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Thanks to the Connes–Kreimer renormalization Hopf algebra in Quantum Field
Theory and the topology of graphons in infinite combinatorics, we show the
existence of a new class of dimensionally computable Heyting algebras which
can encode the quantum logic of mixed Hodge–Tate structures derived from
solutions of combinatorial Dyson–Schwinger equations.
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1. INTRODUCTION

On the one hand, Heyting algebras are useful tools for the study of log-
ical foundations of (semi-)classical and quantum physical systems [6, 7, 26].
On the other hand, mixed Hodge–Tate structures and limiting Hodge theory
are fundamental tools in Number Theory which have been applied recently
for the study of Feynman integrals and related topics in Quantum Field The-
ory [1, 2, 5, 9, 14, 15]. In this research work, we are going to show a new
connection between these two separate topics where we apply combinatorial
Dyson–Schwinger equations ([13, 25]) and their graphon representation models
([17, 18, 19, 20]) to determine a new class of dimensionally computable Heyting
algebras which encode the quantum logical background of mixed Hodge–Tate
structures associated to polylogarithms.

1.1. Quantum Field Theory

Green’s functions are the building blocks of non-perturbative gauge field
theories. It is possible to formulate Green’s functions in terms of infinite for-
mal expansions of iterated Feynman integrals (or Feynman diagrams) together
with increasing powers of (running) coupling constants where the strength of
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the couplings has a direct role in the behavior of these expansions. Green’s
functions are self-similar such that their fixed point equations generate a fun-
damental class of recursive equations known as Dyson–Schwinger equations (or
quantum motions) in Quantum Field Theory. The Connes–Kreimer renormal-
ization Hopf algebra HFG(Φ) ([3]), which has provided an alternative formu-
lation for the BPHZ perturbative renormalization ([5]), enables us to refor-
mulate Dyson–Schwinger equations of a given gauge field theory Φ in terms
of the Hochschild Cohomology of commutative graded Hopf algebras [13, 15].
The 1PI Green’s function generates a sum over all 1PI Feynman diagrams with
respect to the types of external edges. It is given by

(1) Xa(λg) = I+
∑

res(Γ)=a

(λg)|Γ|
Γ

|Aut(Γ)|

as a formal series in the running coupling constants λg which has coefficients
in the renormalization Hopf algebra such that 0 < λ ≤ 1. Since HFG(Φ) is of
finite type, at any finite order |Γ| only a finite number of graphs contribute to
the chosen amplitude [13, 25].

Solutions of combinatorial Dyson–Schwinger equations generate infinite
formal expansions of Feynman diagrams as objects in HFG(Φ)[[λg]] ([13]). Re-
cently, some new applications of the theory of graphons for sparse graphs to
Quantum Field Theory have been found. Thanks to these new combinatorial
tools, solutions of combinatorial Dyson–Schwinger equations have been de-
scribed as convergence limits of sequences of random graphs. It is shown that
the theory of graphons for sparse graphs ([4, 12, 16]) enables us to describe the
non-perturbative solution of a given Dyson–Schwinger equation in terms of the
convergent limit of a sequence of random graphs generated from some partial
sums with respect to the cut-distance topology. This perspective enables us to
formulate a new analytic generalization of the BPHZ renormalization for the
computation of non-perturbative parameters [19, 20].

1.2. Mixed Hodge–Tate structures

The category MHTQ of mixed Hodge–Tate structures over Q is the small-
est Tannakian subcategory of the category of all mixed Hodge structures over
Q. MHTQ is in fact a mixed Tate category which contains the Hodge-Tate
structures Q(0),Q(1) while it is also closed under the extensions [9]. MHTQ
is equivalent to the category of graded comodules over a graded connected
commutative Hopf algebra over Q. The universal Connes–Marcolli category
ECM of flat equi-singular vector bundles is also a neutral Tannakian category
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which contains a Tannakian subcategory of mixed Tate motives. This cate-
gory is rich enough to encode those flat equi-singular connections which con-
tribute to the geometric representation of counterterms derived from pertur-
bative renormalization in physical theories and non-perturbative counterterms
derived from renormalization of Dyson–Schwinger equations [5, 21, 22]. The
Connes–Kreimer renormalization Hopf algebraic setting has been applied to
formulate some strong mathematical tools such as weight, Hodge, monodromy
filtrations, etc., to deal with Feynman amplitudes in Quantum Field Theory
[1, 2, 15]. The relation between mixed Hodge–Tate structures and flat equi-
singular connections has been studied in [5]. Furthermore, solutions of com-
binatorial Dyson–Schwinger equations determine a class of mixed Hodge–Tate
structures associated to polylogarithms [14].

