RELATIVE BRAUER RELATIONS OF ABELIAN P-GROUPS

MARIAN F. ANTON

Communicated by Sorin Dăscălescu

Abstract

The Brauer relations of a finite group G are virtual differences of non-isomorphic G-sets $X-Y$ which induce isomorphic permutation G-representations $\mathbb{Q}[X] \simeq$ $\mathbb{Q}[Y]$ over the rationals. These relations have been classified by Tornehave-Bouc and Bartel-Dokchitser. Motivated by stable homotopy theory, a relative version of Brauer relations for (G, C_{p})-bisets which are C_{p}-free have been classified by Kahn in case G is an elementary Abelian p-group. In this paper, we extend Kahn's classification to the case when G is a finite Abelian p-group.

AMS 2020 Subject Classification: 19A22, 20C25.
Key words: Burnside modules, rational representations.

1. INTRODUCTION

The Burnside ring $A(G)$ of a finite group G is the Grothendick ring of the category of finite G-sets and is isomorphic up to completion to the stable cohomotopy group of the classifying space B_{G} according to Segal's Conjecture [6. The relative Burnside module $A(G, H)$ of a pair of finite groups (G, H) is the Grothendick module of the category of finite (G, H)-bisets that are H-free. Up to completion, $A(G, H)$ describes the stable homotopy classes of maps from the classifying space B_{G} to the classifying space B_{H}, by the generalized Segal's Conjecture [10.

The representation ring $R_{F}(G)$ of a finite group G over a field F is the Grothendick ring of the category of finitely generated $F G$-modules, where $F G$ denotes the group ring of G over F. Let $F=\mathbb{Q}$ be the field of rational numbers. The functor sending each finite G-set X to the permutation G-module $\mathbb{Q}[X]$ induces a ring homomorphism from the Burnside ring $A(G)$ to the rational representation ring $R_{\mathbb{Q}}(G)$:

$$
\begin{equation*}
f_{G}: A(G) \rightarrow R_{\mathbb{Q}}(G), \quad f_{G}[X]=\mathbb{Q}[X] . \tag{1}
\end{equation*}
$$

The cokernel of f_{G} is finite of exponent dividing the group order $|G|$ by Artin's induction theorem [16] and it is trivial if G is a finite p-group by Ritter-Segal [13, [15]. The elements of the kernel $K(G)$ of f_{G} are called
the Brauer relations of the group G or the G-relations and these have been classified by Tornehave-Bouc [5, 17] for finite p-groups and Bartel-Dokchitser [3] for arbitrary finite groups.

We note that the image of the submodule $A(G, H) \subset A(G \times H)$ under the map $f_{G \times H}$ is contained in the Grothendieck submodule $R_{\mathbb{Q}}(G, H) \subset R_{\mathbb{Q}}(G \times H)$ of the category of finitely generated $\mathbb{Q}(G \times H)$-modules which are free right $\mathbb{Q} H$ modules. The kernel and cokernel of the well defined restricted homomorphism

$$
\begin{equation*}
f_{G, H}=f_{G \times H}: A(G, H) \rightarrow R_{\mathbb{Q}}(G, H) \tag{2}
\end{equation*}
$$

are also of interest in view of the generalized Segal's Conjecture. In particular, it makes sense to call the elements of the kernel $K(G, H)$ of $f_{G, H}$ the relative Brauer relations of the pair (G, H) or the (G, H)-relations. The cokernel of $f_{G, H}$ is trivial for G a finite p-group and $H=C_{p}$ by Anton [1] and the $\left(G, C_{p}\right)$ relations have been classified by Kahn [7] for G an elementary Abelian p-group, where C_{p} denotes the cyclic group of prime order p. The main result of this paper is

ThEOREM 1.1. The relative Brauer relations of the pair $\left(G, C_{p}\right)$ for G a finite Abelian p-group are linear combinations of relative Brauer relations 'indufted' from sub-quotients of $G \times C_{p}$ of the form $C_{p} \times C_{p} \times C_{p}$.

We note that there is a natural ring homomorphism mapping $R_{F}(G)$ to the stable homotopy classes of maps from the classifying space B_{G} to the plus construction of the classifying space $B_{G L(F)}$, where $G L(F)$ is the infinite general linear group over the field F. Up to completion, this map is an isomorphism for F the (topological) field of complex numbers [2] or for F a finite field [8]. If $F=\mathbb{Q}$, this homomorphism connects Brauer relations with algebraic K-theory [11. The relative Brauer relations are connected with maps between algebraic K-theory spectra.

The background terminology will be reviewed in Section $\S 2$ and a precise formulation of Theorem 1.1 will be given in Section $\S 3$. In Section $\S 4$, we prove some key rank lemmas. In Section $\S 5$, we prove the main theorem up to torsion. In Section $\S 6$, we reduce the proof to a set of special generators and finish the argument in $\S 7$.

2. BACKGROUND AND TERMINOLOGY

This section is a survey of basic definitions and facts about Burnside and representation modules, many of them being used in this paper.

2.1. Relative Burnside modules

Following [3, the Burnside ring $A(\Gamma)$ of a group Γ is the free Abelian group generated by the isomorphism classes $[X]$ of finite Γ-sets X modulo the relations $[X \sqcup Y]=[X]+[Y]$ where \sqcup denotes the disjoint union. The product in $A(\Gamma)$ is given by $[X] *[Y]=[X \times Y]$ where $X \times Y$ is the Γ-set under the diagonal Γ-action.

Proposition 2.1 ([3]). The transitive Γ-sets are left coset spaces Γ / L of subgroups $L \leq \Gamma$ and their isomorphism classes $[\Gamma / L]$ form a basis for $A(\Gamma)$.

There is a bijection sending the conjugacy class of a subgroup $L \leq \Gamma$ to the basis element $[\Gamma / L]$. Using this identification:

We write the elements of $A(\Gamma)$ as integral linear combinations $\sum n_{i} L_{i}$ of subgroups $L_{i} \leq \Gamma$ up to conjugacy.

The product of basis elements in $A(\Gamma)$ is given by the double coset formula

$$
\begin{equation*}
L * M=\sum_{x \in L \backslash \Gamma / M} L \cap^{x} M \tag{3}
\end{equation*}
$$

where $L, M \leq \Gamma$ and ${ }^{x} M=x M x^{-1}$ for $x \in \Gamma$.
Given a pair (G, H) of finite groups, let $\Gamma=G \times H$. A (G, H)-biset is a finite set X, endowed with a left G-action and a right H-action that commute with each other, i.e., a left Γ-action with the right H-action defined via

$$
\begin{equation*}
x h=h^{-1} x \text { for } x \in X \text { and } h \in H \tag{4}
\end{equation*}
$$

Definition 2.2. The relative Burnside module $A(G, H)$ of a pair of finite groups (G, H) is the free Abelian group generated by the isomorphism classes [X] of (G, H)-bisets which are right H-free, modulo the relations

$$
[X \sqcup Y]=[X]+[Y] .
$$

Lemma 2.3 (Goursat [9]). The subgroups of a direct product of two finite groups $\Gamma \times \Omega$ are in bijection with the quintuples (K, N, A, B, θ) of subgroups $N \unlhd K \leq \Gamma$ and $B \unlhd A \leq \Omega$ and isomorphisms $\theta: K / N \approx A / B$.

The correspondence in Goursat Lemma is given by the following map

$$
(K, N, A, B, \theta) \mapsto S=\{(k n, \theta(k N) b) \mid n \in N, k \in K, b \in B\} \leq \Gamma \times \Omega .
$$

This lemma explains how to pass from the basis of $A(G \times H)$ to the basis of $A(G, H)$. More precisely, according to [10], the transitive right H-free (G, H) bisets are twisted products $G \times{ }_{\rho} H$ between G and a group homomorphism $\rho: K \rightarrow H$ from a subgroup $K \leq G$. Such a product is the quotient of Γ modulo the relations

$$
[g k, h]=[g, \rho(k) h] \text { for } g \in G, h \in H, \text { and } k \in K .
$$

Here $[g, h]$ denotes the class of (g, h) in $G \times{ }_{\rho} H$. The map $\Gamma \rightarrow G \times H$ given by $(g, h) \mapsto\left(g, h^{-1}\right)$ induces an isomorphism of left Γ-sets $\Gamma /(K \times \rho) \approx G \times{ }_{\rho} H$ where the graph (subgroup) of ρ in Γ is denoted by

$$
\begin{equation*}
K \times \rho=\{(k, \rho(k)): k \in K\} . \tag{5}
\end{equation*}
$$

This is an isomorphism of (G, H)-bisets via (4).
Proposition $2.4([10])$. A basis for the submodule $A(G, H) \subset A(\Gamma)$ consists of the isomorphism classes of twisted products $\left[G \times{ }_{\rho} H\right]$.

There is a bijection between these basis elements and the conjugacy classes of group homomorphisms $\rho: K \rightarrow H$ with $K \leq G$ or equivalently of subgroups $K \times \rho \leq \Gamma$. Using this identification:
We write the elements of $A(G, H)$ as integral linear combinations $\sum n_{i} K_{i} \times \rho_{i}$ of graphs up to conjugacy of homomorphisms $\rho_{i}: K_{i} \rightarrow H$ from $K_{i} \leq G$.

