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Let K3 be a non-normal cubic extension over Q. In this paper, we investigate
the higher moments of coefficients aK3(n) of the Dedekind zeta function of the
following type ∑

n≤x

al
K3

(n),

where l ≥ 4 is any fixed positive integer.
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1. INTRODUCTION

It is an interesting and important topic to study the coefficients of the
Dedekind zeta function in modern number theory. Let K/Q be a number field
of degree d. The Dedekind zeta function is defined by

ζK(s) =
∑
a̸=0

(Na)−s =
∏
p

(
1− (Np)−s

)−1
, ℜ(s) > 1,(1)

where d = [K : Q] and Na is the norm of the integral ideals a. We can rewrite
the Dedekind zeta function as a Dirichlet series

ζK(s) =

∞∑
n=1

aK(n)

ns
, ℜ(s) > 1,

where aK(n) denotes the number of integral ideals in K with norm n, which
is called the coefficients of the Dedekind zeta function. It is obvious that
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aK(n) ≥ 0 for all n ≥ 1. And it is well-known that aK(n) is a real multiplicative
function and for any ε > 0,

aK(n) ≤ τ(n)d ≪ nε,

here τ(n) is the divisor function. In fact, we can expand the expression (1) as
an Euler product

ζK(s) =
∞∑
n=1

aK(n)

ns
=

∏
p

(
1 +

aK(p)

ps
+ · · ·+ aK(pk)

pks
+ · · ·

)
, ℜ(s) > 1.

The investigation of coefficients of the Dedekind zeta function has a long
scientific record. Landau [17] proved the asymptotic formula∑

n≤x

aK(n) = cx+O
(
x1−

2
d+1

+ε)
for arbitrary algebraic number fields of degree d ≥ 2, where c > 0 is some
suitable positive constant depending on K. Chandrasekharan and Narasimhan
[1] considered the second higher moment of aK(n) and they proved that∑

n≤x

a2K(n) ≪ x logd−1 x.

Later, for K being normal extension of Q, Chandrasekharan and Good [2]
investigated the higher moments of aK(n) and established the asymptotic for-
mulas ∑

n≤x

alK(n) = xPK(log x) +O
(
x
1− 2

dl
+ε)

,

where l ≥ 2 is a positive integer and PK(t) is a polynomial of t with degree
dl−1 − 1. In 2010, Lü and Wang [18] improved the results of Chandrasekharan
and Good.

Let K3/Q be a non-normal cubic extension, which is given by an irre-
ducible polynomial h(x) = x3 + Ax2 + Bx + C of discriminant D. In 2008,
Fomenko [8] considered the second and third moments of aK3(n) under the
condition D < 0 and he proved that∑

n≤x

a2K3
(n) = c1x log x+ c2x+O

(
x

9
11

+ε
)
,(2)

and ∑
n≤x

a3K3
(n) = xP (log x) +O

(
x

73
79

+ε
)
,(3)

where c1 and c2 are some suitable constants, and P (t) is a polynomial of t
with degree 4. In 2013, Lü [20] refined the exponents in the error terms of
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(2) and (3) to 23/31 and 235/259, respectively. Very recently, Liu [21] further
sharpened the exponent of (3) to 1361/1501, and he also considered the general
divisor problem related to coefficients of the Dedekind zeta function.

In this paper, we consider the average behaviour of higher moments of
the arithmetic function aK3(n) in the following shape∑

n≤x

alK3
(n),

where l ≥ 4 is any fixed positive integer.

Theorem 1.1. Let K3/Q be a non-normal cubic extension which is given
by an irreducible polynomial h(x) = x3 +Ax2 +Bx+C of discriminant D. If
D < 0, then for any ε > 0, we have
(i) Let l ≥ 4 be an even integer, then∑

n≤x

alK3
(n) = xPK3,l(log x) +O(xαl+ε),

where PK3,l(t) is a polynomial of t with degPK3,l = κl,1 + κl,2 − 1, and αl =
1− 2

3l
, here κl,1 and κl,2 are defined by

κl,1 = 1 +

l
2∑

i=1

(
l

2i

)
Ai, κl,2 =

l
2
−1∑

i=1

(
l

2i+ 1

)
Di.

