proposition and define f ∈ F(Z2,R) by
f(1, 1) = −1 (Proposition 3.1.1 a)). By this Proposition e2), S(f) ≈ C. Thus
by Proposition 2.2.11 c),e),

S(h) ≈ S(g)⊗ S(f) ≈
◦︷︸︸︷
S(g) , S∥·∥(h) ≈ S∥·∥(g)⊗ S∥·∥(f) ≈

◦︷ ︸︸ ︷
S∥·∥(g) .

Definition 3.1.3. We put

IT := { z ∈ C | |z| = 1 } .

Example 3.1.4. Let E := C( IT,C) and f ∈ F(Z2, E) with

f(1, 1) : IT −→ Un C , z 7−→ z .

If we put
X̃ : IT −→ C , z 7−→ X0(z

2) + zX1(z
2)

for every X ∈ S(f) then the map

φ : S(f) −→ E , X 7−→ X̃

is an isomorphism of C*-algebras (but not an E-C*-isomorphism).

Proof. For X,Y ∈ S(f), by Theorem 2.1.9 c),g),

(X∗)0 = (X0)
∗, (X∗)1 = f(1, 1)(X1)

∗ ,

(XY )0 = X0Y0 + f(1, 1)X1Y1, (XY )1 = X0Y1 +X1Y0
so for z ∈ IT,

X̃∗(z) = X∗
0 (z

2) + zz̄2X∗
1 (z

2) = X0(z2) + zX1(z2) = X̃∗(z) ,

(X̃(z))(Ỹ (z)) = (X0(z
2) + zX1(z

2))(Y0(z
2) + zY1(z

2))

= X0(z
2)Y0(z

2) + zX0(z
2)Y1(z

2) + zX1(z
2)Y0(z

2) + z2X1(z
2)Y1(z

2)

= (XY )0(z
2) + z(XY )1(z

2) = X̃Y (z),

X̃∗ = X̃∗ , X̃Ỹ = X̃Y ,
i.e. φ is a C*-homomorphism. If φX = 0 then for z ∈ IT,

X0(z
2) + zX1(z

2) = 0

so, successively,

X0(z
2)− zX1(z

2) = 0, X0(z
2) = X1(z

2) = 0, X0 = X1 = 0, X = 0
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and φ is injective.

Put

G :=

{∑
k∈Z

ckz
k

∣∣∣∣∣ (ck)k∈Z ∈ C(Z)

}
⊂ E .

Let

x :=
∑
k∈Z

ckz
k ∈ G

and take X ∈ S(f) with

X0 :=
∑
k∈Z

c2kz
k, X1 :=

∑
k∈Z

c2k+1z
k .

Then

X̃ =
∑
k∈Z

c2kz
2k + z

∑
k∈Z

c2k+1z
2k = x

so G ⊂ φ(S(f)). Since G is dense in E, φ(S(f)) = E and φ is surjective.

Definition 3.1.5. For every x ∈ C( IT,C) which does not take the value 0
we put

w(x) := winding number of x :=
1

2πi

∫
x

dz

z
=

1

2πi
[log x(eiθ)]θ=2π

θ=0 ∈ Z .

If A is a connected compact space and γ is a cycle in A (i.e. a continuous
map of IT in A), which is homologous to 0 (or more generally, if a multiple of
γ is homologous to 0), then for every x ∈ C(A,Un C) we have w(x ◦ γ) = 0.
If A is a compact space and x ∈ C(A,Un C) such that w(x ◦ γ) = 0 for every
cycle γ in A then there is a y ∈ C(A,C) with x = ey.

Example 3.1.6. Let E := C( IT,C), f ∈ F(Z2, E), and n := w(f(1, 1)).

a) If n is even then there is an x ∈ Un E with winding number equal to n
2

such that the map

S(f) −→ E × E, X 7−→ (X0 + xX1, X0 − xX1)

is an E-C*-isomorphism.

b) If n is odd then S(f) is isomorphic to E.

c) The group F(Z2, E)/Λ(Z2, E) is isomorphic to Z2 and

Card ({ S(g) | g ∈ F(Z2,E) }/≈S) = 2 .

d) There is a complex unital C*-algebra E and a family (fβ)β∈P(N) in
F(Z2, E) such that for distinct β, γ ∈ P(N), S(fβ) ̸≈ S(fγ).
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Proof. Put

α : IT −→ Un C , z 7−→ z .

Since w(f(1, 1)α−n) = 0, there is a y ∈ Un E with w(y) = 0 and
f(1, 1)α−n = y2.

a) If we put x := yα
n
2 then w(x) = n

2 and f(1, 1) = x2 and the assertion
follows from Proposition 3.1.1 c).

b) We put x := yα
n−1
2 . Then f(1, 1) = αx2. Take g ∈ F(Z2, E) with

g(1, 1) = α and λ ∈ Λ(Z2, E) with (δλ)(1, 1) = x2 (Proposition 3.1.1 a),b)).
Then f = gδλ. By Example 3.1.4, S(g) is isomorphic to E and by Proposition
2.2.2 a1 ⇒ a2, S(f) is also isomorphic to E.

c) follows from Proposition 3.1.1 b) and Proposition 2.2.2 a),c).

d) Denote by E the C*-direct product of the sequence (C( IT,Cn,n))n∈N
and for every β ∈ {0, 1}N define fβ ∈ F(Z2, E) by

fβ(1, 1) : N −→ Un Ec , n 7−→ αβ(n)1Cn,n .

By a) and b), for distinct β, γ ∈ {0, 1}N, S(fβ) ̸≈ S(fγ) (Proposition 2.1.26
a)).

Example 3.1.7. Let I, J be finite disjoint sets and for all i ∈ I ∪ J and
j ∈ J put Ai := Bj := IT. We define the compact spaces A and B in the
following way. For A we take first the disjoint union of the spaces Ai for all
i ∈ I ∪ J and identify then the points 1 ∈ Ai for all i ∈ I ∪ J . For B we take
first the disjoint union of all the spaces Ai for all i ∈ I ∪J and of the spaces Bj
for all j ∈ J and identify first the points 1 ∈ Ai for all i ∈ I ∪ J and identify
then also the points −1 ∈ Ai for all i ∈ I and 1 ∈ Bj for all j ∈ J .

Let E := C(A,C) and f ∈ F(Z2, E) with

f(1, 1) : A −→ Un C , z 7−→
{
z if z ∈ Ai with i ∈ I
1 if z ∈ Ai with i ∈ J

.

For every X ∈ S(f) define X̃ ∈ C(B,C) by

X̃ : B −→ C , z 7−→


X0(z

2) + zX1(z
2) if z ∈ Ai with i ∈ I

X0(z) +X1(z) if z ∈ Ai with i ∈ J
X0(z)−X1(z) if z ∈ Bj with j ∈ J

.

Then the map

φ : S(f) −→ C(B,C) , X 7−→ X̃

is an isomorphism of C*-algebras.
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Proof. Let X,Y ∈ S(f). By Theorem 2.1.9 c),g),

(X∗)0 = (X0)
∗, (X∗)1 = f(1, 1)(X1)

∗,

(XY )0 = X0Y0 + f(1, 1)X1Y1 , (XY )1 = X0Y1 +X1Y0.

For z ∈ Ai with i ∈ I,

X̃∗(z) = (X∗)0(z
2) + z(X∗)1(z

2) = X0(z2) + zz̄2X1(z2)

= X0(z2) + zX1(z2) = (X̃)∗(z),

X̃(z)Ỹ (z) = (X0(z
2) + zX1(z

2))(Y0(z
2) + zY1(z

2))

= X0(z
2)Y0(z

2)+ zX0(z
2)Y1(z

2)+ zX1(z
2)Y0(z

2)+ z2X1(z
2)Y1(z

2)

= (XY )0(z
2) + z(XY )1(z

2) = X̃Y (z).

For z ∈ Aj or z ∈ Bj with j ∈ J ,

X̃∗(z) = (X∗)0(z)± (X∗)1(z) = X0(z)±X1(z) = (X̃)∗(z),

X̃(z)Ỹ (z) = (X0(z)±X1(z))(Y0(z)± Y1(z))
= X0(z)Y0(z)±X0(z)Y1(z)±X1(z)Y0(z) +X1(z)Y1(z)

= (XY )0(z)± (XY )1(z) = X̃Y (z).

Thus φ is a C*-homomorphism. Assume X̃ = 0. For z ∈ Ai with i ∈ I,

X0(z
2) + zX1(z

2) = 0

so, successively,

X0(z
2)− zX1(z

2) = 0 , X0(z
2) = X1(z

2) = 0 , X(z) = 0.

For z ∈ Aj with j ∈ J , {
X0(z) +X1(z)= 0
X0(z)−X1(z)= 0

,

so

X0(z) = X1(z) = 0 , X(z) = 0.

Thus φ is injective.

Let x ∈ C(B,C) such that for every i ∈ I there is a family (ci,k)k∈Z ∈ C(Z)

with

x(z) =
∑
k∈Z

ci,kz
k

for all z ∈ Ai. Define X0, X1 ∈ E in the following way. If z ∈ Ai with i ∈ I we
put

X0(z) :=
∑
k∈Z

ci,2kz
k , X1(z) :=

∑
k∈Z

ci,2k+1z
k.
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If z ∈ Aj with j ∈ J then we put z′ := z ∈ Bj ,

X0(z) :=
1

2
(x(z) + x(z′)) , X1(z) :=

1

2
(x(z)− x(z′)).

It is easy to see that X0 and X1 are well defined. Then

X̃(z) =
∑
k∈Z

ci,2kz
2k + z

∑
k∈Z

ci,2k+1z
2k = x(z)

for all z ∈ Ai with i ∈ I and X̃(z) = x(z) for all z ∈ Aj ∪Bj with j ∈ J . Since
the elements x of the above form are dense in C(B,C), φ is surjective.

Example 3.1.8. Let E := C( IT2,C) and f, g ∈ F(Z2, E) with{
f(1, 1) : IT2 −→ Un C , (z1, z2) 7−→ z1
g(1, 1) : IT2 −→ Un C , (z1, z2) 7−→ z2

.

Then the maps{
S(f) −→ E, X 7−→ X0(z

2
1 , z2) + z1X1(z

2
1 , z2)

S(g) −→ E, X 7−→ X0(z1, z
2
2) + z2X1(z1, z

2
2)

are isomorphisms of C*-algebras.

Remark. S(f) and S(g) are isomorphic but not E-C*-isomorphic.

Example 3.1.9. Let E := C( IT2,C) and f ∈ F(Z2, E) with

f(1, 1) : IT2 −→ Un C , (z1, z2) 7−→ z1z2 .

If we put

X̃ : IT2 −→ C , (z1, z2) 7−→ X0(z
2
1 , z

2
2) + z1z2X1(z

2
1 , z

2
2)

for every X ∈ S(f) then the map

φ : S(f) −→ E , X 7−→ X̃

is an injective unital C*-homomorphism with

φ(S(f)) = G :=
{
x ∈ E | (z1, z2) ∈ IT2 =⇒ x(z1, z2) = x(−z1,−z2)

}
.

In particular S(f) is isomorphic to E.

Proof. Let X,Y ∈ S(f). By Theorem 2.1.9 c),g),

(X∗)0 = (X0)
∗ , (X∗)1 = f(1, 1)(X1)

∗ ,

(XY )0 = X0Y0 + f(1, 1)X1Y1 , (XY )1 = X0Y1 +X1Y0
so for (z1, z2) ∈ IT2,

X̃∗(z1, z2) = X∗
0 (z

2
1 , z

2
2) + z1z2z̄

2
1 z̄

2
2X

∗
1 (z

2
1 , z

2
2)
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= X0(z21 , z
2
2) + z1z2X1(z21 , z

2
2) = X̃(z1, z2),

(X̃(z1, z2))(Ỹ (z1, z2))

= (X0(z
2
1 , z

2
2) + z1z2X1(z

2
1 , z

2
2))(Y0(z

2
1 , z

2
2) + z1z2Y1(z

2
1 , z

2
2))

= X0(z
2
1 , z

2
2)Y0(z

2
1 , z

2
2) + z1z2X0(z

2
1 , z

2
2)Y1(z

2
1 , z

2
2)

+ z1z2X1(z
2
1 , z

2
2)Y0(z

2
1 , z

2
2) + z21z

2
2X1(z

2
1 , z

2
2)Y1(z

2
1 , z

2
2)

= (XY )0(z
2
1 , z

2
2) + z1z2(XY )1(z

2
1 , z

2
2) = X̃Y (z1, z2),

i.e. φ is a unital C*-homomorphism. If X̃ = 0 then for (z1, z2) ∈ IT2,

X0(z
2
1 , z

2
2) + z1z2X1(z

2
1 , z

2
2) = 0

so, successively,

X0(z
2
1 , z

2
2)− z1z2X1(z

2
1 , z

2
2) = 0 , X0(z

2
1 , z

2
2) = X1(z

2
1 , z

2
2) = 0 ,

X0 = X1 = 0 , X = 0
and φ is injective.

The inclusion S(f) ⊂ G is obvious. Let (aj,k)j,k∈Z, (bj,k)j,k∈Z ∈ C(Z×Z)

and
x =

∑
j,k∈Z

aj,kz
2j
1 z

2k
2 +

∑
j,k∈Z

bj,kz
2j+1
1 z2k+1

2 ∈ G .

Define
X0 :=

∑
j,k∈Z

aj,kz
j
1z
k
2 , X1 :=

∑
j,k∈Z

bj,kz
j
1z
k
2 .

