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The Brauer relations of a finite group G are virtual differences of non-isomorphic
G-sets X − Y which induce isomorphic permutation G-representations Q[X] ≃
Q[Y ] over the rationals. These relations have been classified by Tornehave-Bouc
and Bartel-Dokchitser. Motivated by stable homotopy theory, a relative version
of Brauer relations for (G,Cp)-bisets which are Cp-free have been classified by
Kahn in case G is an elementary Abelian p -group. In this paper, we extend
Kahn’s classification to the case when G is a finite Abelian p -group.
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1. INTRODUCTION

The Burnside ring A(G) of a finite group G is the Grothendick ring of
the category of finite G-sets and is isomorphic up to completion to the stable
cohomotopy group of the classifying space BG according to Segal’s Conjecture
[6]. The relative Burnside module A(G,H) of a pair of finite groups (G,H) is
the Grothendick module of the category of finite (G,H)-bisets that are H-free.
Up to completion, A(G,H) describes the stable homotopy classes of maps from
the classifying space BG to the classifying space BH , by the generalized Segal’s
Conjecture [10].

The representation ring RF (G) of a finite group G over a field F is the
Grothendick ring of the category of finitely generated FG-modules, where FG
denotes the group ring of G over F . Let F = Q be the field of rational numbers.
The functor sending each finite G-set X to the permutation G-module Q[X]
induces a ring homomorphism from the Burnside ring A(G) to the rational
representation ring RQ(G):

fG : A(G) → RQ(G), fG[X] = Q[X].(1)

The cokernel of fG is finite of exponent dividing the group order |G|
by Artin’s induction theorem [16] and it is trivial if G is a finite p -group
by Ritter-Segal [13, 15]. The elements of the kernel K(G) of fG are called
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the Brauer relations of the group G or the G-relations and these have been
classified by Tornehave-Bouc [5, 17] for finite p -groups and Bartel-Dokchitser
[3] for arbitrary finite groups.

We note that the image of the submodule A(G,H) ⊂ A(G×H) under the
map fG×H is contained in the Grothendieck submoduleRQ(G,H) ⊂ RQ(G×H)
of the category of finitely generatedQ(G×H)-modules which are free right QH-
modules. The kernel and cokernel of the well defined restricted homomorphism

fG,H = fG×H : A(G,H) −→ RQ(G,H)(2)

are also of interest in view of the generalized Segal’s Conjecture. In particular,
it makes sense to call the elements of the kernel K(G,H) of fG,H the relative
Brauer relations of the pair (G,H) or the (G,H)-relations. The cokernel of
fG,H is trivial for G a finite p -group and H = Cp by Anton [1] and the (G,Cp)-
relations have been classified by Kahn [7] for G an elementary Abelian p -group,
where Cp denotes the cyclic group of prime order p. The main result of this
paper is

Theorem 1.1. The relative Brauer relations of the pair (G,Cp) for G
a finite Abelian p-group are linear combinations of relative Brauer relations
‘indufted’ from sub-quotients of G× Cp of the form Cp × Cp × Cp.

We note that there is a natural ring homomorphism mapping RF (G)
to the stable homotopy classes of maps from the classifying space BG to the
plus construction of the classifying space BGL(F ), where GL(F ) is the infinite
general linear group over the field F . Up to completion, this map is an isomor-
phism for F the (topological) field of complex numbers [2] or for F a finite field
[8]. If F = Q, this homomorphism connects Brauer relations with algebraic
K-theory [11]. The relative Brauer relations are connected with maps between
algebraic K-theory spectra.

The background terminology will be reviewed in Section §2 and a precise
formulation of Theorem 1.1 will be given in Section §3. In Section §4, we prove
some key rank lemmas. In Section §5, we prove the main theorem up to torsion.
In Section §6, we reduce the proof to a set of special generators and finish the
argument in §7.

2. BACKGROUND AND TERMINOLOGY

This section is a survey of basic definitions and facts about Burnside and
representation modules, many of them being used in this paper.
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2.1. Relative Burnside modules

Following [3], the Burnside ring A(Γ) of a group Γ is the free Abelian
group generated by the isomorphism classes [X] of finite Γ-sets X modulo the
relations [X ⊔Y ] = [X]+ [Y ] where ⊔ denotes the disjoint union. The product
in A(Γ) is given by [X] ∗ [Y ] = [X × Y ] where X × Y is the Γ-set under the
diagonal Γ-action.

Proposition 2.1 ([3]). The transitive Γ-sets are left coset spaces Γ/L of
subgroups L ≤ Γ and their isomorphism classes [Γ/L] form a basis for A(Γ).

There is a bijection sending the conjugacy class of a subgroup L ≤ Γ to
the basis element [Γ/L]. Using this identification:

We write the elements of A(Γ) as integral linear combinations
∑

niLi of
subgroups Li ≤ Γ up to conjugacy.

The product of basis elements in A(Γ) is given by the double coset formula

L ∗M =
∑

x∈L\Γ/M

L ∩ xM(3)

where L,M ≤ Γ and xM = xMx−1 for x ∈ Γ.
Given a pair (G,H) of finite groups, let Γ = G×H. A (G,H)-biset is a

finite set X, endowed with a left G-action and a right H-action that commute
with each other, i.e., a left Γ-action with the right H-action defined via

xh = h−1x for x ∈ X and h ∈ H.(4)

Definition 2.2. The relative Burnside module A(G,H) of a pair of finite
groups (G,H) is the free Abelian group generated by the isomorphism classes
[X] of (G,H)-bisets which are right H-free, modulo the relations

[X ⊔ Y ] = [X] + [Y ].

Lemma 2.3 (Goursat [9]). The subgroups of a direct product of two finite
groups Γ × Ω are in bijection with the quintuples (K,N,A,B, θ) of subgroups
N ⊴ K ≤ Γ and B ⊴ A ≤ Ω and isomorphisms θ : K/N ≈ A/B.

The correspondence in Goursat Lemma is given by the following map

(K,N,A,B, θ) 7→ S = {(kn, θ(kN)b)|n ∈ N, k ∈ K, b ∈ B} ≤ Γ× Ω.