(ii) Let l ≥ 5 be an odd integer, then∑
n≤x

alK3
(n) = xP ∗

K3,l(log x) +O(xαl+ε),

where P ∗
K3,l

(t) is a polynomial of t with degP ∗
K3,l

= νl,1+ νl,2− 1, here νl,1 and
νl,2 are defined by

νl,1 = 1 +

l−1
2∑

j=1

(
l

2j

)
Aj , νl,2 =

l−1
2∑

j=1

(
l

2j + 1

)
Dj .

The constants Ai, Di, i ≥ 1 are defined as in (9) and (10), respectively.

Throughout the paper, let ε > 0 denote the arbitrarily small number
which may vary in different occurrence. And p always denotes a prime number.
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2. PRELIMINARIES

In this section, we review some analytic properties of automorphic
L-functions and introduce some useful lemmas which play an important role
in the proof of the main results in this paper.

Let f be a holomorphic cusp form of integral weight k for the full modular
group Γ = SL(2,Z), then f has the Fourier series expansion at the cusp ∞:

f(z) =
∞∑
n=1

λf (n)n
k−1
2 e2πinz, ℑ(z) > 0,

here, the coefficients λf (n) are Hecke eigenvalues of Hecke operators. It is
well-known that for each p, there exist two complex numbers αf (p), βf (p) such
that

αf (p) + βf (p) = λf (p), αf (p)βf (p) = 1.(4)

By Deligne’s bound [6], we also have

|λf (n)| ≪ nε

for any ε > 0.
Define the Hecke L-function associated with f as

L(f, s) =
∞∑
n=1

λf (n)

ns
=

∏
p

(
1−

αf (p)

ps

)−1(
1−

βf (p)

ps

)−1

for ℜ(s) > 1. We can also define the jth symmetric power L-function attached
to f as follows

L(symjf, s) =
∏
p

j∏
m=0

(
1− αf (p)

j−mβf (p)
mp−s

)−1

for ℜ(s) > 1, where αf (p), βf (p) are the local parameters given by (4). We
may expand it into a Dirichlet series

L(symjf, s) =

∞∑
n=1

λsymjf (n)

ns

=
∏
p

(
1 +

λsymjf (p)

ps
+ · · ·+

λsymjf (p
k)

pks
+ · · ·

)
, ℜ(s) ≫ 1.

Apparently, λsymjf (n) is a real multiplicative function.
It is standard to find that

λf (p
j) = λsymjf (p) =

αf (p)
j+1 − βf (p)

j+1

αf (p)− βf (p)
=

j∑
m=0

αf (p)
j−mβf (p)

m,
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which can be written as

λf (p
j) = λsymjf (p) = Uj(λf (p)/2),(5)

where Uj(x) is the jth Chebyshev polynomial of the second kind.
Let K3 be a non-normal cubic extension over Q, which is given by an

irreducible polynomial h(x) = x3+Ax2+Bx+C of discriminant D. If D < 0,
from the paper of Fomenko [8, (1)] we know that

ζK3(s) = ζ(s)L(f, s),(6)

where f is a holomorphic cusp form of weight 1 with respect to the congruence
group Γ0(|D|).

From (6), we have the convolution

aK3(n) =
∑
d|n

λf (d).

In particular, we have

aK3(p) = 1 + λf (p).(7)

We also define the L-function

LK3,l(s) =

∞∑
n=1

alK3
(n)

ns
, ℜ(s) > 1.(8)

We firstly state some basic definitions and analytic properties of general
L-functions. Let L(ϕ, s) be a Dirichlet series (associated with the object ϕ)
that admits an Euler product of degree m ≥ 1, namely

L(ϕ, s) =

∞∑
n=1

λϕ(n)

ns
=

∏
p

m∏
j=1

(
1−

αϕ(p, j)

ps

)−1

,

where αϕ(p, j), j = 1, 2, · · · ,m are the local parameters of L(ϕ, s) at a finite
prime p. Suppose that this series and its Euler product are absolutely conver-
gent for ℜ(s) > 1. We denote the gamma factor by

L∞(ϕ, s) =
m∏
j=1

π−
s+µϕ(j)