If Z is a G-set and X is a (G, H)-biset, then the product $[Z][X]=[Z \times X]$ defines a left $A(G)$-module structure on $A(G, H)$, where G acts on $Z \times X$ diagonally from the left and H acts only on X from the right. The $A(G)$ module structure on $A(G, H)$ is made explicit for $M, K \leq G$ and $\rho: K \rightarrow H$ by the product:

$$
\begin{equation*}
M *(K \times \rho)=\sum_{x \in K \backslash G / M}\left(K \cap{ }^{x} M\right) \times \rho . \tag{6}
\end{equation*}
$$

2.2. Functorial operations on Burnside modules

These operations are \mathbb{Z}-linear maps on $A(\Gamma)$. The induction $\operatorname{Ind}{ }_{L}^{\Gamma}$: $A(L) \rightarrow A(\Gamma)$ from a subgroup $L \leq \Gamma$ is defined on L-sets Y by

Ind ${ }_{L}^{\Gamma} Y=\Gamma \times{ }_{L} Y$ where Γ acts by left multiplication on Γ.
Here $\Gamma \times{ }_{L} Y$ denotes the quotient of $\Gamma \times Y$ modulo the relations $[\gamma l, y]=[\gamma, l y]$ for $\gamma \in \Gamma, l \in L$ and $y \in Y$.

The restriction Res ${ }_{L}^{\Gamma}: A(\Gamma) \rightarrow A(L)$ is defined on Γ-sets X by Res ${ }_{L}^{\Gamma} X=X$ where L acts on X as a subgroup of Γ.
On basis elements, for $K \leq L$ and $M \leq \Gamma$ we have

$$
\begin{equation*}
\text { Ind }{ }_{L}^{\Gamma} K=K \tag{7}
\end{equation*}
$$

$$
\operatorname{Res}{ }_{L}^{\Gamma} M=\sum_{x \in L \backslash \Gamma / M} L \cap{ }^{x} M
$$

The inflation $\operatorname{Inf}{ }_{\Pi}^{\Gamma}: A(\Pi) \rightarrow A(\Gamma)$ from a quotient $\Pi=\Gamma / N$ by a normal subgroup $N \unlhd \Gamma$ is defined on Π-sets Z by

$$
\operatorname{Inf}{ }_{\Pi}^{\Gamma} Z=Z \text { where } \Gamma \text { acts on } Z \text { via its projection in } \Pi .
$$

The deflation $\operatorname{Def}{ }_{\Pi}^{\Gamma}: A(\Gamma) \rightarrow A(\Pi)$ on Γ-sets X is the orbit space of N

$$
\operatorname{Def}{ }_{\Pi}^{\Gamma} X=N \backslash X \text { where }[\gamma][x]=[\gamma x] \text { for } \gamma \in \Gamma \text { and } x \in X \text {. }
$$

Here $[\gamma]$ denotes the coset γN in Π and $[x]$ denotes the orbit $N x$ of x in $N \backslash X$. On basis elements, for $N \unlhd K \leq \Gamma$ and $M \leq \Gamma$, we have

$$
\begin{equation*}
\operatorname{Inf}{ }_{\Pi}^{\Gamma}(K / N)=K, \quad \operatorname{Def}{ }_{\Pi}^{\Gamma} M=N M / N \tag{8}
\end{equation*}
$$

2.3. Relative representation modules

Following [16], the rational representation ring $R_{\mathbb{Q}}(\Gamma)$ of a finite group Γ is the free Abelian group generated by the isomorphism classes $[V]$ of finitely generated left $\mathbb{Q} \Gamma$-modules V modulo the relations $[V \oplus W]=[V]+[W]$ where \oplus denotes the direct sum. The product is given by $[V] *[W]=[V \otimes W]$ where \otimes denotes the tensor product over \mathbb{Q} and $V \otimes W$ is the $\mathbb{Q} \Gamma$-module under the diagonal Γ-action. The irreducible $\mathbb{Q} \Gamma$-modules are direct summands V_{i} of the group ring $\mathbb{Q} \Gamma$ and their isomorphism classes $\left[V_{i}\right]$ form a basis for $R_{\mathbb{Q}}(\Gamma)$.

Given a pair of finite groups (G, H), let $\Gamma=G \times H$. A (G, H)-bimodule over the rationals is simply a finitely generated left $\mathbb{Q} \Gamma$-module V with $\mathbb{Q} G$ acting on the left via the canonical inclusion in $\mathbb{Q} \Gamma$ and $\mathbb{Q} H$ acting on the right via the rule

$$
\begin{equation*}
v h=h^{-1} v, \text { for } v \in V \text { and } h \in H \tag{9}
\end{equation*}
$$

Definition 2.5. The relative rational representation module $R(G, H)$ of a pair of finite groups (G, H) is the submodule of $R_{\mathbb{Q}}(\Gamma)$ generated by the isomorphism classes of (G, H)-bimodules over the rationals, which are right $\mathbb{Q} H$-free modules.

We call a right $\mathbb{Q} H$-free (G, H)-bimodule V over the rationals irreducible if V cannot be decomposed as a direct sum of right $\mathbb{Q} H$-free (G, H)-bimodules over the rationals. Hence, the isomorphism classes $\left[W_{i}\right.$] of irreducible right $\mathbb{Q} H$-free (G, H)-bimodules W_{i} over the rationals form a basis for $R(G, H)$. Notice that $\mathbb{Q} H$ with $\mathbb{Q} H$ acting on the right by the multiplication in H and $\mathbb{Q} G$ acting on the left by the identity $1 \in G$ is an example of an irreducible right $\mathbb{Q} H$-free (G, H)-bimodule over the rationals which is not an irreducible left $\mathbb{Q} \Gamma$-module (unless $H=1$).

If U is a left $\mathbb{Q} G$-module and V a right $\mathbb{Q} H$-free (G, H)-bimodule over the rationals, then the product $[U] *[V]=[U \otimes V]$ defines a left $R_{\mathbb{Q}}(G)$-module structure on $R(G, H)$, where $\mathbb{Q} G$ acts on $U \otimes V$ diagonally from the left and $\mathbb{Q} H$ acts only on V from the right. Indeed, with these actions, $U \otimes V$ is a right $\mathbb{Q} H$-free (G, H)-bimodule.

From the relative Burnside module $A(G, H)$ to the relative rational representation module $R(G, H)$, we have the natural linear map $f_{G, H}$ by (2).

Definition 2.6. The relative Brauer relations of a pair of finite groups (G, H) are the elements of the kernel $K(G, H)$ of the linear map $f_{G, H}$: $A(G, H) \rightarrow R(G, H)$.

Recall that the Brauer relations of the finite group $\Gamma=G \times H$ are the elements of the kernel $K(\Gamma)$ of the linear map $f_{\Gamma}: A(\Gamma) \rightarrow R_{\mathbb{Q}}(\Gamma)$ assigning to a Γ-set X the rational permutation representation $\mathbb{Q}[X]$. The map $f_{G, H}$ is the restriction of f_{Γ} to the submodule $A(G, H) \subseteq A(\Gamma)$ and its kernel is a submodule $K(G, H) \subseteq K(\Gamma)$.

2.4. Functorial operations on representations

On the representation ring $R_{\mathbb{Q}}(\Gamma)$, we define functorial operations, which are \mathbb{Z}-linear maps. The induction $\operatorname{Ind}{ }_{L}^{\Gamma}: R_{\mathbb{Q}}(L) \rightarrow R_{\mathbb{Q}}(\Gamma)$ from a subgroup $L \leq \Gamma$ is defined on $\mathbb{Q} L$-modules W by

Ind ${ }_{L}^{\Gamma} W=\mathbb{Q} \Gamma \otimes_{\mathbb{Q} L} W$ where $\mathbb{Q} \Gamma$ acts by left multiplication on $\mathbb{Q} \Gamma$.
The restriction Res ${ }_{L}^{\Gamma}: R_{\mathbb{Q}}(\Gamma) \rightarrow R_{\mathbb{Q}}(L)$ is defined on $\mathbb{Q} \Gamma$-modules V by
Res ${ }_{L}^{\Gamma} V=V$ where $\mathbb{Q} L$ acts on V as a subring of $\mathbb{Q} \Gamma$.
The inflation $\operatorname{Inf}{ }_{\Pi}^{\Gamma}: R_{\mathbb{Q}}(\Pi) \rightarrow R_{\mathbb{Q}}(\Gamma)$ from a quotient $\Pi=\Gamma / N$ by a normal subgroup $N \unlhd \Gamma$ is defined on $\mathbb{Q} \Pi$-modules U by

$$
\operatorname{Inf}{ }_{\Pi}^{\Gamma} U=U \text { where } \mathbb{Q} \Gamma \text { acts on } U \text { via its projection in } \mathbb{Q} \Pi \text {. }
$$

The deflation $\operatorname{Def}{ }_{\Pi}^{\Gamma}: R_{\mathbb{Q}}(\Gamma) \rightarrow R_{\mathbb{Q}}(\Pi)$ is given on $\mathbb{Q} \Gamma$-modules V by

$$
\text { Def }{ }_{\Pi}^{\Gamma} V=\mathbb{Q} \Pi \otimes_{\mathbb{Q} \Gamma} V \text { where } \mathbb{Q} \Gamma \text { acts on } \mathbb{Q} \Pi \text { via its projection. }
$$

Notation 2.7. For any group C we denote by 1_{C} the trivial rational representation $[\mathbb{Q}]$ where C acts on \mathbb{Q} by the identity $1 \in C$. Also Ind ${ }^{\Gamma}=\operatorname{Ind}{ }_{C}^{\Gamma}$ and $R(\Gamma)=R_{\mathbb{Q}}(\Gamma)$. Similarly, $\operatorname{Inf}{ }^{\Gamma}=\operatorname{Inf} \frac{\Gamma}{\Pi}, \operatorname{Res}{ }^{\Gamma}=\operatorname{Res}{ }_{C}^{\Gamma}, \operatorname{Def}{ }^{\Gamma}=\operatorname{Def}{ }_{\Pi}^{\Gamma}$ where Π is a quotient of Γ.