This lemma explains how to pass from the basis of A(G×H) to the basis of
A(G,H). More precisely, according to [10], the transitive right H-free (G,H)-
bisets are twisted products G ×ρ H between G and a group homomorphism
ρ : K → H from a subgroup K ≤ G. Such a product is the quotient of Γ
modulo the relations

[gk, h] = [g, ρ(k)h] for g ∈ G, h ∈ H, and k ∈ K.
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Here [g, h] denotes the class of (g, h) in G×ρH. The map Γ → G×H given by
(g, h) 7→ (g, h−1) induces an isomorphism of left Γ-sets Γ/(K × ρ) ≈ G ×ρ H
where the graph (subgroup) of ρ in Γ is denoted by

K × ρ = {(k, ρ(k)) : k ∈ K}.(5)

This is an isomorphism of (G,H)-bisets via (4).

Proposition 2.4 ([10]). A basis for the submodule A(G,H) ⊂ A(Γ) con-
sists of the isomorphism classes of twisted products [G×ρ H].

There is a bijection between these basis elements and the conjugacy
classes of group homomorphisms ρ : K → H with K ≤ G or equivalently
of subgroups K × ρ ≤ Γ. Using this identification:

We write the elements of A(G,H) as integral linear combinations
∑

niKi× ρi
of graphs up to conjugacy of homomorphisms ρi : Ki → H from Ki ≤ G.

If Z is a G-set and X is a (G,H)-biset, then the product [Z][X] = [Z×X]
defines a left A(G)-module structure on A(G,H), where G acts on Z × X
diagonally from the left and H acts only on X from the right. The A(G)-
module structure on A(G,H) is made explicit for M,K ≤ G and ρ : K → H
by the product:

M ∗ (K × ρ) =
∑

x∈K\G/M

(K ∩ xM)× ρ.(6)

2.2. Functorial operations on Burnside modules

These operations are Z-linear maps on A(Γ). The induction Ind Γ
L :

A(L) → A(Γ) from a subgroup L ≤ Γ is defined on L-sets Y by

Ind Γ
LY = Γ×L Y where Γ acts by left multiplication on Γ.

Here Γ×L Y denotes the quotient of Γ×Y modulo the relations [γl, y] = [γ, ly]
for γ ∈ Γ, l ∈ L and y ∈ Y .

The restriction Res Γ
L : A(Γ) → A(L) is defined on Γ-sets X by

Res Γ
LX = X where L acts on X as a subgroup of Γ.

On basis elements, for K ≤ L and M ≤ Γ we have

Ind Γ
LK = K, Res Γ

LM =
∑

x∈L\Γ/M

L ∩ xM.(7)

The inflation Inf Γ
Π : A(Π) → A(Γ) from a quotient Π = Γ/N by a normal

subgroup N ⊴ Γ is defined on Π-sets Z by

Inf Γ
ΠZ = Z where Γ acts on Z via its projection in Π.
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The deflation Def Γ
Π : A(Γ) → A(Π) on Γ-sets X is the orbit space of N

Def Γ
ΠX = N\X where [γ][x] = [γx] for γ ∈ Γ and x ∈ X.

Here [γ] denotes the coset γN in Π and [x] denotes the orbit Nx of x in N\X.
On basis elements, for N ⊴ K ≤ Γ and M ≤ Γ, we have

Inf Γ
Π(K/N) = K, Def Γ

ΠM = NM/N.(8)

2.3. Relative representation modules

Following [16], the rational representation ring RQ(Γ) of a finite group Γ
is the free Abelian group generated by the isomorphism classes [V ] of finitely
generated left QΓ-modules V modulo the relations [V ⊕W ] = [V ]+ [W ] where
⊕ denotes the direct sum. The product is given by [V ] ∗ [W ] = [V ⊗W ] where
⊗ denotes the tensor product over Q and V ⊗W is the QΓ-module under the
diagonal Γ-action. The irreducible QΓ-modules are direct summands Vi of the
group ring QΓ and their isomorphism classes [Vi] form a basis for RQ(Γ).

Given a pair of finite groups (G,H), let Γ = G×H. A (G,H)-bimodule
over the rationals is simply a finitely generated left QΓ-module V with QG
acting on the left via the canonical inclusion in QΓ and QH acting on the right
via the rule

vh = h−1v, for v ∈ V and h ∈ H.(9)

Definition 2.5. The relative rational representation module R(G,H) of
a pair of finite groups (G,H) is the submodule of RQ(Γ) generated by the
isomorphism classes of (G,H)-bimodules over the rationals, which are right
QH-free modules.

We call a right QH-free (G,H)-bimodule V over the rationals irreducible
if V cannot be decomposed as a direct sum of right QH-free (G,H)-bimodules
over the rationals. Hence, the isomorphism classes [Wi] of irreducible right
QH-free (G,H)-bimodules Wi over the rationals form a basis for R(G,H).
Notice that QH with QH acting on the right by the multiplication in H and
QG acting on the left by the identity 1 ∈ G is an example of an irreducible
right QH-free (G,H)-bimodule over the rationals which is not an irreducible
left QΓ-module (unless H = 1).

If U is a left QG-module and V a right QH-free (G,H)-bimodule over
the rationals, then the product [U ]∗ [V ] = [U⊗V ] defines a left RQ(G)-module
structure on R(G,H), where QG acts on U ⊗ V diagonally from the left and
QH acts only on V from the right. Indeed, with these actions, U ⊗V is a right
QH-free (G,H)-bimodule.
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From the relative Burnside module A(G,H) to the relative rational rep-
resentation module R(G,H), we have the natural linear map fG,H by (2).

Definition 2.6. The relative Brauer relations of a pair of finite groups
(G,H) are the elements of the kernel K(G,H) of the linear map fG,H :
A(G,H) → R(G,H).

Recall that the Brauer relations of the finite group Γ = G × H are the
elements of the kernel K(Γ) of the linear map fΓ : A(Γ) → RQ(Γ) assigning
to a Γ-set X the rational permutation representation Q[X]. The map fG,H

is the restriction of fΓ to the submodule A(G,H) ⊆ A(Γ) and its kernel is a
submodule K(G,H) ⊆ K(Γ).