1.3. Logical setting

Heyting algebras are introduced in the theory of logical systems to gener-
alize Boolean algebras in terms of replacing the concept of complement with the
concept of pseudo-complement for objects in lattices. A Heyting algebra H is
computable, if H and its corresponding logical operations are computable. For
a given Heyting algebra with one generator, there exist infinitely nonequivalent
intuitionistic formulas of one propositional variable. The free Heyting algebras
provide a good starting point for investigating the computable dimension of
general Heyting algebras because of their connection to the intuitionistic logic.
A free Heyting algebra on finite number of generators is computable (in a
categorical setting) because any isomorphism is completely determined by the
generators. Quantum topos models, which have been designed for the study
of the logical foundations of quantum systems, generate an important class of
Heyting algebras [6, 7, 8, 10, 11, 26].

1.4. Achievements

Thanks to the addressed background, this research work aims to show a
new application of Heyting algebras for the study of Dyson–Schwinger equa-
tions in strongly coupled gauge field theories. On the one hand, solutions of
combinatorial Dyson–Schwinger equations generate an important class of Hopf
subalgebras of the Connes–Kreimer renormalization Hopf algebra of Feynman
diagrams of a given (strongly coupled) gauge field theory. We organize these
Hopf subalgebras in a topos model which is useful for the logical study of
non-perturbative aspects. On the other hand, mixed Hodge–Tate structures
associated to polylogarithms can be studied in terms of their related period
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matrices. This class of matrices can be interpreted as solutions of combinato-
rial Dyson–Schwinger equations. We show that these investigations lead us to
build a new class of dimensionally computable Heyting algebras for the logical
description of mixed Hodge–Tate structures in gauge field theories.

2. DYSON–SCHWINGER EQUATIONS VIA FEYNMAN
GRAPHONS

In this section, we review the structure of combinatorial Dyson–Schwinger
equations and the role of graph functions in dealing with non-perturbative
solutions of these physical equations.

2.1. Combinatorial Dyson–Schwinger equations

Feynman diagrams and their formal expansions are useful tools for the
formulation of gauge field theories in the context of the path integral formal-
ism. Thanks to Feynman rules of a given physical theory, these combinatorial
graphs, which encode interactions between elementary particles, are associated
to ill-defined iterated integrals in Green’s functions.

Definition 2.1. A Feynman diagram Γ is a finite oriented decorated graph
which contains (i) a set V (Γ) of labeled vertices as symbols for interactions, (ii)
a set Eint(Γ) of labeled edges with beginning and ending vertices as symbols for
virtual particles with assigned momenta, (iii) a set Eext(Γ) of labeled edges with
beginning or ending vertex as symbols for elementary particles with assigned
momenta. The conservation of momenta is valid on the whole graph.

In general, nested loops in Feynman diagrams are associated to sub-
divergencies in the corresponding Feynman integrals. The one fundamental
challenge is replacing these ill-defined iterated integrals with some regularized
or finite values in terms of the theory of perturbative renormalization. The
other fundamental challenge is the appearance of strong bare coupling con-
stants (as dimensionless parameters) in the original Lagrangian of the physical
theory or strong running coupling constants in the structure of regularized
Green’s functions. In this situation, we need to deal with high loop order
Feynman diagrams as coefficients in power series with respect to (running)
coupling constants. If the running or bare coupling constants are small enough,
then asymptotically free techniques or higher order perturbation methods can
help us generate some finite approximations from those infinite formal expan-
sions. However, the main problem still remains in dealing with strongly cou-
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pled Green’s functions where quantum motions have non-perturbative behavior
[15, 23, 27].

Perturbative renormalization of Feynman diagrams is formulated by the
method of the Bogoliubov–Zimmermann’s forest formula and the Bogoliubov
map where sub-divergencies are removed under Dimensional Regularization
and Minimal Subtraction. The Connes–Kreimer Hopf algebra of Feynman
diagrams, which is graded with respect to the loop number or the number
of internal edges, encapsulates this process in terms of the renormalization
coproduct and the theory of Lie groups. The renormalization coproduct is
given by

(2) ∆(Γ) = I⊗ Γ + Γ⊗ I+
∑
γ

γ ⊗ Γ/γ

such that I is the empty graph and the sum is over all disjoint unions of
1PI Feynman subdiagrams. The phrase “Feynman subdiagram” addresses the
existence of superficial divergencies. This Hopf algebra, which is connected
graded free commutative non-cocommutative, has a Lie algebraic background.
It enables us to rebuild complicated Feynman diagrams in terms of its primitive
components and the insertion operator [3, 5, 15, 27].