Proposition 2.8 ([3]). The linear map $f_{\Gamma}: A(\Gamma) \rightarrow R(\Gamma)$ commutes with the operations $\operatorname{Ind}{ }^{\Gamma}$, $\operatorname{Inf}^{\Gamma}$, Res ${ }^{\Gamma}$, Def ${ }^{\Gamma}$.

For example, if $L \leq \Gamma$ is a subgroup and K is a basis element in $A(\Gamma)$ given by the conjugacy class of a subgroup in Γ, we get Mackey's formula [16]

$$
\operatorname{Res}{ }_{L}^{\Gamma}\left(f_{\Gamma} K\right)=\operatorname{Res} \Gamma_{L}^{\Gamma} \operatorname{Ind}{ }^{\Gamma}\left(1_{K}\right)=\sum_{x \in L \backslash \Gamma / K} \operatorname{Ind}{ }^{L}\left(1_{L \cap^{x} K}\right)=f_{L}\left(\operatorname{Res} \Gamma_{L}^{\Gamma}(K)\right) .
$$

However, for $\Gamma=G \times H$ these operations restricted to the submodules $A(G, H)$ and $R(G, H)$ do not land in the same submodules except in special cases. For example, if $K \leq G$ is a subgroup, and $N \unlhd G$ is a normal subgroup with $\Pi=G / N$, we have a commutative diagram of linear maps
as $\operatorname{Ind}{ }_{K}^{G}=\operatorname{Ind}{ }_{K \times H}^{\Gamma}$ and $\operatorname{Inf} \frac{G}{\Pi}=\operatorname{Inf} \Gamma_{\Pi \times H}^{\Gamma}$ do not change the H-structure.
TheOrem 2.9 (Artin's Induction [16]). The vector space $\mathbb{Q} \otimes R(\Gamma)$ has a basis given by $\operatorname{Ind}^{\Gamma}\left(1_{C}\right)$ where C runs over the conjugacy classes of cyclic subgroups of Γ.

It is a known fact [16] that Ind ${ }^{\Gamma}\left(1_{C}\right)$ do not generate $R(\Gamma)$ in general.
Corollary 2.10. For $\Gamma=G \times H$, the rank of the \mathbb{Z}-module $R(\Gamma)$ equals the number of conjugacy classes of cyclic subgroups of Γ and the rank of $K(\Gamma)$ equals the number of conjugacy classes of non-cyclic subgroups of Γ.

Proof. The conjugacy classes of subgroups $L_{i} \leq \Gamma$ form a basis for $A(\Gamma)$ and their images under $f_{\Gamma}: A(\Gamma) \rightarrow R(\Gamma)$ are given by $f_{\Gamma}\left(L_{i}\right)=\operatorname{Ind}^{\Gamma}\left(1_{L_{i}}\right)$. By Artin's Induction, it follows that in the exact sequence below, Coker $\left(f_{\Gamma}\right)$ is torsion:

$$
0 \rightarrow K(\Gamma) \rightarrow A(\Gamma) \xrightarrow{f_{\Gamma}} R(\Gamma) \rightarrow \operatorname{Coker}\left(f_{\Gamma}\right) \rightarrow 0
$$

This concludes the proof as the alternating sum of the ranks is zero.

3. THE FORMULATION OF THE MAIN THEOREM

We denote by C_{p} the multiplicative cyclic group of prime order p. Recall that an element $\Theta=\sum n_{i} H_{i}$ is a G-relation if and only if

$$
\sum n_{i} \operatorname{Ind}^{G}\left(1_{H_{i}}\right)=0, \quad 1_{H_{i}}=\text { trivial } H_{i} \text {-module } \mathbb{Q}
$$

According to Proposition 2.8, Brauer relations can be induced by Ind ${ }^{G^{\prime}}$ from subgroups $H \leq G^{\prime}$ (or restricted by Res ${ }_{H}$) and can be lifted by $\operatorname{Inf}{ }^{\tilde{G}}$ from quotients $G=\tilde{G} / N$ (or projected by $\operatorname{Def}_{\tilde{G} / N}$). A Brauer relation of G is called primitive if it cannot be induced from a proper subgroup or lifted from a proper sub-quotient of G.

Theorem 3.1 (Bouc-Tornehave [5, 17]). All Brauer relations of a p-group G are linear combinations of the form
$\Theta=\sum n_{P} \operatorname{Ind}_{K}^{G} \operatorname{Inf}_{P}^{K}\left(\Theta_{P}\right), \quad P=K / N$ sub-quotient of $G, n_{P} \in \mathbb{Z}$
of relations $\operatorname{Ind}_{K}^{G} \operatorname{Inf}_{P}^{K}\left(\Theta_{P}\right)$ 'indufted' from primitive P-relations Θ_{P} where

1. $P \approx C_{p} \times C_{p}$ and $\Theta_{P}=1-\sum_{C=\text { cyclic }} C+p P$ or
2. $P \approx$ the Heisenberg group of order p^{3} or $P \approx$ the dihedral group of order 2^{n} with $n \geq 4$ and $\Theta_{P}=I-I Z-J+J Z$.

In the second case, Z is the center of P and I, J are non-conjugate subgroups of P of order p (or order 2) intersecting Z trivially.

This result of Bouc [5] was proven independently and with methods that are used in this paper. The work of Tornehave [17] was done with a different approach.

Corollary 3.2 ([5]). Cyclic groups have no Brauer relations except zero. Products $P=C_{p} \times C_{p}$ of cyclic groups of order p have one independent Brauer relation given below where C runs over all non-trivial cyclic subgroups of P

$$
\Theta_{P}=1-\sum_{C=\text { cyclic }} C+p P
$$

This corollary can be easily obtained and does not need all the strength of Bouc's result. For example, since the rank of the \mathbb{Z}-module $K(G)$ of Brauer relations equals the number of non-cyclic subgroups of G by Corollary 2.10 . the first part of the corollary is immediate.

Let G be a finite p-group and $K\left(G, C_{p}\right)$ be the module of relative $\left(G, C_{p}\right)$ Brauer relations as in Definition 2.6. In this case, we have the following commutative diagram of short exact sequences of \mathbb{Z}-modules and linear maps

$$
\begin{array}{cccc}
0 \longrightarrow & K\left(G \times C_{p}\right) \xrightarrow{\text { incl. }} A\left(G \times C_{p}\right) \xrightarrow{f_{G \times C_{p}}} R\left(G \times C_{p}\right) \longrightarrow 0 \\
& \text { incl. } \uparrow & \text { incl. } \uparrow & \text { incl. } \uparrow \tag{11}\\
0 \longrightarrow & K\left(G, C_{p}\right) \xrightarrow{\text { incl. }} A\left(G, C_{p}\right) \xrightarrow{f_{G, C_{p}}} & R\left(G, C_{p}\right) \longrightarrow 0
\end{array}
$$

The surjectivity of the maps $f_{G \times C_{p}}$ and $f_{G, C_{p}}$ has been established in [15] and [1]. By estimating the ranks of the \mathbb{Z}-modules involved in the diagram and searching for Brauer P-relations Θ_{P}^{\prime} for sub-quotients $P=K / N$ of the group $G \times C_{p}$ such that $\operatorname{Ind}{ }_{K}^{G \times C_{p}} \operatorname{Inf}{ }_{P}^{K}\left(\Theta_{P}^{\prime}\right)$ are relative Brauer $\left(G, C_{p}\right)$-relations, we formulate the following

Conjecture 3.3. Let p be a prime and G a finite p-group. All relative Brauer $\left(G, C_{p}\right)$-relations for a p-group G are linear combinations
$\Theta=\sum n_{P} \operatorname{Ind}_{K}^{G \times C_{p}} \operatorname{Inf}_{P}^{K}\left(\Theta_{P}^{\prime}\right), \quad P=K / N$ sub-quotient of $G \times C_{p}, n_{P} \in \mathbb{Z}$ of $\left(G, C_{p}\right)$-relations $\operatorname{Ind}_{K}^{G \times C_{p}} \operatorname{Inf}_{P}^{K}\left(\Theta_{P}^{\prime}\right)$ 'indufted' from P-relations Θ_{P}^{\prime} where

1. $P \approx C_{p} \times C_{p} \times C_{p}$ or
2. $P \approx$ (the Heisenberg group of order $\left.p^{3}\right) \times C_{p}$ or
3. $P \approx$ (the dihedral group of order 2^{n} with $\left.n \geq 4\right) \times C_{2}$.

In [7], this conjecture was proved for G an elementary Abelian p-group by giving an explicit description of $K\left(G, C_{p}\right)$. The simplest example shows an intricate network of subgroups behind the relative Brauer relations.

Proposition 3.4 (Kahn [7]). $K\left(C_{2} \times C_{2}, C_{2}\right)$ has a basis with four elements $e_{1}-e_{3}-e_{5}-e_{7}+2 e_{12}, e_{3}-e_{12}-e_{13}-e_{4}+e_{14}+e_{15}, e_{5}-e_{12}-e_{14}-$ $e_{6}+e_{13}+e_{15}, e_{7}-e_{12}-e_{15}-e_{8}+e_{13}+e_{14}$ where e 's label distinct subgroups of $C_{2} \times C_{2} \times C_{2}$.