2.4. Functorial operations on representations

On the representation ring RQ(Γ), we define functorial operations, which
are Z-linear maps. The induction Ind Γ

L : RQ(L) → RQ(Γ) from a subgroup
L ≤ Γ is defined on QL-modules W by

Ind Γ
LW = QΓ⊗QL W where QΓ acts by left multiplication on QΓ.

The restriction Res Γ
L : RQ(Γ) → RQ(L) is defined on QΓ-modules V by

Res Γ
LV = V where QL acts on V as a subring of QΓ.

The inflation Inf Γ
Π : RQ(Π) → RQ(Γ) from a quotient Π = Γ/N by a normal

subgroup N ⊴ Γ is defined on QΠ-modules U by

Inf Γ
ΠU = U where QΓ acts on U via its projection in QΠ.

The deflation Def Γ
Π : RQ(Γ) → RQ(Π) is given on QΓ-modules V by

Def Γ
ΠV = QΠ⊗QΓ V where QΓ acts on QΠ via its projection.

Notation 2.7. For any group C we denote by 1C the trivial rational rep-
resentation [Q] where C acts on Q by the identity 1 ∈ C. Also Ind Γ = Ind Γ

C

and R(Γ) = RQ(Γ). Similarly, Inf Γ = Inf Γ
Π, Res

Γ = Res Γ
C , Def Γ = Def Γ

Π

where Π is a quotient of Γ.

Proposition 2.8 ([3]). The linear map fΓ : A(Γ) → R(Γ) commutes
with the operations Ind Γ, Inf Γ, Res Γ, Def Γ.

For example, if L ≤ Γ is a subgroup and K is a basis element in A(Γ)
given by the conjugacy class of a subgroup in Γ, we get Mackey’s formula [16]

Res Γ
L(fΓK) = Res Γ

LInd
Γ(1K) =

∑
x∈L\Γ/K

Ind L(1L∩xK) = fL(Res
Γ
L(K)).
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However, for Γ = G × H these operations restricted to the submodules
A(G,H) and R(G,H) do not land in the same submodules except in special
cases. For example, if K ≤ G is a subgroup, and N ⊴ G is a normal subgroup
with Π = G/N , we have a commutative diagram of linear maps

(10) A(K,H)
Ind G

K //

fK,H

��

A(G,H)

fG,H

��

A(Π, H)
Inf G

Πoo

fΠ,H

��
R(K,H)

Ind G
K // R(G,H) R(Π, H)

Inf G
Πoo

as Ind G
K = Ind Γ

K×H and Inf G
Π = Inf Γ

Π×H do not change the H-structure.

Theorem 2.9 (Artin’s Induction [16]). The vector space Q ⊗ R(Γ) has
a basis given by Ind Γ(1C) where C runs over the conjugacy classes of cyclic
subgroups of Γ.

It is a known fact [16] that Ind Γ(1C) do not generate R(Γ) in general.

Corollary 2.10. For Γ = G×H, the rank of the Z-module R(Γ) equals
the number of conjugacy classes of cyclic subgroups of Γ and the rank of K(Γ)
equals the number of conjugacy classes of non-cyclic subgroups of Γ.

Proof. The conjugacy classes of subgroups Li ≤ Γ form a basis for A(Γ)
and their images under fΓ : A(Γ) → R(Γ) are given by fΓ(Li) = Ind Γ(1Li).
By Artin’s Induction, it follows that in the exact sequence below, Coker (fΓ)
is torsion:

0 → K(Γ) → A(Γ)
fΓ−→ R(Γ) → Coker (fΓ) → 0.

This concludes the proof as the alternating sum of the ranks is zero.

3. THE FORMULATION OF THE MAIN THEOREM

We denote by Cp the multiplicative cyclic group of prime order p. Recall
that an element Θ =

∑
niHi is a G-relation if and only if∑

ni Ind
G(1Hi) = 0, 1Hi = trivial Hi-module Q.

According to Proposition 2.8, Brauer relations can be induced by Ind G′
from

subgroups H ≤ G′ (or restricted by Res H) and can be lifted by Inf G̃ from
quotients G = G̃/N (or projected by Def G̃/N ). A Brauer relation of G is
called primitive if it cannot be induced from a proper subgroup or lifted from
a proper sub-quotient of G.
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Theorem 3.1 (Bouc-Tornehave [5, 17]). All Brauer relations of a p-group
G are linear combinations of the form

Θ =
∑

nP Ind
G
K InfKP (ΘP ), P = K/N sub-quotient of G, nP ∈ Z

of relations IndGK InfKP (ΘP ) ‘indufted’ from primitive P -relations ΘP where

1. P ≈ Cp × Cp and ΘP = 1−
∑

C= cyclicC + pP or

2. P ≈ the Heisenberg group of order p3 or P ≈ the dihedral group of order
2n with n ≥ 4 and ΘP = I − IZ − J + JZ.

In the second case, Z is the center of P and I, J are non-conjugate subgroups
of P of order p (or order 2) intersecting Z trivially.

This result of Bouc [5] was proven independently and with methods that
are used in this paper. The work of Tornehave [17] was done with a different
approach.

Corollary 3.2 ([5]). Cyclic groups have no Brauer relations except zero.
Products P = Cp×Cp of cyclic groups of order p have one independent Brauer
relation given below where C runs over all non-trivial cyclic subgroups of P

ΘP = 1−
∑

C= cyclic

C + pP.

This corollary can be easily obtained and does not need all the strength
of Bouc’s result. For example, since the rank of the Z-module K(G) of Brauer
relations equals the number of non-cyclic subgroups of G by Corollary 2.10,
the first part of the corollary is immediate.

