WOLD DECOMPOSITIONS AND BROWNIAN TYPE OPERATORS

LAURIAN SUCIU
Communicated by Dan Timotin

Abstract

We present a class of m-isometries on a Hilbert space which admit Wold-type decompositions in Shimorin's sense. Among these operators, we recover some sub-Brownian m-isometries and theirs m-Brownian unitary extensions. Our context refers to an integer $m \geq 3$, the cases $m=1$ and $m=2$ being well-known and studied.

AMS 2020 Subject Classification: 47A05, 47A15, 47A20, 47A63.
Key words: Wold decomposition, Brownian unitary operator, sub-Brownian misometry.

1. INTRODUCTION

Let \mathcal{H} be a complex Hilbert space and $\mathcal{B}(\mathcal{H})$ the C^{*}-algebra of all bounded linear operators on \mathcal{H}, where $I\left(=I_{\mathcal{H}}\right)$ is the identity operator. For $T \in \mathcal{B}(\mathcal{H})$, T^{*} stands for the adjoint operator of T, while by $\mathcal{R}(T), \mathcal{N}(T)$ we denote the range, respectively the kernel of T. For a closed subspace $\mathcal{M} \subset \mathcal{H}, P_{\mathcal{M}} \in \mathcal{B}(\mathcal{H})$ is the orthogonal projection onto \mathcal{M}. Also, \mathcal{M} is invariant (reducing) for T when $T \mathcal{M} \subset \mathcal{M}\left(\right.$ resp. $T \mathcal{M} \subset \mathcal{M}$ and $\left.T^{*} \mathcal{M} \subset \mathcal{M}\right)$.

If \mathcal{K} is a Hilbert space which contains \mathcal{H} as a closed subspace (in notation $\mathcal{K} \supset \mathcal{H})$, then an operator $S \in \mathcal{B}(\mathcal{K})$ is an extension of T if $S \mathcal{H} \subset \mathcal{H}$ and $\left.S\right|_{\mathcal{H}}=T$. More generally, S is a power dilation of T (or T is a compression of S on $\mathcal{H})$ if $T^{n}=\left.P_{\mathcal{H}} S^{n}\right|_{\mathcal{H}}$ for every integer $n \geq 0$.

An operator T on \mathcal{H} is said to be a m-isometry for an integer $m \geq 1$ if it verifies the identity

$$
\begin{equation*}
\Delta_{T}^{(m)}:=\sum_{j=0}^{m}(-1)^{m-j} T^{* j} T^{j}=0 \tag{1}
\end{equation*}
$$

In the case $m=1$, we shortly denote $\Delta_{T}=\Delta_{T}^{(1)}=T^{*} T-I$. So (1) in this case means that T is an isometry, and T is unitary when $\Delta_{T}=0$ and $\Delta_{T^{*}}=0$. More generally, T is expansive (resp. a contraction) if $\Delta_{T} \geq 0$ (resp. $\Delta_{T} \leq 0$).

If T verifies (1) for $m=2$ then T is expansive, but this condition is not assured when $m \geq 3$ in (1). These operators are studied in [1, 2, (3) and recently in [4, 5, 6, 7, 8, 10, 12].

In this paper, we refer to expansive m-isometries with $m \geq 3$. Since $T^{*} T \geq I$, such operator T is injective with $\mathcal{R}(T)$ closed, $T^{*} T$ being invertible in $\mathcal{B}(\mathcal{H})$. In this case, the operator $T^{\prime}=T\left(T^{*} T\right)^{-1}$ is called the Cauchy dual operator of T. It is clear that $\left(T^{*} T\right)^{-1}=T^{*} T^{\prime}, T^{* *} T=T^{*} T^{\prime}=I$ and $\mathcal{N}\left(T^{*}\right)=\mathcal{N}\left(T^{* *}\right)$. Therefore T and T^{\prime} are left invertible in $\mathcal{B}(\mathcal{H})$, and the maximum invariant subspaces for T (resp. T^{\prime}) on which T (resp. T^{\prime}) is invertible are $\mathcal{H}_{\infty}\left(\right.$ resp. $\left.\mathcal{H}_{\infty}^{\prime}\right)$ where

$$
\mathcal{H}_{\infty}=\bigcap_{n \geq 1} T^{n} \mathcal{H}, \quad \mathcal{H}_{\infty}^{\prime}=\bigcap_{n \geq 1} T^{\prime n} \mathcal{H}
$$

It is known (see [11, Proposition 2.7]) that $\mathcal{H} \ominus \mathcal{H}_{\infty}=\bigvee_{n \geq 0} T^{\prime n} \mathcal{N}\left(T^{*}\right)$ and $\mathcal{H} \ominus \mathcal{H}_{\infty}^{\prime}=\bigvee_{n \geq 0} T^{n} \mathcal{N}\left(T^{*}\right)$. When $\mathcal{H}_{\infty}=\{0\}, T$ is said to be analytic.

According to [11] an m-isometry T on \mathcal{H} admits Wold-type decomposition if the subspace \mathcal{H}_{∞} is reducing for $T,\left.T\right|_{\mathcal{H}_{\infty}}$ is unitary and $\mathcal{H}_{\infty}=\mathcal{H}_{\infty}^{\prime}$, that is, it holds the decomposition

$$
\mathcal{H}=\mathcal{H}_{\infty} \oplus \bigvee_{n \geq 0} T^{n} \mathcal{N}\left(T^{*}\right)
$$

This decomposition in the case $m=1$ is precisely the classical Wold decomposition of an isometry. On the other hand, it follows from [11, Theorem 3.6] that every 2-isometry admits Wold-type decomposition. But it is not known if an expansive m-isometry with $m \geq 3$ admits such a decomposition, in general. In this paper, we present a sufficient condition for such an operator to possess Wold-type decomposition. We apply our result to some Browniantype m-isometries which are recently studied in [12, 7].

Thus, in the Section 2, we analyze the triangulation of an expansive m isometry T on \mathcal{H} obtained by means of the isometric invariant part \mathcal{H}_{0} of T in $\mathcal{N}\left(\Delta_{T}\right)$. We prove that if the spectral radius of the compression of T^{\prime} (the Cauchy dual of T) on $\mathcal{H} \ominus \mathcal{H}_{0}$ is strictly less than 1 , then T admits Woldtype decomposition. We mention some cases when this condition occurs. Also, we study an asymptotic limit A induced by T and $P_{\mathcal{H}_{0}}$, for which T^{*} is an A isometry, that is $T A T^{*}=A$. We show that $\mathcal{R}(A)=\mathcal{H}_{\infty}$, so $\mathcal{H}=\mathcal{R}(A) \oplus \mathcal{N}(A)$ is precisely the Wold decomposition for T when it exists.

In Section 3, we refer to m-isometries T having Δ_{T} a scalar multiple of an orthogonal projection. We show that such operator with $\mathcal{N}\left(\Delta_{T}\right)$ invariant for
T admits Wold-type decomposition. Among these operators, we mention subBrownian m-isometries T and their m-Brownian unitary extensions B. We analyze in detail the case when $B^{*} B \mathcal{H} \subset \mathcal{H}$. Also, in this case we describe $\mathcal{N}\left(T^{*}\right)$ in the terms of $\mathcal{N}\left(B^{*}\right)$ and we show that B^{\prime} is an extension for T^{\prime}.