Definition 2.2. For a given primitive Feynman diagram γ, the grafting
operator B+

γ is the basic linear functional which acts on Feynman diagrams
such that for each diagram Γ, B+

γ (Γ) is the formal sum of Feynman diagrams
generated by all possible choices for the insertion of Γ inside γ.

The operators B+
γ determine a class of Hochschild one cocycles associated

to the Hochschild Cohomology of the renormalization Hopf algebra. They
are useful to reformulate fixed point equations of Green’s functions under an
inductive combinatorial setting.

Definition 2.3. For a given family {B+
γn}n≥1 of Hochschild one cocycles,

we define a class of combinatorial recursive equations with the general form

(3) DSE(λg) : X = I+
∑
n≥1

(λg)nwnB
+
γn(X

n+1).

It is called a combinatorial Dyson–Schwinger equation under the running cou-
pling constant λg.

This means that for a given amplitude a which requires renormalization,
its corresponding combinatorial Dyson–Schwinger equation can be obtained in
terms of formal expansions

(4) Xa(λg) = I±
∑
n≥1

(λg)nB+
a;n(X

a(λg)Qn(λg)).
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In this formula, Q(λg) = Xν∏
e∈Ext(a)

√
Xe(λg)

, where Xν is the only independent

scattering amplitude of the physical theory which requires renormalization.
B+
a;n are Hochschild one cocycles generated by primitive (1PI) Feynman di-

agrams. The strength of running couplings determines perturbative or non-
perturbative behavior of Dyson–Schwinger equations. The beta functions of
physical theories govern the behavior of running coupling constants. Linear
Dyson–Schwinger equations exist in physical theories with the zero beta func-
tion while non-zero beta functions generate non-linear Dyson–Schwinger equa-
tions. In physical theories with negative beta functions, we can approximate
Dyson–Schwinger equations under a linear setting while in physical theories
with positive beta functions, we need to deal with non-linear version of these
equations [13, 27].

Lemma 2.4. Each combinatorial Dyson–Schwinger equation (3) has a
unique solution X =

∑
n≥0(λg)

nXn such that for each n,

(5) Xn =

n∑
m=1

B+
γm

( ∑
k1+...+km+1=n−m, ki≥0

Xk1 ...Xkm+1

)
, X0 = I.

Graphs Xn are the generators of a free commutative graded Hopf subalgebra of
the renormalization Hopf algebra [13].

Linear Dyson–Schwinger equations generate cocommutative Hopf subal-
gebras but non-linear version of these equations generate non-cocommutative
Hopf subalgebras [13, 25].

2.2. Graphon models

Infinite combinatorics aims to study the behavior of sequences of weighted
finite weighted sparse or dense graphs with increasing vertex number. The
theory of graph functions or graphons is developed to consider these graph
sequences in the context of cut-distance topology and some measure theoretic
tools [4, 12, 16].

Definition 2.5. For a fixed probability measure space (Ω, µΩ), a labeled
stretched graphon W ρ is a bounded measurable symmetric function on Ω× Ω
defined by

(6) (x, y) 7→W (ρ(x), ρ(y)) ∈ [a, b] ⊂ R

such that ρ is an invertible measure-preserving transformation on Ω. The
equivalence class [W ], which contains all possible labeled graphons W ρ, is
called an unlabeled graphon class.
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For the closed interval Ω = [0, 1] equipped with the Lebesgue measure,
W ρ is called a labeled graphon. In the rest of this work, we use the phrase

“graphon” in general. The space W(Ω,µΩ)
[a,b] of labeled graphons can be equipped

with the cut-distance topology determined by the cut norm

(7) ||W ρ||cut := supA,B

∣∣∣∣ ∫
A×B

W (ρ(x), ρ(y))dµΩ(x)dµΩ(y)

∣∣∣∣
such that A,B are µΩ-measurable subsets of Ω. The corresponding quotient

space [W]
(Ω,µΩ)
[a,b] of unlabeled graphons can be equipped with a pseudo-metric.

Graphons W1,W2 are called weakly isomorphic iff there exists measure pre-
serving transformations ρ1, ρ2 such that W ρ1

1 =W ρ2
2 almost everywhere.