2 Γ

(
s+ µϕ(j)

2

)
with local parameters µϕ(j), j = 1, 2, · · · ,m of L(ϕ, s) at ∞. The complete
L-function Λ(ϕ, s) is defined by

Λ(ϕ, s) = q(ϕ)
s
2L∞(ϕ, s)L(ϕ, s),

where q(ϕ) is the conductor of L(ϕ, s) depends at most on ϕ and the parity of
the L-function. We assume that Λ(ϕ, s) admits an analytic continuation to the
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the whole complex plane C and is holomorphic everywhere except for possible
poles of finite order at s = 0, 1. Furthermore, it satisfies a functional equation
of the Riemann-type

Λ(ϕ, s) = ϵϕΛ(ϕ̃, 1− s)

where ϵϕ is the root number with |ϵϕ| = 1 and ϕ̃ is dual of ϕ such that λϕ̃(n) =

λϕ(n), L∞(ϕ̃, s) = L∞(ϕ, s) and q(ϕ̃) = q(ϕ). We call ϕ is an L-function of

degree m, and ϕ ∈ S#
e if it satisfies the above conditions. We call the

L-function L(ϕ, s) satisfies the Ramanujan conjecture if λϕ(n) ≪ nε for any ε.
Here, we state a very general theorem due to Lau and Lü [19].

Lemma 2.1 ([19] Lemma 2.4). Let L(f, s) be a product of two L-functions

L1, L2 ∈ S#
e with both degLi ≥ 2, i = 1, 2 and L(f, s) satisfies the Ramanujan

conjecture. Then for any ε > 0, we have∑
n≤x

λf (n) = M(x) +O
(
x1−

2
m
+ε

)
,

where M(x) = Ress=1{L(f, s)xs/s} and m = degL.

Associated with a primitive cusp form f , there is an automorphic cuspidal
representation πf of GL2(AQ) and hence, an automorphic L-function L(πf , s)
which coincides with L(f, s), namely

L(πf , s) = L(f, s).

It is predicted by the Langlands functoriality conjecture that πf gives rise to a
symmetric power lift symjπf–an automorphic representation whose L-function
is the symmetric power L-function attached to f ,

L(symjπf , s) = L(symjf, s).

For the known cases, the lifts are cuspidal, namely, there exists an auto-
morphic cuspidal self-dual representation, denoted by symjπf of GLj+1(AQ)
whose L-function is the same as L(symjf, s). For j = 1, 2, 3, 4, this special
Langlands functoriality conjecture that symjf is automorphic is shown by a
series of important works. See, for example, Gelbert and Jacquet [9], Kim [16],
Kim and Shahidi [14, 15], and Shahidi [24]. Later, Dieulefait [7] and Clozel
and Thorne [3, 4, 5] investigated the cases j ≤ 8. Very recently, Newton and
Thorne [22, 23] proved that symjf corresponds with a cuspidal automorphic
representation of GLj+1(AQ) for all j ≥ 1. Hence, for j ≥ 1, the L-function
L(symjf, s) is an entire function and satisfies a functional equation of certain
Riemann zeta-type with degree j + 1. In particular, in the paper [23, Theo-
rem A] the authors established the existence of the symmetric power liftings
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symnπf for all n ≥ 1 under the assumption that π is non-CM type. Regard-
ing the case of automorphy of the symmetric power lifting for cuspidal Hecke
eigenforms of weight 1, or with CM, they also proved the result holds in these
cases by using Kim and Shahidi’s results on tensor product and symmetric
power functoriality (e.g., [23, Theorem A.1]).

Now, we need to give the decomposition of the L-function LK3,l(s), which
plays an essential role in the determination of the main results in this paper.

Lemma 2.2. Let K3 be a non-normal cubic extension over Q as in The-
orem 1.1. And let LK3,l(s) be the L-function defined by (8). Let l ≥ 4 be an
even integer, we have

LK3,l(s) = L∗
K3,l(s)Gl,1(s),

where L∗
K3,l

(s) is another L-function of degree 3l that can be represented as the

product of automorphic L-functions of the types ζ(s)κl,1 , L(symi1f, s)j1, where
the exponents κl,1, i1, j1 ≥ 1 are some suitable positive integers. Here, the
exponent in ζ(s) is given by

κl,1 = 1 +

l
2∑

i=1

(
l

2i

)
Ai, Ai =

(2i)!

i!(i+ 1)!
.(9)

And the exponent in L(sym3f, s) is given by

κl,2 =

l
2
−1∑

i=1

(
l

2i+ 1

)
Di, D1 = 1, Di =

4 · (2i+ 1)!