Let G be a finite p-group and K(G,Cp) be the module of relative (G,Cp)-
Brauer relations as in Definition 2.6. In this case, we have the following com-
mutative diagram of short exact sequences of Z-modules and linear maps

(11)

0 −−−−→ K(G× Cp)
incl.−−−−→ A(G× Cp)

fG×Cp−−−−→ R(G× Cp) −−−−→ 0

incl.

x incl.

x incl.

x
0 −−−−→ K(G,Cp)

incl.−−−−→ A(G,Cp)
fG,Cp−−−−→ R(G,Cp) −−−−→ 0

The surjectivity of the maps fG×Cp and fG,Cp has been established in [15]
and [1]. By estimating the ranks of the Z-modules involved in the diagram and
searching for Brauer P -relations Θ′

P for sub-quotients P = K/N of the group

G×Cp such that Ind
G×Cp

K Inf K
P (Θ′

P ) are relative Brauer (G,Cp)-relations, we
formulate the following



9 Relative Brauer relations 355

Conjecture 3.3. Let p be a prime and G a finite p-group. All relative
Brauer (G,Cp)-relations for a p-group G are linear combinations

Θ =
∑

nP Ind
G×Cp

K InfKP (Θ′
P ), P = K/N sub-quotient of G× Cp, nP ∈ Z

of (G,Cp)-relations Ind
G×Cp

K InfKP (Θ′
P ) ‘indufted’ from P -relations Θ′

P where

1. P ≈ Cp × Cp × Cp or

2. P ≈ (the Heisenberg group of order p3) × Cp or

3. P ≈ (the dihedral group of order 2n with n ≥ 4) × C2.

In [7], this conjecture was proved for G an elementary Abelian p -group
by giving an explicit description of K(G,Cp). The simplest example shows an
intricate network of subgroups behind the relative Brauer relations.

Proposition 3.4 (Kahn [7]). K(C2 × C2, C2) has a basis with four ele-
ments e1 − e3 − e5 − e7 + 2e12, e3 − e12 − e13 − e4 + e14 + e15, e5 − e12 − e14 −
e6 + e13 + e15, e7 − e12 − e15 − e8 + e13 + e14 where e’s label distinct subgroups
of C2 × C2 × C2.

In this paper, we prove Conjecture 3.3 for G any finite Abelian p -group
by giving the following description of K(G,Cp):

Theorem 3.5. Let G be a finite Abelian p-group. The Z-module K(G,Cp)
of relative Brauer (G,Cp)-relations is generated by elements of the form

Ind
G×Cp

K InfKP (Θ′
P )

where P = K/N ≈ Cp × Cp × Cp are sub-quotients of G × Cp and Θ′
P are

elements of K(P ), the module of Brauer P -relations.

4. RANK LEMMAS AND THEIR PROOFS

In this section, we fix G to be a finite Abelian p -group and endow the
cyclotomic field Q(ζ) with ζ a fixed primitive p -root of unity adjoined by the
(G,Cp)-bimodule structure where Cp-action is given by multiplication by ζ and
the G-action is trivial. Notice that a (G,Cp)-bimodule W over the rationals is
a right Q[Cp]-free module if and only if the module

(12) 0W = Res1×CpW

with the G-action forgotten is a left Q[Cp]-free module.

Lemma 4.1. 1G×Cp ⊕Q(ζ) represents an element in R(G,Cp).
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Proof. We have the following Q[Cp]-isomorphism

0

(
1G×Cp ⊕Q(ζ)

)
= 1Cp ⊕Q(ζ) ≈ Q×Q(ζ) = Q[Cp].

This concludes the proof.

Lemma 4.2. R(G× Cp) = R(G,Cp)⊕ Z · 1G×Cp.

Proof. Since G is a finite Abelian p-group, the group ring Q[G × Cp] is
a product of cyclotomic field extensions of Q obtained by adjoining primitive
pν-roots of unity ξν where ν ≥ 0 are integers. In particular, any irreducible
Q[G×Cp]-module W is a cyclotomic field, say W = Q(ξν), whose degree over
Q is dν = pν−1(p− 1) and whose degree over Q(ζ) is pν−1.

More precisely, there is a group homomorphism χ : G × Cp → Q(ξν)
×

into the multiplicative group of the field W = Q(ξν) such that the elements
y ∈ G×Cp act on W by multiplication by χ(y). If we fix a generator y0 of Cp,
then Cp acts on W by multiplication by χ(y0). Since yp0 = 1, we know that
χ(y0) is a p-root of unity. In particular, we distinguish two cases.

If χ(y0) = 1, we have the Q[Cp]-isomorphisms

0 (W ⊕ dνQ(ζ)) = (0W )⊕ dνQ(ζ) ≈ dν1Cp ⊕ dνQ(ζ) ≈ dνQ[Cp].

If χ(y0) = ζ is a primitive p-root of unity, we have the Q[Cp]-isomorphisms

0

(
W ⊕ pν−11G×Cp

)
≈ pν−1Q(ζ)⊕ pν−11Cp ≈ pν−1Q[Cp].

By Lemma 4.1, we deduce that for any irreducible Q[G×Cp]-module W , either
W − dν1G×Cp or W + pν−11G×Cp represents an element in R(G,Cp).

Let SG be the graph with a vertex K for each subgroup K ≤ G and an
edge (K,N) for each pair of subgroups N ≤ K having index [K : N ] = p.

Lemma 4.3. rank A(G× Cp)− rank A(G,Cp) = rank A(G).

Proof. By Proposition 2.1, we have

rank A(G) = # vertices in SG,

rank A(G× Cp) = # vertices in SG×Cp .

By Proposition 2.4, a basis for A(G,Cp) is given by graphs of homomorphisms
ρ : K → Cp from subgroups K ≤ G. Each such ρ is either trivial ρ = 1 or
factors through a canonical map K → K/N and an automorphism of Cp where
N ≤ K is a subgroup of index [K : N ] = p. The number of automorphisms of
Cp is p−1. Hence, the number of graphs K×ρ equals the number of subgroups
K ≤ G (ρ = 1) plus (p − 1) times the number of pairs (K,N) with N ≤ K
having index p (ρ ̸= 1):

rank A(G,Cp) = # vertices in SG + (p− 1) ·# edges in SG.
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By Goursat’s Lemma 2.3, the vertices of SG×Cp are in bijection with quintuples
(K,N,A,B, θ) of subgroups N ≤ K ≤ G and B ≤ A ≤ Cp and isomorphisms
θ : K/N ≈ A/B. We distinguish two cases:

1) A = B, K = N , θ = 1 and

2) A = Cp, B = 1, (K,N) is an edge in SG and θ : K/N → Cp is an
isomorphism.