In this paper, we prove Conjecture 3.3 for G any finite Abelian p-group by giving the following description of $K\left(G, C_{p}\right)$:

Theorem 3.5. Let G be a finite Abelian p-group. The \mathbb{Z}-module $K\left(G, C_{p}\right)$ of relative Brauer $\left(G, C_{p}\right)$-relations is generated by elements of the form

$$
\operatorname{Ind}_{K}^{G \times C_{p}} \operatorname{Inf}_{P}^{K}\left(\Theta_{P}^{\prime}\right)
$$

where $P=K / N \approx C_{p} \times C_{p} \times C_{p}$ are sub-quotients of $G \times C_{p}$ and Θ_{P}^{\prime} are elements of $K(P)$, the module of Brauer P-relations.

4. RANK LEMMAS AND THEIR PROOFS

In this section, we fix G to be a finite Abelian p-group and endow the cyclotomic field $\mathbb{Q}(\zeta)$ with ζ a fixed primitive p-root of unity adjoined by the (G, C_{p})-bimodule structure where C_{p}-action is given by multiplication by ζ and the G-action is trivial. Notice that a $\left(G, C_{p}\right)$-bimodule W over the rationals is a right $\mathbb{Q}\left[C_{p}\right]$-free module if and only if the module

$$
\begin{equation*}
{ }_{0} W=\operatorname{Res}_{1 \times C_{p}} W \tag{12}
\end{equation*}
$$

with the G-action forgotten is a left $\mathbb{Q}\left[C_{p}\right]$-free module.
Lemma 4.1. $1_{G \times C_{p}} \oplus \mathbb{Q}(\zeta)$ represents an element in $R\left(G, C_{p}\right)$.

Proof. We have the following $\mathbb{Q}\left[C_{p}\right]$-isomorphism

$$
{ }_{0}\left(1_{G \times C_{p}} \oplus \mathbb{Q}(\zeta)\right)=1_{C_{p}} \oplus \mathbb{Q}(\zeta) \approx \mathbb{Q} \times \mathbb{Q}(\zeta)=\mathbb{Q}\left[C_{p}\right] .
$$

This concludes the proof.
Lemma 4.2. $R\left(G \times C_{p}\right)=R\left(G, C_{p}\right) \oplus \mathbb{Z} \cdot 1_{G \times C_{p}}$.
Proof. Since G is a finite Abelian p-group, the group ring $\mathbb{Q}\left[G \times C_{p}\right]$ is a product of cyclotomic field extensions of \mathbb{Q} obtained by adjoining primitive p^{ν}-roots of unity ξ_{ν} where $\nu \geq 0$ are integers. In particular, any irreducible $\mathbb{Q}\left[G \times C_{p}\right]$-module W is a cyclotomic field, say $W=\mathbb{Q}\left(\xi_{\nu}\right)$, whose degree over \mathbb{Q} is $d_{\nu}=p^{\nu-1}(p-1)$ and whose degree over $\mathbb{Q}(\zeta)$ is $p^{\nu-1}$.

More precisely, there is a group homomorphism $\chi: G \times C_{p} \rightarrow \mathbb{Q}\left(\xi_{\nu}\right)^{\times}$ into the multiplicative group of the field $W=\mathbb{Q}\left(\xi_{\nu}\right)$ such that the elements $y \in G \times C_{p}$ act on W by multiplication by $\chi(y)$. If we fix a generator y_{0} of C_{p}, then C_{p} acts on W by multiplication by $\chi\left(y_{0}\right)$. Since $y_{0}^{p}=1$, we know that $\chi\left(y_{0}\right)$ is a p-root of unity. In particular, we distinguish two cases.

If $\chi\left(y_{0}\right)=1$, we have the $\mathbb{Q}\left[C_{p}\right]$-isomorphisms

$$
{ }_{0}\left(W \oplus d_{\nu} \mathbb{Q}(\zeta)\right)=\left({ }_{0} W\right) \oplus d_{\nu} \mathbb{Q}(\zeta) \approx d_{\nu} 1_{C_{p}} \oplus d_{\nu} \mathbb{Q}(\zeta) \approx d_{\nu} \mathbb{Q}\left[C_{p}\right]
$$

If $\chi\left(y_{0}\right)=\zeta$ is a primitive p-root of unity, we have the $\mathbb{Q}\left[C_{p}\right]$-isomorphisms

$$
{ }_{0}\left(W \oplus p^{\nu-1} 1_{G \times C_{p}}\right) \approx p^{\nu-1} \mathbb{Q}(\zeta) \oplus p^{\nu-1} 1_{C_{p}} \approx p^{\nu-1} \mathbb{Q}\left[C_{p}\right] .
$$

By Lemma 4.1, we deduce that for any irreducible $\mathbb{Q}\left[G \times C_{p}\right]$-module W, either $W-d_{\nu} 1_{G \times C_{p}}$ or $W+p^{\nu-1} 1_{G \times C_{p}}$ represents an element in $R\left(G, C_{p}\right)$.

Let \mathcal{S}_{G} be the graph with a vertex K for each subgroup $K \leq G$ and an edge (K, N) for each pair of subgroups $N \leq K$ having index $[K: N]=p$.

Lemma 4.3. $\operatorname{rank} A\left(G \times C_{p}\right)-\operatorname{rank} A\left(G, C_{p}\right)=\operatorname{rank} A(G)$.
Proof. By Proposition 2.1, we have
$\operatorname{rank} A(G)=\#$ vertices in \mathcal{S}_{G}, $\operatorname{rank} A\left(G \times C_{p}\right)=\#$ vertices in $\mathcal{S}_{G \times C_{p}}$.
By Proposition 2.4, a basis for $A\left(G, C_{p}\right)$ is given by graphs of homomorphisms $\rho: K \rightarrow C_{p}$ from subgroups $K \leq G$. Each such ρ is either trivial $\rho=1$ or factors through a canonical map $K \rightarrow K / N$ and an automorphism of C_{p} where $N \leq K$ is a subgroup of index $[K: N]=p$. The number of automorphisms of C_{p} is $p-1$. Hence, the number of graphs $K \times \rho$ equals the number of subgroups $K \leq G(\rho=1)$ plus $(p-1)$ times the number of pairs (K, N) with $N \leq K$ having index $p(\rho \neq 1)$:
$\operatorname{rank} A\left(G, C_{p}\right)=\#$ vertices in $\mathcal{S}_{G}+(p-1) \cdot \#$ edges in \mathcal{S}_{G}.

By Goursat's Lemma 2.3 , the vertices of $\mathcal{S}_{G \times C_{p}}$ are in bijection with quintuples (K, N, A, B, θ) of subgroups $N \leq K \leq G$ and $B \leq A \leq C_{p}$ and isomorphisms $\theta: K / N \approx A / B$. We distinguish two cases:

1) $A=B, K=N, \theta=1$ and
2) $A=C_{p}, B=1,(K, N)$ is an edge in \mathcal{S}_{G} and $\theta: K / N \rightarrow C_{p}$ is an isomorphism.

Since C_{p} has only two subgroups, we conclude that
$\#$ vertices in $\mathcal{S}_{G \times C_{p}}=2 \cdot \#$ vertices in $\mathcal{S}_{G}+(p-1) \cdot \#$ edges in \mathcal{S}_{G}.
The statement now follows by combining the formulas above.
Proposition 4.4. $\operatorname{rank} K\left(G \times C_{p}\right)-\operatorname{rank} K\left(G, C_{p}\right)=\operatorname{rank} A(G)-1$.
Proof. From the diagram of exact sequences (11), we deduce the relations

$$
\begin{aligned}
\operatorname{rank} A\left(G \times C_{p}\right) & =\operatorname{rank} K\left(G \times C_{p}\right)+\operatorname{rank} R\left(G \times C_{p}\right) \\
\operatorname{rank} A\left(G, C_{p}\right) & =\operatorname{rank} K\left(G, C_{p}\right)+\operatorname{rank} R\left(G, C_{p}\right)
\end{aligned}
$$

By Lemma 4.2, rank $R\left(G \times C_{p}\right)-\operatorname{rank} R\left(G, C_{p}\right)=1$. Hence, the difference between the two equations above gives the result by Lemma 4.3 .

5. GENERATORS UP TO TORSION

In this section, we start with elements in $K(P)$ for specific groups P and apply all the biset operations to generate $K\left(G, C_{p}\right)$ for G a finite Abelian p group. For the rest of the paper, we use the notation $\epsilon: G \rightarrow 1$ for the trivial map and the notation (5) for the graph of a homomorphism. By Goursat Lemma 2.3 the subgroups of $G \times C_{p}$ have the following structure

$$
\begin{equation*}
1 \times \epsilon, L \times \epsilon, 1 \times C_{p}, L \times C_{p}, L \times \lambda \tag{13}
\end{equation*}
$$

where $\lambda: L \rightarrow C_{p}$ is a surjective homomorphism and $1 \neq L \leq G$.
Lemma 5.1. We have the following list of possible pairs of subgroups (K, N) of $G \times C_{p}$ with $K / N \approx C_{p} \times C_{p}$:

$$
\begin{array}{rrr}
K=G^{\prime} \times C_{p}, & N=L \times \rho & \text { with } \rho: L \rightarrow C_{p}, \rho\left(G^{\prime p}\right)=1, G^{\prime} / L \approx C_{p} \\
K=G^{\prime} \times C_{p}, & N=L \times C_{p} & \text { with } G^{\prime} / L \approx C_{p} \times C_{p} \\
K=G^{\prime} \times \lambda, & N=L \times \lambda & \text { with } \lambda: G^{\prime} \rightarrow C_{p} \text { surjective, } G^{\prime} / L \approx C_{p} \times C_{p} \\
K=G^{\prime} \times \epsilon, & N=L \times \epsilon & \text { with } G^{\prime} / L \approx C_{p} \times C_{p}
\end{array}
$$

where $\left(G^{\prime}, L\right)$ are pairs of subgroups of G with $L<G^{\prime}$.

