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We present a class of m-isometries on a Hilbert space which admit Wold-type
decompositions in Shimorin’s sense. Among these operators, we recover some
sub-Brownian m-isometries and theirs m-Brownian unitary extensions. Our con-
text refers to an integer m > 3, the cases m = 1 and m = 2 being well-known
and studied.
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1. INTRODUCTION

Let ‘H be a complex Hilbert space and B(#) the C*-algebra of all bounded
linear operators on H, where I(= Iy) is the identity operator. For T € B(H),
T* stands for the adjoint operator of T', while by R(T), N(T) we denote the
range, respectively the kernel of T'. For a closed subspace M C H, Py € B(H)
is the orthogonal projection onto M. Also, M is invariant (reducing) for T’
when TM C M (resp. TM C M and T*M C M).

If K is a Hilbert space which contains H as a closed subspace (in notation
K D H), then an operator S € B(K) is an extension of T" if SH C H and
S|y = T. More generally, S is a power dilation of T' (or T' is a compression of
S on H)if T" = Py S™|y for every integer n > 0.

An operator T on H is said to be a m-isometry for an integer m > 1 if it
verifies the identity

(1) A =" ()T = 0.
j=0

In the case m = 1, we shortly denote Ar = Ag}) =TT —-1. So in this
case means that 7" is an isometry, and T is unitary when Ar = 0 and Ap= = 0.
More generally, T' is expansive (resp. a contraction) if Ap > 0 (resp. Ar < 0).
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If T verifies for m = 2 then T is expansive, but this condition is not
assured when m > 3 in (I]). These operators are studied in [T} [2,[3] and recently
in [4, 5, 6, 17, [, [0, 12].

In this paper, we refer to expansive m-isometries with m > 3. Since
T*T > I, such operator T is injective with R(T") closed, T*T being invertible
in B(H). In this case, the operator T' = T(T*T)~! is called the Cauchy
dual operator of T. Tt is clear that (T*T)~! = T"T', T*T = T*T' = I
and N(T*) = N(T"). Therefore T and 1" are left invertible in B(#), and
the maximum invariant subspaces for T (resp. T") on which T' (resp. T”) is
invertible are Hoo (resp. H.,) where

Hoo= [ T"H, Ho=[]T"H.

n>1 n>1

It is known (see [II, Proposition 2.7]) that H © He = \/T'"/\/(T*) and
n>0
HeH,, = \/ T"N(T*). When Ho, = {0}, T is said to be analytic.
n>0
According to [11] an m-isometry 7" on H admits Wold-type decomposition
if the subspace Ho is reducing for T', T'|3._ is unitary and Ho, = HL, that is,
it holds the decomposition

H="Heo® \/ T"N(T").

n>0

This decomposition in the case m = 1 is precisely the classical Wold
decomposition of an isometry. On the other hand, it follows from [11, Theorem
3.6] that every 2-isometry admits Wold-type decomposition. But it is not
known if an expansive m-isometry with m > 3 admits such a decomposition,
in general. In this paper, we present a sufficient condition for such an operator
to possess Wold-type decomposition. We apply our result to some Brownian-
type m-isometries which are recently studied in [12], [7].

Thus, in the Section 2, we analyze the triangulation of an expansive m-
isometry T" on H obtained by means of the isometric invariant part Ho of T’
in N (Ar). We prove that if the spectral radius of the compression of 7" (the
Cauchy dual of T') on H © Hy is strictly less than 1, then 7' admits Wold-
type decomposition. We mention some cases when this condition occurs. Also,
we study an asymptotic limit A induced by T" and Py, for which 7™ is an A-
isometry, that is TAT* = A. We show that R(A) = Heo, S0 H = R(A) DN (A)
is precisely the Wold decomposition for 7" when it exists.

In Section 3, we refer to m-isometries T having Ar a scalar multiple of an
orthogonal projection. We show that such operator with N'(Ar) invariant for
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T admits Wold-type decomposition. Among these operators, we mention sub-
Brownian m-isometries T' and their m-Brownian unitary extensions B. We
analyze in detail the case when B*BH C H. Also, in this case we describe
N(T*) in the terms of N'(B*) and we show that B’ is an extension for 7".

Finally, we give an example of expansive 3-isometry T which admits Wold-
type decomposition, such that Ap is not a scalar multiple of an orthogonal
projection and with 7" having its spectral radius 1.