Finally, we give an example of expansive 3-isometry T which admits Woldtype decomposition, such that Δ_{T} is not a scalar multiple of an orthogonal projection and with T^{\prime} having its spectral radius 1.

2. WOLD-TYPE DECOMPOSITIONS

Recall (see [10, §2]) that for an operator $T \in \mathcal{B}(\mathcal{H})$ and a closed subspace $\mathcal{M} \subset \mathcal{H}$, the following assertions are equivalent:
(a) $T \mathcal{M} \subset \mathcal{M} \subset \mathcal{N}\left(\Delta_{T}\right)$,
(b) $T \mathcal{M} \subset \mathcal{M}, T^{*} T \mathcal{M} \subset \mathcal{M}$ and $\left.T\right|_{\mathcal{M}}$ is isometric.

We refer to the maximum invariant subspace \mathcal{H}_{0} for T contained in $\mathcal{N}\left(\Delta_{T}\right)$ as being the isometric invariant part of T in $\mathcal{N}\left(\Delta_{T}\right)$. By [10, Lemma 2.1] this subspace is precisely the isometric invariant part in \mathcal{H} of the contraction $C=\left.P_{\mathcal{N}\left(\Delta_{T}\right)} T\right|_{\mathcal{N}\left(\Delta_{T}\right)}$. This means that

$$
\begin{equation*}
\mathcal{H}_{0}=\mathcal{N}\left(I-S_{C}\right)=\bigcap_{n \geq 1} \mathcal{N}\left(\Delta_{C^{n}}\right) \tag{2}
\end{equation*}
$$

where $S_{C}:=s-\lim _{n \rightarrow \infty} C^{* n} C^{n}$ is the (strongly) asymptotic limit of C (see [9]).
Theorem 2.1. Let $T \in \mathcal{B}(\mathcal{H})$ be an expansive m-isometry for an integer $m \geq 3, \mathcal{H}_{0} \subset \mathcal{N}\left(\Delta_{T}\right)$ be the isometric invariant part of T, such that $r\left(\left.P_{\mathcal{H}_{1}} T^{\prime}\right|_{\mathcal{H}_{1}}\right)<1$ where T^{\prime} is the Cauchy dual operator of $T, \mathcal{H}_{1}=\mathcal{H} \ominus \mathcal{H}_{0}$ and r is the spectral radius. Then T admits Wold-type decomposition.

Proof. Firstly, suppose that $\mathcal{H}_{0} \neq\{0\}$ into $\mathcal{N}\left(\Delta_{T}\right)$. So \mathcal{H}_{0} is invariant for T and $T^{*} T$, while $V:=\left.T\right|_{\mathcal{H}_{0}}$ is an isometry. We prove that \mathcal{H}_{0} is also invariant for $T^{\prime}=T\left(T^{*} T\right)^{-1}$. Indeed, having in view the last form of \mathcal{H}_{0} in (2), we have for every $h \in \mathcal{H}_{0}$ and any integer $n \geq 1$,

$$
C^{* n} C^{n} T^{\prime} h=C^{* n} C^{n} T\left(T^{*} T\right)^{-1} h=C^{* n} C^{n} T h=T h=T\left(T^{*} T\right)^{-1} h=T^{\prime} h
$$

taking into account that $T h \in \mathcal{H}_{0}$. So $T^{\prime} \mathcal{H}_{0} \subset \mathcal{H}_{0}$ and $\left.T^{\prime}\right|_{\mathcal{H}_{0}}=\left.T\right|_{\mathcal{H}_{0}}=V$. Hence T and T^{\prime} have under the decomposition $\mathcal{H}=\mathcal{H}_{0} \oplus \mathcal{H}_{1}$ the block matrices
(3) $\quad T=\left(\begin{array}{ll}V & T_{0} \\ 0 & T_{1}\end{array}\right), \quad T^{\prime}=\left(\begin{array}{cc}V & T_{0} \Delta^{-1} \\ 0 & T_{1} \Delta^{-1}\end{array}\right), \quad \Delta=T_{0}^{*} T_{0}+T_{1}^{*} T_{1}=\left.T^{*} T\right|_{\mathcal{H}_{1}}$.

Since T is an expansive m-isometry, the subspace $\mathcal{H}_{\infty}=\bigcap_{n \geq 1} T^{n} \mathcal{H}$ is reducing for T and $\left.T\right|_{\mathcal{H}_{\infty}}$ is unitary. In addition, we have

$$
\mathcal{H}_{\infty} \subset \mathcal{H}_{\infty}^{\prime}=\bigcap_{n \geq 1} T^{\prime n} \mathcal{H}
$$

Now, if $\mathcal{H}_{\infty}^{\prime}=\{0\}$ then $\mathcal{H}_{\infty}=\{0\}$ which means that the operators T and T^{\prime} are analytic, hence T admits Wold-type decomposition.

Next, we assume that $\mathcal{H}_{\infty}^{\prime} \neq\{0\}$. Clearly, $\mathcal{H}_{\infty}^{\prime}$ is invariant for T^{\prime} and for T^{*}, because $T^{*} T^{\prime}=I$. We prove that $\mathcal{H}_{\infty}^{\prime}$ is also invariant for $T^{* *}$. Indeed, let $h \in \mathcal{H}_{\infty}^{\prime}$, so for every integer $n \geq 1$ there exists $h_{n} \in \mathcal{H}$ such that $h=T^{\prime n} h_{n}$. We write $h=h_{0} \oplus h^{\prime}$ and $h_{n}=h_{n}^{0} \oplus h_{n}^{\prime}$ with $h_{0}, h_{n}^{0} \in \mathcal{H}_{0}, h^{\prime}, h_{n}^{\prime} \in \mathcal{H}_{1}$. Using the matrix of T^{\prime} in (3) we obtain

$$
h=\left(V^{n} h_{n}^{0}+X_{n} h_{n}^{\prime}\right) \oplus\left(T_{1} \Delta^{-1}\right)^{n} h_{n}^{\prime}
$$

where $X_{n}=\left.P_{\mathcal{H}_{0}} T^{\prime n}\right|_{\mathcal{H}_{1}}$. Thus $h^{\prime}=\left(T_{1} \Delta^{-1}\right)^{n} h_{n}^{\prime}$.
Since $T^{*} T^{\prime}=I$ one has $T^{* n} T^{\prime n}=I$ for $n \geq 1$, which later gives $h_{n}=$ $T^{* n} T^{\prime n} h_{n}=T^{* n} h$. So $h_{n}^{\prime}=P_{\mathcal{H}_{1}} T^{* n} h$ and it follows that

$$
\sup _{n \geq 1} \frac{1}{n^{\frac{m-1}{2}}}\left\|h_{n}^{\prime}\right\| \leq \sup _{n \geq 1} \frac{1}{n^{\frac{m-1}{2}}}\left\|T^{* n} h\right\|=c<\infty
$$

because T is an m-isometry. This and the above expression of h^{\prime} lead to the inequality

$$
\left\|h^{\prime}\right\|=\left\|\left(T_{1} \Delta^{-1}\right)^{n} h_{n}^{\prime}\right\| \leq c n^{\frac{m-1}{2}}\left\|\left(T_{1} \Delta^{-1}\right)^{n}\right\|
$$