Proof. The structure of the subgroup K is given by 13). If K is not a graph, the structure of a subgroup of K is again given by 13). If K is a graph, any subgroup of K is a subgraph. The constraint $K / N \approx C_{p} \times C_{p}$ translates to $G^{\prime} / L \approx C_{p} \times C_{p}$ except for the case of a homomorphism $\rho: L \rightarrow C_{p}$ with $G^{\prime} / L \approx C_{p}$. In this case, we always have $G^{\prime p} \leq L$ as $G^{\prime} / L \approx C_{p}$. If $\rho\left(G^{\prime p}\right)=1$, then an isomorphism $\left(G^{\prime} \times C_{p}\right) /(L \times \rho) \approx C_{p} \times C_{p}$ is given by

$$
\left(y x_{0}^{i}, c\right) \mapsto\left(c_{0}^{i}, c \rho(y)^{-1}\right), \quad y \in L, c \in C_{p}, i \in \mathbb{Z}
$$

where $x_{0} \in G^{\prime}$ is a generator of $G^{\prime} / L \approx C_{p}$ and $c_{0} \in C_{p}$ is a generator of C_{p}. Indeed, each element of G^{\prime} is of the form $y x_{0}^{i}$ and the map is well defined since any other representation $y^{\prime} x_{0}^{j}=y x_{0}^{i}$ gives $y^{\prime} y^{-1}=x_{0}^{i-j}$ with $i-j=k p$ for some $k \in \mathbb{Z}$. Hence,

$$
\rho\left(y^{\prime} y^{-1}\right)=\rho\left(x_{0}^{k p}\right)=\rho\left(x_{0}^{p}\right)^{k}=1
$$

If $\rho\left(G^{\prime p}\right) \neq 1$ then $\left(G^{\prime} \times C_{p}\right) /(L \times \rho) \approx C_{p^{2}}$ is generated by $\left(x_{0}, 1\right)$. Indeed, $\left(x_{0}^{p}, 1\right) \notin L \times \rho$ as $\rho\left(x_{0}^{p}\right) \neq 1$, but $\left(x_{0}^{p^{2}}, 1\right) \in L \times \rho$ as $\rho\left(x_{0}^{p^{2}}\right)=\rho\left(x_{0}^{p}\right)^{p}=1$ (recall that $\left.x_{0}^{p} \in L\right)$.

Now we make a sublist $\mathcal{L}_{G \times C_{p}}$ of pairs $\left(K, N^{\prime}\right)$ selected from Lemma 5.1 such that each K appears exactly once in $\mathcal{L}_{G \times C_{p}}$. For each non-trivial subgroup $G^{\prime} \leq G$, we choose a subgroup $L^{\prime}<G^{\prime}$ such that $G^{\prime} / L^{\prime} \approx C_{p} \times C_{p}$ and if this is impossible, we choose a subgroup $L^{\prime}<G^{\prime}$ such that $G^{\prime} / L^{\prime} \approx C_{p}$.

Definition 5.2. With the choices above, the list $\mathcal{L}_{G \times C_{p}}$ of pairs $\left(K, N^{\prime}\right)$ of subgroups of $G \times C_{p}$ with $K / N^{\prime} \approx C_{p} \times C_{p}$ is defined by

$$
\begin{array}{ll}
\text { if } G^{\prime} / L^{\prime} \approx C_{p} \times C_{p} & K=G^{\prime} \times C_{p}, N^{\prime}=L^{\prime} \times C_{p} \\
& K=G^{\prime} \times \lambda, N^{\prime}=L^{\prime} \times \lambda \text { with } \lambda: G^{\prime} \rightarrow C_{p} \text { surjective } \\
& K=G^{\prime} \times \epsilon, N^{\prime}=L^{\prime} \times \epsilon \\
\text { if } G^{\prime} / L^{\prime} \approx C_{p} & K=G^{\prime} \times C_{p}, N^{\prime}=L^{\prime} \times \epsilon
\end{array}
$$

Lemma 5.3. The number of pairs (K, N^{\prime}) of subgroups of $G \times C_{p}$ in the list $\mathcal{L}_{G \times C_{p}}$ with K not a graph is one less than the number of subgroups of G.

Proof. Each non-trivial subgroup $G^{\prime} \leq G$ falls into one of the two categories of the Definition 5.2. Namely, G^{\prime} is non-cyclic if and only if admits a quotient $G^{\prime} / L^{\prime} \approx C_{p} \times C_{p}$. If G^{\prime} is cyclic, then it is non-trivial if and only if admits a quotient $G^{\prime} / L^{\prime} \approx C_{p}$. Since each product $K=G^{\prime} \times C_{p}$ appears exactly once in the list $\mathcal{L}_{G \times C_{p}}$, this concludes the proof.

Lemma 5.4. rank $K\left(G \times C_{p}\right)=$ number of pairs $\left(K, N^{\prime}\right)$ in the list $\mathcal{L}_{G \times C_{p}}$.

Proof. By Corollary 2.10, the rank of $K\left(G \times C_{p}\right)$ equals the number of non-cyclic subgroups of $G \times C_{p}$. In the list $\mathcal{L}_{G \times C_{p}}$ the non-cyclic subgroups $K \leq G \times C_{p}$ appear exactly once. Indeed, for a graph subgroup $G^{\prime} \times \rho \leq G \times C_{p}$ to admit a quotient $G^{\prime} / L^{\prime} \approx C_{p} \times C_{p}$ is equivalent with being non-cyclic. And a subgroup $G^{\prime} \times C_{p}$ that admits a quotient $G^{\prime} / L^{\prime} \approx C_{p}$ is non-cyclic as a direct product. The two cases cover all the possibilities of non-cyclic subgroups without overlap.

By Proposition 3.2, each pair (K, N) from the Lemma 5.1 produces an element $\operatorname{Induf}\left(\Theta_{K / N}\right)$ of $K\left(G \times C_{p}\right)$ which is defined as follows

$$
\begin{aligned}
\text { Induf : } K(K / N) \rightarrow & K\left(G \times C_{p}\right), \quad S / N \mapsto S \text { for } N \leq S \leq K \\
& \Theta_{K / N}=(N / N)-\sum_{C^{\prime}}\left(C^{\prime} / L\right)+p(K / N)
\end{aligned}
$$

where $N \leq C^{\prime} \leq K$ such that $C^{\prime} / N \approx C_{p}$. Indeed, by (7) and (8) we have the following calculation

$$
\begin{equation*}
\operatorname{Ind}_{K}^{G \times C_{p}} \operatorname{Inf}_{K / N}^{K}\left(\Theta_{K / N}\right)=\operatorname{Induf}\left(\Theta_{K / N}\right)=N-\sum_{C^{\prime}} C^{\prime}+p K \tag{14}
\end{equation*}
$$

Theorem 5.5. Let G be a finite Abelian p-group. Then $K\left(G, C_{p}\right)\left[\frac{1}{p}\right]$ is a free $\mathbb{Z}\left[\frac{1}{p}\right]$-module whose basis is given by the elements $\operatorname{Induf}\left(\Theta_{K / N^{\prime}}\right)$ indexed by the pairs $\left(K, N^{\prime}\right)=\left(G^{\prime} \times \rho, L^{\prime} \times \rho\right)$ in the list $\mathcal{L}_{G \times C_{p}}$ where $\rho: G^{\prime} \rightarrow C_{p}$ is a homomorphism and $G^{\prime} / L^{\prime} \approx C_{p} \times C_{p}$ is a sub-quotient of G.

Proof. By Proposition 4.4, we have

$$
\operatorname{rank} K\left(G, C_{p}\right)=\operatorname{rank} K\left(G \times C_{p}\right)-\operatorname{rank} A(G)+1
$$

where $\operatorname{rank} A(G)=$ the number of subgroups of G. By Lemmas 5.3 and 5.4 , we deduce that rank $K\left(G, C_{p}\right)=$ the number of pairs $\left(K, N^{\prime}\right)$ with K a graph, which are listed in $\mathcal{L}_{G \times C_{p}}$. Observe that K is a graph if there is a homomorphism $\rho: G^{\prime} \rightarrow C_{p}$ such that $G^{\prime} \leq G$ and $K=G^{\prime} \times \rho$. In this situation, any subgroup of K must be a subgraph of the form $L \times \rho \leq K$ where $L \leq G^{\prime}$ and ρ is restricted to L. Hence,

$$
\begin{equation*}
\operatorname{Induf}\left(\Theta_{K / N^{\prime}}\right)=L^{\prime} \times \rho-\sum_{C^{\prime}} C^{\prime} \times \rho+p\left(G^{\prime} \times \rho\right) \tag{15}
\end{equation*}
$$

where $L^{\prime}<C^{\prime}<G^{\prime}$ such that $C^{\prime} / L^{\prime} \approx C_{p}$ according to 14). We deduce that each element 15$)$ belongs to $A\left(G, C_{p}\right)$. For $\left(K, N^{\prime}\right)=\left(G^{\prime} \times \rho, L^{\prime} \times \rho\right)$ in the list $\mathcal{L}_{G \times C_{p}}$ the number of these elements equals the rank of $K\left(G, C_{p}\right)$. Since their dominant terms $p K$ under inclusion form a sub-basis of $A\left(G \times C_{p}\right)\left[\frac{1}{p}\right]$, the statement follows.