Then X̃ = x. Since the elements of the above form are dense in G, φ(S(f)) = G.
If we consider the equivalence relation ∼ on IT2 defined by

(z1, z2) ∼ (w1, w2) :⇐⇒ z1 = −w1, z2 = −w2

then the quotient space IT2/∼ is homeomorphic to IT2. Thus S(f) is isomorphic
to E.

Example 3.1.10. Let E := C( IT2,C).

a) For x ∈ Un E and z ∈ IT, w(x( · , z)) and w(x(z, · )) do not depend on z,
where w denotes the winding number (Definition 3.1.5).

b) If x ∈ Un E and if

w(x( · , 1)) = w(x(1, · )) = 0

then there is a y ∈ Un E with x = y2.

c) Let f ∈ F(Z2, E) and put

α : IT −→ IT2 , z 7−→ (z, 1) , β : IT −→ IT2 , z 7−→ (1, z) ,

m := w(f(1, 1) ◦ α) , n := w(f(1, 1) ◦ β) .
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c1) If m+ n is odd then S(f) is isomorphic to E.

c2) If m and n are even then S(f) is isomorphic to E × E.

c3) If m and n are odd then S(f) is isomorphic to E.

d) The group F(Z2, E)/Λ(Z2, E) is isomorphic to Z2 × Z2 and

Card ({ S(f) | f ∈ F(Z2,E) } / ≈S) = 4 .

Proof. a) follows by continuity.
b) follows from a).
c) Let g ∈ F(Z2, E) with

g(1, 1) : IT2 −→ Un C , (z1, z2) 7−→ zm1 z
n
2 .

Then
w(g(1, 1) ◦ α) = m, w(g(1, 1) ◦ β) = n .

By b), there is an x ∈ Un E with f(1, 1) = x2g(1, 1). By Proposition 3.1.1 b)
and Proposition 2.2.2 a1 ⇒ a2, S(f) ≈ S(g).

c1) Assume m even and put

y : IT2 −→ Un C , (z1, z2) 7−→ z
m
2
1 z

n−1
2

2 .

If h ∈ F(Z2, E) with

h(1, 1) : IT2 −→ Un C , (z1, z2) 7−→ z2

then g(1, 1) = y2h(1, 1). By Proposition 3.1.1 b) and Proposition 2.2.2 a1 ⇒a2,
S(g) ≈ S(h) and by Example 3.1.8 a1 ⇒ a2, S(h) ≈ E. Thus S(f) ≈ E.

c2) If we put

y : IT2 −→ Un C , (z1, z2) 7−→ z
m
2
1 z

n
2
2

then g(1, 1) = y2 and the assertion follows from Proposition 3.1.1 c).
c3) We put

y : IT2 −→ Un C , (z1, z2) 7−→ z
m−1

2
1 z

n−1
2

2

and take h ∈ F(Z2, E) with

h(1, 1) : IT2 −→ Un C , (z1, z2) 7−→ z1z2

then g(1, 1) = y2h(1, 1) so by Proposition 3.1.1 b) and Proposition 2.2.2 a1 ⇒
a2, S(g) ≈ S(h). By Example 3.1.9 S(h) ≈ E, so S(f) ≈ E.

d) follows from b), Proposition 3.1.1 b), and Proposition 2.2.2 a),c).

Remark. In a similar way, it is possible to show that for every n ∈ N,
F(Z2, IT

n)/Λ(Z2, IT
n) is isomorphic to (Z2)

n and

Card ({ S(f) | f ∈ F(Z2, IT
n) } / ≈S) = 2n .
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Example 3.1.11. Let I, J,K be finite pairwise disjoint sets and for every
i ∈ I ∪ J ∪K and k ∈ K put Ai := Bk := IT2. We define the compact spaces
A and B in the following way. For A we take first the disjoint union of the
spaces Ai with i ∈ I ∪ J ∪ K and then identify the points (1, 1) ∈ Ai for all
i ∈ I ∪ J ∪ K. For B we take first the disjoint union of the spaces Ai with
i ∈ I ∪ J ∪K and of the spaces Bk with k ∈ K. Then we identify the points
(1, 1) ∈ Ai for all i ∈ I ∪ J ∪K and then we identify for every j ∈ J the points
(z1, z2) ∈ Aj with the points (−z1,−z2) ∈ Aj and finally we identify the points
(−1, 1) ∈ Ai for all i ∈ I ∪ J with the points (1, 1) ∈ Bk for all k ∈ K.

Let E := C(A,C) and f ∈ F(Z2, A) such that

f(1, 1) : A −→ Un C , (z1, z2) 7−→


z1 if (z1, z2) ∈ Ai with i ∈ I
z1z2 if (z1, z2) ∈ Ai with i ∈ J
1 if (z1, z2) ∈ Ai with i ∈ K

.

We define for every X ∈ S(f) a map X̃ : B → C by

(z1, z2) 7→


X0(z

2
1 , z2) + z1X1(z

2
1 , z2) if (z1, z2) ∈ Ai with i ∈ I

X0(z
2
1 , z

2
2) + z1z2X1(z

2
1 , z

2
2) if (z1, z2) ∈ Ai with i ∈ J

X0(z1, z2) +X1(z1, z2) if (z1, z2) ∈ Ai with i ∈ K
X0(z1, z2)−X1(z1, z2) if (z1, z2) ∈ Bk with k ∈ K

.

Then the map
S(f) −→ C(B,C), X 7−→ X̃

is an isomorphism of C*-algebras.

The proof is similar to the proof of Example 3.1.7.

Example 3.1.12. If n ∈ N, E := C( ITn,C), and f ∈ F(Z2, C( ITn,C)) then
S(f) is isomorphic either to C( ITn,C) or to C( ITn,C)× C( ITn,C).

Example 3.1.13. Assume E := C(A,C), where A denotes Moebius’s band
(resp. Klein’s bottle), i.e. the topological space obtained from [0, 2π]× [−π, π]
by identifying the points (0, α) and (2π,−α) for all α ∈ [−π, π] (resp. and the
points (θ,−π) and (θ, π) for all θ ∈ [0, 2π]). We put B := IT × [−π, π] (resp.
B := IT2) and

x̃ : [0, 2π]× [−π, π] −→ C , (θ, α) 7−→
{

x(2θ, α) if θ ∈ [0, π]
x(2(θ − π),−α) if θ ∈ [π, 2π]

for every x ∈ E.

a) x̃ is well-defined and belongs to C(B,C) for every x ∈ E.

b) If f1,1(θ, α) = eiθ for all (θ, α) ∈ [0, 2π]× [−π, π] then the map

φ : S(f) −→ C(B,C) , X 7−→ X̃0 + eiθX̃1

is a C*-isomorphism.
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c) Let x ∈ Un E. If w(x( · , 0)) = 0 (where w denotes the winding number)
then there is a y ∈ E with ey = x.

d) Let x ∈ Un E and put n := w(x( · , 0)). Then there is a y ∈ E with
ey = e−inθx.

e) The group F(Z2, A)/Λ(Z2, A) is isomorphic to Z2.

f) If w(f1,1( · , 0)) is even (resp. odd) then S(f) is isomorphic to E × E
(resp. to C(B,C)).

Proof. a) For α ∈ [−π, π],

x̃(π, α) = x(2π, α) = x(0,−α) = x̃(π, α)

so x̃ is well-defined. Moreover

x̃(0, α) = x(0, α) = x(2π,−α) = x̃(2π, α)

and in the case of Klein’s bottle{
x̃(θ,−π) = x(2θ,−π) = x(2θ, π) = x̃(θ, π) if θ ∈ [0, π]

x̃(θ,−π) = x(2(θ − π), π) = x(2(θ − π),−π) = x̃(θ, π) if θ ∈ [π, 2π]

i.e. x̃ ∈ C(B,C).
b) For X,Y ∈ S(f) and (θ, α) ∈ [0, 2π]× [−π, π], by Theorem 2.1.9 c),g),

(φX∗)(θ, α) = (̃X∗)0(θ, α) + eiθ (̃X∗)1(θ, α)

= (̃X0)∗(θ, α) + eiθ
˜︷ ︸︸ ︷

(e−iθ(X1)
∗)(θ, α)

=

{
X0(2θ, α) + eiθ(e−2iθX1(2θ, α)) if θ ∈ [0, π]

X0(2(θ − π),−α) + eiθ(e−2i(θ−π)X1(2(θ − π),−α)) if θ ∈ [π, 2π]

=

{
X0(2θ, α) + eiθX1(2θ, α) if θ ∈ [0, π]

X0(2(θ − π),−α) + eiθX1(2(θ − π),−α) if θ ∈ [π, 2π]
= φX(θ, α),

(φX)(φY ) = (X̃0+e
iθX̃1)(Ỹ0+e

iθỸ1) = X̃0Ỹ0+e
iθX̃0Ỹ1+e

iθX̃1Ỹ0+e
2iθX̃1Ỹ1 ,

φ(XY ) = (̃XY )0 + eiθ (̃XY )1

= X̃0Ỹ0 + e2iθX̃1Ỹ1 + eiθ(X̃0Ỹ1 + X̃1Ỹ0) = (φX)(φY ) ,

i.e. φ is a C*-homomorphism. If φX = 0 then for α ∈ [−π, π],{
X0(2θ, α) + eiθX1(2θ, α) = 0 if θ ∈ [0, π]

X0(2(θ − π),−α) + eiθX1(2(θ − π),−α) = 0 if θ ∈ [π, 2π]

so for θ ∈ [0, π], replacing θ by θ + π and α by −α in the second relation,

X0(2θ, α)− eiθX1(2θ, α) = 0 .
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It follows successively

X0(2θ, α) = X1(2θ, α) = 0 ,

X0 = X1 = 0 , X = 0.
Thus φ is injective.

Let y ∈ C(B,C). Put{
X0 : [0, 2π]× [−π, π] −→ C , (θ, α) 7−→ 1

2(y(
θ
2 , α) + y( θ2 + π,−α))

X1 : [0, 2π]× [−π, π] −→ C , (θ, α) 7−→ 1
2e

−i θ
2 (y( θ2 , α)− y(

θ
2 + π,−α))

.

For α ∈ [−π, π], {
X0(0, α) =

1
2(y(0, α) + y(π,−α))

X0(2π,−α) = 1
2(y(π,−α) + y(2π, α)){

X1(0, α) =
1
2(y(0, α)− y(π,−α))

X1(2π,−α) = −1
2(y(π,−α)− y(2π, α))

so X0, X1 ∈ E. Moreover for (θ, α) ∈ [0, 2π]× [−π, π],

X̃0(θ, α) + eiθX̃1(θ, α)

=

{
X0(2θ, α) + eiθX1(2θ, α) if θ ∈ [0, π]

X0(2(θ − π),−α) + eiθX1(2(θ − π),−α) if θ ∈ [π, 2π]

=

{
1
2(y(θ, α) + y(θ + π,−α) + y(θ, α)− y(θ + π,−α)) if θ ∈ [0, π]
1
2(y(θ − π,−α) + y(θ, α)− y(θ − π,−α) + y(θ, α)) if θ ∈ [π, 2π]

= y(θ, α)

i.e. φ is surjective.
c) If A is Moebius’s band then the assertion is obvious so assume A is

Klein’s bottle. The winding numbers of{
[0, 2π] −→ C, α 7−→ x(0, α)

[0, 2π] −→ C, α 7−→ x(2π, α)

are equal by homotopy, but their sum is equal to 0. Thus these winding
numbers are equal to 0. The paths θ and α on A generate the homotopy group
of A. Thus the winding number of x on any path of A is 0 and the assertion
follows.

d) The winding number of

[0, 2π] −→ C, θ 7−→ e−inθx(θ, 0)

is 0 and the assertion follows from c).
e) The assertion follows from d) and Proposition 3.1.1 b).
f) The assertion follows from b), d), Proposition 2.2.2 a1 ⇒ a2, and

Proposition 3.1.1 c).
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3.2. T := Z2 × Z2

Proposition 3.2.1. Let E be a unital C*-algebra and let a, b, c be the
three elements of (Z2 × Z2) \ {(0, 0)}. Put

A :=
{
(α, β, γ, ε) ∈ (Un Ec)4

∣∣ ε2 = 1E
}

and for every ϱ ∈ A and σ ∈ (Un Ec)3 denote by fϱ and gσ the functions
defined by the following tables:

fϱ a b c

a βγ γ β

b εγ εαγ α

c εβ εα αβ

gσ a b c

a α2 αβγ∗ αγβ∗

b αβγ∗ β2 βγα∗

c αγβ∗ βγα∗ γ2

a) fϱ ∈ F(Z2 × Z2, E) for every ϱ ∈ A and the map

A −→ F(Z2 × Z2, E), ϱ 7−→ fϱ

is bijective.

b) gσ ∈ { δλ | λ ∈ Λ(Z2 × Z2, E) } for every σ ∈ (Un Ec)3 and the map

(Un Ec)3 −→ { δλ | λ ∈ Λ(Z2 × Z2, E) } , σ 7−→ gσ

is bijective.

c) The following are equivalent for all ϱ := (α, β, γ, ϵ) ∈ A and ϱ′ :=
(α′, β′, γ′, ϵ′) ∈ A:

c1) S(fϱ) ≈S S(fϱ′).
c2) ε = ε′ and there are x, y, z ∈ Un Ec with

x2 = ββ′∗γγ′∗ , y2 = αα′∗γγ′∗ , z2 = αα′∗ββ′∗ .

c3) ε = ε′ and there are x, y ∈ Un Ec with

x2 = ββ′∗γγ′∗ , y2 = αα′∗γγ′∗ .

d) The following are equivalent for all ϱ := (α, β, γ, ε ∈ A) and X ∈ S(fϱ):

d1) X ∈
{
V
fϱ
t

∣∣∣ t ∈ Z2 × Z2

}c
.

d2) t ∈ Z2 × Z2 =⇒ εXt = Xt.

e) The following are equivalent for all ϱ := (α, β, γ, ε ∈ A) and X ∈ S(fϱ):

e1) X ∈ S(fϱ)c.
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e2) t ∈ Z2 × Z2 =⇒ εXt = Xt ∈ Ec.

f) For ϱ := (α, β, γ, ε) ∈ A and X,Y ∈ S(fϱ),

(X∗)0 = X∗
0 , (X

∗)a = β∗γ∗X∗
a , (X

∗)b = εα∗γ∗X∗
b , (X

∗)c = α∗β∗X∗
c ,

(XY )0 = X0Y0 + βγXaYa + εαγXbYb + αβXcYc ,

(XY )a = X0Ya +XaY0 + αXbYc + εαXcYb ,

(XY )b = X0Yb + βXaYc +XbY0 + εβXcYa ,

(XY )c = X0Yc + γXaYb + εγXbYa +XcY0 .

g) Assume K = C, let σ(Ec) be the spectrum of Ec, and for every δ ∈ Ec
let δ̂ be its Gelfand transform. Then

σ(Va) =
{
eiθ
∣∣∣ θ ∈ R, e2iθ ∈ β̂γ(σ(Ec))

}
,

σ(Vb) =
{
eiθ
∣∣∣ θ ∈ R, e2iθ ∈ α̂γ(σ(Ec))

}
,

σ(Vc) =
{
eiθ
∣∣∣ θ ∈ R, e2iθ ∈ α̂β(σ(Ec))

}
.