The quotient space [W]
(Ω,µΩ)
[a,b] up to the weakly isomorphic relation de-

termines the boundary region for the cut-distance topological space of finite
weighted graphs. In other words, graph limits can be interpreted in terms of
graphons as analytic graphs [4, 12, 16].

We can study the space of Feynman diagrams of a given gauge field
theory in the context of graphon representations to achieve a new concept
of convergence for sequences of Feynman diagrams. For this purpose, we apply
rooted tree representations of Feynman diagrams. This approach has already
been discussed in [17, 18] and here we address the main steps in this direction.

Lemma 2.6. Each Feynman diagram determines a unique unlabeled
graphon class up to the weakly isomorphic relation.

Proof. For a given gauge field theory Φ, the corresponding renormal-
ization Hopf algebra HFG(Φ) can be reformulated in terms of a particular
combinatorial Hopf algebra HCK(Φ) of non-planar rooted trees decorated by
primitive (1PI) Feynman diagrams in Φ. There exists an injective Hopf alge-
bra homomorphism from HFG(Φ) to HCK(Φ) which enables us to associate a
rooted tree representation tΓ to each Feynman diagram Γ [3, 15].

tΓ is a finite simple weighted graph. Its corresponding adjacency matrix
determines a pixel picture PtΓ as a labeled graphon. Set [PtΓ ]≈ as the unlabeled
Feynman graphon associated to Γ.

Proposition 2.7. The space of Feynman diagrams of a given gauge field
theory Φ is metrizable.

Proof. Thanks to Lemma 2.6, consider the space of labeled Feynman
graphons corresponding to Feynman diagrams in Φ. Feynman diagrams Γ1,Γ2

are called weakly isomorphic iff there exist measure preserving transformations
ρ1, ρ2 of the ground probability measure space Ω such that W ρ1

Γ1
=W ρ2

Γ2
almost

everywhere.



336 Ali Shojaei-Fard 8

For a given Feynman diagram Γ, set [WΓ]≈ as the equivalence class of
weakly isomorphic labeled Feynman graphons corresponding to Γ. It contains
graph functions W ρ

Γ for any measure preserving transformations ρ. We call
[WΓ]≈ the unlabeled Feynman graphon class up to the weakly isomorphic re-
lation.

The cut-distance metric between unlabeled Feynman graphons is defined
by

dcut([WΓ1 ]≈, [WΓ2 ]≈) =

(8) infφ,ψsupA,B

∣∣∣∣ ∫
A×B

(
WΓ1(φ(x), φ(y))−WΓ2(ψ(x), ψ(y))

)
dµΩ(x)dµΩ(y)

∣∣∣∣.
The infimum is taken over all measure preserving transformations on Ω and the
supremum is taken over all µΩ-measurable subsets A,B of Ω. The cut-distance
between weakly isomorphic Feynman graphons is zero.

For given Feynman diagrams Γ1,Γ2 with the corresponding unlabaled
Feynman graphon classes [WΓ1 ]≈, [WΓ2 ]≈, define

(9) d(Γ1,Γ2) := dcut([WΓ1 ]≈, [WΓ2 ]≈).

Corollary 2.8. The renormalization Hopf algebra can be completed with
respect to the cut-distance topology.

Proof. Thanks to the compactness of the topology of graphons [12, 16]
and Proposition 2.7, we can define Feynman graph limits.

Rooted tree representations of Feynman diagrams are sparse decorated
weighted graphs. Therefore when n goes to infinity the density of trees tends to
zero which means that the corresponding Feynman graphonsWΓn converges to
zero graph function. We can remove this problem by working on the rescaled
versions of the canonical labeled Feynman graphons. For example, we can
associate the scaled graph function

WΓn
||WΓn ||cut

to each Γn to achieve non-zero

graphons as Feynman graph limits. There are other techniques in dealing with
sequences of sparse graphs in terms of measure theoretic tools [4].

As the consequence, a sequence {Γn}n≥1 of Feynman diagrams with in-
creasing loop numbers is convergent whenever the corresponding sequence
{[WΓn ]≈}n≥1 of unlabeled Feynman graphons is cut-distance convergent to
a non-zero Feynman graphon up to the weakly isomorphic. In other words,
the space of unlabeled Feynman graphon classes, up to the weakly isomorphic
relation, completes the renormalization Hopf algebra.
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We set Hcut
FG(Φ) as the renormalization Hopf algebra topologically com-

pleted with respect to the cut-distance topology. This new enriched Hopf al-
gebra is useful to formulate a new analytic generalization for non-perturbative
solutions of combinatorial Dyson–Schwinger equations. In other words, a non-
perturbative solution can be interpreted as the cut-distance convergence of the
sequence of some partial sums of finite Feynman diagrams.