(i− 1)!(i+ 3)!
, i ≥ 2.(10)

Here, the Dirichlet series Gl,1(s) converges absolutely and uniformly in the
half-plane ℜ(s) ≥ 1

2 + ϵ and Gl,1(s) ̸= 0 when ℜ(s) = 1.

Proof. Since alK3
(n), l ≥ 4 are real multiplicative functions and satisfy

the trivial bound O(nε), then for ℜ(s) > 1, we have the Euler product

LK3,l(s) =
∏
p

(
1 +

alK3
(p)

ps
+ · · ·+

alK3
(pk)

pks
+ · · ·

)
.

In the half-plane ℜ(s) > 1
2 , the corresponding coefficients of p−s determine

analytic properties of LK3,l(s). From (7), then we have

alK3
(p) = (1 + λf (p))

l.

By the binomial expansion, we have

(1 + λf (p))
l =

l∑
i=0

(
l

i

)
λi
f (p).



8 G. Hua and B. Chen 8

Then from Lau and Lü [19, Lemma 7.1], we can determine the corre-
sponding exponents of the automorphic L-functions ζ(s), L(sym3f, s).

Lemma 2.3. Let K3 be a non-normal cubic extension over Q as in The-
orem 1.1. And let LK3,l(s) be the L-function defined by (8). Let l ≥ 5 be an
odd integer, we have

LK3,l(s) = L∗∗
K3,l(s)Hl,2(s),

where L∗∗
K3,l

(s) is another L-function of degree 3l that can be represented as the

product of automorphic L-functions of the types ζ(s)νl,1 , L(symi2f, s)j2, where
the exponents νl,1, i2, j2 ≥ 1 are some suitable positive integers. Here, the
exponent in ζ(s) is given by

νl,1 = 1 +

l−1
2∑

j=1

(
l

2j

)
Aj ,(11)

where Aj is defined by (9). And the exponent in L(sym3f, s) is given by

νl,2 =

l−1
2∑

j=1

(
l

2j + 1

)
Dj ,(12)

where Dj is defined by (10). Here, the Dirichlet series Hl,2(s) converges ab-
solutely and uniformly in the half-plane ℜ(s) ≥ 1

2 + ϵ and Hl,2(s) ̸= 0 when
ℜ(s) = 1.

Proof. This follows essentially the same argument as that of Lemma 2.2.

Remark 2.4. In the half-plane ℜ(s) > 1
2 , we learn from Fomenko [8] that

L(sym3f, s) has an analytic continuation to that half-plane except for a simple
pole at s = 1. Then, we learn from Lemma 2.2 and Lemma 2.3 that the
factorization of LK3,l(s) in the same half-plane have a pole of finite order at
s = 1 which comes from the L-functions ζ(s) and L(sym3, s).

3. PROOF OF THEOREM 1.1

In this section, we give the proof of Theorem 1.1 in the case l ≥ 4 being
an even integer, since for l ≥ 5 an odd integer can be treated in the similar
approach.
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Let l ≥ 4 be an even integer, by Lemma 2.2, we know that LK3,l(s) is a
general L-function satisfying the conditions in Lemma 2.1, then we have∑

n≤x

alK3
(n) = xPK3,l(log x) +O

(
x
1− 2

3l
+ε)

,

where xPK3,l(log x) comes from the residue of the integrand at the pole s = 1
which takes the form

Ress=1

{
LK3,l(s)

s
xs
}
,

and the L-functions ζ(s), L(sym3f, s) (with exponents) contributes to the pole
at s = 1 in the decomposition of LK3,l(s), here PK3,l(t) is a polynomial of t with
degree κl,1+κl,2−1, here κl,1 and κl,2 are defined by (9) and (10), respectively.
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