Proof. a) is a long calculation.

b) is easy to verify.

c1 ⇒ c2 By Proposition 2.2.2 a2 ⇒ a1 there is a λ ∈ Λ(Z2 × Z2, E) with
fϱ = fϱ′δλ. By b), there is a σ := (x, y, z) ∈ (Un Ec)3 with fϱ = fϱ′gσ. We
get ε = ε′ and

αα′∗ = x∗yz , ββ′∗ = xy∗z , γγ′∗ = xyz∗.

It follows xyz = αα′∗ββ′∗γγ′∗ so

x2 = ββ′∗γγ′∗ , y2 = αα′∗γγ′∗ , z2 = αα′∗ββ′∗.

c2 ⇒ c3 is trivial.

c3 ⇒ c2 If we put z := xyγ∗γ′ then

z2 = ββ′∗γγ′∗αα′∗γγ′∗γ∗2γ′2 = αα′∗ββ′∗.

c2 ⇒ c1 follows from b) and Proposition 2.2.2 a1 ⇒ a2.

d) follows from Corollary 2.1.24 b).

e) follows from Corollary 2.1.24 c).

f) follows from Theorem 2.1.9 c),g).

g) follows from f).

Corollary 3.2.2. We use the notation of Proposition 3.2.1 and take
ϱ := (α, β, γ, ε) ∈ A.
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a) Assume ε = 1E and there are x, y ∈ Un E with x2 = βγ , y2 = αγ. Put
z := xyγ∗.

a1) x, y, z ∈ Un Ec , z2 = αβ.

a2) For every λ, µ ∈ {−1, 1} the map

φλ,µ : S(fϱ) −→ E , X 7−→ X0 + λxXa + µyXb + λµzXc

is an E-C*-homomorphism.

a3) The map

S(fϱ) −→ E4, X 7−→ (φ1,1X,φ1,−1X,φ−1,1X.φ−1,−1X)

is an E-C*-isomorphism.

b) Assume K := R , ε = 1E, and there are x, y ∈ Un E with

x2 = −βγ , y2 = αγ , (resp. y2 = −αγ) .

Put z := xyγ∗. Then x, y, z ∈ Un Ec, z2 = −αβ (resp. z2 = αβ), and
the maps

S(fϱ) −→ (
◦
E)2, X 7−→ (X0+ixXa+yXb+izXc, X0+ixXa−yXb−izXc)

S(fϱ) −→ (
◦
E)2, X 7−→ (X0+ixXa+iyXb−zXc, X0+ixXa−iyXb+zXc)

are respectively E-C*-isomorphisms (where
◦
E denotes the complexifica-

tion of E).

c) Assume K := R, ε = −1E, and there are x, y ∈ Ec with x2 = −βγ , y2 =
αγ. Put z := xyγ∗. Then x, y, z ∈ Un Ec, z2 = −αβ, and the map

S(fϱ) −→ H⊗ E, X 7−→ X0 + ixXa + jyXb + kzXc ,

where i, j, k are the canonical units of H, is an E-C*-isomorphism.

d) If ε = −1E and there is an x ∈ Un Ec with x2 = αβ then for every
δ ∈ Un Ec the map

S(fϱ) −→ E2,2, X 7−→
[

X0 + xXc γδ∗(βXa − xXb)
δ(Xa + xβ∗Xb) X0 − xXc

]
is an E-C*-isomorphism.

The proof is a long calculation using Proposition 3.2.1 f).

Remarks. d) is contained in Proposition 3.2.3 c). An example with ε = 1E
but different from a) is presented in Proposition 3.3.2.
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Proposition 3.2.3. We use the notation of Proposition 3.2.1 and take
ϱ := (α, β, γ, ε) ∈ A.

a) Let φ : S(fϱ)→ E2,2 be an E-C*-isomorphism and put[
At Bt
Ct Dt

]
:= φVt

for every t ∈ Z2 × Z2 \ {(0, 0)}. Then ε = −1E, At, Bt, Ct, Dt ∈ Ec and
At +Dt = 0 for every t ∈ Z2 × Z2 \ {(0, 0)}, and

A∗
a = β∗γ∗Aa , A∗

b = −α∗γ∗Ab , A∗
c = α∗β∗Ac ,

B∗
a = β∗γ∗Ca , B∗

b = −α∗γ∗Cb , B∗
c = α∗β∗Cc ,

A2
a +BaCa = βγ , A2

b +BbCb = −αγ , A2
c +BcCc = αβ ,

A2
a = βγ(1E − |Ba|2) , A2

b = −αγ(1E − |Bb|2) , A2
c = αβ(1E − |Bc|2) ,

2AaAb +BaCb +BbCa = 0 , 2AbAc +BbCc +BcCb = 0 ,

2AcAa +BcCa +BaCc = 0 ,

αAa = AbAc +BbCc , αBa = AbBc −AcBb , αCa = AcCb −AbCc ,
βAb = AaAc +BaCc , βBb = AaBc −AcBa , βCb = AcCa −AaCc ,
γAc = AaAb +BaCb , γBc = AaBb −AbBa , γCc = AbCa −AaCb ,
|Aa|+ |Ab|+ |Ac| ≠ 0 , |Ba|+ |Bb|+ |Bc| ≠ 3.1E .

b) Let (At)t∈T , (Bt)t∈T , (Ct)t∈T , (Dt)t∈T be families in Ec satisfying the
above conditions and put

X ′ := AaXa +AbXb +AcXc, X ′′ := BaXa +BbXb +BcXc,

X ′′′ := CaXa + CbXb + CcXc

for every X ∈ S(fϱ). If ε = −1E then the map

S(fϱ) −→ E2,2, X 7−→
[
X0 +X ′ X ′′

X ′′′ X0 −X ′

]
is an E-C*-isomorphism.

c) Let ε = −1E and assume there is an x ∈ Ec with x2 = βγ. Let y ∈ Un Ec
and put z := γ∗xy. Then x, y, z ∈ Un Ec and the map

φ : S(fϱ) −→ E2,2 , X 7−→
[

X0 + xXa α(yXb + zXc)
−γy∗Xb + βz∗Xc X0 − xXa

]
is an E-C*-isomorphism such that

φ(
1

2
(V0 + (x∗ ⊗ 1K)Va)) =

[
1 0
0 0

]
.
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In particular (by the symmetry of a,b,c), if ε = −1E and if there is an
x ∈ Ec with x2 = βγ, or x2 = −αγ, or x2 = αβ then S(fϱ) ≈E E2,2.

Remark. Take ϱ := (1E , 1E , 1E ,−1E), ϱ′ := (1E , 1E , γ
′,−1E). By c),

S(fϱ) ≈E S(fϱ′) and by Proposition 3.2.1 c1 ⇒ c2, S(fϱ) ≈S S(fϱ′) implies the
existence of an x ∈ Un Ec with x2 = γ′.

Corollary 3.2.4. We use the notation of Proposition 3.2.3 and take
E := K, α = 1, and β = γ = ε = −1. Let S be a group, F a unital C*-algebra,
g ∈ F(S, F ), and

h : ((S × (Z2)
2)× (S × (Z2)

2)) −→ Un F c

((s1, t1), (s2, t2)) 7−→ fϱ(t1, t2)g(s1, s2).

a) h ∈ F(S × (Z2)
2, F ).

b) S(h) ≈ S(g)2,2 , S∥·∥(h) ≈ S∥·∥(g)2,2.

Proof. By Proposition 3.2.3 c), S(f) ≈ K2,2, so by Proposition 2.2.11
c),e),

S(h) ≈ K2,2 ⊗ S(g) ≈ S(g)2,2, S∥·∥(h) ≈ K2,2 ⊗ S∥·∥(g) ≈ S∥·∥(g)2,2.

Example 3.2.5. Let K := C and E := C( IT,C).

a) With the notation of Proposition 3.2.1, if ϱ := (α, β, γ,−1) ∈ A then
S(fϱ) ≈E E2,2.

b) Card ({ S(f) | f ∈ F(Z2 × Z2,E) } / ≈S) = 16.

Proof. Put

m := w(α), n := w(β), p := w(γ),

where w denotes the winding number. By Proposition 2.2.2 a1 ⇒ a2, we may
assume α = zm, β = zn, γ = zp.

a) If n+ p is even then the assertion follows from Proposition 3.2.3 c). If
n+ p is odd then either m+ p or m+n is even and the assertion follows again
from Proposition 3.2.3 c).

b) follows from Proposition 2.2.2 a),c).

Remark. Assume K := R and let E be the real C*-algebra C( IT,C) ([1,
Theorem 4.1.1.8 a)]), ε = −1E ,

α : IT −→ C , z 7−→ z,
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β : IT −→ C , z 7−→ −z,
γ : IT −→ C , z 7−→ z̄,

and ϱ := (α, β, γ, ε). Then by Corollary 3.2.2 c), S(fϱ) ≈ H⊗ E.

Example 3.2.6. We put E := C( IT2,C), γ := 1E ,

α : IT2 −→ C , (z1, z2) 7−→ z1 , β : IT2 −→ C , (z1, z2) 7−→ z2 ,

and (with the notation of Proposition 3.2.1) ϱ := (α, β, γ,−1E) ∈ A.

a) S(fϱ) is not commutative and not E-C*-isomorphic to E2,2.

b) If we put
x̃ : IT2 −→ C , (z1, z2) 7−→ x(z21 , z

2
2)

for every x ∈ E then the map

S(fϱ) −→ E2,2, X 7−→
[
X̃0 + αβX̃c βX̃a − αX̃b

βX̃a + αX̃b X̃0 − αβX̃c

]
is a C*-isomorphism.

c) E2,2 ≈ S(fϱ) ̸≈E E2,2.

Proof. a) By Proposition 3.2.1 d), S(fϱ) is not commutative. Assume
S(fϱ) ≈E E2,2 and let us use the notation of Proposition 3.2.3 a).

Step 1. {Aa ̸= 0} ⊂ {Ab = 0}.
Assume {Aa ̸= 0} ∩ {Ab ̸= 0} ≠ ∅. By Proposition 3.2.3 a),

2AaAb +BaCb +BbCa = 0, B∗
a = β∗Ca, B∗

b = −α∗Cb

so Ba ̸= 0 and Bb ̸= 0 on this set. We put

Aa =: |Aa|eiÃa , Ab =: |Ab|eiÃb , Ba =: |Ba|eiB̃a , Bb =: |Bb|eiB̃b ,

z1 =: eiθ1 , z2 =: eiθ2 ,

with Ãa, Ãb, B̃a, B̃b ∈ R. By Proposition 3.2.3 a), 2Ãa = θ2, 2Ãb = θ1 + π,

BaCb +BbCa = −αγBaB∗
b + βγBbB

∗
a = |Ba||Bb|(ei(θ2+B̃b−B̃a) − ei(θ1+B̃a−B̃b))

= |Ba||Bb|ei
θ1+θ2

2 (ei(
θ2−θ1

2
+B̃b−B̃a) − ei(

θ1−θ2
2

+B̃a−B̃b))

= 2|Ba||Bb| sin(
θ2 − θ1

2
+ B̃b − B̃a)ei

θ1+θ2+π
2 .

Since 2AaAb = −(BaCb +BbCa) there is a k ∈ Z with

θ2
2

+
θ1 + π

2
=
θ1 + θ2 + π

2
+ (2k + 1)π
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which is a contradiction.

Step 2. {Aa ̸= 0} ⊂ {Ac = 0}.
The assertion follows from Step 1 by symmetry.

Step 3. {Aa ̸= 0} = {Ab = Ac = 0}.
The assertion follows from Steps 1 and 2 and from |Aa|+ |Ab|+ |Ac| ≠ 0.
Step 4. The contradiction.
By Step 3 and by the symmetry, the sets {Aa ̸= 0}, {Ab ̸= 0}, and

{Ac ̸= 0} are clopen and by |Aa| + |Ab| + |Ac| ≠ 0 their union is equal to IT2.
So there is exactly one of these sets equal to IT2 which implies

A2
a = z2 , or A2

b = −z1 or A2
c = z1z2

and no one of these identities can hold.
b) is a direct verification.
c) follows from a) and b).