Now we use the assumption that $r\left(T_{1} \Delta^{-1}\right)<1$. This means that there exist two constants α, β with $0<\alpha<1$ and $\beta>0$ such that $\left\|\left(T_{1} \Delta^{-1}\right)^{n}\right\| \leq$ $\beta \alpha^{n}$. Thus we obtain that

$$
\left\|h^{\prime}\right\| \leq c \beta n^{\frac{m-1}{2}} \alpha^{n} \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty
$$

that is $h^{\prime}=0$. Hence $h=h_{0} \in \mathcal{H}_{0}$ and we get that $\mathcal{H}_{\infty}^{\prime} \subset \mathcal{H}_{0} \subset \mathcal{N}\left(\Delta_{T^{\prime}}\right)$, so $\left.T^{\prime}\right|_{\mathcal{H}_{\infty}^{\prime}}$ is an isometry.

Next, as $T^{*} \mathcal{H}_{\infty}^{\prime} \subset \mathcal{H}_{\infty}^{\prime}$ we have $h_{n}=T^{* n} h \in \mathcal{H}_{\infty}^{\prime}$ and finally this gives

$$
T^{\prime *} h=T^{\prime *} T^{\prime}\left(T^{\prime(n-1)} h_{n}\right)=T^{(n-1)} h_{n} \in \mathcal{H}_{\infty}^{\prime}
$$

Hence $\mathcal{H}_{\infty}^{\prime}$ is reducing for T^{\prime} and it is also reducing for $T=T^{\prime}\left(T^{*} T^{\prime}\right)^{-1}$. As T^{\prime} is invertible on $\mathcal{H}_{\infty}^{\prime}$ we obtain that $\left.T^{\prime}\right|_{\mathcal{H}_{\infty}}$ is also invertible, which implies that $\mathcal{H}_{\infty}^{\prime} \subset \mathcal{H}_{\infty}$. Since the reverse inclusion holds we conclude that $\mathcal{H}_{\infty}^{\prime}=\mathcal{H}_{\infty}$, therefore $\mathcal{H}=\mathcal{H}_{\infty} \oplus \bigvee_{n \geq 0} T^{n} \mathcal{N}\left(T^{*}\right)$. Hence T admits Wold-type decomposition, in the case $\mathcal{H}_{0} \neq\{0\}$.

In the case $\mathcal{H}_{0}=\{0\}$, we have also $\mathcal{H}_{\infty}=\{0\}$, because $\left.T\right|_{\mathcal{H}_{\infty}}$ is unitary, therefore $\mathcal{H}_{\infty} \subset \mathcal{H}_{0}$. Then $\mathcal{H}=\mathcal{H}_{1}$ and $r\left(T^{\prime}\right)<1$ (by hypothesis, in this case), therefore as before it follows that $\mathcal{H}_{\infty}^{\prime}=\mathcal{H}_{\infty}=\{0\}$. We conclude that T admits also Wold type decomposition, in this case.

Remark 2.2. If T is an m-isometry on \mathcal{H} then the above subspace \mathcal{H}_{0} is also the isometric invariant part in $\mathcal{N}\left(\Delta_{T^{\prime}}\right)=\mathcal{N}\left(\Delta_{T}\right)$ of the Cauchy dual operator T^{\prime} of T, because \mathcal{H}_{0} is invariant for T^{\prime} (as we have seen in the previous proof) and also for $T^{*} T^{\prime}=\left(T^{*} T\right)^{-1}$. Thus \mathcal{H}_{0} has the same property relative to T and T^{\prime}, justifying its usage in the theorem.

Remark 2.3. The condition $r\left(P_{\mathcal{H}_{1}} T \Delta^{-1}\right)<1$ in the theorem is particularly ensured when $\left\|\Delta^{-1}\right\|<1$, where $\Delta=\left.T^{*} T\right|_{\mathcal{H}_{1}}$. But this condition implies that $\mathcal{R}\left(\Delta_{T}\right)$ is closed. Indeed, if $\left\|\Delta^{-1}\right\|<1$ then $I-\Delta^{-1}=\Delta^{-1}(\Delta-I)$ is invertible, so $\mathcal{R}(\Delta-I)=\mathcal{R}\left(\left.\Delta_{T}\right|_{\mathcal{H}_{1}}\right)$ is closed. Since $\mathcal{H}_{1}=\left(\mathcal{N}\left(\Delta_{T}\right) \ominus \mathcal{H}_{0}\right) \oplus \overline{\mathcal{R}\left(\Delta_{T}\right)}$ it follows that $\Delta_{T} \mathcal{H}=\Delta_{T} \mathcal{H}_{1}=\Delta_{T} \overline{\mathcal{R}\left(\Delta_{T}\right)}$, while this, together with the previous conclusion, imply

$$
\overline{\mathcal{R}\left(\Delta_{T}\right)}=\overline{\Delta_{T} \mathcal{H}_{1}}=\Delta_{T} \mathcal{H}_{1}=\Delta_{T} \mathcal{H}
$$

hence $\mathcal{R}\left(\Delta_{T}\right)$ is closed. Conversely, if $\mathcal{H}_{0}=\mathcal{N}\left(\Delta_{T}\right)$ and Δ_{T} has closed range then $\left.\Delta_{T}\right|_{\mathcal{R}\left(\Delta_{T}\right)}$ is invertible, therefore one has

$$
\left(\Delta_{T} h, h\right)=((\Delta-I) h, h) \geq \rho\|h\|^{2}, \quad h \in \mathcal{R}\left(\Delta_{T}\right)=\mathcal{H}_{1}
$$

for some constant $\rho>0$. Hence $\Delta \geq(\rho+1) I$ i.e. $\Delta^{-1} \leq(\rho+1)^{-1} I$ and $\left\|\Delta^{-1}\right\|<1$. We derive from these facts the following

Corollary 2.4. If $T \in \mathcal{B}(\mathcal{H})$ is an expansive m-isometry for an integer $m \geq 3$, such that $\mathcal{N}\left(\Delta_{T}\right)$ is invariant for T and $\mathcal{R}\left(\Delta_{T}\right)$ is closed, then T admits Wold-type decomposition.

In the following section, we refer to a special class of operators that satisfy the conditions from this corollary. We describe now the subspaces \mathcal{H}_{∞} and $\mathcal{H} \ominus \mathcal{H}_{\infty}$ for some m-isometries, in the terms of an asymptotic limit associated to the adjoint operators and of the subspace \mathcal{H}_{0} from Theorem 2.1.