2. WOLD-TYPE DECOMPOSITIONS

Recall (see [10, §2]) that for an operator T € B(H) and a closed subspace
M C H, the following assertions are equivalent:

(a) TM Cc McC N(Ap),
(b) TM C M, T*TM C M and T|p is isometric.

We refer to the maximum invariant subspace Hg for 7' contained in N (A7)
as being the isometric invariant part of T in N (Ar). By [10, Lemma 2.1]
this subspace is precisely the isometric invariant part in A of the contraction
C = Pyxar)T|ar(ar)- This means that

(2) Ho = N(I - Sc) = (| N(Acn),

n>1

where S¢ := s — lim C*™C" is the (strongly) asymptotic limit of C' (see [9]).

n—oo
THEOREM 2.1. Let T € B(H) be an expansive m-isometry for an in-
teger m > 3, Ho C N(Ar) be the isometric invariant part of T, such that
r(Ppy, T |3,) < 1 where T' is the Cauchy dual operator of T, H1 = HOSHo and
r 1s the spectral radius. Then T admits Wold-type decomposition.

Proof. Firstly, suppose that Ho # {0} into N (Ar). So Hy is invariant
for T and T*T, while V' := Ty, is an isometry. We prove that Hg is also
invariant for 77 = T(T*T)~!. Indeed, having in view the last form of Hy in
([2), we have for every h € Hp and any integer n > 1,

C*"C"T'h = C*"C™T(T*T) " *h = C*"C"Th = Th = T(T*T)"'h = T'h,

taking into account that Th € Ho. So T"Ho C Ho and T'|y, = Ty, = V.
Hence T and T" have under the decomposition H = Hy®H1 the block matrices

VT V. ToA! . . .
(3) T:Q]ﬁ) T:(thqy A =TiTy+ TiTy = Ty,
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Since T is an expansive m-isometry, the subspace Hoo = (),,5 T"H is
reducing for 7" and T'|y, is unitary. In addition, we have

Moo CHL = [ T™H.
n>1

Now, if H., = {0} then H, = {0} which means that the operators 7" and 7"
are analytic, hence T" admits Wold-type decomposition.

Next, we assume that H._ # {0}. Clearly, H._ is invariant for 7" and for
T*, because T*T" = I. We prove that H. is also invariant for 7"*. Indeed, let
h € H., so for every integer n > 1 there exists h,, € H such that h = T""h,,.
We write h = hg ® b/ and h,, = h) @ h!, with ho, Y € Hg, h', h!, € H;. Using
the matrix of 7" in we obtain

h=(V"h® + X,.n) @ (T\AYH)™H,,

where X,, = Py, T"|%,. Thus h' = (T1A~1)"h],.
Since T*T" = I one has T*"T"™ = I for n > 1, which later gives h,, =
T*"T"h,, = T*"h. So hl, = Py, T*"h and it follows that

1
sup—— ||| < sup——|[T""h[ = ¢ < o0,

n>1ln 2 n>1ln 2
because T is an m-isometry. This and the above expression of h’ lead to the
inequality

—1\n m=1 —1\n
Il = (DA™ Ryl < en = (T ATH"].

Now we use the assumption that r(7yA™!) < 1. This means that there
exist two constants «, 8 with 0 < a < 1 and 8 > 0 such that [[(T1A™})?| <
Ba™. Thus we obtain that

|| < cﬁan_la” —0 as n— oo,
that is A’ = 0. Hence h = hy € Ho and we get that H. C Ho C N(Ap), so
T'|3_ is an isometry.
Next, as T*H._ C HL, we have h, = T*"h € H._ and finally this gives
T*h = T*T(T"" Vh,) = T Yh, € H.,.