3.3. T := (Z2)
n with n ∈ N

Example 3.3.1. Assume f constant and put

⟨ s | t ⟩ :=
n∏
i=1

(−1)s(i)t(i)

for all s, t ∈ T (where Z2 is identified with {0, 1}) and

φt : S(f) −→ E , X 7−→
∑
s∈T
⟨ t | s ⟩Xs

for all t ∈ T . Then the map

φ : S(f) −→ E2n , X 7−→ (φtX)t∈T

is an E-C*-isomorphism.

Proof. For r, s, t ∈ T ,

t+ t = 0, ⟨ s | t ⟩ = ⟨ t | s ⟩ , ⟨ r + s | t ⟩ = ⟨ r | t ⟩ ⟨ s | t ⟩ ,

⟨ r | s+ t ⟩ = ⟨ r | s ⟩ ⟨ r | t ⟩ .

For t ∈ T and X,Y ∈ S(f), by Theorem 2.1.9 c),g),

φt(X
∗) =

∑
s∈T
⟨ t | s ⟩ (X∗)s =

∑
s∈T
⟨ t | s ⟩ (Xs)

∗ = (φtX)∗,

(φtX)(φtY ) =
∑
r,s∈T

⟨ t | r ⟩ ⟨ t | s ⟩XrYs =
∑
q,r∈T

⟨ t | r ⟩ ⟨ t | q − r ⟩XrYq−r
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=
∑
q,r∈T

⟨ t | q ⟩XrYq−r =
∑
q∈T
⟨ t | q ⟩ (XY )q = φt(XY )

so φt and φ are E-C*-homomorphisms.

We have ∑
t∈T
⟨ 0 | t ⟩ = 2n .

We want to prove ∑
t∈T
⟨ s | t ⟩ = 0

for all s ∈ T , s ̸= 0, by induction with respect to Card { i ∈ Nn | s(i) ̸= 0 }.
Let i ∈ Nn with s(i) ̸= 0 and put r := s+ ei,

T0 := { t ∈ T | t(i) = 0 } , T1 := { t ∈ T | t(i) = 1 } .

Then ∑
t∈T0

⟨ s | t ⟩ =
∑
t∈T0

⟨ r | t ⟩ ,
∑
t∈T1

⟨ s | t ⟩ = −
∑
t∈T1

⟨ r | t ⟩ .

But ∑
t∈T0

⟨ r | t ⟩ =
∑
t∈T1

⟨ r | t ⟩ = 2n−1

if r = 0. By the hypothesis of the induction∑
t∈T0

⟨ r | t ⟩ =
∑
t∈T1

⟨ r | t ⟩ = 0

if r ̸= 0 (with Nn replaced by Nn \ {i}, since r(i) = 0). This finishes the proof
by induction.

For r ∈ T and X ∈ S(f), by the above,∑
t∈T
⟨ r | t ⟩φtX =

∑
s,t∈T

⟨ r | t ⟩ ⟨ t | s ⟩Xs =
∑
s,t∈T

⟨ r + s | t ⟩Xs

=
∑

s∈T\{r}

∑
t∈T
⟨ r + s | t ⟩Xs +

∑
t∈T
⟨ 0 | t ⟩Xr = 2nXr.

Hence φ is bijective.

Example 3.3.2. Let E := C( ITn,C), denote by z := (z1, z2, · · · , zn) the
points of ITn, and put z2 := (z21 , z

2
2 , · · · , z2n) for every z ∈ ITn. We identify

(Z2)
n with P(Nn) by using the bijection

P(Nn) −→ (Z2)
n, I 7−→ eI

and denote by

I△J := (I \ J) ∪ (J \ I)
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the addition on P(Nn) corresponding to this identification. We put λI :=
∏
i∈I

zi

for every I ⊂ Nn and

f : P(Nn)×P(Nn) −→ Un Ec , (I, J) 7−→ λI∩J .

Then f ∈ F((Z2)
n, E) and, if we put

X̃ :=
∑
I⊂Nn

λI(z)XI(z
2) ∈ E

for every X ∈ S(f), the map

φ : S(f) −→ E , X 7−→ X̃

is an isomorphism of C*-algebras.

Proof. Let X,Y ∈ S(f). By Theorem 2.1.9 c),g),

X̃∗ =
∑
I⊂Nn

λI (X
∗)I(z

2) =
∑
I⊂Nn

λI λ2I X
∗
I = X̃,

X̃Y =
∑
I⊂Nn

λI (XY )I(z
2) =

∑
I⊂Nn

λI
∑
J⊂Nn

f(J, J△I)2XJYJ△I

=
∑

J,K⊂Nn

λJ△Kλ
2
J∩KXJYK =

∑
J,K⊂Nn

λJλKXJYK = X̃Ỹ

so φ is a C*-homomorphism.

We put for k ∈ Nn, i ∈ Zn, and I ⊂ Nn,

iIk :=

{
2ik + 1 if k ∈ I
2ik if k ∈ Nn \ I

, iI := (iI1, i
I
2, · · · , iIn) ∈ Zn

and

G :=

{ ∑
i∈Zn

aiz
i1
1 z

i2
2 · · · z

in
n

∣∣∣∣∣ (ai)i∈Zn ∈ C(Zn)

}
.

Let

x :=
∑
i∈Zn

aiz
i1
1 z

i2
2 · · · z

in
n ∈ G

and for every I ⊂ Nn put

XI :=
∑
i∈Zn

aiIz
i1
1 z

i2
2 · · · z

in
n , X :=

∑
I⊂Nn

(XI ⊗ 1K)VI .

Then φX = x and so G ⊂ φ(S(f)). Since G is dense in E, it follows that φ is
surjective.
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We prove that φ is injective by induction with respect to n ∈ N. The
case n = 1 was proved in Example 3.1.4. Assume the assertion holds for n− 1.
Let X ∈ Ker φ. Then ∑

I⊂Nn

λI(z)XI(z
2) = 0 .

By replacing zn by −zn in the above relation, we get∑
I⊂Nn−1

λI(z)XI(z
2)−

∑
n∈I⊂Nn

λI(z)XI(z
2) = 0

and so ∑
I⊂Nn−1

λI(z)XI(z
2) =

∑
n∈I⊂Nn

λI(z)XI(z
2) = 0 .

By the induction hypothesis, we get XI = 0 for all I ⊂ Nn and so X = 0. Thus
φ is injective and a C*-isomorphism.

Example 3.3.3. Let f ∈ F((Z2)
3, E), put

a := (0, 0, 1) , b := (0, 1, 0) , c := (0, 1, 1) , s := (1, 0, 0) ,

and denote by g the element of F(Z2, E) defined by g(1, 1) := f(s, s) Proposi-
tion 3.1.1 a).

a) There is a family (αi , βi , γi , εi)i∈N7 in (Un Ec)4 such that f is given by
the attached table and such that ε2i = 1E for every i ∈ N7 and

ε3 = ε1ε2, ε5 = ε1ε4, ε6 = ε2ε4, ε7 = ε1ε2ε4,

α3 = ε2ε4α1α
∗
2α4α6γ

∗
2 , α5 = α6β1γ

∗
2 , α7 = α4γ1γ

∗
2 ,

β2 = β1γ1γ
∗
2 , β3 = ε2α

∗
4α6β1 , β4 = ε1ε2ε4α1α

∗
2α4γ1γ

∗
2 ,

β5 = ε4α1α
∗
2α6, β6 = ε4α1α

∗
2α6β1γ

∗
2 , β7 = ε1ε2ε4α1α

∗
2α6,

γ3 = ε2α4α
∗
6γ1, γ4 = ε2ε4α2α

∗
4γ

∗
1γ2, γ5 = ε1ε4α2α

∗
6γ1,

γ6 = ε4α2α
∗
6γ2, γ7 = ε1ε2ε4α2α

∗
4β1.

f a b c s a+ s b+ s c+ s

a β1γ1 γ1 β1 γ2 β2 γ3 β3
b ε1γ1 ε1α1γ1 α1 γ4 γ5 β4 β5
c ε1β1 ε1α1 α1β1 γ6 γ7 β7 β6
s ε2γ2 ε4γ4 ε6γ6 ε2α2γ2 α2 α4 α6

a+ s ε2β2 ε5γ5 ε7γ7 ε2α2 α2β2 α7 α5

b+ s ε3γ3 ε4γ4 ε7γ7 ε4α4 ε7α7 ε3α3γ3 α3

c+ s ε3β3 ε5β5 ε6β6 ε6β6 ε5α5 ε3α3 α3β3
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b) If ε1 = −1E , ε2 = ε4, γ1 = 1E , and there is an x ∈ Ec with x2 =

α1β
∗
1 then there are P± ∈ (E⊗̃1K)c ∩ Pr S(f) with P+ + P− = V f

1 and
(Theorem 2.2.18 b))

P+S(f)P+ ≈E S(g) ≈E P−S(f)P− .

c) If ε1 = −1E , ε2 = ε4 = γ1 = 1E , and there is an x ∈ Ec with x2 = α1β
∗
1

then S(f) ≈E S(g)2,2.

d) Assume ε1 = −1E , ε2 = ε4 = α1 = β1 = γ1 = 1E , γ2 = α∗
2, and

α4
2 = α4

4 = α6 = 1E and put φ± : S(f) −→ E2,2

X 7→
[

X0 +Xc ±Xs ±Xc+s Xa −Xb ± α∗
2Xa+s ∓ α∗

4Xb+s

Xa +Xb ± α∗
2Xa+s ± α∗

4Xb+s X0 −Xc ±Xs ∓Xc+s

]
.

Then the map

S(f) −→ E2,2 × E2,2, X 7−→ (φ+X,φ−X)

is an E-C*-isomorphism.

Proof. a) is a long calculation.

b) and c) follow from a) and Theorem 2.2.18 e).

d) is a long calculation using a).

3.4. T := Zn with n ∈ N

Proposition 3.4.1. Put A := Un Ec and for every α ∈ An−1 put

fα : Zn × Zn −→ A , (p, q) 7−→

p+q−1∏
j=p

αj

(q−1∏
k=1

α∗
k

)
,

where Zn and Nn are canonically identified and αn := 1E.

a) For every f ∈ F(Zn, E) and X ∈ S(f), X ∈ S(f)c iff Xt ∈ Ec for all
t ∈ T . In particular, S(f) is commutative if E is commutative.

b) fα ∈ F(Zn, E) for every α ∈ An−1 and the map

An−1 −→ F(Zn, E), α 7−→ fα

is a group isomorphism.

c) The following are equivalent for all α, β ∈ An−1.

c1) S(fα) ≈S S(fβ).
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c2) There is a γ ∈ A such that

γn =

n−1∏
j=1

(αjβ
∗
j ) .

c3) There is a λ ∈ Λ(Zn, E) such that fα = fβδλ.

If these equivalent conditions are fulfilled then the map

S(fα) −→ S(fβ), X 7−→ U∗
λXUλ

is an S-isomorphism and

λ(1)n =
n−1∏
j=1

(αjβ
∗
j ) = γn , p ∈ Zn =⇒ λ(p) = λ(1)p

p−1∏
j=1

(α∗
jβj) .

d) Let α ∈ An−1 and put

β : Nn−1 −→ A , j 7−→


1 if j < n− 1(

n−1∏
k=1

α∗
k

)n−1

if j = n− 1
.

Then α and β fulfill the equivalent conditions of c).

e) There is a natural bijection

{ S(f) | f ∈ F(Zn, E) } / ≈S −→ A/ { xn | x ∈ A } .
If E := C( ITm,C) for some m ∈ N then

Card ({ S(f) | f ∈ F(Zn,E) } / ≈S) = mn .

f) Let α ∈ An−1, β ∈ A such that βn =
n−1∏
j=1

αj,

F :=

{
E if K = C
◦
E if K = R

,

where
◦
E denotes the complexification of E, and

wk : S(fα) −→ F , X 7−→
n∑
j=1

βj

(
j−1∏
l=1

ᾱl

)
e

2πijk
n Xj

for every k ∈ Nn(= Zn).

f1) If K = C then the map

S(fα) −→ En, X 7−→ (wkX)k∈Zn

is an E-C*-isomorphism.
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f2) If K = R and n is odd then we may take β ∈ R and the map

S(fα) −→ E × (
◦
E)

n−1
2 , X 7−→ (wnX, (wkX)k∈Nn−1

2

)

is an E-C*-isomorphism.

f3) If K = R, n is even, and
n−1∏
j=1

αj = −1 then the map

S(fα) −→ (
◦
E)

n
2 , X 7−→ (wk−1X)k∈Nn

2

is an E-C*-isomorphism.

f4) If K = R, n is even, and
n−1∏
j=1

αj = 1, and β = 1 then the map

S(fα) −→ E × E × (
◦
E)

n
2
−1, X 7−→ (wnX,wn

2
X, (wkX)k∈Nn

2−1
)

is an E-C*-isomorphism.

f5) If n is even then there is a γ ∈ A such that fα(
n
2 ,

n
2 ) = γ2.