Since Cp has only two subgroups, we conclude that

# vertices in SG×Cp = 2 ·# vertices in SG + (p− 1) ·# edges in SG.

The statement now follows by combining the formulas above.

Proposition 4.4. rank K(G× Cp)− rank K(G,Cp) = rank A(G)− 1.

Proof. From the diagram of exact sequences (11), we deduce the relations

rank A(G× Cp) = rank K(G× Cp) + rank R(G× Cp)

rank A(G,Cp) = rank K(G,Cp) + rank R(G,Cp)

By Lemma 4.2, rank R(G × Cp) − rank R(G,Cp) = 1. Hence, the difference
between the two equations above gives the result by Lemma 4.3.

5. GENERATORS UP TO TORSION

In this section, we start with elements in K(P ) for specific groups P and
apply all the biset operations to generate K(G,Cp) for G a finite Abelian p -
group. For the rest of the paper, we use the notation ϵ : G → 1 for the trivial
map and the notation (5) for the graph of a homomorphism. By Goursat
Lemma 2.3 the subgroups of G× Cp have the following structure

1× ϵ, L× ϵ, 1× Cp, L× Cp, L× λ(13)

where λ : L → Cp is a surjective homomorphism and 1 ̸= L ≤ G.

Lemma 5.1. We have the following list of possible pairs of subgroups
(K,N) of G× Cp with K/N ≈ Cp × Cp:

K = G′ × Cp, N = L× ρ with ρ : L → Cp, ρ(G
′p) = 1, G′/L ≈ Cp

K = G′ × Cp, N = L× Cp with G′/L ≈ Cp × Cp

K = G′ × λ, N = L× λ with λ : G′ → Cp surjective, G′/L ≈ Cp × Cp

K = G′ × ϵ, N = L× ϵ with G′/L ≈ Cp × Cp

where (G′, L) are pairs of subgroups of G with L < G′.
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Proof. The structure of the subgroup K is given by (13). If K is not a
graph, the structure of a subgroup of K is again given by (13). If K is a graph,
any subgroup of K is a subgraph. The constraint K/N ≈ Cp × Cp translates
to G′/L ≈ Cp × Cp except for the case of a homomorphism ρ : L → Cp with
G′/L ≈ Cp. In this case, we always have G′p ≤ L as G′/L ≈ Cp. If ρ(G

′p) = 1,
then an isomorphism (G′ × Cp)/(L× ρ) ≈ Cp × Cp is given by

(yxi0, c) 7→ (ci0, cρ(y)
−1), y ∈ L, c ∈ Cp, i ∈ Z

where x0 ∈ G′ is a generator of G′/L ≈ Cp and c0 ∈ Cp is a generator of Cp.
Indeed, each element of G′ is of the form yxi0 and the map is well defined since
any other representation y′xj0 = yxi0 gives y′y−1 = xi−j

0 with i − j = kp for
some k ∈ Z. Hence,

ρ(y′y−1) = ρ(xkp0 ) = ρ(xp0)
k = 1.

If ρ(G′p) ̸= 1 then (G′ × Cp)/(L × ρ) ≈ Cp2 is generated by (x0, 1). Indeed,

(xp0, 1) ̸∈ L× ρ as ρ(xp0) ̸= 1, but (xp
2

0 , 1) ∈ L× ρ as ρ(xp
2

0 ) = ρ(xp0)
p = 1 (recall

that xp0 ∈ L).

Now we make a sublist LG×Cp of pairs (K,N ′) selected from Lemma 5.1
such that eachK appears exactly once in LG×Cp . For each non-trivial subgroup
G′ ≤ G, we choose a subgroup L′ < G′ such that G′/L′ ≈ Cp × Cp and if this
is impossible, we choose a subgroup L′ < G′ such that G′/L′ ≈ Cp.

Definition 5.2. With the choices above, the list LG×Cp of pairs (K,N ′)
of subgroups of G× Cp with K/N ′ ≈ Cp × Cp is defined by

if G′/L′ ≈ Cp × Cp K = G′ × Cp, N
′ = L′ × Cp

K = G′ × λ, N ′ = L′ × λ with λ : G′ → Cp surjective

K = G′ × ϵ, N ′ = L′ × ϵ

if G′/L′ ≈ Cp K = G′ × Cp, N
′ = L′ × ϵ

Lemma 5.3. The number of pairs (K,N ′) of subgroups of G× Cp in the
list LG×Cp with K not a graph is one less than the number of subgroups of G.

Proof. Each non-trivial subgroup G′ ≤ G falls into one of the two cate-
gories of the Definition 5.2. Namely, G′ is non-cyclic if and only if admits a
quotient G′/L′ ≈ Cp × Cp. If G′ is cyclic, then it is non-trivial if and only
if admits a quotient G′/L′ ≈ Cp. Since each product K = G′ × Cp appears
exactly once in the list LG×Cp , this concludes the proof.

Lemma 5.4. rank K(G×Cp) = number of pairs (K,N ′) in the list LG×Cp.
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Proof. By Corollary 2.10, the rank of K(G × Cp) equals the number of
non-cyclic subgroups of G × Cp. In the list LG×Cp the non-cyclic subgroups
K ≤ G×Cp appear exactly once. Indeed, for a graph subgroup G′×ρ ≤ G×Cp

to admit a quotient G′/L′ ≈ Cp ×Cp is equivalent with being non-cyclic. And
a subgroup G′ × Cp that admits a quotient G′/L′ ≈ Cp is non-cyclic as a
direct product. The two cases cover all the possibilities of non-cyclic subgroups
without overlap.