Theorem 2.5. Let $T \in \mathcal{B}(\mathcal{H})$ be an expansive m-isometry for an integer $m \geq 3$, such that $\mathcal{H}_{0}=\bigcap_{n \geq 1} \mathcal{N}\left(\Delta_{C^{n}}\right) \neq\{0\}$ where $C=\left.P_{\mathcal{N}\left(\Delta_{T}\right)} T\right|_{\mathcal{N}\left(\Delta_{T}\right)}$. Then T^{*} is an A-isometry that is $T A T^{*}=A$, where

$$
\begin{equation*}
A h=\lim _{n \rightarrow \infty} T^{n} P_{\mathcal{H}_{0}} T^{* n} h \quad h \in \mathcal{H} \tag{4}
\end{equation*}
$$

and A is an orthogonal projection. Moreover, T is unitary on $\mathcal{R}(A)$ such that

$$
\begin{equation*}
\mathcal{R}(A)=\mathcal{N}(I-A)=\mathcal{N}\left(I-S_{V^{*}}\right)=\bigcap_{n \geq 1} V^{n} \mathcal{H}_{0}=\bigcap_{n \geq 1} T^{n} \mathcal{H}, \quad V=\left.T\right|_{\mathcal{H}_{0}} \tag{5}
\end{equation*}
$$

Furthermore, if T admits Wold-type decomposition then

$$
\begin{equation*}
\mathcal{N}(A)=\ell_{+}^{2}\left(\mathcal{N}\left(V^{*}\right)\right) \oplus\left(\mathcal{H} \ominus \mathcal{H}_{0}\right)=\bigvee_{n \geq 0} T^{n} \mathcal{N}\left(T^{*}\right) \tag{6}
\end{equation*}
$$

Proof. For T as above, we have (by (3))

$$
T P_{\mathcal{H}_{0}} T^{*}=\left(\begin{array}{cc}
V & T_{0} \\
0 & T_{1}
\end{array}\right)\left(\begin{array}{ll}
I & 0 \\
0 & 0
\end{array}\right)\left(\begin{array}{cc}
V^{*} & 0 \\
T_{0}^{*} & T_{1}^{*}
\end{array}\right)=\left(\begin{array}{cc}
V V^{*} & 0 \\
0 & 0
\end{array}\right) \leq P_{\mathcal{H}_{0}} .
$$

Therefore the sequence $\left\{T^{n} P_{\mathcal{H}_{0}} T^{* n}\right\}_{n \geq 0}$ is decreasing and bounded, hence it strongly converges in $\mathcal{B}(\mathcal{H})$ to a positive contraction $A \in \mathcal{B}(\mathcal{H})$ with $A \leq P_{\mathcal{H}_{0}}$, as in (4). Clearly, $\mathcal{R}(A) \subset \mathcal{H}_{0}, \mathcal{H}_{1}=\mathcal{H} \ominus \mathcal{H}_{0} \subset \mathcal{N}(A)$ and $T A T^{*}=A$, which ensures that $T \mathcal{R}(A) \subset \mathcal{R}(A)$ and $\left.T\right|_{\mathcal{R}(A)}=\left.V\right|_{\mathcal{R}(A)}$ is an isometry, because $V=\left.T\right|_{\mathcal{H}_{0}}$ is such.

Next for every $h \in \mathcal{R}(A)$ we have (using the matrix of T in (3)),

$$
\begin{aligned}
A h & =\lim _{n \rightarrow \infty} T^{n} P_{\mathcal{H}_{0}} T^{* n} h=\lim _{n \rightarrow \infty} T^{n} P_{\mathcal{H}_{0}}\left(V^{* n} h \oplus h_{n}\right) \\
& =\lim _{n \rightarrow \infty} T^{n} V^{* n} h=\lim _{n \rightarrow \infty} V^{n} V^{* n} h=S_{V^{*}} h .
\end{aligned}
$$

Here $h_{n}=P_{\mathcal{H}_{1}} T^{* n} h$, while $S_{V^{*}}$ is the asymptotic limit of the coisometry V^{*}. Since $S_{V^{*}}$ is an orthogonal projection, $\mathcal{R}\left(S_{V^{*}}\right)$ is the unitary part of V in \mathcal{H}_{0}, so $\left.T\right|_{\mathcal{R}(A)}=\left.V\right|_{\mathcal{R}\left(S_{V^{*}}\right)}$ is unitary (see [9]). Also, for $h \in \mathcal{R}(A)$ it follows that

$$
A^{2} h=S_{V^{*}}(A h)=S_{V^{*}}^{2} h=S_{V^{*}} h=A h,
$$

and we conclude that A is an orthogonal projection in $\mathcal{B}(\mathcal{H})$. Thus we obtain that

$$
\mathcal{R}(A)=\mathcal{N}(I-A) \subset \mathcal{R}\left(S_{V^{*}}\right)=\mathcal{N}\left(I-S_{V^{*}}\right)=\bigcap_{n \geq 1} V^{n} \mathcal{H}_{0}=\bigcap_{n \geq 1} T^{n} \mathcal{H}
$$

In addition, if $h \in \mathcal{N}\left(I-S_{V^{*}}\right) \ominus \mathcal{R}(A)$ then (as above)

$$
h=S_{V^{*}} h=\lim _{n \rightarrow \infty} V^{n} V^{* n} h=\lim _{n \rightarrow \infty} T^{n} P_{\mathcal{H}_{0}} T^{* n} h=A h=0,
$$

hence $\mathcal{R}(A)=\mathcal{N}\left(I-S_{V^{*}}\right)$ which yields the equalities in (5). Notice that the last equality in (5) follows immediately from the proof of Theorem 2.1, but it was also mentioned in [10].

From (5), we obtain

$$
\mathcal{N}(A)=\left(\mathcal{H}_{0} \ominus \mathcal{R}(A)\right) \oplus \mathcal{H}_{1}=\ell_{+}^{2}\left(\mathcal{N}\left(V^{*}\right)\right) \oplus \mathcal{H}_{1}=\bigvee_{n \geq 0} T^{\prime n} \mathcal{N}\left(T^{*}\right)
$$

having in view that $\mathcal{H}_{0} \ominus \mathcal{R}(A)$ is the shift part of V in \mathcal{H}_{0}, and that $\mathcal{N}(A)$ is the analytic part of T in \mathcal{H} (by (5)).

Finally, if T admits Wold-type decomposition (as in Theorem 2.1, for example) then $\mathcal{N}(A)=\bigvee_{n \geq 0} T^{n} \mathcal{N}\left(T^{*}\right)$, which completes the equality (6).

Corollary 2.6. Let $T, A \in \mathcal{B}(\mathcal{H})$ be as in Theorem 2.5. Then T is analytic if and only if $A=0$.

3. BROWNIAN-TYPE m-ISOMETRIES

In the sequel, we refer to a special class of m-isometries T which admit Wold-type decompositions, namely to those with Δ_{T} a scalar multiple of an orthogonal projection. First, we give the following

Proposition 3.1. Let $T \in \mathcal{B}(\mathcal{H})$ be an m-isometry for an integer $m \geq 3$ such that $\Delta_{T}=\delta^{2} P$ with P an orthogonal projection and a scalar $\delta>0$. Then $\mathcal{N}\left(\Delta_{T}\right)$ is invariant for T if and only if T is Δ_{T}-bounded, that is there exists a constant $c>0$ such that

$$
T^{*} \Delta_{T} T \leq c \Delta_{T}
$$

If this is the case then T admits Wold-type decomposition.