Example 3.4.2. Let E := C( IT,C), r ∈ Zn−1, z : IT → C the canonical
inclusion, and

f : Zn × Zn −→ Un Ec , (p, q) 7−→ z

(
p+q−1∑
j=p

rj−
q−1∑
j=1

rj

)
,

where Zn and Nn are canonically identified. Then f ∈ F(Zn, E). Let further S

be the subgroup of Zn generated by ρ(
n−1∑
j=1

rj), where ρ : Z→ Zn is the quotient

map,

m := Card S , h :=
n

m
, ω := e

2πi
n ,

σ : Nn −→ Z , p 7−→ p

h

n−1∑
j=1

rj −m
p−1∑
j=1

rj ,

and

φk : S(f) −→ E , X 7−→
n∑
p=1

(Xp ◦ zm)zσ(p)ωpk

for every k ∈ Nh. Then the map

φ : S(f) −→ Eh , X 7−→ (φkX)k∈Nh

is an E-C*-isomorphism.

The next example shows that the set { S(f) | f ∈ F(Zn, C( IT,C)) } is not
reduced by restricting the Schur functions to have the form indicated in Ex-
ample 3.4.2.
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Example 3.4.3. Let E := C( IT,C) and g ∈ F(Zn, E). Put

φ : [0, 2π[−→ R , θ 7−→ log
n−1∏
j=1

(g(j, 1))(eiθ) ,

where we take a fixed (but arbitrary) branch of log. If we define

r : Nn−1 −→ Z , j 7−→

{
lim
θ→2π

φ(θ)− φ(0) if j = 1

0 if j ̸= 1

then there is a λ ∈ Λ(Zn, E) such that g = fδλ, where f is the Schur function
defined in Example 3.4.2. In particular, S(f) ≈S S(g).

3.5. T := Z

Example 3.5.1. Let f ∈ F(Z, E).

a) S∥·∥(f) ≈ C( IT, E).

b) If E is a W*-algebra then

SW (f) ≈ E⊗̄L∞(µ) ≈ L∞(µ,E) ,

where µ denotes the Lebesgue measure on IT.

Proof. By Corollary 1.1.6 c) and Proposition 2.2.2 a1 ⇒ a2, we may
assume f constant. By Proposition 2.2.10 c),e), we may assume E := C. Let
α : IT→ C be the inclusion map. Then

l2(Z) −→ L2(µ), ξ 7−→
∑
n∈Z

ξnα
n

is an isomorphism of Hilbert spaces. If we identify these Hilbert spaces using
this isomorphism then V1 becomes the multiplicator operator

L2(µ) −→ L2(µ), η 7−→ αη

so
R(f) −→ L∞(µ), X 7−→

∑
n∈Z

Xnα
n

is an injective, involutive algebra homomorphism. The assertion follows.

4. CLIFFORD ALGEBRAS

4.1. The general case

Throughout this subsection, I is a totally ordered set, (Ti)i∈I is a family
of groups, and (fi)i∈I ∈

∏
i∈I
F(Ti, E). We put
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t̄ := { i ∈ I | ti ̸= 1i }

for every t ∈
∏
i∈I

Ti (where 1i denotes the neutral element of Ti) and

T :=

{
t ∈

∏
i∈I

Ti

∣∣∣∣∣ t̄ is finite
}
, T ′ :=

{
t ∈ T | t2 = 1

}
.

An associated f ∈ F(T,E) will be defined in Proposition 4.1.1 b).

T is a subgroup of
∏
i∈I

Ti. We canonically associate to every element t ∈ T

in a bijective way the ”word” ti1ti2 · · · tin , where

{i1, i2, · · · , in} = t̄ and i1 < i2 < · · · < in

and use sometimes this representation instead of t (to 1 ∈ T we associate the
”empty word”).

Proposition 4.1.1. a) Let ti1ti2 · · · tin be a finite sequence of letters with
tij ∈ Tij \ {1ij} for every j ∈ Nn and use transpositions of successive let-
ters with distinct indices in order to bring these indices in an increasing
order. If τ denotes the number of used transpositions then (−1)τ does
not depend on the manner in which this operation was done.

b) Let s, t ∈ T and let

si1si2 · · · sim , ti′1ti′2 · · · ti′n
be the canonically associated words of s and t, respectively. We put for
every k ∈ I, s̃k := sij if there is a j ∈ Nm with k = ij and s̃k := 1k if the
above condition is not fulfilled and define t̃ in a similar way. Moreover,
we put (Proposition 1.1.2 a))

f(s, t) := (−1)τ
∏
k∈I

fk(s̃k, t̃k) ,

where τ denotes the number of transpositions of successive letters with
distinct indices in the finite sequence of letters

si1si2 · · · simti′1ti′2 · · · ti′n
in order to bring the indices in an increasing order. Then f ∈ F(T,E).

c) Let I0 be a subset of I, T0 the subgroup { t ∈ T | t̄ ⊂ I0 } of T , and f0
the element of F(T0, E) defined in a similar way as f was defined in b).
Then f0 = f |(T0 × T0) and the map

S∥·∥(f0) −→ S∥·∥(f),
∥·∥∑
t∈T0

(Xt⊗̃1K)V f0
t 7−→

∥·∥∑
t∈T0

(Xt⊗̃1K)V f
t
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is an injective E-C**-homomorphism with image

{ X ∈ S(f) | (t ∈ T &Xt ̸= 0)⇒ t ∈ T0 } .

Proof. a) We define a new total order relation on the indices of the given
word by putting for all j, k ∈ Nn

ij ≺ ik :⇐⇒ ((ij < ik) or (ij = ik and j < k)) .

Let P be a sequence of transpositions of successive letters in order to bring the
indices in an increasing form with respect to the new order and let τ ′ be the
number of used transpositions. Then τ − τ ′ is even and so (−1)τ = (−1)τ ′ .
By the theory of permutations (−1)τ ′ does not depend on P , which proves the
assertion.

b) By a), f is well-defined. Let r, s, t ∈ T and let

ri1ri2 · · · rim , si′1si′2 · · · si′n , ti′′1 ti′′2 · · · ti′′p
be the words canonically associated to r, s, and t, respectively. There are
α, β ∈ {−1,+1} such that

f(r, s)f(rs, t) = α
∏
i∈I

f(r̃i, s̃i)f(r̃isi, t̃i) ,

f(r, st)f(s, t) = β
∏
i∈I

fi(r̃i, s̃iti)f(s̃i, t̃i) .

Write the finite sequence of letters

ri1ri2 · · · rimsi′1si′2 · · · si′nti′′1 ti′′2 · · · ti′′p
and use transpositions of successive letters with distinct indices in order to
bring the indices in an increasing order. We can do this acting first on the
letters of r and s only and then in a second step also on the letters of t. Then
α = (−1)µ, where µ denotes the number of all performed transpositions. For
β we may start first with the letters of s and t and then in a second step also
with the letters of r. Then β = (−1)ν , where ν is the number of all effectuated
transpositions. By a), α = (−1)µ = (−1)ν = β. The rest of the proof is
obvious.

c) follows from Corollary 2.1.17 d).

Corollary 4.1.2. If I := N2 then for all s, t ∈ T ,

f(s, t) =


f1(s1, t1) if s2 = 12
f2(s2, t2) if t1 = 11

−f1(s1, t1)f2(s2, t2) if s2 ̸= 12 , t1 ̸= 11

.

Proposition 4.1.3. Let s, t ∈ T .
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a) f(s, t) = (−1)Card (s̄×t̄)−Card (s̄∩t̄)f(t, s).

b) st = ts iff VsVt = (−1)Card (s̄×t̄)−Card (s̄∩t̄)VtVs.

c) Assume s̄ ⊂ t̄. If Card s̄ is even or if Card t̄ is odd then f(s, t) = f(t, s).
If in addition st = ts then VsVt = VtVs.

d) If Card I is an odd natural number and T is commutative then Vt ∈ S(f)c
for every t ∈ T with t̄ = I.

e) Assume t ∈ T ′. If n := Card t̄ and α :=
∏
i∈t̄
fi(ti, ti) then

f(t, t) = (−1)
n(n−1)

2 α , f̃(t) = (−1)
n(n−1)

2 α∗ ,

(Vt)
2 = (−1)

n(n−1)
2 (α⊗̃1K)V1 , V ∗

t = (−1)
n(n−1)

2 (α∗⊗̃1K)Vt .

Proof. a) For i ∈ s̄,

f(si, t) =

{
(−1)Card t̄f(t, si) if i ̸∈ t̄
(−1)Card t̄−1f(t, si) if i ∈ t̄

so
f(s, t) = (−1)Card (s̄×t̄)−Card (s̄∩t̄)f(t, s).

b) By Proposition 2.1.2 b),

VsVt = (f(s, t)⊗̃1K)Vst , VtVs = (f(t, s)⊗̃1K)Vts .

Thus if st = ts then by a),

VsVt = ((f(s, t)f(t, s)∗)⊗̃1K)VtVs = (−1)Card (s̄×t̄)−Card (s̄∩t̄)VtVs .

Conversely, if this relation holds then by a),

Vst = (f(s, t)∗⊗̃1K)VsVt = (−1)Card (s̄×t̄)−Card (s̄∩t̄)(f(t, s)∗⊗̃1K)VsVt

= (f(t, s)∗⊗̃1K)VtVs = Vts

and we get st = ts by Theorem 2.1.9 a).
c) follows from a) and b).
d) follows from c) (and Proposition 2.1.2 d)).
e) We have

f(t, t) = (−1)(n−1)+···+2+1α = (−1)
n(n−1)

2 α .

By Proposition 2.1.2 b),e),

(Vt)
2 = (f(t, t)⊗̃1K)V1 = (−1)

n(n−1)
2 (α⊗̃1K)V1 ,

V ∗
t = f̃(t)Vt−1 = f(t, t)∗Vt = (−1)

n(n−1)
2 (α∗⊗̃1K)Vt.
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Proposition 4.1.4. Let S be a finite subset of T ′ \ {1} such that st = ts
and Card (s̄ × t̄) − Card (s̄ ∩ t̄) is odd for all distinct s, t ∈ S and for every
t ∈ S let αt, εt ∈ Un Ec and Xt ∈ E be such that

ε2t = 1E , (Vt)
2 = (αt⊗̃1K)V1 , X∗

t = αtXt ,∑
t∈S
|Xt|2 =

1

4
1E .

a)

P :=
1

2
V1 +

∑
t∈S

((εtXt)⊗̃1K)Vt ∈ Pr S(f) ,

V1 − P =
1

2
V1 +

∑
t∈S

((−εtXt)⊗̃1K)Vt ∈ Pr S(f) .

b) If s ∈ S and β ∈ Ec such that Xs = 0 and β2 = αs then P is homotopic
in Pr S(f) to

1

2
(V1 + ((β∗εs)⊗̃1K)Vs) .

Proof. a) By Proposition 4.1.3 b),e),

P ∗ =
1

2
V1 +

∑
t∈S

((εtX
∗
t α

∗
t )⊗̃1K)Vt =

1

2
V1 +

∑
1∈S

((εtXt)⊗̃1K)Vt = P,

P 2 =
1

4
V1 +

∑
t∈S

(X2
t ⊗̃1K)(Vt)

2 +
∑
t∈S

((εtXt)⊗̃1K)Vt

+
∑
s,t∈S
s̸=t

((εsεtXsXt)⊗̃1K)(VsVt + VtVs)

=
1

4
V1 +

∑
t∈S

((X2
t αt)⊗̃1K)V1 +

∑
t∈S

((εtXt)⊗̃1K)Vt

=
1

4
V1 +

∑
t∈S

(|Xt|2⊗̃1K)V1 +
∑
t∈S

((εtXt)⊗̃1K)Vt = P.

b) Remark first that β ∈ Un Ec and put

Y : [0, 1] −→ Ec+ , u 7−→ (
1

4
1E − u2

∑
t∈S
|Xt|2)

1
2 ,

Z : [0, 1] −→ Ec , u 7−→ β∗εsY (u),

Q : [0, 1] −→ S(f) , u 7−→ 1

2
V1 + (Z(u)⊗̃1K)Vs +

∑
t∈S\{s}

((uεtXt)⊗̃1K)Vt.
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For u ∈ [0, 1],

αsZ(u) = β2β∗εsY (u) = βεsY (u) = Z(u)∗ ,

|Z(u)|2 +
∑

t∈S\{s}

|uXt|2 =
1

4
1E

so by a), Q(u) ∈ Pr S(f). Moreover

Q(0) =
1

2
(V1 + ((β∗εs)⊗̃1K)Vs) , Q(1) = P.

Corollary 4.1.5. Let s, t ∈ T ′\{1}, s ̸= t, st = ts, αs, αt, εs, εt ∈ Un Ec
such that

ε2s = ε2t = 1E , (Vs)
2 = (α2

s⊗̃1K)V1, (Vt)
2 = (α2

t ⊗̃1K)V1 ,

and put

Ps :=
1

2
(V1 + ((εsα

∗
s)⊗̃1K)Vs), Pt :=

1

2
(V1 + ((εtα

∗
t )⊗̃1K)Vt) .

a) Ps, Pt ∈ Pr S(f); we denote by Ps∧Pt the infimum of Ps and Pt in S(f)+
(by b) and c) it exists).

b) If VsVt ̸= VtVs then Ps ∧ Pt = 0.

c) If VsVt = VtVs then Ps ∧ Pt = PsPt ∈ Pr S(f).