By Proposition 3.2, each pair (K,N) from the Lemma 5.1 produces an
element Induf(ΘK/N ) of K(G× Cp) which is defined as follows

Induf : K(K/N) → K(G× Cp), S/N 7→ S for N ≤ S ≤ K

ΘK/N = (N/N)−
∑
C′

(C ′/L) + p(K/N)

where N ≤ C ′ ≤ K such that C ′/N ≈ Cp. Indeed, by (7) and (8) we have the
following calculation

Ind
G×Cp

K InfKK/N (ΘK/N ) = Induf(ΘK/N ) = N −
∑
C′

C ′ + pK.(14)

Theorem 5.5. Let G be a finite Abelian p-group. Then K(G,Cp)[
1
p ] is a

free Z[1p ]-module whose basis is given by the elements Induf(ΘK/N ′) indexed by

the pairs (K,N ′) = (G′ × ρ, L′ × ρ) in the list LG×Cp where ρ : G′ → Cp is a
homomorphism and G′/L′ ≈ Cp × Cp is a sub-quotient of G.

Proof. By Proposition 4.4, we have

rank K(G,Cp) = rank K(G× Cp)− rank A(G) + 1

where rank A(G) = the number of subgroups of G. By Lemmas 5.3 and 5.4,
we deduce that rank K(G,Cp) = the number of pairs (K,N ′) with K a graph,
which are listed in LG×Cp . Observe that K is a graph if there is a homomor-
phism ρ : G′ → Cp such that G′ ≤ G and K = G′ × ρ. In this situation, any
subgroup of K must be a subgraph of the form L× ρ ≤ K where L ≤ G′ and
ρ is restricted to L. Hence,

Induf(ΘK/N ′) = L′ × ρ−
∑
C′

C ′ × ρ+ p(G′ × ρ)(15)

where L′ < C ′ < G′ such that C ′/L′ ≈ Cp according to (14). We deduce that
each element (15) belongs to A(G,Cp). For (K,N ′) = (G′ × ρ, L′ × ρ) in the
list LG×Cp the number of these elements equals the rank of K(G,Cp). Since
their dominant terms pK under inclusion form a sub-basis of A(G × Cp)[

1
p ],

the statement follows.
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Corollary 5.6 ([7]). For G a cyclic p-group, K(G,Cp) = 0.

Proof. Since G is cyclic, G has no sub-quotients of the form G′/L′ ≈
Cp × Cp. By Theorem 5.5, rank K(G,Cp) = 0. Recall that A(G × Cp) is a
free Z-module and thus, K(G,Cp) ⊂ A(G×Cp) is a free Z-submodule. Hence,
K(G,Cp) = 0.

6. THE REDUCTION TO TYPE 2 GENERATORS

We denote by K ′(G,Cp) ⊂ K(B,Cp) the submodule generated by the
elements of K(G,Cp) that are ’indufted’ from sub-quotients of G × Cp iso-
morphic to Cp × Cp × Cp. Theorem 3.5 states that K ′(G,Cp) = K(G,Cp).
Since K(G,Cp) ⊂ K(G × Cp), by Theorem 3.1, we know that each element
x of K(G,Cp) is a Z-linear combination of elements of the form Induf(ΘK/N )
where ΘK/N are defined as in (14) for each pair (K,N) given by Lemma 5.1.
A careful analysis of the elements Induf(ΘK/N ) reveals the following classifica-
tion:

Type 1. For each pair of subgroups L < G′ < G with G′/L ≈ Cp × Cp

and each homomorphism α : G′ → Cp we define

AG′,L,α = L× α−
∑

L<C′<G′

C ′ × α+ pG′ × α.

Here C ′ runs over the subgroups L < C ′ < G′ with C ′/L ≈ Cp.

Type 2. For each pair of subgroups C < G′ < G with G′/C ≈ Cp and
each homomorphism β : C → Cp with β(G′p) = 1 we define

BG′,C,β = C × β −
∑

β̃|C=β

G′ × β̃ − C × Cp + pG′ × Cp.

Here β̃ runs over the homomorphisms β̃ : G′ → Cp with β̃|C = β.

Type 3. For each pair of subgroups L < G′ < G with G′/L ≈ Cp × Cp

we define
DG′,L = L× Cp −

∑
L<C′<G′

C ′ × Cp + pG′ × Cp.

Here C ′ runs over the subgroups L < C ′ < G′ with C ′/L ≈ Cp.

Lemma 6.1. The Type 1 elements AG′,L,α belong to K ′(G,Cp).

Proof. For each sub-quotient G′/L ≈ Cp × Cp of G and homomorphism
α : G′ → Cp, we have the following isomorphism

P = (G′ × Cp)/(L× α) ≈ Cp × Cp × Cp,
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which comes from φ : G′ → G′/L ≈ Cp×Cp by sending (x, c) ∈ G′×Cp to the
element (φ(x), cρ(x)−1) ∈ Cp × Cp × Cp. In this context, the element AG′,L,α

is of the form AG′,L,α = Induf(Θ′
P ) ∈ K(G,Cp) for some Θ′

P ∈ K(P ).

Corollary 6.2. For each x ∈ K(G,Cp), either x or px belongs to
K ′(G,Cp).

Proof. By Theorem 5.5 and its proof, we know that for each x ∈ K(G,Cp)
either x or px is a Z-linear combination of Type 1 elements and we apply
Lemma 6.1.

Lemma 6.3. For each pair L < G′ < G with G′/L ≈ Cp × Cp, we have

(p+ 1)DG′,L ≡
∑

L<C′<G′

BG′,C′,ϵ −
∑

L<C′<G′

BC′,L,ϵ mod K ′(G,Cp)(16)

Here C ′ runs over the subgroups L < C ′ < G′ with C ′/L ≈ Cp.

Proof. Recall that A(G,Cp) is generated by graph-subgroups K × ρ <
G×Cp as in the Proposition 2.4. In this context, for each of the p+1 subgroups
L < C ′ < G′ (see the next section) with C ′/L ≈ Cp, we have

BG′,C′,ϵ ≡ −C ′ × Cp + pG′ × Cp mod A(G,Cp)

−BC′,L,ϵ ≡ L× Cp − pC ′ × Cp mod A(G,Cp)

DG′,L ≡ L× Cp −
∑

L<C′<G′

C ′ × Cp + pG′ × Cp.