Hence H/,, is reducing for 7" and it is also reducing for T = T'(T"*T")~!. As T"

is invertible on H._ we obtain that T”|3__ is also invertible, which implies that

H! C Heo. Since the reverse inclusion holds we conclude that H, = Heo,

therefore H = Hoo @ \/ T"N(T*). Hence T admits Wold-type decomposition,
n>0

in the case Ho # {0}.
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In the case Ho = {0}, we have also Hoo = {0}, because 1|3 is unitary,
therefore Hoo C Ho. Then H = H; and r(T7) < 1 (by hypothesis, in this
case), therefore as before it follows that H. = Hoo = {0}. We conclude that
T admits also Wold type decomposition, in this case. [

Remark 2.2. If T is an m-isometry on H then the above subspace Hg
is also the isometric invariant part in N (Ap) = N(Ar) of the Cauchy dual
operator T" of T', because H, is invariant for 7" (as we have seen in the previous
proof) and also for T"*T" = (T*T)~!. Thus Ho has the same property relative
to T and T”, justifying its usage in the theorem.

Remark 2.3. The condition r(Py, TA™!) < 1 in the theorem is particu-
larly ensured when [|[A™Y|| < 1, where A = T*T|3;,. But this condition implies
that R(A7) is closed. Indeed, if [[A7!|| < 1 then I — A~! = A=1(A 1) is in-
vertible, so R(A—TI) = R(Ar|3, ) is closed. Since H1 = (N (Ar)SHo)BR(AT)
it follows that ApH = ApH1 = ApR(Ar), while this, together with the pre-
vious conclusion, imply

R(AT) = ArH; = MMy = ArH,
hence R(Ar) is closed. Conversely, if Hg = N (A7) and Ar has closed range
then Ap|g(a,) is invertible, therefore one has
(Arh, ) = (A= Db h) > plbl?, b e R(AT) =y,

for some constant p > 0. Hence A > (p + 1)I i.e. A7t < (p+ 1)~ and
|[A7Y| < 1. We derive from these facts the following

COROLLARY 2.4. If T € B(H) is an expansive m-isometry for an integer
m > 3, such that N(Arp) is invariant for T and R(Ar) is closed, then T
admits Wold-type decomposition.

In the following section, we refer to a special class of operators that satisfy
the conditions from this corollary. We describe now the subspaces Hoo and
H S Hoo for some m-isometries, in the terms of an asymptotic limit associated
to the adjoint operators and of the subspace Hgy from Theorem 2.1

THEOREM 2.5. Let T € B(H) be an expansive m-isometry for an integer
m > 3, such that Ho = ﬂN(Acn) # {0} where C = Pyxapn)T|n(ar)- Then

n>1
T* is an A-isometry that is TAT* = A, where
(4) Ah = lim T"Py,T*"h heH

n—oo

and A is an orthogonal projection. Moreover, T is unitary on R(A) such that

(5) R(A)=NI-A)=N(I-Sy)=[V"Ho=(T"H, V=T

n>1 n>1
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Furthermore, if T admits Wold-type decomposition then
(6) NA) =NV @ (HoH) =\ T"N(T).

n>0

Proof. For T as above, we have (by (3)))

. [V T\ (I 0\ [V* 0 VVE 0
_ — < Py,.
et = (5 1) (0 o) (55 )= ("0 o) <P

Therefore the sequence {17 Py, T*"},>0 is decreasing and bounded, hence it
strongly converges in B(#) to a positive contraction A € B(H) with A < Py,
as in (). Clearly, R(A) C Ho, H1 = H © Ho C N(A) and TAT* = A, which
ensures that TR(A) C R(A) and T|ga) = V|gr(a) is an isometry, because
V =Ty, is such.
Next for every h € R(A) we have (using the matrix of T in (3)),
Ah = lim T"Py,T*"h = lim T" Py, (V*"h @ hy,)
n—oo n—oo
= lim T"V*™h = lim V"V*"h = Sy«h.

n—o0 n—o0
Here h,, = Py, T*"h, while Sy« is the asymptotic limit of the coisometry V*.
Since Sy~ is an orthogonal projection, R(Sy+) is the unitary part of V' in Hy,
80 T'lr(a) = VIRr(sy«) is unitary (see [9]). Also, for h € R(A) it follows that

A?h = Sy« (Ah) = SZ.h = Sy+h = Ah,
and we conclude that A is an orthogonal projection in B(?). Thus we obtain
that
R(A) = N(I — A) C R(Sy+) = N(I = Sy=) = [|V"Ho = (| T"H.
n>1 n>1

In addition, if h € N(I — Sy~) © R(A) then (as above)
h = Sy«h = hm V"WV*h = lim T" Py, T*"h = Ah =0,

n—oo
hence R(A) = N(I — SV*) which yields the equalities in (F]). Notice that the
last equality in follows immediately from the proof of Theorem but it
was also mentioned in [10].
From , we obtain

N(A) = (HooR(A) @ Hy = N (V) oMy = \/ T"N(T),
n>0
having in view that Ho © R(A) is the shift part of V' in Hg, and that N'(A) is
the analytic part of T in # (by (5)).
Finally, if T admits Wold-type decomposition (as in Theorem [2 -, for

example) then N (A \/ T"N(T*), which completes the equality (6). O
n>0
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COROLLARY 2.6. Let T, A € B(H) be as in Theorem [2.5. Then T is
analytic if and only if A = 0.