Proof. a) follows from Proposition 2.1.20 b⇒ a.
b) By Proposition 4.1.3 b), VsVt = −VtVs. Let X ∈ S(f)+ with X ≤ Ps

and X ≤ Pt. By [1, Proposition 4.2.7.1 d⇒ c],

X = PsX =
1

2
X +

1

2
((εsα

∗
s)⊗̃1K)VsX,

X = ((εsα
∗
s)⊗̃1K)VsX = ((εsεtα

∗
sα

∗
t )⊗̃1K)VsVtX

= −((εsεtα∗
sα

∗
t )⊗̃1K)VtVsX = −X

so X = 0 and Ps ∧ Pt = 0.
c) We have PsPt = PtPs so PsPt ∈ Pr S(f) and PsPt = Ps ∧ Pt by [1,

Corollary 4.2.7.4 a⇒ b&d].

Corollary 4.1.6. Let m,n ∈ N, Nm+n ⊂ I, (αi)i∈Nm ∈ (Un Ec)m, and
for every i ∈ Nm let ti ∈ T ′ with t̄i := Nn ∪ {n + i} and titj = tjti for all
i, j ∈ Nm. If for every i ∈ Nm,

(Vti)
2 = (α2

i ⊗ 1K)V1

then
1

2

(
V1 +

1√
m

∑
i∈Nm

(α∗
i ⊗ 1K)Vti

)
∈ Pr S(f) .
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Proof. For distinct i, j ∈ Nm,

Card (t̄i × t̄j)− Card (t̄i ∩ t̄j) = (n + 1)2 − n = n(n + 1) + 1

is odd. For every i ∈ Nm put Xi :=
1

2
√
m
α∗
i . Then

α2
iXi =

1

2
√
m
αi = X∗

i , |Xi|2 =
1

4m
1E ,

∑
i∈Nm

|Xi|2 =
1

4
1E

and the assertion follows from Proposition 4.1.4 a).

Theorem 4.1.7. Let n ∈ N such that N2n is an ordered subset of I,
S := { t ∈ T | t̄ ⊂ N2n−2 }, g := f |(S × S), a, b ∈ T such that a2 = b2 = 1,

ā = N2n−1, b̄ = N2n−2 ∪ {2n}, i ∈ N2n−2 =⇒ ai = bi ,

ω : Z2 × Z2 → T the (injective) group homomorphism defined by ω(1, 0) := a,
ω(0, 1) := b, α1 := f(a, a), α2 := f(b, b), β1, β2 ∈ Un Ec such that α1β

2
1 +

α2β
2
2 = 0,

γ :=
1

2
(α∗

1β
∗
1β2 − α∗

2β1β
∗
2) = α∗

1β
∗
1β2 = −α∗

2β1β
∗
2 ,

X :=
1

2
((β1⊗̃1K)Va + (β2⊗̃1K)Vb), P+ := X∗X , P− := XX∗.

We consider S(g) as an E-C**-subalgebra of S(f) (Corollary 2.1.17 e)).

a) ab = ba, γ2 = −α∗
1α

∗
2. We put c := ab = ω(1, 1).

b) X, Vc, P± ∈ S(g)c.

c) We have

P± =
1

2
(V1 ± (γ⊗̃1K)Vc) ∈ Pr S(f), P+ + P− = V1, P+P− = 0,

X2 = 0, XP+ = X, P−X = X, P+X = XP− = 0, X +X∗ ∈ Un S(f) .

d) The map

E −→ P±S(f)P±, x 7−→ P±(x⊗̃1K)P±
is an injective unital C**-homomorphism. We identify E with its image
with respect to this map and consider P±S(f)P± as an E-C**-algebra.

e) The map

φ± : S(g) −→ P±S(f)P± , Y 7−→ P±Y P± = P±Y = Y P±

is an injective unital C**-homomorphism. If Y1, Y2 ∈ Un S(g) then
φ+Y1 + φ−Y2 ∈ Un S(f).
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f) The map

ψ : S(f) −→ S(f) , Z 7−→ (X +X∗)Z(X +X∗)

is an E-C**-isomorphism such that

ψ−1 = ψ, ψ(P+S(f)P+) = P−S(f)P−, ψ ◦ φ+ = φ−, ψ ◦ φ− = φ+ .

If Y1, Y2 ∈ S(g) then

φ+Y1 + φ−Y2 = (φ+Y1 + φ−V1)ψ(φ+Y2 + φ−V1).

g) If p ∈ Pr S(g) then

(X(φ+p)
∗(X(φ+p)) = φ+p , (X(φ+p))(X(φ+p))

∗ = φ−p .

h) Let R be the subgroup {1, a, b, c} of T , h := f |(R × R), d ∈ T such that
d̄ = N2n−2 and di = ai for every i ∈ N2n−2, and

α := f(d, d) , α′ := f2n−1(2n− 1, 2n− 1) , α′′ := f2n(2n, 2n).

Then α1 = αα′, α2 = αα′′, −α′α′′ = (α∗γ∗)2,

h a b c

a αα′ α α′

b −α αα′′ −α′′

c −α′ α′′ −α′α′′

is the table of h, P± ∈ Pr S(h), and the map

φ : S(h) −→ E2,2 , Z 7−→
[

Z0 + γ∗Zc αα′Za − αγ∗Zb
Za + α′∗γ∗Zb Z0 − γ∗Zc

]
is an E-C**-isomorphism. In particular

φP+ =

[
1E 0
0 0

]
, φP− =

[
0 0
0 1E

]
and E2,2 is E-C**-isomorphic to an E-C**-subalgebra of S(f).

i) Assume I = N2n and T2n−1 = T2n = Z2. Then T ≈ S × Z2 × Z2, φ± is
an E-C*-isomorphism with inverse

P±S(f)P± −→ S(f0), Z 7−→ 2
∑
u∈T0

(Zu ⊗ 1K)Vu ,

and S(f) ≈E S(g)2,2

Proof. a) is easy to see.
b) follows from Proposition 4.1.3 b).
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c) follows from a) and Theorem 2.2.18 b),h).
d) follows from Theorem 2.2.18 c).
e) By b) and c), the map is well-defined. The assertion follows now from

Theorem 2.2.18 d),h).
f) follows from b), c), and Theorem 2.2.18 h).
g) follows from b) and Proposition 2.2.17 d).
h) follows from c), d), Proposition 3.2.1 a), Corollary 3.2.2 d), and Propo-

sition 3.2.3 c).
i) follows from Theorem 2.2.18 f).

Proposition 4.1.8. We use the notation and the hypotheses of Theorem
4.1.7 and assume I := N2, T1 := Z2, and T2 := Z2m with m ∈ N.

a) a = (1, 0), b = (0,m), c = (1,m), α = 1E, α
′ = α1 = f1(1, 1), α

′′ = α2 =
f2(m,m), and

P±S(f)P± =
{
(x⊗̃1K)P±

∣∣ x ∈ E } .

b) If m = 1 then there are α, β, γ, δ ∈ Un Ec such that f is given by the
following table:

f (0, 1) (0, 2) (0, 3) (1, 0) (1, 1) (1, 2) (1, 3)

(0, 1) α β γ −1E −α −β −γ
(0, 2) β α∗βγ α∗γ −1E −β −α∗βγ −α∗γ

(0, 3) γ α∗γ β∗γ −1E −γ −α∗γ −β∗γ
(1, 0) 1E 1E 1E δ δ δ δ

(1, 1) α β γ −δ −αδ −βδ −γδ
(1, 2) β α∗βγ α∗γ −δ −βδ −α∗βγδ −α∗γδ

(1, 3) γ α∗γ β∗γ −δ −γδ −α∗γδ −β∗γδ

.

c) We assume K := C and m := 1 and put for all j, k ∈ {0, 1}

φj,k : S(f) −→ E , Z 7−→ Z0 + (−1)jZb + ijZ(k,1) − ijZ(k,3) ,

ϕ : S(f) −→ E4 , Z 7−→ (φ0,0Z, φ0,1Z, φ1,0Z, φ1,1Z) .
If we take α := β := γ := −δ := β1 := β2 := 1E in b) then the map

S(f) −→ E2,2 × E4, Z 7−→
([

Z0 + Z(1,2) Z(1,0) − Zb
Z(1,0) + Zb Z0 − Z(1,2)

]
, ϕZ

)
is an E-C**-isomorphism.

Proof. a) Use Corollary 4.1.2 and Proposition 2.1.2 b).
b) Use Proposition 3.4.1 a) and Proposition 4.1.1.
c) follows from b) and Proposition 3.4.1 f1.
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4.2. A special case

Throughout this subsection, we denote by S a totally ordered set, put
T := (Z2)

(S), and fix a map ρ : S → Un Ec. We define for every s ∈ S,
fs ∈ F(Z2, E) by putting fs(1, 1) = ρ(s) (Proposition 3.1.1 a)). Moreover,
we denote by fρ the Schur function f defined in Proposition 4.1.1 b) (with I
replaced by S) and put Cl(ρ) := S(fρ).

Remark. If S := N2 then T = Z2 × Z2 so Cl(ρ) is a special case of the
example treated in Subsection 3.2. With the notation used in the left table of
Proposition 3.2.1 this case appears for a := (1, 0) and b := (0.1) exactly when
ε = −1E , α = −ρ(b), β = ρ(a), and γ = 1E .

Lemma 4.2.1. Pf (S) endowed with the composition law

Pf (S)×Pf (S) −→ Pf (S), (A,B) 7−→ A△B := (A \B) ∪ (B \A)

is a locally finite commutative group (Definition 2.1.18) with ∅ as neutral ele-
ment and the map

Pf (S) −→ T, A 7−→ eA
is a group isomorphism with inverse

T −→ Pf (S), x 7−→ { s ∈ S | x(s) = 1 } .

We identify T with Pf (S) by using this isomorphism and write s instead of
{s} for every s ∈ S. For A,B ∈ T ,

fρ(A,B) = (−1)τ
∏

s∈A∩B
ρ(s) ,

where τ is defined in Proposition 4.1.1 b).

Proposition 4.2.2. Assume S finite and let F be an E-C*-algebra. Let
further (xs)s∈S be a family in F such that for all distinct s, t ∈ S and for every
y ∈ E,

xsxt = −xtxs, x2s = ρ(s)1F , x∗s = ρ(s)∗xs, xsy = yxs.

Then there is a unique E-C*-homomorphism φ : Cl(ρ)→ F such that φVs = xs

for all s ∈ S. If the family

( ∏
s∈A

xs

)
A⊂S

is E-linearly independent (resp.

generates F as an E-C*-algebra) then φ is injective (resp. surjective).

Proof. Put φVA := xs1xs2 · · ·xsm for every A := {s1, s2, · · · , sm}, where
s1 < s2 < · · · < sm, and

φ : Cl(ρ) −→ F , X 7−→
∑
A⊂S

XA φVA .
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It is easy to see that (φVs)(φVt) = φ(VsVt) and y φVs = (φVs)y for all s, t ∈ S
and y ∈ E (Proposition 2.1.2 b)). Let A := {s1, s2, · · · , sm} ⊂ S, B :=
{t1, t2, · · · , tn} ⊂ S, {r1, r2, · · · , rp} := A△B, where the letters are written in
strictly increasing order. Then

(φVA)(φVB) = xs1xs2 · · ·xsmxt1xt2 · · ·xtn = fρ(A,B)xr1xr2 · · ·xrp
= fρ(A,B)φVA△B = φ((fρ(A,B)⊗̃1K)VA△B) = φ(VAVB),

(φVA)
∗ = x∗sm · · ·x

∗
s2x

∗
s1 = (−1)

m(m−1)
2 x∗s1x

∗
s2 · · ·x

∗
sm

= (−1)
m(m−1)

2

∏
i∈Nm

ρ(si)
∗xs1xs2 · · ·xsm = (−1)

m(m−1)
2

∏
i∈Nm

ρ(si)
∗φVA

= φ((−1)
m(m−1)

2 ((
∏
i∈Nm

ρ(si)
∗)⊗̃1K)VA) = φ(V ∗

A)

by Proposition 4.1.3 e).
For X,Y ∈ Cl(ρ) (by Theorem 2.1.9 c),g)),

(φX)(φY ) =

(∑
A∈T

XAφVA

)(∑
B∈T

YBφVB

)
=
∑

A,B∈T
XAYB(φVA)(φVB)

=
∑

A,B∈T
XAYBφ(VAVB) =

∑
A,B∈T

XAYBfρ(A,B)φVA△B

=
∑

A,C∈T
XAYA△Cfρ(A,A△C)φVC =

∑
C∈T

(∑
A∈T

fρ(A,A△C)XAYA△C

)
φVC

=
∑
C∈T

(XY )CφVC = φ(XY ),

(φX)∗ =
∑
A∈T

X∗
A(φVA)

∗ =
∑
A∈T

X∗
Aφ(VA)

∗

=
∑
A∈T

f̃ρ(A)
∗(X∗)Af̃ρ(A)φVA =

∑
A∈T

(X∗)AφVA = φ(X∗)

(Proposition 4.1.3 e)) i.e. φ is an E-C*-homomorphism. The uniqueness and
the last assertions are obvious (by Theorem 2.1.9 a)).

Proposition 4.2.3. Let m,n ∈ N ∪ {0}, S := N2n, S
′ := N2n+m, K

′ :=
l2(P(S′)), (αi)i∈Nm ∈ (Un Ec)m,

ρ′ : S′ −→ Un Ec , s 7−→
{

ρ(s) if s ∈ S
α2
i f̃ρ(S) if s = 2n+ i with i ∈ Nm

,

and Ai := A ∪ {2n+ i} for every A ⊂ S and i ∈ Nm.