Corollary 5.6 ([7]). For G a cyclic p-group, $K\left(G, C_{p}\right)=0$.
Proof. Since G is cyclic, G has no sub-quotients of the form $G^{\prime} / L^{\prime} \approx$ $C_{p} \times C_{p}$. By Theorem 5.5, rank $K\left(G, C_{p}\right)=0$. Recall that $A\left(G \times C_{p}\right)$ is a free \mathbb{Z}-module and thus, $K\left(G, C_{p}\right) \subset A\left(G \times C_{p}\right)$ is a free \mathbb{Z}-submodule. Hence, $K\left(G, C_{p}\right)=0$.

6. THE REDUCTION TO TYPE 2 GENERATORS

We denote by $K^{\prime}\left(G, C_{p}\right) \subset K\left(B, C_{p}\right)$ the submodule generated by the elements of $K\left(G, C_{p}\right)$ that are 'indufted' from sub-quotients of $G \times C_{p}$ isomorphic to $C_{p} \times C_{p} \times C_{p}$. Theorem 3.5 states that $K^{\prime}\left(G, C_{p}\right)=K\left(G, C_{p}\right)$. Since $K\left(G, C_{p}\right) \subset K\left(G \times C_{p}\right)$, by Theorem 3.1, we know that each element x of $K\left(G, C_{p}\right)$ is a \mathbb{Z}-linear combination of elements of the form $\operatorname{Induf}\left(\Theta_{K / N}\right)$ where $\Theta_{K / N}$ are defined as in (14) for each pair (K, N) given by Lemma 5.1. A careful analysis of the elements $\operatorname{Induf}\left(\Theta_{K / N}\right)$ reveals the following classification:

Type 1. For each pair of subgroups $L<G^{\prime}<G$ with $G^{\prime} / L \approx C_{p} \times C_{p}$ and each homomorphism $\alpha: G^{\prime} \rightarrow C_{p}$ we define

$$
A_{G^{\prime}, L, \alpha}=L \times \alpha-\sum_{L<C^{\prime}<G^{\prime}} C^{\prime} \times \alpha+p G^{\prime} \times \alpha
$$

Here C^{\prime} runs over the subgroups $L<C^{\prime}<G^{\prime}$ with $C^{\prime} / L \approx C_{p}$.
Type 2. For each pair of subgroups $C<G^{\prime}<G$ with $G^{\prime} / C \approx C_{p}$ and each homomorphism $\beta: C \rightarrow C_{p}$ with $\beta\left(G^{\prime p}\right)=1$ we define

$$
B_{G^{\prime}, C, \beta}=C \times \beta-\sum_{\tilde{\beta} \mid C=\beta} G^{\prime} \times \tilde{\beta}-C \times C_{p}+p G^{\prime} \times C_{p}
$$

Here $\tilde{\beta}$ runs over the homomorphisms $\tilde{\beta}: G^{\prime} \rightarrow C_{p}$ with $\tilde{\beta} \mid C=\beta$.
Type 3. For each pair of subgroups $L<G^{\prime}<G$ with $G^{\prime} / L \approx C_{p} \times C_{p}$ we define

$$
D_{G^{\prime}, L}=L \times C_{p}-\sum_{L<C^{\prime}<G^{\prime}} C^{\prime} \times C_{p}+p G^{\prime} \times C_{p}
$$

Here C^{\prime} runs over the subgroups $L<C^{\prime}<G^{\prime}$ with $C^{\prime} / L \approx C_{p}$.
Lemma 6.1. The Type 1 elements $A_{G^{\prime}, L, \alpha}$ belong to $K^{\prime}\left(G, C_{p}\right)$.
Proof. For each sub-quotient $G^{\prime} / L \approx C_{p} \times C_{p}$ of G and homomorphism $\alpha: G^{\prime} \rightarrow C_{p}$, we have the following isomorphism

$$
P=\left(G^{\prime} \times C_{p}\right) /(L \times \alpha) \approx C_{p} \times C_{p} \times C_{p}
$$

which comes from $\varphi: G^{\prime} \rightarrow G^{\prime} / L \approx C_{p} \times C_{p}$ by sending $(x, c) \in G^{\prime} \times C_{p}$ to the element $\left(\varphi(x), c \rho(x)^{-1}\right) \in C_{p} \times C_{p} \times C_{p}$. In this context, the element $A_{G^{\prime}, L, \alpha}$ is of the form $A_{G^{\prime}, L, \alpha}=\operatorname{Induf}\left(\Theta_{P}^{\prime}\right) \in K\left(G, C_{p}\right)$ for some $\Theta_{P}^{\prime} \in K(P)$.

Corollary 6.2. For each $x \in K\left(G, C_{p}\right)$, either x or $p x$ belongs to $K^{\prime}\left(G, C_{p}\right)$.

Proof. By Theorem 5.5 and its proof, we know that for each $x \in K\left(G, C_{p}\right)$ either x or $p x$ is a \mathbb{Z}-linear combination of Type 1 elements and we apply Lemma 6.1.

Lemma 6.3. For each pair $L<G^{\prime}<G$ with $G^{\prime} / L \approx C_{p} \times C_{p}$, we have

$$
\begin{equation*}
(p+1) D_{G^{\prime}, L} \equiv \sum_{L<C^{\prime}<G^{\prime}} B_{G^{\prime}, C^{\prime}, \epsilon}-\sum_{L<C^{\prime}<G^{\prime}} B_{C^{\prime}, L, \epsilon} \quad \bmod K^{\prime}\left(G, C_{p}\right) \tag{16}
\end{equation*}
$$

Here C^{\prime} runs over the subgroups $L<C^{\prime}<G^{\prime}$ with $C^{\prime} / L \approx C_{p}$.
Proof. Recall that $A\left(G, C_{p}\right)$ is generated by graph-subgroups $K \times \rho<$ $G \times C_{p}$ as in the Proposition 2.4. In this context, for each of the $p+1$ subgroups $L<C^{\prime}<G^{\prime}$ (see the next section) with $C^{\prime} / L \approx C_{p}$, we have

$$
\begin{aligned}
B_{G^{\prime}, C^{\prime}, \epsilon} & \equiv-C^{\prime} \times C_{p}+p G^{\prime} \times C_{p} \quad \bmod A\left(G, C_{p}\right) \\
-B_{C^{\prime}, L, \epsilon} & \equiv L \times C_{p}-p C^{\prime} \times C_{p} \quad \bmod A\left(G, C_{p}\right) \\
D_{G^{\prime}, L} & \equiv L \times C_{p}-\sum_{L<C^{\prime}<G^{\prime}} C^{\prime} \times C_{p}+p G^{\prime} \times C_{p}
\end{aligned}
$$

Hence, if we apply the operator $\sum_{L<C^{\prime}<G^{\prime}}$ to the first two equations, we get

$$
\begin{aligned}
\sum_{L<C^{\prime}<G^{\prime}} B_{G^{\prime}, C^{\prime}, \epsilon} \equiv-\sum_{L<C^{\prime}<G^{\prime}} C^{\prime} \times C_{p}+(p+1) p G^{\prime} \times C_{p} & \bmod A\left(G, C_{p}\right) \\
-\sum_{L<C^{\prime}<G^{\prime}} B_{C^{\prime}, L, \epsilon} \equiv & (p+1) L \times C_{p}-p \sum_{L<C^{\prime}<G^{\prime}} C^{\prime} \times C_{p}
\end{aligned} \bmod A\left(G, C_{p}\right) .
$$

By definitions, $K\left(G . C_{p}\right)=A\left(G, C_{p}\right) \cap K\left(G \times C_{p}\right)$ where $K\left(G \times C_{p}\right)$ contains the Type 2 and Type 3 elements. Hence, by adding the last two equations, we get the relation (16) mod $K\left(G, C_{p}\right)$ where all the terms are 'indufted' from the sub-quotient $\left(G^{\prime} \times C_{p}\right) /(L \times \epsilon) \approx C_{p} \times C_{p} \times C_{p}$. This proves (16) mod $K^{\prime}\left(G, C_{p}\right)$.

Now we can reduce the proof of Theorem 3.5 to \mathbb{Z}-linear combinations of Type 2 generators. The precise statement is

Proposition 6.4. Each element $x \in K\left(G, C_{p}\right)$ is a \mathbb{Z}-linear combination $\bmod K^{\prime}\left(G, C_{p}\right)$ of Type 2-elements of the form $B_{G^{\prime}, C, \epsilon}$ with $G^{\prime} / C \approx C_{p}$.

Proof. Each element $x \in K\left(G, C_{p}\right)$ is a \mathbb{Z}-linear combination of the form $x=$ Type 1 combination + Type 2 combination + Type 3 combination.