3. BROWNIAN-TYPE m-ISOMETRIES

In the sequel, we refer to a special class of m-isometries T" which admit
Wold-type decompositions, namely to those with Ap a scalar multiple of an
orthogonal projection. First, we give the following

PROPOSITION 3.1. Let T' € B(H) be an m-isometry for an integer m > 3
such that Ar = §%P with P an orthogonal projection and a scalar § > 0. Then
N (A7) is invariant for T if and only if T is Ap-bounded, that is there exists
a constant ¢ > 0 such that

T*ATT < CAT.
If this is the case then T admits Wold-type decomposition.

Proof. Let T be an m-isometry with Ap = 6P where P = Pr(a,) and
62 = |Ar|| > 0. So T is expansive. Assume that TN (A7) C N(Ar). Then
for h € H, h = hg ® hy with hg € ./\[(AT), hi € R(AT> we have

(T*ApTh,h) = 6*(T*PThy,hi) < 6*(T*Thy, hy)
< |T|*(8*Ph,h) = |T|*(Arh, h).

Hence T*A7T < cAr, that is T is Ap-bounded with ¢ = ||T'[|? > 1.
Obviously, when T' is Ap-bounded, N (Ar) is invariant for T, taking into

account that Ar > 0 (so T*A7T > 0). We conclude by Corollary that if
T is Ap-bounded then T" admits Wold-type decomposition. [

Recall from [7] that a 3-isometry 7" which is Ap-bounded is called a sub-
Brownian 3-isometry. Obviously, such an operator 7' is convex (i.e. Ag,g ) >0),
expansive with TN (Ar) C N (Ar), but R(Ar) is not necessarily closed. More
generally, the sub-Brownian m-isometries for m > 3 were studied in [12]. Such
an m-isometry T is A(T])—bounded with the boundedness constant ¢; > 1 for
j=12---.,m—2 (see [12, Theorem 2.5]). Equivalently, by [12, Theorem
2.2] this means that T' has an m-Brownian unitary extension on a Hilbert
space K D H. This extension is an operator B which, under a decomposition

m
K= @IC]-, has a representation of the form
j=1
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w cEy 0 .. 0 0

0 Vo oEy .. 0 0
(7) B=1|. . . . . -

0 0 0 Vm_1 JEm_l

0 0 0o .. 0 U

where Vj, Ej are isometries with N (V") = R(Ej) for j =1,2,--- ,m —1, U is
unitary and ¢ > 0 is a scalar.

It is clear that A = 0?Pc,e..0k,,, B is a sub-Brownian m-isometry,
while o = || Ap||*/? is called the covariance of B.

For such operators we derive from Proposition the following

COROLLARY 3.2. Every sub-Brownian m-isometry T with m > 3 and
A7 = 62P, where P is an orthogonal projection and § > 0 admits Wold-type
decomposition.

A more special class of sub-Brownian m-isometries is now described

THEOREM 3.3. Let T € B(H) be a sub-Brownian m-isometry for an in-
teger m > 3, and let B € B(K) be an m-Brownian unitary extension for T of
covariance o = |Ap||'"/? > 0. The following statements are equivalent:

(i) Ar =0?Pr(ay);
(il) B*BH C H;
(iii) R(AT) C R(AB)

Moreover, when these conditions hold true Ty = PR(AT)T|R(AT) has as a
power dilation the (m — 1)-Brownian unitary By = Pr(a ) Blr(Ap)-

Proof. Assume that Ap = 0’2PR( Ap)- Since the m-Brownian unitary B
is an extension for T', B as well as Apg have the representations

T X A "X 2
(8) B= (0 Y) » Ap= <X*T X*X+AY> =7 PR,

under the decomposition K = H @ H'. As 0 2Ap = (672AR)?, by using the
matrix of Ap one obtains that T*X = 0. Therefore

B'B=TT®(X*X+Y*Y) on K=HoH,
which gives that B*BH C H. Hence (i) implies (ii).