Proof. Let T be an m-isometry with $\Delta_{T}=\delta^{2} P$ where $P=P_{\mathcal{R}\left(\Delta_{T}\right)}$ and $\delta^{2}=\left\|\Delta_{T}\right\|>0$. So T is expansive. Assume that $T \mathcal{N}\left(\Delta_{T}\right) \subset \mathcal{N}\left(\Delta_{T}\right)$. Then for $h \in \mathcal{H}, h=h_{0} \oplus h_{1}$ with $h_{0} \in \mathcal{N}\left(\Delta_{T}\right), h_{1} \in \mathcal{R}\left(\Delta_{T}\right)$ we have

$$
\begin{aligned}
\left(T^{*} \Delta_{T} T h, h\right) & =\delta^{2}\left(T^{*} P T h_{1}, h_{1}\right) \leq \delta^{2}\left(T^{*} T h_{1}, h_{1}\right) \\
& \leq\|T\|^{2}\left(\delta^{2} P h, h\right)=\|T\|^{2}\left(\Delta_{T} h, h\right)
\end{aligned}
$$

Hence $T^{*} \Delta_{T} T \leq c \Delta_{T}$, that is T is Δ_{T}-bounded with $c=\|T\|^{2} \geq 1$.
Obviously, when T is Δ_{T}-bounded, $\mathcal{N}\left(\Delta_{T}\right)$ is invariant for T, taking into account that $\Delta_{T} \geq 0$ (so $T^{*} \Delta_{T} T \geq 0$). We conclude by Corollary 2.4 that if T is Δ_{T}-bounded then T admits Wold-type decomposition.

Recall from [7] that a 3 -isometry T which is Δ_{T}-bounded is called a subBrownian 3-isometry. Obviously, such an operator T is convex (i.e. $\Delta_{T}^{(2)} \geq 0$), expansive with $T \mathcal{N}\left(\Delta_{T}\right) \subset \mathcal{N}\left(\Delta_{T}\right)$, but $\mathcal{R}\left(\Delta_{T}\right)$ is not necessarily closed. More generally, the sub-Brownian m-isometries for $m \geq 3$ were studied in [12]. Such an m-isometry T is $\Delta_{T}^{(j)}$-bounded with the boundedness constant $c_{j} \geq 1$ for $j=1,2, \cdots, m-2$ (see [12, Theorem 2.5]). Equivalently, by [12, Theorem 2.2 this means that T has an m-Brownian unitary extension on a Hilbert space $\mathcal{K} \supset \mathcal{H}$. This extension is an operator B which, under a decomposition $\mathcal{K}=\bigoplus_{j=1}^{m} \mathcal{K}_{j}$, has a representation of the form

$$
B=\left(\begin{array}{cccccc}
V_{1} & \sigma E_{1} & 0 & \ldots & 0 & 0 \tag{7}\\
0 & V_{2} & \sigma E_{2} & \ldots & 0 & 0 \\
. . & . . & . . & \ldots & . . & . . \\
0 & 0 & 0 & \ldots & V_{m-1} & \sigma E_{m-1} \\
0 & 0 & 0 & \ldots & 0 & U
\end{array}\right)
$$

where V_{j}, E_{j} are isometries with $\mathcal{N}\left(V_{j}^{*}\right)=\mathcal{R}\left(E_{j}\right)$ for $j=1,2, \cdots, m-1, U$ is unitary and $\sigma>0$ is a scalar.

It is clear that $\Delta_{B}=\sigma^{2} P_{\mathcal{K}_{2} \oplus \cdots \oplus \mathcal{K}_{m}}, B$ is a sub-Brownian m-isometry, while $\sigma=\left\|\Delta_{B}\right\|^{1 / 2}$ is called the covariance of B.

For such operators we derive from Proposition 3.1 the following
Corollary 3.2. Every sub-Brownian m-isometry T with $m \geq 3$ and $\Delta_{T}=\delta^{2} P$, where P is an orthogonal projection and $\delta>0$ admits Wold-type decomposition.

A more special class of sub-Brownian m-isometries is now described
Theorem 3.3. Let $T \in \mathcal{B}(\mathcal{H})$ be a sub-Brownian m-isometry for an integer $m \geq 3$, and let $B \in \mathcal{B}(\mathcal{K})$ be an m-Brownian unitary extension for T of covariance $\sigma=\left\|\Delta_{B}\right\|^{1 / 2}>0$. The following statements are equivalent:
(i) $\Delta_{T}=\sigma^{2} P_{\mathcal{R}\left(\Delta_{T}\right)}$;
(ii) $B^{*} B \mathcal{H} \subset \mathcal{H}$;
(iii) $\mathcal{R}\left(\Delta_{T}\right) \subset \mathcal{R}\left(\Delta_{B}\right)$.

Moreover, when these conditions hold true $T_{1}=\left.P_{\mathcal{R}\left(\Delta_{T}\right)} T\right|_{\mathcal{R}\left(\Delta_{T}\right)}$ has as a power dilation the $(m-1)$-Brownian unitary $B_{1}=\left.P_{\mathcal{R}\left(\Delta_{B}\right)} B\right|_{\mathcal{R}\left(\Delta_{B}\right)}$.

Proof. Assume that $\Delta_{T}=\sigma^{2} P_{\mathcal{R}\left(\Delta_{T}\right)}$. Since the m-Brownian unitary B is an extension for T, B as well as Δ_{B} have the representations

$$
B=\left(\begin{array}{cc}
T & X \tag{8}\\
0 & Y
\end{array}\right), \quad \Delta_{B}=\left(\begin{array}{cc}
\Delta_{T} & T^{*} X \\
X^{*} T & X^{*} X+\Delta_{Y}
\end{array}\right)=\sigma^{2} P_{\mathcal{R}\left(\Delta_{B}\right)}
$$

under the decomposition $\mathcal{K}=\mathcal{H} \oplus \mathcal{H}^{\prime}$. As $\sigma^{-2} \Delta_{B}=\left(\sigma^{-2} \Delta_{B}\right)^{2}$, by using the matrix of Δ_{B} one obtains that $T^{*} X=0$. Therefore

$$
B^{*} B=T^{*} T \oplus\left(X^{*} X+Y^{*} Y\right) \quad \text { on } \quad \mathcal{K}=\mathcal{H} \oplus \mathcal{H}^{\prime}
$$