121 Projective representations of groups using Hilbert right C*-modules 319

a) i ∈ Nm =⇒ f̃ρ′(Si) = α∗2
i , (V ρ′

Si
)2 = (α2

i ⊗ 1K′)V
ρ′

∅ .

b) P := 1
2V

ρ′

∅ + 1
2
√
m

∑
i∈Nm

(α∗
i ⊗ 1K′)V

ρ′

Si
∈ Pr Cl(ρ′).

c) There is a unique injective E-C*-homomorphism φ : Cl(ρ) → PCl(ρ′)P
such that φV ρ

s = PV ρ′
s P = PV ρ′

s = V ρ′
s P for every s ∈ S.

d) If m ∈ N2 then φ is an E-C*-isomorphism.

Proof. a) By Proposition 4.1.3 e),

f̃ρ′(Si) = (−1)n(2n+1)
∏
s∈Si

ρ′(s)∗ =

(
(−1)n(2n−1)

∏
s∈S

ρ(s)∗

)
α∗2
i f̃ρ(S)

∗ = α∗2
i ,

(V ρ′

Si
)2 = (α2

i ⊗ 1K′)V
ρ′

∅ .
b) follows from a) and Corollary 4.1.6.

c) By Proposition 4.1.3 c), for s ∈ S, V ρ′
s V

ρ′

Si
= V ρ′

Si
V ρ′
s for every i ∈ Nm

so V ρ′
s P = PV ρ′

s . By b), for distinct s, t ∈ S (Proposition 4.1.3 b)),

(PV ρ′
s )(PV ρ′

t ) = PV ρ′
s V

ρ′

t = −PV ρ′

t V
ρ′
s = −(PV ρ′

t )(PV ρ′
s ) ,

(PV ρ′
s )2 = P (V ρ′

s )2 = P (ρ′(s)⊗ 1K′)V
ρ′

∅ = (ρ(s)⊗ 1K′)P ,

(PV ρ′
s )∗ = P (V ρ′

s )∗ = P (ρ′(s)∗ ⊗ 1K′)V
ρ′
s = (ρ(s)⊗ 1K′)

∗PV ρ′
s .

By Proposition 4.2.2 there is a unique E-C*-homomorphism φ : Cl(ρ) →
PCl(ρ′)P with the given properties.

Let X ∈ Cl(ρ) with φX = 0. Then

0 =

(∑
A⊂S

(XA ⊗ 1K′)V
ρ′

A

)
P

=
1

2

∑
A⊂S

(XA ⊗ 1K′)V
ρ′

A +
1

2
√
m

∑
i∈Nm

∑
A⊂S

(XA ⊗ 1K′)fρ′(A,Si)V
ρ′

A△Si

and this implies XA = 0 for all A ⊂ S (Theorem 2.1.9 a)). Thus φ is injective.
d) The case m = 1.
Let Y ∈ PCl(ρ′)P . Then (by Proposition 2.1.2 b))

Y = Y P =
1

2
Y +

1

2

∑
A⊂S′

(α∗
1 ⊗ 1K′)V

ρ′

S1
Y ,

Y =
∑
A⊂S

((α∗
1fρ′(S1, A)YA)⊗ 1K′)V

ρ′

S1△A+

+
∑
A⊂S

(((α∗
1fρ′(S1, A1)YA1))⊗ 1K′)V

ρ′

S△A
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so {
YA = α∗

1fρ′(S1, (S△A)1)Y(S△A)1
YA1 = α∗

1fρ′(S1, S△A)YS△A
for every A ⊂ S. If we put

X := 2
∑
A⊂S

(YA ⊗ 1K)V ρ
A ∈ Cl(ρ)

then

φX =
1

2
φX +

∑
A⊂S

((α∗
1fρ′(S1, A)YA)⊗ 1K′)V

ρ′

S1△A

=
∑
A⊂S

(YA ⊗ 1K′)V
ρ′

A +
∑
A⊂S

((α∗
1fρ′(S1, S△A)YS△A)⊗ 1K′)V

ρ′

A1

=
∑
A⊂S

(YA ⊗ 1K′)V
ρ′

A +
∑
A⊂S

(YA1 ⊗ 1K′)V
ρ′

A1
= Y.

Thus φ is surjective.

The case m = 2.
Let Y ∈ PCl(ρ′)P . Then{

Y = PY = 1
2Y + 1

2
√
2
((α∗

1 ⊗ 1K′)V
ρ′

S1
+ (α∗

2 ⊗ 1K′)V
ρ′

S2
)Y

Y = Y P = 1
2Y + 1

2
√
2
Y ((α∗

1 ⊗ 1K′)V
ρ′

S1
+ (α∗

2 ⊗ 1K′)V
ρ′

S2
) ,

√
2Y = (α∗

1⊗1K′)V
ρ′

S1
Y +(α∗

2⊗1K′)V
ρ′

S2
Y = (α∗

1⊗1K′)Y V
ρ′

S1
+(α∗

2⊗1K′)Y V
ρ′

S2
.

For every B ⊂ S put Ba := B ∪ {2n + 1}, Bb := B ∪ {2n + 2}, Bc :=
B ∪ {2n+ 1 , 2n+ 2}. Then

V ρ′

S1
Y =

∑
B⊂S

((YBfρ′(S1, B))⊗1K′)V ρ′

(S△B)a
+
∑
B⊂S

((YBafρ′(S1, Ba))⊗1K′)V
ρ′

S△B

+
∑
B⊂S

((YBb
fρ′(S1, Bb))⊗ 1K′)V

ρ′

(S△B)c
+
∑
B⊂S

((YBcfρ′(S1, Bc))⊗ 1K′)V(S△B)b ,

V ρ′

S2
Y =

∑
B⊂S

((YBfρ′(S2, B))⊗1K′)V ρ′

(S△B)b
+
∑
B⊂S

((YBafρ′(S2, Ba))⊗1K′)V
ρ′

(S△B)c

+
∑
B⊂S

((YBb
fρ′(S2, Bb))⊗ 1K′)V

ρ′

S△B +
∑
B⊂S

((YBcfρ′(S2, Bc))⊗ 1K′)V
ρ′

(S△B)a
,

Y V ρ′

S1
=
∑
B⊂S

((YBfρ′(B,S1))⊗1K′)V ρ′

(S△B)a
+
∑
B⊂S

((YBafρ′(Ba, S1))⊗1K′)V
ρ′

S△B

+
∑
B⊂S

((YBb
fρ′(Bb, S1))⊗1K′)V ρ′

(S△B)c
+
∑
B⊂S

((YBcfρ′(Bc, S1))⊗1K′)V
ρ′

(S△B)b
,
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Y V ρ′

S2
=
∑
B⊂S

((YBfρ′(B,S2))⊗1K′)V ρ′

(S△B)b
+
∑
B⊂S

((YBafρ′(Ba, S2))⊗1K′)V
ρ′

(S△B)c

+
∑
B⊂S

((YBb
fρ′(Bb, S2))⊗ 1K′)V

ρ′

S△B +
∑
B⊂S

((YBcfρ′(Bc, S2))⊗ 1K′)V
ρ′

(S△B)a
,

√
2Y =

∑
B⊂S

((α∗
1YBafρ′(S1, Ba) + α∗

2YBb
fρ′(S2, Bb))⊗ 1K′)V

ρ′

S△B

+
∑
B⊂S

((α∗
1YBfρ′(S1, B) + α∗

2YBcfρ′(S2, Bc))⊗ 1K′)V
ρ′

(S△B)a

+
∑
B⊂S

((α∗
1YBcfρ′(S1, Bc) + α∗

2YBfρ′(S2, B))⊗ 1K′)V
ρ′

(S△B)b

+
∑
B⊂S

((α∗
1YBb

fρ′(S1, Bb) + α∗
2YBafρ′(S2, Ba))⊗ 1K′)V

ρ′

(S△B)c
,

√
2Y =

∑
B⊂S

((α∗
1YBafρ′(Ba, S1) + α∗

2YBb
fρ′(Bb, S2))⊗ 1K′)V

ρ′

S△B

+
∑
B⊂S

((α∗
1YBfρ′(B,S1) + α∗

2YBcfρ′(Bc, S2))⊗ 1K′)V
ρ′

(S△B)a

+
∑
B⊂S

((α∗
1YBcfρ′(Bc, S1) + α∗

2YBfρ′(B,S2))⊗ 1K′)V
ρ′

(S△B)b

+
∑
B⊂S

((α∗
1YBb

fρ′(Bb, S1) + α∗
2YBafρ′(Ba, S2))⊗ 1K′)V

ρ′

(S△B)c
.

It follows for B ⊂ S,
√
2YBa = α∗

1YS△Bfρ′(S△B,S1) + α∗
2Y(S△B)cfρ′((S△B)c, S2) ,

√
2YBb

= α∗
1Y(S△B)cfρ′((S△B)c, S1) + α∗

2YS△Bfρ′(S△B,S2) ,
√
2YBc = α∗

1Y(S△B)bfρ′(S1, (S△B)b) + α∗
2Y(S△B)afρ′(S2, (S△B)a)

= α∗
1Y(S△B)bfρ′((S△B)b, S1) + α∗

2Y(S△B)afρ′((S△B)a, S2),

so by Proposition 4.1.3 a),b), YBc = 0. If we put

X := 2
∑
B⊂S

(YB ⊗ 1K)V ρ
B ∈ Cl(ρ)

then

φX =

(
2
∑
B⊂S

(YB ⊗ 1K′)V
ρ′

B

)
P

=
∑
B⊂S

(YB ⊗ 1K′)V
ρ′

B +
1√
2

∑
B⊂S

((α∗
1YBfρ′(B,S1))⊗ 1K′)V

ρ′

S1△B



322 C. Constantinescu 124

+
1√
2

∑
B⊂S

((α∗
2YBfρ′(B,S2))⊗ 1K′)V

ρ′

S2△B,

and so for B ⊂ S,

(φX)B = YB, (φX)Ba =
1√
2
α∗
1YS△Bfρ′(S△B,S1) = YBa ,

(φX)Bb
=

1√
2
α∗
2YS△Bfρ′(S△B,S2) = YBb

, (φX)Bc = 0 = YBc .

Thus φX = Y and φ is surjective.

Remark. If m = 3 then φ may be not surjective.

Proposition 4.2.4. Let K := R, n ∈ N ∪ {0}, S := N2n, and

ρ′ : N2n+1 −→ Un Ec , s 7−→
{

ρ(s) if s ∈ S
−f̃ρ(S) if s = 2n+ 1

.

Let

◦︷ ︸︸ ︷
Cl(ρ) be the complexification of Cl(ρ), considered as a real E-C*-algebra

([1, Theorem 4.1.1.8 a)]) by using the embedding

E −→
◦︷ ︸︸ ︷
Cl(ρ), x 7−→ ((x⊗ 1K)V ρ

∅ , 0).

Then there is a unique E-C*-isomorphism φ : Cl(ρ′)→
◦︷ ︸︸ ︷
Cl(ρ) such that φV ρ′

s =

(V ρ
s , 0) for every s ∈ S and φV ρ′

2n+1 = (0,−(f̃ρ(S)⊗ 1K)V ρ
S ).

Proof. We put

xs :=

{
(V ρ
s , 0) if s ∈ S

(0,−(f̃ρ(S)⊗ 1K)V ρ
S ) if s = 2n+ 1

.

For s ∈ S, by Proposition 4.1.3 b),

xsx2n+1 = (V ρ
s , 0)(0,−(f̃ρ(S)⊗ 1K)V ρ

S ) = (0,−(f̃ρ(S)⊗ 1K)V ρ
s V

ρ
S )

= (0, (f̃ρ(S)⊗ 1K)V ρ
S V

ρ
s ) = (0, (f̃ρ(S)⊗ 1K)V ρ

s )(V
ρ
s , 0) = −x2n+1xs.

By Proposition 2.1.2 b),e),

x22n+1 = (−((f̃ρ(S)⊗ 1K)V ρ
S )

2, 0)

= (−(f̃ρ(S)2 ⊗ 1K)(fρ(S, S)⊗ 1K)V ρ
∅ , 0) = (ρ′(2n+ 1)⊗ 1K)(V ρ

∅ , 0),

x∗2n+1 = (0, ((f̃ρ(S)⊗ 1K)V ρ
S )

∗)

= (0, (f̃ρ(S)
∗ ⊗ 1K)(f̃ρ(S)⊗ 1K)V ρ

S ) = (ρ′(2n+ 1)∗ ⊗ 1K)x2n+1,

and the assertion follows from Proposition 4.2.2.
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Proposition 4.2.5. Let n ∈ N ∪ {0}, S := Nn, S′ := Nn+2, K
′ :=

l2(P(S′)), α1, α2 ∈ Un Ec, and

ρ′ : S′ −→ Un Ec , s 7−→


ρ(s) if s ∈ S
α2
1 if s = n+ 1

−α2
2 if s = n+ 2

.

a) There is a unique E-C*-isomorphism φ : Cl(ρ′)→ Cl(ρ)2,2 such that

φV ρ′
s =

[
V ρ
s 0
0 −V ρ

s

]
for every s ∈ S and

φV ρ′

n+1 = (α1 ⊗ 1K)

[
0 V ρ

∅
V ρ
∅ 0

]
, φV ρ′

n+2 = (α2 ⊗ 1K)

[
0 −V ρ

∅
V ρ
∅ 0

]
.

b)

φ
1

2
(V ρ′

∅ + ((α∗
1α

∗
2)⊗ 1K′)V

ρ′

{n+1, n+2}) =

[
V ρ
∅ 0

0 0

]
,

φ
1

2
(V ρ′

∅ − ((α∗
1α

∗
2)⊗ 1K′)V

ρ′

{n+1, n+2}) =

[
0 0
0 V ρ

∅

]
.