Let assume now that B*BH C H. As TN (A1) C N(Ar), T being a sub-
Brownian m-isometry, we have BN (Ar) C N(A7) and Bl (ar) = Tlaar) =:
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V' is an isometry. So the above matrices of B and Ap can be expressed under
the decomposition = N (Ar) & R(Ar) & H' in the form

V Ty Xo 0 0 0
(9) B=|0o n x1|, Ag=|0 A—-T E,
0 0 Y 0 E* G

where A = T*Tlgrx—, E = Ty Xo + Ty Xy and G = X§Xo + X{ X1 + Ay.
Since ApH C H we need to have E = 0, and this implies R(Ar) C R(Ap).
So (ii) implies (iii).

Finally, we suppose that R(Ar) C R(Ap). Then R(Ar) is closed. In-
deed, if h € R(Ar) then h = Agh’ = o2k’ for some element h' € H, so h =
Py Aph’ = Aph/, taking into consideration that Bly = T and Py B*|y = T*.
Hence h € R(Ar) and it follows that R(Ar) is closed. Next for h € R(Ar)
and having in view the assumption (iii) one obtains

Arh = PriapyAph = 0*PriaryPriagh = 0 Priaph = oh,

whence we infer that Ap = 02 Pg(a,. Hence (iii) implies (i). The equivalences
(1)-(iii) are proved.

Next it is clear from the representation of B that K1 = N(Ap) so
R(Ap) = K2 @ --- @ Ky, and that the compression B1 = Pr(a,)Blriay) is
an (m — 1)-Brownian unitary on R(Ap). Thus, under the assumption (iii) as

well as the fact that TA'(Ar) C N(A7) we have for T} = Pgra,)T|r(a,) and
n>1,

7" =T r(ar) = PuB™"|r(Ar) = Prar) Bl [R(A7)
which by duality means 71" = Pr(a,)B{'|r(As), that is By is a power dilation
of Tl. ]

Some relations between N (T*) and N (B*) can be obtained under the
conditions from the previous theorem.

THEOREM 3.4. Let T on H be a sub-Brownian m-isometry (m > 3) and
B on K D H be an m-Brownian unitary extension for T' of covariance o > 0,

such that T and B satisfy (one of) the conditions (i)-(iii) of Theorem [3.3
Then
(10) N(T*) = PuN(B*) + PuB(K & H)

and the Cauchy dual operator B’ of B is an extension for the Cauchy dual
operator T" of T.
Moreover, the two subspaces in are orthogonal if and only if

(11) N(B*) = N(T*) "N (PeenB"|n) © N (B”|ken)-
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Proof. Consider T' and B as above satisfying the conditions (i)-(iii) of
Theorem From the representation of B in we infer that PyN (B*) C
N(T*). Also, denoting X = Py B|ioy (as in (8)) we have by (ii) that T*X = 0
that is R(X) € N(T*). Thus we obtain on one hand that

PyN(B*) + R(X) C N(T™).
Conversely, let h € N (T*), h = ho@®hy where hy € PyN(B*) and with hy
orthogonal on Py N (B*). As hy = h — hg € H it follows that h; is orthogonal

on N (B*), so hy € R(B). Thus hy = Bk with k € K. Setting k = hy & h' with
hy € H, W' € K©H we get (by (§)) that

hi1 = B(hg D h/) =Tho + Xh/,
whence T*h; = T*Ths, taking into account that 7*X = 0. On the other hand,
as ho € N(T™*) by the above inclusion, we have T*hy = T*(ho®hy) = T*h =0,
hence T*Thy = 0 that is hg = 0 (T being injective). Thus k = h' € Ko H
which later gives

hy = B = PyBh = XN

Finally, one obtains that h = hy @ hy € PyN(B*) + R(X), and we conclude
that the relation is true.