which gives that $B^{*} B \mathcal{H} \subset \mathcal{H}$. Hence (i) implies (ii).
Let assume now that $B^{*} B \mathcal{H} \subset \mathcal{H}$. As $T \mathcal{N}\left(\Delta_{T}\right) \subset \mathcal{N}\left(\Delta_{T}\right), T$ being a subBrownian m-isometry, we have $B \mathcal{N}\left(\Delta_{T}\right) \subset \mathcal{N}\left(\Delta_{T}\right)$ and $\left.B\right|_{\mathcal{N}\left(\Delta_{T}\right)}=\left.T\right|_{\mathcal{N}\left(\Delta_{T}\right)}=$:
V is an isometry. So the above matrices of B and Δ_{B} can be expressed under the decomposition $\mathcal{K}=\mathcal{N}\left(\Delta_{T}\right) \oplus \overline{\mathcal{R}\left(\Delta_{T}\right)} \oplus \mathcal{H}^{\prime}$ in the form

$$
B=\left(\begin{array}{ccc}
V & T_{0} & X_{0} \tag{9}\\
0 & T_{1} & X_{1} \\
0 & 0 & Y
\end{array}\right), \quad \Delta_{B}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & \Delta-I & E \\
0 & E^{*} & G
\end{array}\right)
$$

where $\Delta=\left.T^{*} T\right|_{\overline{\mathcal{R}}\left(\Delta_{T}\right)}, E=T_{0}^{*} X_{0}+T_{1}^{*} X_{1}$ and $G=X_{0}^{*} X_{0}+X_{1}^{*} X_{1}+\Delta_{Y}$. Since $\Delta_{B} \mathcal{H} \subset \mathcal{H}$ we need to have $E=0$, and this implies $\mathcal{R}\left(\Delta_{T}\right) \subset \mathcal{R}\left(\Delta_{B}\right)$. So (ii) implies (iii).

Finally, we suppose that $\mathcal{R}\left(\Delta_{T}\right) \subset \mathcal{R}\left(\Delta_{B}\right)$. Then $\mathcal{R}\left(\Delta_{T}\right)$ is closed. Indeed, if $h \in \overline{\mathcal{R}\left(\Delta_{T}\right)}$ then $h=\Delta_{B} h^{\prime}=\sigma^{2} h^{\prime}$ for some element $h^{\prime} \in \mathcal{H}$, so $h=$ $P_{\mathcal{H}} \Delta_{B} h^{\prime}=\Delta_{T} h^{\prime}$, taking into consideration that $\left.B\right|_{\mathcal{H}}=T$ and $\left.P_{\mathcal{H}} B^{*}\right|_{\mathcal{H}}=T^{*}$. Hence $h \in \mathcal{R}\left(\Delta_{T}\right)$ and it follows that $\mathcal{R}\left(\Delta_{T}\right)$ is closed. Next for $h \in \mathcal{R}\left(\Delta_{T}\right)$ and having in view the assumption (iii) one obtains

$$
\Delta_{T} h=P_{\mathcal{R}\left(\Delta_{T}\right)} \Delta_{B} h=\sigma^{2} P_{\mathcal{R}\left(\Delta_{T}\right)} P_{\mathcal{R}\left(\Delta_{B}\right)} h=\sigma^{2} P_{\mathcal{R}\left(\Delta_{T}\right)} h=\sigma^{2} h
$$

whence we infer that $\Delta_{T}=\sigma^{2} P_{\mathcal{R}\left(\Delta_{T}\right)}$. Hence (iii) implies (i). The equivalences (i)-(iii) are proved.

Next it is clear from the representation (7) of B that $\mathcal{K}_{1}=\mathcal{N}\left(\Delta_{B}\right)$ so $\mathcal{R}\left(\Delta_{B}\right)=\mathcal{K}_{2} \oplus \cdots \oplus \mathcal{K}_{m}$, and that the compression $B_{1}=\left.P_{\mathcal{R}\left(\Delta_{B}\right)} B\right|_{\mathcal{R}\left(\Delta_{B}\right)}$ is an ($m-1$)-Brownian unitary on $\mathcal{R}\left(\Delta_{B}\right)$. Thus, under the assumption (iii) as well as the fact that $T \mathcal{N}\left(\Delta_{T}\right) \subset \mathcal{N}\left(\Delta_{T}\right)$ we have for $T_{1}=\left.P_{\mathcal{R}\left(\Delta_{T}\right)} T\right|_{\mathcal{R}\left(\Delta_{T}\right)}$ and $n \geq 1$,

$$
T_{1}^{* n}=\left.T^{* n}\right|_{\mathcal{R}\left(\Delta_{T}\right)}=\left.P_{\mathcal{H}} B^{* n}\right|_{\mathcal{R}\left(\Delta_{T}\right)}=\left.P_{\mathcal{R}\left(\Delta_{T}\right)} B_{1}^{* n}\right|_{\mathcal{R}\left(\Delta_{T}\right)}
$$

which by duality means $T_{1}^{n}=\left.P_{\mathcal{R}\left(\Delta_{T}\right)} B_{1}^{n}\right|_{\mathcal{R}\left(\Delta_{T}\right)}$, that is B_{1} is a power dilation of T_{1}.

Some relations between $\mathcal{N}\left(T^{*}\right)$ and $\mathcal{N}\left(B^{*}\right)$ can be obtained under the conditions from the previous theorem.

Theorem 3.4. Let T on \mathcal{H} be a sub-Brownian m-isometry $(m \geq 3)$ and B on $\mathcal{K} \supset \mathcal{H}$ be an m-Brownian unitary extension for T of covariance $\sigma>0$, such that T and B satisfy (one of) the conditions (i)-(iii) of Theorem 3.3. Then

$$
\begin{equation*}
\mathcal{N}\left(T^{*}\right)=\overline{P_{\mathcal{H}} \mathcal{N}\left(B^{*}\right)}+\overline{P_{\mathcal{H}} B(\mathcal{K} \ominus \mathcal{H})} \tag{10}
\end{equation*}
$$

and the Cauchy dual operator B^{\prime} of B is an extension for the Cauchy dual operator T^{\prime} of T.

Moreover, the two subspaces in (8) are orthogonal if and only if

$$
\begin{equation*}
\mathcal{N}\left(B^{*}\right)=\mathcal{N}\left(T^{*}\right) \cap \mathcal{N}\left(\left.P_{\mathcal{K} \ominus \mathcal{H}} B^{*}\right|_{\mathcal{H}}\right) \oplus \mathcal{N}\left(\left.B^{*}\right|_{\mathcal{K} \ominus \mathcal{H}}\right) . \tag{11}
\end{equation*}
$$

Proof. Consider T and B as above satisfying the conditions (i)-(iii) of Theorem 3.3. From the representation of B in (8) we infer that $P_{\mathcal{H}} \mathcal{N}\left(B^{*}\right) \subset$ $\mathcal{N}\left(T^{*}\right)$. Also, denoting $X=\left.P_{\mathcal{H}} B\right|_{\mathcal{K} \ominus \mathcal{H}}$ (as in (8)) we have by (ii) that $T^{*} X=0$ that is $\mathcal{R}(X) \subset \mathcal{N}\left(T^{*}\right)$. Thus we obtain on one hand that

$$
\overline{P_{\mathcal{H}} \mathcal{N}\left(B^{*}\right)}+\overline{\mathcal{R}(X)} \subset \mathcal{N}\left(T^{*}\right)
$$