Proposition 2.9. The space of Feynman graphons encodes solutions of
combinatorial Dyson–Schwinger equations in a gauge field theory.

Proof. For a given equation DSE(λg) given by Definition 2.3 with the
solution XDSE(λg) =

∑
n≥0(λg)

nXn, set

(10) Ym := I+ (λg)X1 + ...+ (λg)mXm, ∀m ≥ 1

as the partial sum of order m. In [20], it is shown that the sequence {Ym}m≥1

of partial sums is cut-distance convergent to XDSE(λg).
For each m, let tYm be the forest representation of Ym with nm number

of vertices. Apply an embedding τm to embed these vertices into the closed
interval [0, 1] to identify nodes x1, ..., xnm . We build a new random graph Rm
on the set Sm := {x1, ..., xnm} in such a way that there exists an edge between
xi, xj with the probability WYm(xi, xj).

We can show that the sequence {Rm}m≥1 of finite random graphs is
cut-distance convergent to an infinite random graph RDSE(λg). The random
graph RDSE(λg) determines the unlabeled Feynman graphon class correspond-
ing to XDSE(λg). This means that the sequence {[WYm ]≈}m≥1 is convergent to
WXDSE(λg)

.

Thanks to Corollary 2.8, it is possible to topologically complete Hopf
subalgebras associated to combinatorial Dyson–Schwinger equations. We set
Hcut

DSE(λg) as the Hopf algebra generated by the equation DSE(λg) and com-
pleted with respect to the cut-distance topology.

3. A TOPOS MODEL ON DYSON–SCHWINGER EQUATIONS

In this section, we explain the fundamental structure of a new topos model
built on a particular small category of topological Hopf algebras. Our study
leads us to address a new class of Heyting algebras.

Theorem 3.1. For a given (strongly coupled) gauge field theory Φ with
the bare coupling constant g, there exists a topos model which logically encodes
solutions of all combinatorial Dyson–Schwinger equations under different run-
ning coupling constants.
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Proof. Topological Hopf subalgebras Hcut
DSE(λg) associated to arbitrary

combinatorial Dyson–Schwinger equations DSE(λg) and their closed Hopf sub-
subalgebras can be organized in a poset structure. For all pairs (H1, H2) of
these objects, we define arrows pointing from H1 to H2 iff there exists a homo-
morphism H1 → H2 of Hopf algebras which is continuous with respect to the
cut-distance topology. We interpret this poset in terms of a category Cnon,g

Φ . It
is possible to encode the renormalization Hopf algebra HFG(Φ) in terms of an
infinite system of combinatorial Dyson–Schwinger equations generated by fixed
point equations of vertex-type and edge-type Green’s functions of the physical
theory.

Therefore Cnon,g
Φ is a small category which contains sub-objects of each

object. These topological subspaces allow us to determine arbitrary small cut-
distance topological neighborhoods around solutions of combinatorial Dyson–
Schwinger equations.

Now consider the topos of presheaves on the base category Cnon,g
Φ . The

objects of this topos are contravariant functors from the category Cnon,g
Φ to the

standard category Set of sets and functions. The morphisms of this topos are
natural transformations between those functors.

The terminal object 1 of this topos is defined by 1(H) := {∗} at all stages
H in Cnon,g

Φ while if f : H1 → H2 is a morphism in Cnon,g
Φ , then 1(f) : {∗} → {∗}.

The spectral presheaf
∑

of this topos sends each topological Hopf subal-

gebra Hcut
DSE to its corresponding complex Lie group

(11)
∑

(Hcut
DSE) := GDSE(C) = Hom(HDSE,C)

of characters. It also sends each morphism iH1H2 : H1 ⊆ H2 in the base
category Cnon,g

Φ to the map
∑

(iH1H2) :
∑

(H2) −→
∑

(H1). It sends each
character on H2 to a character on H1 by restriction. The subobjects of the
spectral presheaf can be determined in a standard way.