Hence, if we apply the operator
∑

L<C′<G′ to the first two equations, we get∑
L<C′<G′

BG′,C′,ϵ ≡ −
∑

L<C′<G′

C ′ × Cp + (p+ 1)pG′ × Cp mod A(G,Cp)

−
∑

L<C′<G′

BC′,L,ϵ ≡ (p+ 1)L× Cp − p
∑

L<C′<G′

C ′ × Cp mod A(G,Cp).

By definitions, K(G.Cp) = A(G,Cp) ∩K(G × Cp) where K(G × Cp) contains
the Type 2 and Type 3 elements. Hence, by adding the last two equations,
we get the relation (16) mod K(G,Cp) where all the terms are ’indufted’ from
the sub-quotient (G′ × Cp)/(L × ϵ) ≈ Cp × Cp × Cp. This proves (16) mod
K ′(G,Cp).

Now we can reduce the proof of Theorem 3.5 to Z-linear combinations of
Type 2 generators. The precise statement is

Proposition 6.4. Each element x ∈ K(G,Cp) is a Z-linear combination
mod K ′(G,Cp) of Type 2-elements of the form BG′,C,ϵ with G′/C ≈ Cp.
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Proof. Each element x ∈ K(G,Cp) is a Z-linear combination of the form

x = Type 1 combination + Type 2 combination + Type 3 combination.

By Lemma 6.3, we have the following reduction

(p+ 1)(Type 3 combination) ≡ Type 2 combination mod K ′(G,Cp).

By Corollary 6.2, we have px ≡ 0 mod K ′(G,Cp). By putting together the
equations above and Lemma 6.1, we get

x = (p+ 1)x− px ≡ Type 2 combination mod K ′(G,Cp).

If G′ < G is cyclic, then C = G′p < G′ is the unique subgroup of index p. In
this case, BG′,C,β = BG′,C,ϵ. If G′ < G is non-cyclic and β : C → Cp with
C < G′ is such that G′/C ≈ Cp and β ̸= ϵ, then the difference

BG′,C,β −BG′,C,ϵ = C × β −
∑

β̃|C=β

G′ × β̃ − C × ϵ+
∑
ϵ̃|C=ϵ

G′ × ϵ̃

is ’indufted’ from (G′ ×Cp)/(L× β) ≈ Cp ×Cp ×Cp if we take L = kerβ < C.
This shows that the difference belongs to K ′(G,Cp) concluding the proof.

Now we are ready to prove Theorem 3.5. To that end, let x ∈ K(G,Cp)
be given. By Proposition 6.4, we can represent x by a Type 2 combination
mod K ′(G,Cp). In what follows, we will show how to eliminate all the Type 2
elements from that combination, concluding that x ∈ K ′(G,Cp). This proves
Theorem 3.5.

7. THE ELIMINATION ALGORITHM

The Type 2 elements BG′,L,ϵ generate a Z-submodule M ⊂ K(G × Cp)
and each such generator is uniquely determined by a pair of subgroups L < G′

with G′/L ≈ Cp. Hence, we can drop the ϵ from the notation BG′L = BG′,L,ϵ.
Moreover, its image mod A(G,Cp) is given by the formula

BG′L ≡ −L× Cp + pG′ × Cp mod A(G,Cp).(17)

Definition 7.1. The signature homomorphism σ : A(G × Cp) → A(G) is
sending L× Cp 7→ L for L < G and any other basis elements to zero.

For example, the Type 2 generator BG′L has the signature −L+ pG.

Lemma 7.2. The signature homomorphism σ : A(G × Cp) → A(G) is
surjective and its kernel is A(G,Cp).
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Proof. Observe that σ has a well defined section ℓ : A(G) → A(G,Cp)
sending L 7→ L × Cp for L < G. Since the identity map σ ◦ ℓ : A(G) → A(G)
is surjective, so is σ. Moreover, by Proposition 2.4 the A(G×Cp) is the direct
sum of its submodules A(G,Cp) and ℓA(G). Hence, kerσ = A(G,Cp).

Corollary 7.3. The kernel of σ : M → A(G) is M∩K(G,Cp).

Proof. By the previous lemma, M∩A(G,Cp) is the kernel of the restric-
tion σ|M. Since M ⊂ K(G×Cp) and K(G,Cp) = K(G×Cp) ∩A(G,Cp), we
get the statement kerσ|M = M∩K(G,Cp).

Definition 7.4. We call a resolution starting at a subgroup L and ending
at a subgroup G′ any chain of intermediate subgroups

L = Gq < Gq−1 < ... < G1 < G0 = G′

such that each subgroup Gi has index p in the next subgroup Gi+1 of the chain.

Here are a couple of basic facts [12]. Between any two comparable sub-
groups L < G′ of a finite p-group there is at least one resolution starting at
L and ending at G′. If L has index p2 in G′, then G′/L ≈ Cp2 if from L to
G′ there is only one resolution and G′/L ≈ Cp × Cp if there are at least two
resolutions. In the latter case, there will be exactly p+ 1 such resolutions.

Lemma 7.5. Given any resolution L = Ge < Ge−1 < ... < G1 < G0 = G′

starting at a subgroup L and ending at a subgroup G′ of the group G, we have

σ
(
BGe−1Ge + pBGe−2Ge−1 + ...+ pe−1BG0G1

)
= −Ge + peG0.

Proof. Notice that σ
(
BGiGi+1

)
= −Gi+1 + pGi and apply a telescopic

sum.

Lemma 7.6. Given any two resolutions starting at a subgroup L and end-
ing at a subgroup G′ of G, say

L = Ge < Ge−1 < ... < G1 < G0 = G′

L = He < He−1 < ... < H1 < H0 = G′

we have the following relation

e∑
j=1

pe−jBGj−1Gj ≡
e∑

j=1

pe−jBHj−1Hj mod K ′(G,Cp).

Proof. By [12] there is a sequence of resolutions

L = G(i)
e < G

(i)
e−1 < ... < G

(i)
1 < G

(i)
0 = G
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for i = 0, 1, 2, ..., n such that

(1) for each k we have G
(0)
k = Gk, G

(n)
k = Hk, and

(2) for each i there is λ with G
(i+1)
λ ̸= G

(i)
λ and G

(i+1)
k = G

(i)
k if k ̸= λ.