Conversely, let $h \in \mathcal{N}\left(T^{*}\right), h=h_{0} \oplus h_{1}$ where $h_{0} \in \overline{P_{\mathcal{H}} \mathcal{N}\left(B^{*}\right)}$ and with h_{1} orthogonal on $P_{\mathcal{H}} \mathcal{N}\left(B^{*}\right)$. As $h_{1}=h-h_{0} \in \mathcal{H}$ it follows that h_{1} is orthogonal on $\mathcal{N}\left(B^{*}\right)$, so $h_{1} \in \mathcal{R}(B)$. Thus $h_{1}=B k$ with $k \in \mathcal{K}$. Setting $k=h_{2} \oplus h^{\prime}$ with $h_{2} \in \mathcal{H}, h^{\prime} \in \mathcal{K} \ominus \mathcal{H}$ we get (by (8)) that

$$
h_{1}=B\left(h_{2} \oplus h^{\prime}\right)=T h_{2}+X h^{\prime}
$$

whence $T^{*} h_{1}=T^{*} T h_{2}$, taking into account that $T^{*} X=0$. On the other hand, as $h_{0} \in \mathcal{N}\left(T^{*}\right)$ by the above inclusion, we have $T^{*} h_{1}=T^{*}\left(h_{0} \oplus h_{1}\right)=T^{*} h=0$, hence $T^{*} T h_{2}=0$ that is $h_{2}=0$ (T being injective). Thus $k=h^{\prime} \in \mathcal{K} \ominus \mathcal{H}$ which later gives

$$
h_{1}=B h^{\prime}=P_{\mathcal{H}} B h^{\prime}=X h^{\prime} .
$$

Finally, one obtains that $h=h_{0} \oplus h_{1} \in \overline{P_{\mathcal{H}} \mathcal{N}\left(B^{*}\right)}+\overline{\mathcal{R}(X)}$, and we conclude that the relation (10) is true.

In order to show the next assertion of theorem, we assume that $\mathcal{R}(X)$ and $P_{\mathcal{H}} \mathcal{N}\left(B^{*}\right)$ are orthogonal subspaces in \mathcal{H}. Then

$$
\overline{P_{\mathcal{H}} \mathcal{N}\left(B^{*}\right)} \subset \mathcal{N}\left(T^{*}\right) \cap \mathcal{N}\left(X^{*}\right),
$$

so for $k=h \oplus h^{\prime} \in \mathcal{N}\left(B^{*}\right)$ with $h \in \mathcal{H}, h^{\prime} \in \mathcal{K} \ominus \mathcal{H}$ we have $X^{*} h=0$ and

$$
Y^{*} h^{\prime}=X^{*} h+Y^{*} h^{\prime}=P_{\mathcal{K} \ominus \mathcal{H}} B^{*} k=0, \quad(Y \text { from (8) })
$$

Therefore $\overline{P_{\mathcal{K} \ominus \mathcal{H}} \mathcal{N}\left(B^{*}\right)} \subset \mathcal{N}\left(Y^{*}\right)$ and finally we get

$$
\mathcal{N}\left(B^{*}\right)=\overline{P_{\mathcal{H}} \mathcal{N}\left(B^{*}\right)} \oplus \overline{P_{\mathcal{K} \ominus \mathcal{H}} \mathcal{N}\left(B^{*}\right)}=\mathcal{N}\left(T^{*}\right) \cap \mathcal{N}\left(X^{*}\right) \oplus \mathcal{N}\left(Y^{*}\right)
$$

having in view that always $\mathcal{N}\left(T^{*}\right) \cap \mathcal{N}\left(X^{*}\right), \mathcal{N}\left(Y^{*}\right) \subset \mathcal{N}\left(B^{*}\right)$.
Conversely, if the equality (11) holds, then $P_{\mathcal{H}} \mathcal{N}\left(B^{*}\right) \subset \mathcal{N}\left(X^{*}\right)$, hence $P_{\mathcal{H}} \mathcal{N}\left(B^{*}\right)$ and $\mathcal{R}(X)$ are orthogonal in \mathcal{H} (even in $\left.\mathcal{N}\left(T^{*}\right)\right)$.

To end the proof it remains to show that B^{\prime} is an extension for T^{\prime} (the Cauchy duals of $B, T)$. Thus, by the assertion (i) of Theorem 3.3 and the matrix of Δ_{B} in (9) we have $B^{*} B=I \oplus\left(\sigma^{2}+1\right) I \oplus(G+I)$ on $\mathcal{K}=\mathcal{N}\left(\Delta_{T}\right) \oplus$ $\mathcal{R}\left(\Delta_{T}\right) \oplus \mathcal{H}^{\prime}$ where $G=\left.\Delta_{B}\right|_{\mathcal{H}^{\prime}}$ and $\sigma^{2}=\left\|\Delta_{B}\right\|$. This implies

$$
\left(B^{*} B\right)^{-1}=I \oplus\left(\sigma^{2}+1\right)^{-1} I \oplus(G+I)^{-1}
$$

On the other hand, as $T^{*} T=I \oplus\left(\sigma^{2}+1\right) I$ on $\mathcal{H}=\mathcal{N}\left(\Delta_{T}\right) \oplus \mathcal{R}\left(\Delta_{T}\right)$ we get $\left(T^{*} T\right)^{-1}=I \oplus\left(\sigma^{2}+1\right)^{-1} I$. Therefore $\left(B^{*} B\right)^{-1}=\left(T^{*} T\right)^{-1} \oplus(G+I)^{-1}$ under
$\mathcal{K}=\mathcal{H} \oplus \mathcal{H}^{\prime}$. This later leads to our conclusion, that is

$$
B^{\prime}=B\left(B^{*} B\right)^{-1}=\left(\begin{array}{cc}
T & X \\
0 & Y
\end{array}\right)\left(\begin{array}{cc}
\left(T^{*} T\right)^{-1} & 0 \\
0 & (G+I)^{-1}
\end{array}\right)=\left(\begin{array}{cc}
T^{\prime} & X(G+I)^{-1} \\
0 & Y(G+I)^{-1}
\end{array}\right)
$$

on $\mathcal{K}=\mathcal{H} \oplus \mathcal{H}^{\prime}$, which proves that B^{\prime} is an extension for T^{\prime}.
By Theorem 3.3, the condition $B^{*} B \mathcal{H} \subset \mathcal{H}$ ensures that Δ_{T} is a scalar multiple of an orthogonal projection. But if $\left\|\Delta_{B}\right\|>\left\|\Delta_{T}\right\|$ for an m-Brownian extension B of a sub-Brownian m-isometry T (what is possible by [12, Theorem 2.2]) such that $\Delta_{T}=\left\|\Delta_{T}\right\| P_{\mathcal{R}\left(\Delta_{T}\right)}$, then \mathcal{H} is not invariant for $B^{*} B$. Thus we infer from Theorem 3.3 and Corollary 3.2 the following

Corollary 3.5. If T on \mathcal{H} is a sub-Brownian m-isometry (with $m \geq 3$) which has an m-Brownian unitary extension B on $\mathcal{K} \supset \mathcal{H}$ such that $B^{*} B \mathcal{H} \subset$ \mathcal{H}, then T admits Wold-type decomposition.