The outer presheaf O of this topos sends each topological Hopf subalge-
bra Hcut

DSE to the set In(DSE) of all infinitesimal characters corresponding to
Feynman diagrams in Hcut

DSE. It also sends each morphism iH1H2 : H1 ⊆ H2 in
the base category Cnon,g

Φ to the map O(iH1H2) : O(H2) −→ O(H1). It sends
each infinitesimal character ZΓ in O(H2) to the infinitesimal character δ(ZΓ)
in O(H1). δ(ZΓ) is determined as the smallest infinitesimal character

(12) δ(ZΓ) :=
∧

{Zγ ∈ In(DSE2) : ZΓ ⪯ Zγ}

such that ⪯ is the partial order on infinitesimal characters defined with respect
to the number of independent loops in their corresponding Feynman diagrams.

The subobject classifier of this topos is the presheaf Ωnon,g
Φ : Cnon,g

Φ → Set
such that for any object H in the base category, Ωnon,g

Φ (H) is identified by the



11 Non-perturbative topos and its application 339

set of all sieves on H. If f : H1 → H is a morphism in the base category, then
Ωnon,g
Φ (f) : Ωnon,g

Φ (H) → Ωnon,g
Φ (H1) is given by

(13) Ωnon,g
Φ (f)(S) := {h : H2 → H1, f ◦ h ∈ S}

for all S ∈ Ωnon,g
Φ (H). It is actually the pull-back to H1 of the sieve S on H

by the morphism f .

Corollary 3.2. The presheaf Ωnon,g
Φ enables us to interpret subobjects

of any presheaf X in our topos model in terms of natural transformations
χ : X → Ωnon,g

Φ .

Proof. Thanks to Theorem 3.1, on the one hand, for any subobject K of
X, its associated characteristic morphism χK is defined in terms of its compo-
nents χK

Hcut
DSE

: X(Hcut
DSE) → Ωnon,g

Φ (Hcut
DSE) with respect to all Dyson–Schwinger

equations in the base category Cnon,g
Φ . On the other hand, each natural trans-

formation χ : X → Ωnon,g
Φ defines a subobject Kχ of X which is given by

(14) Kχ(Hcut
DSE) := χ−1

Hcut
DSE

{1Ωnon,g
Φ (Hcut

DSE)
}

at each stage of the logical truth with respect to the Dyson–Schwinger equation
DSE.

4. COMPUTABLE HEYTING ALGEBRAS FOR MIXED
HODGE–TATE STRUCTURES

In this section, we plan to apply the topos of Dyson–Schwinger equa-
tions to explain the construction of a new class of dimensionally computable
Heyting algebras which describe the logical background of mixed Hodge–Tate
structures derived from solutions of combinatorial Dyson–Schwinger equations
in Quantum Field Theory.

Definition 4.1. A lattice (L,≤) is a non-empty set equipped with an order
relation such that for all a, b ∈ L, the least upper bound a ∨ b := sup({a, b})
and the greatest lower bound a ∧ b := inf({a, b}) exist. It is called a bounded
lattice, if there exist a top element ⊤ and a bottom element ⊥ such that for all
a ∈ L, ⊥ ≤ a ≤ ⊤. It is called a complete lattice if for any subset S ⊆ L, Inf(S)
and Sup(S) exist. It is called a distributive lattice, if L obeys the distributive
law which means that for all a, b, c ∈ L, we have

(15) a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c), a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c).

It is possible to extend these conditions to an infinite level. [8]
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For a given bounded lattice L and any a ∈ L, another object b ∈ L is a
complement of a if a ∧ b = ⊥ and a ∨ b = ⊤. In general, the complement is
not unique. A bounded distributive lattice L is called Boolean algebra if each
a ∈ L has a unique complement a′ ∈ L. Boolean algebras are useful for the
description of the logical foundations of Classical Mechanics while we need a
weaker version of these algebras (i.e. Heyting algebras) for the construction of
quantum logics [6, 8, 10, 26].

Definition 4.2. A bounded distributive lattice H equipped with the im-
plication (as a binary operation) is called a Heyting algebra if for all a, b, c ∈ H,
we have

(16) c ≤ (a⇒ b) ⇔ (a ∧ c) ≤ b.

A subset A of natural numbers is called computable if there exists an algo-
rithm to decide whether a natural number belongs to A or not. In other words,
A is computable if its corresponding characteristic function is computable.

Definition 4.3. An algebraic structure is called computable if its domain
can be identified with a computable set of natural numbers where the (finitely
many) operations and relations on the structure are computable. If the struc-
ture is infinite, we identify the cardinal of its domain with the symbol ω.