By Lemma 6.3, we have the following reduction
$(p+1)$ (Type 3 combination) \equiv Type 2 combination $\bmod K^{\prime}\left(G, C_{p}\right)$.
By Corollary 6.2, we have $p x \equiv 0 \bmod K^{\prime}\left(G, C_{p}\right)$. By putting together the equations above and Lemma 6.1, we get

$$
x=(p+1) x-p x \equiv \text { Type } 2 \text { combination } \bmod K^{\prime}\left(G, C_{p}\right)
$$

If $G^{\prime}<G$ is cyclic, then $C=G^{p}<G^{\prime}$ is the unique subgroup of index p. In this case, $B_{G^{\prime}, C, \beta}=B_{G^{\prime}, C, \epsilon}$. If $G^{\prime}<G$ is non-cyclic and $\beta: C \rightarrow C_{p}$ with $C<G^{\prime}$ is such that $G^{\prime} / C \approx C_{p}$ and $\beta \neq \epsilon$, then the difference

$$
B_{G^{\prime}, C, \beta}-B_{G^{\prime}, C, \epsilon}=C \times \beta-\sum_{\tilde{\beta} \mid C=\beta} G^{\prime} \times \tilde{\beta}-C \times \epsilon+\sum_{\tilde{\epsilon} \mid C=\epsilon} G^{\prime} \times \tilde{\epsilon}
$$

is 'indufted' from $\left(G^{\prime} \times C_{p}\right) /(L \times \beta) \approx C_{p} \times C_{p} \times C_{p}$ if we take $L=$ ker $\beta<C$. This shows that the difference belongs to $K^{\prime}\left(G, C_{p}\right)$ concluding the proof.

Now we are ready to prove Theorem 3.5. To that end, let $x \in K\left(G, C_{p}\right)$ be given. By Proposition 6.4, we can represent x by a Type 2 combination $\bmod K^{\prime}\left(G, C_{p}\right)$. In what follows, we will show how to eliminate all the Type 2 elements from that combination, concluding that $x \in K^{\prime}\left(G, C_{p}\right)$. This proves Theorem 3.5.

7. THE ELIMINATION ALGORITHM

The Type 2 elements $B_{G^{\prime}, L, \epsilon}$ generate a \mathbb{Z}-submodule $\mathcal{M} \subset K\left(G \times C_{p}\right)$ and each such generator is uniquely determined by a pair of subgroups $L<G^{\prime}$ with $G^{\prime} / L \approx C_{p}$. Hence, we can drop the ϵ from the notation $B_{G^{\prime} L}=B_{G^{\prime}, L, \epsilon}$. Moreover, its image $\bmod A\left(G, C_{p}\right)$ is given by the formula

$$
\begin{equation*}
B_{G^{\prime} L} \equiv-L \times C_{p}+p G^{\prime} \times C_{p} \quad \bmod A\left(G, C_{p}\right) \tag{17}
\end{equation*}
$$

Definition 7.1. The signature homomorphism $\sigma: A\left(G \times C_{p}\right) \rightarrow A(G)$ is sending $L \times C_{p} \mapsto L$ for $L<G$ and any other basis elements to zero.

For example, the Type 2 generator $B_{G^{\prime} L}$ has the signature $-L+p G$.
Lemma 7.2. The signature homomorphism $\sigma: A\left(G \times C_{p}\right) \rightarrow A(G)$ is surjective and its kernel is $A\left(G, C_{p}\right)$.

Proof. Observe that σ has a well defined section $\ell: A(G) \rightarrow A\left(G, C_{p}\right)$ sending $L \mapsto L \times C_{p}$ for $L<G$. Since the identity map $\sigma \circ \ell: A(G) \rightarrow A(G)$ is surjective, so is σ. Moreover, by Proposition 2.4 the $A\left(G \times C_{p}\right)$ is the direct sum of its submodules $A\left(G, C_{p}\right)$ and $\ell A(G)$. Hence, ker $\sigma=A\left(G, C_{p}\right)$.

Corollary 7.3. The kernel of $\sigma: \mathcal{M} \rightarrow A(G)$ is $\mathcal{M} \cap K\left(G, C_{p}\right)$.
Proof. By the previous lemma, $\mathcal{M} \cap A\left(G, C_{p}\right)$ is the kernel of the restriction $\sigma \mid \mathcal{M}$. Since $\mathcal{M} \subset K\left(G \times C_{p}\right)$ and $K\left(G, C_{p}\right)=K\left(G \times C_{p}\right) \cap A\left(G, C_{p}\right)$, we get the statement $\operatorname{ker} \sigma \mid \mathcal{M}=\mathcal{M} \cap K\left(G, C_{p}\right)$.

Definition 7.4. We call a resolution starting at a subgroup L and ending at a subgroup G^{\prime} any chain of intermediate subgroups

$$
L=G_{q}<G_{q-1}<\ldots<G_{1}<G_{0}=G^{\prime}
$$

such that each subgroup G_{i} has index p in the next subgroup G_{i+1} of the chain.
Here are a couple of basic facts [12]. Between any two comparable subgroups $L<G^{\prime}$ of a finite p-group there is at least one resolution starting at L and ending at G^{\prime}. If L has index p^{2} in G^{\prime}, then $G^{\prime} / L \approx C_{p^{2}}$ if from L to G^{\prime} there is only one resolution and $G^{\prime} / L \approx C_{p} \times C_{p}$ if there are at least two resolutions. In the latter case, there will be exactly $p+1$ such resolutions.

Lemma 7.5. Given any resolution $L=G_{e}<G_{e-1}<\ldots<G_{1}<G_{0}=G^{\prime}$ starting at a subgroup L and ending at a subgroup G^{\prime} of the group G, we have

$$
\sigma\left(B_{G_{e-1} G_{e}}+p B_{G_{e-2} G_{e-1}}+\ldots+p^{e-1} B_{G_{0} G_{1}}\right)=-G_{e}+p^{e} G_{0}
$$

Proof. Notice that $\sigma\left(B_{G_{i} G_{i+1}}\right)=-G_{i+1}+p G_{i}$ and apply a telescopic sum.

Lemma 7.6. Given any two resolutions starting at a subgroup L and ending at a subgroup G^{\prime} of G, say

$$
\begin{aligned}
& L=G_{e}<G_{e-1}<\ldots<G_{1}<G_{0}=G^{\prime} \\
& L=H_{e}<H_{e-1}<\ldots<H_{1}<H_{0}=G^{\prime}
\end{aligned}
$$

we have the following relation

$$
\sum_{j=1}^{e} p^{e-j} B_{G_{j-1} G_{j}} \equiv \sum_{j=1}^{e} p^{e-j} B_{H_{j-1} H_{j}} \quad \bmod K^{\prime}\left(G, C_{p}\right)
$$

Proof. By [12] there is a sequence of resolutions

$$
L=G_{e}^{(i)}<G_{e-1}^{(i)}<\ldots<G_{1}^{(i)}<G_{0}^{(i)}=G
$$

for $i=0,1,2, \ldots, n$ such that
(1) for each k we have $G_{k}^{(0)}=G_{k}, G_{k}^{(n)}=H_{k}$, and
(2) for each i there is λ with $G_{\lambda}^{(i+1)} \neq G_{\lambda}^{(i)}$ and $G_{k}^{(i+1)}=G_{k}^{(i)}$ if $k \neq \lambda$.

In this context, notice that the following combinations belong to $K^{\prime}\left(G, C_{p}\right)$

$$
\sum_{j=1}^{e} p^{e-j} B_{G_{j-1}^{(i+1)} G_{j}^{(i+1)}}-\sum_{j=1}^{e} p^{e-j} B_{G_{j-1}^{(i)} G_{j}^{(i)}}
$$

$$
\begin{equation*}
=p^{e-\lambda-1}\left(p B_{G_{\lambda-1}^{(i+1)} G_{\lambda}^{(i+1)}}-p B_{G_{\lambda-1}^{(i)} G_{\lambda}^{(i)}}+B_{G_{\lambda}^{(i+1)} G_{\lambda+1}^{(i+1)}}-B_{G_{\lambda}^{(i)} G_{\lambda+1}^{(i)}}\right) \tag{18}
\end{equation*}
$$

since the terms on the right hand side of the equation are associated with two resolutions starting at $G_{\lambda+1}^{(i+1)}=G_{\lambda+1}^{(i)}$ and ending at $G_{\lambda-1}^{(i+1)}=G_{\lambda-1}^{(i)}$ and thus, they are 'indufted' from $\left(G_{\lambda-1}^{(i)} \times C_{p}\right) /\left(G_{\lambda+1}^{(i)} \times \epsilon\right) \approx C_{p} \times C_{p} \times C_{p}$ as noted in basic facts. By adding up all the relations (18) for $i=0,1,2, \ldots, n$, we get the result.

Let the order of G be p^{n} and for each $k=0,1,2, \ldots, n$ define \mathcal{G}_{k} to be the set of all subgroups of index p^{k} in G. According to the formula (17), the Type 2 elements are in bijection with their signatures as listed for each pair $\left(X_{i}, X_{i+1}\right)$ with $X_{i+1}<X_{i}$ and $X_{k} \in \mathcal{G}_{k}$ in the table below

Table 1

$$
-X_{n}+p X_{n-1}\left|-X_{n-1}+p X_{n-2}\right| \ldots . .\left|-X_{2}+p X_{1}\right|-X_{1}+p X_{0}
$$

The Type 2 elements generate a submodule $\mathcal{M} \subset K\left(G \times C_{p}\right)$. Using elementary operations, we build a new system of generators for \mathcal{M}. Namely, by basic facts, each pair $X_{i+1}<X_{i}$ can be extended to a resolution

$$
\begin{equation*}
X_{i+1}<X_{i}<X_{i-1}<\ldots<X_{1}<X_{0}=G \tag{19}
\end{equation*}
$$

and using this resolution, we replace $B_{X_{i} X_{i+1}}$ by

$$
\begin{equation*}
B_{X_{i} X_{i+1}}+p B_{X_{i-1} X_{i}}+\ldots+p^{i} B_{X_{0} X_{1}} \tag{20}
\end{equation*}
$$

By Lemma 7.5, the signature table of the new system of generators is
Table 2

$$
-X_{n}+p^{n} X_{0}\left|-X_{n-1}+p^{n-1} X_{0}\right| \ldots . .\left|-X_{2}+p^{2} X_{0}\right|-X_{1}+p X_{0}
$$