The results above refer to a special class of m-isometries which are subBrownian and have Wold-type decomposition, namely those with $\Delta_{T}=\delta^{2} P_{\mathcal{R}\left(\Delta_{T}\right)}$ and $\delta>0$. But this last condition is not necessary for a sub-Brownian m-isometry with Wold-type decomposition, as can be seen even in the case $m=3$.

Example 3.6. Let $\ell_{+}^{2}(\mathcal{H})=\bigoplus_{n=0}^{\infty} \mathcal{H}_{n}$ where $\mathcal{H}_{n}=\mathcal{H}$ for $n \geq 0$ and let T be the weighted forward shift on $\ell_{+}^{2}(\mathcal{H})$ defined by

$$
T\left(h_{0}, h_{1}, \cdots\right)=\left(0, \alpha_{1} h_{0}, \alpha_{2} h_{1}, \cdots\right), \quad\left\{h_{n}\right\} \in \ell_{+}^{2}(\mathcal{H})
$$

where the weights α_{n} are given by

$$
\alpha_{n}=\frac{n+1}{n}, \quad n \geq 1
$$

It is easy to see that T is a 3 -isometry which is not a 2 -isometry. The adjoint T^{*} of T is the weighted backward shift defined by

$$
T^{*}\left(h_{0}, h_{1}, h_{2}, \cdots\right)=\left(\alpha_{1} h_{1}, \alpha_{2} h_{2}, \cdots\right)
$$

In this case, we have $\mathcal{H}=\bigvee_{n \geq 0} T^{n} \mathcal{N}\left(T^{*}\right)$ where $\mathcal{N}\left(T^{*}\right)=\mathbb{C}\left\{e_{0}\right\}, e_{0}=(1,0, \cdots)$. Hence T admits Wold-type decomposition with $\mathcal{H}_{\infty}=\{0\}$.

Since $T^{*} T$ has the representation

$$
T^{*} T\left(h_{0}, h_{1}, \cdots\right)=\left(\alpha_{1}^{2} h_{0}, \alpha_{2}^{2} h_{1}, \cdots\right)
$$

while the operator Cauchy dual of T on $\ell_{+}^{2}(\mathcal{H})$ is given by

$$
T^{\prime}\left(h_{0}, h_{1}, \cdots\right)=\left(0, \alpha_{1}^{-1} h_{0}, \alpha_{2}^{-1} h_{1}, \cdots\right)
$$

that is T^{\prime} is the forward shift with the weights $\left\{\alpha_{n}^{-1}, n \geq 1\right\}$. Since $\mathcal{N}\left(\Delta_{T}\right)=$ $\{0\}$ and $r\left(T^{\prime}\right)=1, T$ does not satisfy the hypothesis of Theorem 2.1. So the condition on the spectral radius in this theorem is only sufficient for a Wold-type decomposition.

The conclusion of having a Wold-type decomposition for T results also from [8, Theorem 3.9], because T is expansive what by [8, Remark 11] means that

$$
\sum_{n=1}^{\infty} T^{\prime n} \Delta_{T}^{(2)} T^{\prime * n} \leq \Delta_{T}
$$

On the other hand, for $h=\left\{h_{n}\right\}_{n \geq 0} \in \ell_{+}^{2}(\mathcal{H})$ we have

$$
\begin{aligned}
T^{*} \Delta_{T} T h & =T^{*}\left(0,\left(\alpha_{2}^{2}-1\right) \alpha_{1} h_{0},\left(\alpha_{3}^{2}-1\right) \alpha_{2} h_{1}, \cdots\right) \\
& =\left(\alpha_{1}^{2}\left(\alpha_{2}^{2}-1\right) h_{0}, \alpha_{2}^{2}\left(\alpha_{3}^{2}-1\right) h_{1}, \cdots\right)
\end{aligned}
$$

Since $\alpha_{n+1}<\alpha_{n}$ for $n \geq 1$, we infer that

$$
\begin{aligned}
\left(T^{*} \Delta_{T} T h, h\right) & =\sum_{n=1}^{\infty} \alpha_{n}^{2}\left(\alpha_{n+1}^{2}-1\right)\left\|h_{n-1}\right\|^{2} \\
& \leq \alpha_{1}^{2} \sum_{n=1}^{\infty}\left(\alpha_{n}^{2}-1\right)\left\|h_{n-1}\right\|^{2}=\alpha_{1}^{2}\left(\Delta_{T} h, h\right)
\end{aligned}
$$

Thus $T^{*} \Delta_{T} T \leq \alpha_{1}^{2} \Delta_{T}$ that is T is Δ_{T}-bounded, hence a sub-Brownian 3isometry. This inequality also shows that $\left\|\Delta_{T}^{1 / 2}\right\|=\sqrt{\alpha_{1}^{2}-1}=\sqrt{3}$, but $\Delta_{T} \neq$ $3 I$.

Acknowledgments. We would like to thank the referee for a careful reading of the manuscript and for useful suggestions.

REFERENCES

[1] J. Agler and M. Stankus, m-isometric transformations of Hilbert spaces. Integral Equations Operator Theory 21 (1995), 4, 383-429.
[2] J. Agler and M. Stankus, m-isometric transformations of Hilbert spaces II. Integral Equations Operator Theory 23 (1995), 1, 1-48.
[3] J. Agler and M. Stankus, m-isometric transformations of Hilbert spaces III. Integral Equations Operator Theory 24 (1996), 4, 379-421.
[4] C. Badea, V. Müller, and L. Suciu, High order isometric liftings and dilations. Studia Math. 258 (2021), 1, 87-101.
[5] C. Badea and L. Suciu, Hilbert space operators with two-isometric dilations. J. Operator Theory 86 (2021), 1, 93-123.
[6] S. Chavan and S. Trivedi, Failure of the wandering subspace property for analytic normincreasing 3-isometries. arXiv:2212.04446.
[7] A. Crăciunescu and L. Suciu, Brownian extensions in the context of 3-isometries. J. Math. Anal. Appl. 529 (2024), 1-19, 127591.
[8] S. Ghara, R. Gupta, and R. Reza, Analytic m-isometries and weighted Dirichlet-type spaces. J. Operator Theory 88 (2022), 2, 445-477.
[9] C.S. Kubrusly, An Introduction to Models and Decompositions in Operator Theory. Birkhäuser, Boston, 1997.
[10] W. Majdak and L. Suciu, Brownian type parts of operators in Hilbert spaces. Results Math. 75 (2020), 5.
[11] S. Shimorin, Wold-type decompositions and wandering subspaces for operators close to isometries. J. Reine Angew. Math. 531 (2001), 147-189.
[12] L. Suciu, Brownian type extensions for a class of m-isometries. Results Math. 78 (2023), 144.

Received March 15, 2023

"Lucian Blaga" University of Sibiu
Department of Mathematics and Informatics
Sibiu, Romania
laurians2002@yahoo.com