The computable dimension of a computable structure is the number of
classically isomorphic computable copies of the structure up to the computable
isomorphism [6, 8, 10].

For a given gauge field theory Φ, the subobject classifier Ωnon,g
Φ in the

topos of Dyson–Schwinger equations has a natural Heyting algebraic structure.

Lemma 4.4. For a given combinatorial Dyson–Schwinger equation DSE,
the space Ωnon,g

Φ (Hcut
DSE) is a Heyting algebra.

Proof. From Theorem 3.1, Ωnon,g(Hcut
DSE) contains all sieves on H

cut
DSE. For

arbitrary collections S1, S2 of sieves on Hcut
DSE, the partial order relation on

Ωnon,g(Hcut
DSE) is given by

(17) S1 ≤ S2 ⇔ S1 ⊆ S2.

This ordering allows us to define the following elementary logical statements

S1 ∧ S2 := S1 ∩ S2, S1 ∨ S2 := S1 ∪ S2,
S1 ⇒ S2 := {f : Hcut

DSE,2 → Hcut
DSE| ∀g : Hcut

DSE,3 → Hcut
DSE,2,

if f ◦ g ∈ S1, then f ◦ g ∈ S2}.
(18)

The negation of an element S is defined by the proposition ¬S := S ⇒ 0 which
means that

(19) ¬S := {f : Hcut
DSE,2 → Hcut

DSE | ∀g : Hcut
DSE,3 → Hcut

DSE,2, f ◦ g /∈ S}.
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Therefore for arbitrary pair (S1, S2), there exists a proposition S1 ⇒ S2
with the property that for all S in Ωnon,g(Hcut

DSE),

(20) S ≤ (S1 ⇒ S2) ⇔ S ∧ S1 ≤ S2.

In addition, the principal sieve onHcut
DSE is the unit element of this Heyting

algebra while the null element is the empty sieve.

Therefore for any object Hcut
DSE in the base category Cnon,g

Φ , Ωnon,g
Φ (Hcut

DSE)
can be equipped by the intuitionistic logic. It enables us to build a new logical
platform for the evaluation of propositions associated to cut-distance topo-
logical regions of Feynman diagrams which contribute to the solution of the
equation DSE.

Definition 4.5. A mixed Hodge–Tate structure over Q is a Q-vector space
V which is equipped with a weight filtration W• and a Hodge filtration F • of
its complexification VC such that for odd m, grWm V = 0 and for even m, grW2nV
is a direct sum of the Hodge–Tate structures Q(−n) in terms of the Hodge
filtration F • [5, 9].

We are going to apply the subobject classifier Ωnon,g
Φ of the topos of

Dyson–Schwinger equations in a given gauge field theory Φ (i.e. Theorem 3.1)
to formulate a new class of Heyting algebras which are capable to encode the
quatum logics of mixed Hodge–Tate structures associated to polylogarithms.

Theorem 4.6. There exists a class of dimensionally computable Heyting
algebras which encode the logical background of mixed Hodge–Tate structures
associated to polylogarithms.

Proof. At the first step of the proof, we plan to show that the logical
propositions about the solution of the equation DSE can be evaluated by a
computable Heyting algebra. For this purpose, we want to lift the Heyting al-
gebra Ωnon,g

Φ (Hcut
DSE) onto an enriched version Ω̂non,g

Φ (Hcut
DSE) which is computable

at the level of its dimension.
The structure of an algorithmic model of constructing a computable ver-

sion of a given infinite Heyting algebra at the level of its dimension has been
discussed in [24]. Here, we modify that construction process to build our
promised computable Heyting algebra Ω̂non,g

Φ on the basis of the subobject
classifier Ωnon,g

Φ .
Consider the propositional intuitionistic logic over the given language

(21) (Ωnon,g
Φ (Hcut

DSE),∧,∨,⇒,⊥,⊤).

Ωnon,g
Φ (Hcut

DSE) can be seen as the collection of propositional formulas in infinitely
many variables modulo equivalence under the intuitionistic logic where ∧,∨,⇒
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are the logical connectives, ⊥ is false and ⊤ is true. The codes for formulas
such as ϕ ∧ ψ, ϕ ∨ ψ or ϕ⇒ ψ are always greater than the codes for ϕ and ψ.