In this new table, the signatures appear with repetitions. More precisely, any two resolutions starting at X_{i+1} and ending at X_{0}, say resolution (20) and resolution

$$
\begin{equation*}
X_{i+1}<Y_{i}<Y_{i-1}<\ldots<Y_{1}<X_{0}=G \tag{21}
\end{equation*}
$$

produce the signature $-X_{i+1}+p^{i+1} X_{0}$ to generator 20 and generator

$$
\begin{equation*}
B_{Y_{i} X_{i+1}}+p B_{Y_{i-1} Y_{i}}+\ldots+p^{i} B_{X_{0} Y_{1}} \tag{22}
\end{equation*}
$$

Using the generator 20) as a pivot and subtracting that generator from the generator (22), we can remove the signature duplicate in Table 2. According to Lemma 7.6, the zero represents an element in $K^{\prime}\left(G, C_{p}\right)$. By using this procedure, we eliminate all the repetitions in Table $2 \bmod K^{\prime}\left(G, C_{p}\right)$. Let \mathcal{S} be the system thus obtained of generators for \mathcal{M}. By Proposition 6.4, given an element $x \in K\left(G, C_{p}\right)$, we can write it as a \mathbb{Z}-linear combination $y \in \mathcal{M}$ of elements in $\mathcal{S} \bmod K^{\prime}\left(G, C_{p}\right)$ as follows

$$
x \equiv y \quad \bmod K^{\prime}\left(G, C_{p}\right), \quad \sigma(y)=\sum_{i=1}^{n} \sum_{X \in \mathcal{G}_{i}} m_{X}\left(-X+p^{i} X_{0}\right)
$$

where $m_{X} \in \mathbb{Z}$ are the coefficients $\bmod K^{\prime}\left(G, C_{p}\right)$ of the combination y. By Corollary 7.3, we must have $\sigma(y)=0$. Since the collection of subgroups $\cup_{i=1}^{n} \mathcal{G}_{i}$ is a sub-basis for $A(G)$, we deduce that $m_{X}=0$ for each X. This proves that $y \in K^{\prime}\left(G, C_{p}\right)$ and thus, $x \in K^{\prime}\left(G, C_{p}\right)$ proving Theorem 3.5 .

8. AN EXAMPLE

By Theorem 5.5, a basis for $K\left(C_{p} \times C_{p}, C_{p}\right)\left[\frac{1}{p}\right]$ is given by

$$
\begin{array}{r}
(1 \times 1) \times \epsilon-\sum_{C}(C \times \epsilon)+p\left(C_{p} \times C_{p}\right) \times \epsilon \\
(1 \times 1) \times \lambda-\sum_{C}(C \times \lambda)+p\left(C_{p} \times C_{p}\right) \times \lambda
\end{array}
$$

Here C runs over the cyclic subgroups of order p of $C_{p} \times C_{p}$ and λ over the surjective homomorphisms $\lambda: C_{p} \times C_{p} \rightarrow C_{p}$. By direct counting,

$$
\operatorname{rank} K\left(C_{p} \times C_{p}, C_{p}\right)=1+(p+1)(p-1)=p^{2}
$$

In particular, for $p=2$ we have rank $K\left(C_{2} \times C_{2}, C_{2}\right)=4$. Specifically, the lattice of subgroups for $e_{16}=\left(C_{2} \times C_{2}\right) \times C_{2}$ is given by

$$
\begin{aligned}
& e_{9}=\left(1 \times C_{2}\right) \times C_{2}, e_{10}=\left(C_{2} \times 1\right) \times C_{2}, e_{11}=\Delta \times C_{2} \\
& e_{12}=\left(C_{2} \times C_{2}\right) \times \epsilon, e_{13}=\left(C_{2} \times C_{2}\right) \times p_{1}, e_{14}=\left(C_{2} \times C_{2}\right) \times p_{2} \\
& e_{15}=\left(C_{2} \times C_{2}\right) \times \sigma \\
& e_{2}=(1 \times 1) \times C_{2}, e_{3}=\left(1 \times C_{2}\right) \times \epsilon, e_{4}=\left(1 \times C_{2}\right) \times p_{2} \\
& e_{5}=\left(C_{2} \times 1\right) \times \epsilon, e_{6}=\left(C_{2} \times 1\right) \times p_{1}, e_{7}=\Delta \times \epsilon, e_{8}=\Delta \times \delta \\
& e_{1}=(1 \times 1) \times \epsilon
\end{aligned}
$$

where $\Delta \subset C_{2} \times C_{2}$ is the diagonal subgroup, $\rho: C_{2} \times C_{2} \rightarrow\left(C_{2} \times C_{2}\right) / \Delta$ is the canonical projection, $\delta: \Delta \rightarrow C_{2}$ is the unique isomorphism, $p_{1}, p_{2}: C_{2} \times C_{2} \rightarrow$ C_{2} are the projections on the first and the second component.

The generators of $K\left(C_{2} \times C_{2} \times C_{2}\right)$ are

$$
\begin{array}{ll}
E_{9}=e_{1}-e_{2}-e_{3}-e_{4}+2 e_{9} & E_{10}=e_{1}-e_{2}-e_{5}-e_{6}+2 e_{10} \\
E_{11}=e_{1}-e_{2}-e_{7}-e_{8}+2 e_{11} & E_{12}=e_{1}-e_{3}-e_{5}-e_{7}+2 e_{12} \\
E_{13}=e_{1}-e_{3}-e_{6}-e_{8}+2 e_{13} & E_{14}=e_{1}-e_{4}-e_{5}-e_{8}+2 e_{14} \\
E_{15}=e_{1}-e_{4}-e_{6}-e_{7}+2 e_{15} & E_{2}=e_{2}-e_{9}-e_{10}-e_{11}+2 e_{16} \\
E_{3}=e_{3}-e_{9}-e_{12}-e_{13}+2 e_{16} & E_{4}=e_{4}-e_{9}-e_{14}-e_{15}+2 e_{16} \\
E_{5}=e_{5}-e_{10}-e_{12}-e_{14}+2 e_{16} & E_{6}=e_{6}-e_{10}-e_{13}-e_{15}+2 e_{16} \\
E_{7}=e_{7}-e_{11}-e_{12}-e_{15}+2 e_{16} & E_{8}=e_{8}-e_{11}-e_{13}-e_{14}+2 e_{16}
\end{array}
$$

As in Proposition 3.4, a basis for $K\left(C_{2} \times C_{2}, C_{2}\right)$ can be given by

$$
E_{15}, E_{4}-E_{3}, E_{6}-E_{5}, E_{8}-E_{7}
$$

Acknowledgments. The author would like to thank Victor Alexandru for reviewing early drafts of the paper and to an anonymous referee for suggesting improvements on the organization of the paper.

REFERENCES

[1] M.F. Anton, The double Burnside ring and rational representations. Rev. Roumaine Math. Pures Appl. 51 (2006), 2, 143-149.
[2] M.F. Atiyah and G.B. Segal, Equivariant K-theory and completion. J. Differential Geom. 3 (1969), 1-18.
[3] A. Bartel and T. Dokchitser, Brauer relations in finite groups. J. Eur. Math. Soc. (JEMS) 17 (2015), 10, 2473-2512.
[4] D.J. Benson, Representations and Cohomology. I: Basic Representation Theory of Finite Groups and Associative Algebras. Second edition. Cambridge Stud. Adv. Math. 30. Cambridge Univ. Press, Cambridge, 1998.
[5] S. Bouc, The Dade group of a p-group. Invent. Math. 164 (2006), 189-231.
[6] G. Carlsson, Equivariant stable homotopy and Segal's Burnside ring conjecture. Ann. of Math. (2) 120 (1984), 2, 189-224.
[7] E.B. Kahn, The relative Burnside kernel - the elementary abelian case. Rocky Mountain J. Math. 43 (2013), 2, 523-537.
[8] C. Kassel, Caractère de Chern bivariant. K-Theory 3 (1989), 4, 367-400.
[9] S. Lang, Algebra. Revised third edition, Addison-Wesley Publishing Company Advanced Book Program, Reading, MA, 2002.
[10] J.P. May, Stable maps between classifying spaces. Conference on algebraic topology in honor of Peter Hilton (Saint John's, Nfld., 1983), 121-129. Contemp. Math. 37, Amer. Math. Soc., Providence, RI, 1985.
[11] S.A. Mitchell, Harmonic localization of algebraic K-theory spectra. Trans. Amer. Math. Soc. 332 (1992), 2, 823-837.
[12] L. Rédei, Endliche p-Gruppen. Kiadó, Budapest, 1989.
[13] J. Ritter, Ein Induktionssatz für rationale Charaktere von nilpotenten Gruppen. J. Reine Angew. Math. 254 (1972), 133-151.
[14] P. Roquette, Realiserung von Darstellungen endlicher nilpotente Gruppen. Arch. Math. 9 (1958), 224-250.
[15] G. Segal, Permutation representations of finite p-groups. Q. J. Math. 23 (1972), 375-381.
[16] J.-P. Serre, Représentations linéaires des groupes finis. Revised third edition, Hermann, Paris, 1978.
[17] J. Tornehave, Relations among permutation representations of p-groups. Aarhaus Univ., Preprint series, 1984.

Received December 30, 2021
Central Connecticut State University Department of Mathematics New Britain, CT 06050, U.S.A. anton@ccsu.edu

Simion Stoilow Institute of Mathematics of the Romanian Academy
P.O. Box 1-764, Bucharest, RO 014700