Proof. a) Put

xs :=

[
V ρ
s 0
0 −V ρ

s

]
for every s ∈ S and

xn+1 := (α1 ⊗ 1K)

[
0 V ρ

∅
V ρ
∅ 0

]
, xn+2 := (α2 ⊗ 1K)

[
0 −V ρ

∅
V ρ
∅ 0

]
.

For distinct s, t ∈ S and i ∈ N2,

xsxt = −xtxs , x2s = (ρ′(s)⊗ 1K)

[
V ρ
∅ 0

0 V ρ
∅

]
, x∗s = (ρ′(s)⊗ 1K)∗xs ,

xsxn+i = −xn+ixs , x2n+i = (ρ′(n+ i)⊗ 1K)

[
V ρ
∅ 0

0 V ρ
∅

]
,

x∗n+i = (ρ′(n+ i)⊗ 1K)∗xn+i, xn+1 xn+2 = −xn+2 xn+1.

By Proposition 4.2.2 there is a unique E-C*-homomorphism φ : Cl(ρ′) →
Cl(ρ)2,2 satisfying the given conditions.

We put, for every A ⊂ S and i ∈ N2, |A| := Card A, Ai := A ∪ {n + i},
A3 := A ∪ {n+ 1, n+ 2}. For A ⊂ S,

φV ρ′

A1
= (α1 ⊗ 1K)

[
V ρ
A 0

0 (−1)|A|V ρ
A

] [
0 V ρ

∅
V ρ
∅ 0

]
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= (α1 ⊗ 1K)

[
0 V ρ

A

(−1)|A|V ρ
A 0

]
,

φV ρ′

A2
= (α2 ⊗ 1K)

[
V ρ
A 0

0 (−1)|A|V ρ
A

] [
0 −V ρ

∅
V ρ
∅ 0

]
= (α2 ⊗ 1K)

[
0 −V ρ

A

(−1)|A|V ρ
A 0

]
,

φV ρ′

A3
= ((α1α2)⊗ 1K)

[
0 V ρ

A

(−1)|A|V ρ
A 0

] [
0 −V ρ

∅
V ρ
∅ 0

]
= ((α1α2)⊗ 1K)

[
V ρ
A 0

0 −(−1)|A|V ρ
A

]
.

Then for Y ∈ Cl(ρ′),

(φY )11 =
∑
A⊂S

((YA + (α1α2)YA3)⊗ 1K)V ρ
A

(φY )12 =
∑
A⊂S

((α1YA1 − α2YA2)⊗ 1K)V ρ
A

(φY )21 =
∑
A⊂S

(−1)|A|)((α1YA1 + α2YA2)⊗ 1K)V ρ
A

(φY )22 =
∑
A⊂S

(−1)|A|((YA − α1α2YA3)⊗ 1K)V ρ
A .

It follows from the above identities that φ is bijective.
b) By the above,

φV ρ′

{n+1, n+2} = φV ρ′

∅3 = ((α1α2)⊗ 1K)

[
V ρ
∅ 0

0 −V ρ
∅

]
and the assertion follows.

Corollary 4.2.6. Let m,n ∈ N∪{0}, S := Nn, (αi)i∈N2m ∈ (Un Ec)2m,
and

ρ′ : Nn+2m −→ Un Ec , s 7−→
{

ρ(s) if s ∈ S
−(−1)iα2

i if s = n+ i
.

Then Cl(ρ′) ≈E Cl(ρ)2m,2m.
Proposition 4.2.7. Let K := R, n ∈ N ∪ {0}, S := N2n, S

′ := N2n+2,
α1, α2 ∈ Un Ec, and

ρ′ : S′ −→ Un Ec , s 7−→
{

ρ(s) if s ∈ S
−α2

l f̃ρ(S) if s = 2n+ l with l ∈ N2
.

Then there is a unique E-C*-isomorphism φ : Cl(ρ′)→ Cl(ρ)⊗H such that

φV ρ′
s =


V ρ
s ⊗ 1H if s ∈ S

(((α1f̃ρ(S))⊗ 1K)V ρ
S )⊗ i if s = 2n+ 1

(((α2f̃ρ(S))⊗ 1K)V ρ
S )⊗ j if s = 2n+ 2

,
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where i, j, k are the canonical unitaries of H.

Proof. Put

xs :=


V ρ
s ⊗ 1H if s ∈ S

(((α1f̃ρ(S))⊗ 1K)V ρ
S )⊗ i if s = 2n+ 1

(((α2f̃ρ(S))⊗ 1K)V ρ
S )⊗ j if s = 2n+ 2

.

For distinct s, t ∈ S and l ∈ N2, by Proposition 4.1.3 b),

xsxt = −xtxs , x2s = (ρ′(s)⊗ 1K)(V ρ
∅ ⊗ 1H) , x∗s = (ρ′(s)⊗ 1K)∗xs ,

xsx2n+l =−x2n+lxs, x2n+1x2n+2 =(((α1α2f̃ρ(S))⊗1K)V ρ
∅ )⊗k = −x2n+2x2n+1,

(x2n+l)
2 = (((α2

l f̃ρ(S)
2)⊗ 1K)(f̃ρ(S)

∗ ⊗ 1K)V ρ
∅ )⊗ (−1H)

= (ρ′(2n+ l)⊗ 1K)(V ρ
∅ ⊗ 1H),

(x2n+l)
∗ = (((α∗

l f̃ρ(S)
∗)⊗ 1K)(f̃ρ(S)⊗ 1K)V ρ

S )⊗−(i or j)
= (ρ′(2n+ l)⊗ 1K)∗x2n+l.

By Proposition 4.2.2 there is a unique E-C*-homomorphism φ : Cl(ρ′) →
Cl(ρ)⊗H satisfying the given conditions.

For X ∈ Cl(ρ′),

φX =

(∑
A⊂S

(XA ⊗ 1K)V ρ
A

)
⊗ 1H

+

(∑
A⊂S

((XA∪{2n+1}α1f̃ρ(S)fρ(A,S))⊗ 1K)VS△A

)
⊗ i

+

(∑
A⊂S

((XA∪{2n+2}α2f̃ρ(S)fρ(A,S))⊗ 1K)V ρ
S△A

)
⊗ j

+

(∑
A⊂S

((XA∪{2n+1, 2n+2}α1α2f̃ρ(S))⊗ 1K)V ρ
A

)
⊗ k

and so φ is bijective.

Proposition 4.2.8. Let n ∈ N ∪ {0}, S := N2n, A
′ := A ∪ {2n + 1} for

every A ⊂ S,

ρ′ : S′ −→ Un Ec , s 7−→
{

ρ(s) if s ∈ S
f̃(S) if s = 2n+ 1

,

P± := 1
2(V

ρ′

∅ ± V
ρ′

S′ ), and θ± : ⃝|
A⊂S

Ĕ → ⃝|
A⊂S′

Ĕ defined by

(θ±ξ)A :=
1√
2
ξA , (θ±ξ)A′ := ±

1√
2
fρ(S△A,S)ξS△A
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for every ξ ∈ ⃝|
A⊂S

Ĕ and A ⊂ S.

a)

f̃ρ′(S
′) = 1E , (V ρ′

S′ )
2 = V ρ′

∅ , P± ∈ Pr Cl(ρ′)c,
P+ + P− = V ρ′

∅ , V ρ′

S′ ∈ Cl(ρ
′)c, V ρ′

S′ P± = ±P± .

b) For A ⊂ S, fρ(A,S)∗ = fρ′(S
′, A)∗ = fρ′(S

′, (S△A)′).

c) θ± ∈ LE( ⃝|
A⊂S

Ĕ, ⃝|
A⊂S′

Ĕ) and for η ∈ ⃝|
A⊂S′

Ĕ and A ⊂ S,

(θ∗±η)A =
1√
2
(ηA ± fρ(A,S)∗η(S△A)′) =

√
2(P±η)A .

d) θ∗±θ± is the identity map of ⃝|
A⊂S

Ĕ.

e) θ±θ
∗
± = P±.

f) For every A ⊂ S, θ±V ρ
Aθ

∗
± = V ρ′

A P± = P±V
ρ′

A = P±V
ρ′

A P±.

g) For every closed ideal F of E the map

φ : Cl(ρ, F ) −→ P±Cl(ρ′, F )P± , X 7−→ θ±Xθ
∗
±

is an E-C*-isomorphism with inverse

P±Cl(ρ′, F )P± −→ Cl(ρ, F ), Y 7−→ θ∗±Y θ±

and the map ψ : Cl(ρ′, F ) −→ Cl(ρ, F )× Cl(ρ, F )

Y 7−→ (θ∗+P+Y P+θ+, θ
∗
−P−Y P−θ−) = (θ+Y θ+, θ

∗
−Y θ−)

is an E-C*-isomorphism.

Proof. a) By Proposition 4.1.3 d),e), V ρ′

S′ ∈ Cl(ρ
′)c,

f̃ρ′(S
′) = (−1)n(2n+1)

∏
s∈S′

ρ′(s)∗ = (−1)n(2n−1)

(∏
s∈S

ρ(s)∗

)
ρ′(2n+ 1)∗ = 1E ,

(V ρ′

S′ )
∗ = f̃ρ′(S

′)V ρ′

S′ = V ρ′

S′ , (V ρ′

S′ )
2 = f̃(S′)∗V ρ′

∅ = V ρ′

∅ ,
so

P± ∈ Pr Cl(ρ′)c , V ρ′

S′ P± = ±P± .
b) By a), Proposition 4.1.3 c),d), Proposition 4.1.1 b), and Proposition

1.1.2 b),

fρ(A,S)
∗ = fρ′(A,S)

∗ = fρ′(A,S
′)∗

= fρ′(S
′, A)∗ = fρ′(S

′, (S△A)′)f̃ρ′(S′) = fρ′(S
′, (S△A)′).
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c) For ξ ∈ ⃝|
A⊂S

Ĕ,

⟨ θξ | η ⟩ =
∑
A⊂S

η∗A
1√
2
ξA ±

∑
A⊂S

η∗A′
1√
2
fρ(S△A,S)ξS△A

=
∑
A⊂S

η∗A
1√
2
ξA ±

∑
A⊂S

η∗(S△A)′
1√
2
fρ(A,S)ξA

=
∑
A⊂S

1√
2
(ηA ± fρ(A,S)∗η(S△A)′)∗ξA

so θ ∈ LE( ⃝|
A⊂S

Ĕ, ⃝|
A⊂S′

Ĕ) and

(θ∗η)A =
1√
2
(ηA ± fρ(A,S)∗η(S△A)′) .

By a) and b),

(P±η)A =
1

2
ηA ±

1

2
fρ′(S

′, (S△A)′)η(S△A)′

=
1

2
(ηA ± fρ(A,S)∗η(S△A)′) =

1√
2
(θ∗±η)A.

d) For ξ ∈ ⃝|
A⊂S

Ĕ and A ⊂ S, by c),

(θ∗±θ±ξ)A =
1√
2
((θξ)A ± fρ(A,S)∗(θξ)(S△A)′)

=
1

2
(ξA + fρ(A,S)

∗fρ(A,S)ξA) = ξA.

e) For η ∈ ⃝|
A⊂S′

Ĕ and A ⊂ S, by b) and c),

(θ±θ
∗
±η)A =

1√
2
(θ∗±η)A = (P±η)A ,

(θ±θ
∗
±η)A′ = ±

1√
2
fρ(S△A,S)(θ∗±η)S△A

= ±1

2
fρ(S△A,S)(ηS△A ± fρ(S△A,S)∗ηA′) = ±

1

2
fρ(S△A,S)ηS△A +

1

2
ηA′

=
1

2
(ηA′ ± fρ′(S′, S△A)ηS△A) =

1

2
((V ρ′

∅ η)A′ ± (V ρ′

S′ η)A′) = (P±η)A′ ,

so θ±θ
∗
± = P±.

f) For η ∈ ⃝|
B⊂S′

Ĕ and B ⊂ S, by a),b),c),e) and Proposition 4.1.1 b)

(and Corollary 2.1.17 e)),

(V ρ′

A P±η)B = fρ′(A,A△B)(P±η)A△B = fρ(A,A△B)(θ±θ
∗
±η)A△B
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=
1√
2
fρ(A,A△B)(θ∗±η)A△B =

1√
2
(V ρ
Aθ

∗
±η)B = (θ±V

ρ
Aθ

∗
±η)B,

(θ±V
ρ
Aθ

∗
±η)B′ = ±

1√
2
fρ(S△B,S)(V ρ

Aθ
∗
±η)S△B

= ± 1√
2
fρ(S△B,S)fρ(A,S△A△B)(θ∗±η)S△A△B

= ±fρ(S△B,S)fρ(A,S△A△B)(P±η)S△A△B

= ±fρ(S△B,S)(V ρ′

A P±η)S△B = ±fρ′(S′, S′△B′)(V ρ′

A P±η)S′△B′

= ±(V ρ′

S′ V
ρ′

A P±η)B′ = ±(V ρ′

A V
ρ′

S′ P±η)B′ = (V ρ′

A P±η)B′

so by a),

θ±V
ρ
Aθ

∗
± = V ρ′

A P± = P±V
ρ′

A P± = P±V
ρ′

A .

g) The assertion concerning φ as well as the identity in the definition of
ψ follow from a),d),e), and f). Thus ψ is a surjective E-C*-homomorphism.
For Y ∈ Ker ψ,

θ∗+Y θ+ = θ∗−Y θ− = 0 ,
so by a) and e),

P+Y = P−Y = 0
and we get

Y = P+Y + P−Y = 0
i.e. ψ is injective.
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