We know that the propositional intuitionistic logic is decidable which
provides a computable copy of the free Heyting algebra on ω generators [6, 10].
Therefore we consider elements of Ωnon,g

Φ (Hcut
DSE) as the equivalence classes [ϕ]

under provable equivalence in the intuitionistic logic which leads us to the
following computational operations:

[ϕ] ≤ [ψ] ⇐⇒ ϕ⇒ ψ is provable under the intuitionistic logic,

(22) [ϕ] ∧ [ψ] = [ϕ ∧ ψ], [ϕ] ∨ [ψ] = [ϕ ∨ ψ].

The plan is to build Ω̂non,g
Φ (Hcut

DSE) as a computable copy which is not
computability isomorphic to Ωnon,g

Φ (Hcut
DSE). Let αs(n) be a label at stage s de-

termined by the domain of the subobject classifier in the construction process.
It is indeed a propositional formula in the intuitionistic logic. The resulting
sequence {αs(n)}n≥0 is convergent which means that α(n) = limsαs(n). For
n ̸= m, the propositional formulas α(n) and α(m) are not intuitionistically
equivalent. For each intuitionistic propositional formula ϕ, there exists some
n such that α(n) is intuitionistically equivalent to ϕ.

In addition, once we define the join, meet or relative pseudo-complement
of elements, these relationships never change in the future stages.

As the consequence, the function α, which indicates an isomorphism be-
tween Ω̂non,g

Φ (Hcut
DSE) and Ωnon,g

Φ (Hcut
DSE), makes Ω̂non,g

Φ (Hcut
DSE) computable.

At this stage, we should diagonalize against all possible computable iso-
morphisms and for this purpose we need to concern morphisms such as

(23) ϕe : Ω̂
non,g
Φ (Hcut

DSE) → Ωnon,g
Φ (Hcut

DSE)

which is not an isomorphism. We remove this issue by adapting the inductive
machinery applied in [24]. At the end of the day, Ω̂non,g

Φ (Hcut
DSE) is our promised

computable Heyting algebra.
At the second step of the proof, we are going to apply the close connection

between solutions of combinatorial Dyson–Schwinger equations and polyloga-
rithms and their corresponding Mixed Hodge–Tate structures. This allows us
to adapt the built computable Heyting algebra in the previous part for the
level of Mixed Hodge–Tate structures.

Mixed Hodge–Tate structures associated to polylogarithms can be de-
scribed in terms of their related period matrices [1, 5, 14]. It is shown that this
class of matrices can be interpreted as solutions of Dyson–Schwinger equations
[14, 15]. Therefore the period matrix MMHT of each mixed Hodge–Tate struc-
ture MHT determines a topological Hopf subalgebra Hcut

DSEMHT
in the base

category Cnon,g
Φ of the topos of Dyson–Schwinger equations. It means that
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the Heyting algebra Ωnon,g
Φ (Hcut

DSEMHT
) encodes the quantum logic platform for

MHT and its corresponding period matrix.

Theorem 4.6 constructs a new computable modification for those Heyting
algebras derived from the subobject classifier Ωnon,g

Φ . This logical setting shows
a fundamental connection between a class of mixed Hodge–Tate structures and
solutions of combinatorial Dyson–Schwinger equations.

5. CONCLUSION

Topological Hopf subalgebras associated to solutions of combinatorial
Dyson–Schwinger equations of a given gauge field theory can be organized
in a small category. This small category is applied as the base category for a
new topos model which encodes the logical evaluation of the cut-distance topo-
logical regions of Feynman diagrams which contribute to solutions of Dyson–
Schwinger equations. Representations of this new topos model address the
logical foundations of strongly coupled gauge field theories. It allows us to
evaluate logical propositions about a physical phenomena which contains in-
teractions among a finite number of particles in a quantum system with infinite
degrees of freedom.

Perturbative renormalization deals with ill-defined iterated Feynman in-
tegrals in terms of methods such as Dimensional Regularization and Minimal
Subtraction scheme. Applying parametric representations enables us to for-
mulate Feynman integrals in the context of Kirchhoff–Symanzik polynomials
to extract finite values. Logarithmically divergent and projective integrals ad-
dress a deep connection between renormalization theory and limiting Hodge
theory. This setting leads to analyze the motivic nature of periods associated
to renormalized amplitudes [1, 2, 15, 23, 27]. Thanks to the topos model given
by Theorem 3.1, which is defined on the basis of the cut-distance topological re-
gions of Feynman diagrams which contribute to solutions of Dyson–Schwinger
equations, the internal logic of Ωnon,g

Φ provides the logical background of per-
turbative renormalization in the context of limiting Hodge theory.
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