In this context, notice that the following combinations belong toK ′(G,Cp)
e∑

j=1

pe−jB
G

(i+1)
j−1 G

(i+1)
j

−
e∑

j=1

pe−jB
G

(i)
j−1G

(i)
j

= pe−λ−1

(
pB

G
(i+1)
λ−1 G

(i+1)
λ

− pB
G

(i)
λ−1G

(i)
λ

+B
G

(i+1)
λ G

(i+1)
λ+1

−B
G

(i)
λ G

(i)
λ+1

)
(18)

since the terms on the right hand side of the equation are associated with two

resolutions starting at G
(i+1)
λ+1 = G

(i)
λ+1 and ending at G

(i+1)
λ−1 = G

(i)
λ−1 and thus,

they are ’indufted’ from
(
G

(i)
λ−1 × Cp

)
/
(
G

(i)
λ+1 × ϵ

)
≈ Cp × Cp × Cp as noted

in basic facts. By adding up all the relations (18) for i = 0, 1, 2, ..., n, we get
the result.

Let the order of G be pn and for each k = 0, 1, 2, ..., n define Gk to be
the set of all subgroups of index pk in G. According to the formula (17), the
Type 2 elements are in bijection with their signatures as listed for each pair
(Xi, Xi+1) with Xi+1 < Xi and Xk ∈ Gk in the table below

Table 1

−Xn + pXn−1 −Xn−1 + pXn−2 ..... −X2 + pX1 −X1 + pX0

The Type 2 elements generate a submodule M ⊂ K(G × Cp). Using
elementary operations, we build a new system of generators for M. Namely,
by basic facts, each pair Xi+1 < Xi can be extended to a resolution

Xi+1 < Xi < Xi−1 < ... < X1 < X0 = G(19)

and using this resolution, we replace BXiXi+1 by

BXiXi+1 + pBXi−1Xi + ...+ piBX0X1 .(20)

By Lemma 7.5, the signature table of the new system of generators is

Table 2

−Xn + pnX0 −Xn−1 + pn−1X0 ..... −X2 + p2X0 −X1 + pX0

In this new table, the signatures appear with repetitions. More precisely,
any two resolutions starting at Xi+1 and ending at X0, say resolution (20) and
resolution

Xi+1 < Yi < Yi−1 < ... < Y1 < X0 = G(21)
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produce the signature −Xi+1 + pi+1X0 to generator (20) and generator

BYiXi+1 + pBYi−1Yi + ...+ piBX0Y1 .(22)

Using the generator (20) as a pivot and subtracting that generator from the
generator (22), we can remove the signature duplicate in Table 2. According
to Lemma 7.6, the zero represents an element in K ′(G,Cp). By using this
procedure, we eliminate all the repetitions in Table 2 mod K ′(G,Cp). Let S
be the system thus obtained of generators for M. By Proposition 6.4, given
an element x ∈ K(G,Cp), we can write it as a Z-linear combination y ∈ M of
elements in S mod K ′(G,Cp) as follows

x ≡ y mod K ′(G,Cp), σ(y) =
n∑

i=1

∑
X∈Gi

mX(−X + piX0)

where mX ∈ Z are the coefficients mod K ′(G,Cp) of the combination y. By
Corollary 7.3, we must have σ(y) = 0. Since the collection of subgroups ∪n

i=1Gi

is a sub-basis for A(G), we deduce that mX = 0 for each X. This proves that
y ∈ K ′(G,Cp) and thus, x ∈ K ′(G,Cp) proving Theorem 3.5.

8. AN EXAMPLE

By Theorem 5.5, a basis for K(Cp × Cp, Cp)[
1
p ] is given by

(1× 1)× ϵ−
∑
C

(C × ϵ) + p(Cp × Cp)× ϵ

(1× 1)× λ−
∑
C

(C × λ) + p(Cp × Cp)× λ.

Here C runs over the cyclic subgroups of order p of Cp × Cp and λ over the
surjective homomorphisms λ : Cp × Cp → Cp. By direct counting,

rank K(Cp × Cp, Cp) = 1 + (p+ 1)(p− 1) = p2.

In particular, for p = 2 we have rank K(C2 × C2, C2) = 4. Specifically, the
lattice of subgroups for e16 = (C2 × C2)× C2 is given by

e9 = (1× C2)× C2, e10 = (C2 × 1)× C2, e11 = ∆× C2

e12 = (C2 × C2)× ϵ, e13 = (C2 × C2)× p1, e14 = (C2 × C2)× p2

e15 = (C2 × C2)× σ

e2 = (1× 1)× C2, e3 = (1× C2)× ϵ, e4 = (1× C2)× p2

e5 = (C2 × 1)× ϵ, e6 = (C2 × 1)× p1, e7 = ∆× ϵ, e8 = ∆× δ

e1 = (1× 1)× ϵ
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where ∆ ⊂ C2×C2 is the diagonal subgroup, ρ : C2×C2 → (C2×C2)/∆ is the
canonical projection, δ : ∆ → C2 is the unique isomorphism, p1, p2 : C2×C2 →
C2 are the projections on the first and the second component.

The generators of K(C2 × C2 × C2) are

E9 = e1 − e2 − e3 − e4 + 2e9 E10 = e1 − e2 − e5 − e6 + 2e10

E11 = e1 − e2 − e7 − e8 + 2e11 E12 = e1 − e3 − e5 − e7 + 2e12

E13 = e1 − e3 − e6 − e8 + 2e13 E14 = e1 − e4 − e5 − e8 + 2e14

E15 = e1 − e4 − e6 − e7 + 2e15 E2 = e2 − e9 − e10 − e11 + 2e16

E3 = e3 − e9 − e12 − e13 + 2e16 E4 = e4 − e9 − e14 − e15 + 2e16

E5 = e5 − e10 − e12 − e14 + 2e16 E6 = e6 − e10 − e13 − e15 + 2e16

E7 = e7 − e11 − e12 − e15 + 2e16 E8 = e8 − e11 − e13 − e14 + 2e16

As in Proposition 3.4, a basis for K(C2 × C2, C2) can be given by

E15, E4 − E3, E6 − E5, E8 − E7.
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