In order to show the next assertion of theorem, we assume that R(X)
and Py N (B*) are orthogonal subspaces in H. Then

PyN(B*) C N(T*)NN(X7),
sofork=h®h € N(B*) with h € H, i’ € K& H we have X*h =0 and
Y*H = X*h+Y*h' = PeouB*k =0, (Y from (g)).
Therefore Picoy N (B*) C N(Y*) and finally we get
N (B*) = PuN(B*) @ PcepuN (B*) = N(T*) N N(X*) @ N(Y™),

having in view that always N (T*) NN (X*), N(Y*) C N(B*).

Conversely, if the equality holds, then PyN (B*) C N(X*), hence
Py N (B*) and R(X) are orthogonal in H (even in N (T%)).

To end the proof it remains to show that B’ is an extension for 7" (the
Cauchy duals of B, T'). Thus, by the assertion (i) of Theorem and the
matrix of Ap in (9) we have B*B=1® (62 + 1)I® (G+1) on K = N(Ar) @
R(A7) @ H' where G = Aply and 02 = ||Ap||. This implies

(B*By '=I@(@®+1) TG+t

On the other hand, as T*T = I & (02 + 1)1 on H= N(AT) R(Ar) we get
(T*T)t = I® (06?+1)711. Therefore (B*B)~! = (T*T) '@ (G +I)~! under
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K = H & H’'. This later leads to our conclusion, that is

B'=B(B'B)! = (g §> (mg)l (@ +OI>-1> B <T0 i((g ; gi)

on K = H @& H’, which proves that B’ is an extension for 77. [

By Theorem the condition B*BH C H ensures that Ay is a scalar
multiple of an orthogonal projection. But if ||[Ag|| > ||Ar|| for an m-Brownian
extension B of a sub-Brownian m-isometry 7' (what is possible by [12, Theorem
2.2]) such that Ay = [|A7||Pr(a,), then H is not invariant for B*B. Thus we
infer from Theorem [3.3| and Corollary [3.2] the following

COROLLARY 3.5. If T on H is a sub-Brownian m-isometry (with m > 3)
which has an m-Brownian unitary extension B on K D H such that B*BH C
H, then T admits Wold-type decomposition.

The results above refer to a special class of m-isometries which are sub-
Brownian and have Wold-type decomposition, namely those with
Ap = 52PR(AT) and 6 > 0. But this last condition is not necessary for a
sub-Brownian m-isometry with Wold-type decomposition, as can be seen even
in the case m = 3.

Ezample 3.6. Let (2 (H) = @;°  Hy, where Hy, = H for n >0 and let T
be the weighted forward shift on ¢% () defined by

T(hO,hlv o ) = (OaathaQtha o ')7 {hn} € E?&—(H%

where the weights «,, are given by

1
an:n+ , n>1.
n

It is easy to see that T is a 3-isometry which is not a 2-isometry. The adjoint
T* of T is the weighted backward shift defined by

T*(h07hl)h2) o ) = (O[]_h]_,O[QhQ, o )

In this case, we have H = \/T”N(T*) where N (T*) = C{eg}, €0 = (1,0, ).
n>0
Hence T admits Wold-type decomposition with H., = {0}.
Since T*T has the representation

T*T(h()) h’la to ) = (a%h()? Oé%hl, e )7
while the operator Cauchy dual of T on ¢2 (H) is given by
T'(ho,h1,--+) = (0,01 tho, ag ' ha, -+,
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that is 7" is the forward shift with the weights {a;,;!,n > 1}. Since N (A7) =
{0} and r(T") = 1, T does not satisfy the hypothesis of Theorem So
the condition on the spectral radius in this theorem is only sufficient for a
Wold-type decomposition.

The conclusion of having a Wold-type decomposition for T' results also
from [8, Theorem 3.9], because T' is expansive what by [8, Remark 11] means
that

n=1
On the other hand, for h = {hy,}n>0 € €2 (H) we have
T*ATTh = T*(O, (a% - l)alho, (Oz% - 1)0(2}7,1, c )
= (af(aj —1ho,a3(af — 1)hs,---).

Since a1 < ap for n > 1, we infer that

(T*ArTh,h) = Y ak(aiyy = 1)lhnl?
n=1

o0
< oY (ap = Dlhna|? = af(Arh, ).
n=1
Thus T*ArT < a%AT that is T' is Ap-bounded, hence a sub-Brownian 3-
isometry. This inequality also shows that HA%F/ 2” =/a? —1=+/3 but Ay #
31.
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