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Let (E, E , µ) be a measure space and let E+, Eb denote the set of all measurable
numerical functions on E which are positive, bounded respectively. Moreover, let
G : E×E → [0,∞] be measurable. We show that the set of all q ∈ E+ for which
{G(x, ·)q : x ∈ E} is uniformly integrable coincides with the set of all q ∈ E+ for
which the mapping f 7→ G(fq) :=

∫
G(·, y)f(y)q(y) dµ(y) is a compact operator

on the space Eb (equipped with the sup-norm) provided each of these two sets
contains strictly positive functions.

AMS 2020 Subject Classification: 31D05, 47B34, 47G10.

Key words: uniform integrability, compact operator, potential.

1. INTRODUCTION, NOTATION AND FIRST PROPERTIES

In the paper [2] on semilinear perturbation of fractional Laplacians
−(−∆)α/2 on Rd, d ∈ N, 0 < α < 2 ∧ d, a Kato class J α(D) of measurable
functions q on an open set D in Rd is defined by uniform integrability of the
functions GD(x, ·)q, x ∈ D, with respect to Lebesgue measure on D, where GD

denotes the corresponding Green function on D (see [2, Definition 1.23]). Let
C0(D), Bb(D), respectively, denote the space of all real functions on D which
are continuous and vanish at infinity with respect to D, are Borel measurable
and bounded, respectively.

Suppose that D is regular and let q : D → [0,∞] be Borel measurable.
Then, using the continuity of GD and Vitali’s theorem, it is established that,
provided q ∈ J α(D), the mapping

K : f 7→ GD(fq) :=

∫
GD(·, y)f(y)q(y) dµ ∈ C0(D)

is a compact operator on Bb(D) such that K(Bb(D)) ⊂ C0(D) (see the proof
of Theorem 2.4 in [2]). In [2, Proposition 1.31] it is stated that, conversely,
q ∈ J α(D) if (only) K1 = GDq ∈ C0(D).

On the other hand, it is easily seen that, as in the classical case α = 2,
compactness of K on Bb(D) implies that GDq is continuous, and hence
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GDq ∈ C0(D) due to the regularity of D and the domination principle for K
(see [7, Corollary 4.5] for bounded D and [1, Corollary 5.2,(b)] for the general
case). So q ∈ J α(D) if and only if K is a compact operator on Bb(D). For
some partial statements in the classical case see [4, Corollary to Proposition
3.1, Theorem 3.2].

In this paper, we fix a measure space (E, E , µ) and a numerical function
G ≥ 0 on E × E which is E ⊗ E-measurable. The purpose of this note is to
establish that, even in this most general setting, for every measurable q ≥ 0
on E, uniform integrability of {G(x, ·)q : x ∈ E} is equivalent to compactness
of the mapping f 7→

∫
G(·, y)f(y)q(y) dµ on the space of bounded measurable

functions on E provided that there are strictly positive functions having these
properties.

To be more specific, let E+, Eb, respectively, denote the set of all E-
measurable numerical functions f on E such that f ≥ 0, f is bounded, respec-
tively. We define

(1) Gf(x) :=

∫
G(x, y)f(y) dµ(y), f ∈ E+, x ∈ E.

If q ∈ E+ and Gq is bounded, then Kq : f 7→ G(fq) obviously is a bounded
operator on Eb, equipped with the sup-norm ∥ · ∥∞, such that ∥Kq∥ = ∥Gq∥∞.
So we are interested in the sets

Fco(G) := {q ∈ E+ : Gq is bounded and Kq is a compact operator on Eb},
Fui(G) := {q ∈ E+ : {G(x, ·)q, x ∈ E} is uniformly integrable}.

Our main results are that Fui(G) ⊂ Fco(G) if there exists a strictly positive
function in Fco(G) (Theorem 2.1), and Fco(G) ⊂ Fui(G) if there exists a strictly
positive function in Fui(G) (Theorem 2.2). In Section 3, we provide general
examples (covering the situation in [2]), where the assumptions are satisfied.

Before studying the relation between Fui(G) and Fco(G), let us recall that
a subset F of E+ is called uniformly integrable if, for every ε > 0, there exists
an integrable g ∈ E+ such that

∫
{f≥g} f dµ ≤ ε for every f ∈ F . Further, we

note some simple facts, which are trivial for Fui(G).

Lemma 1.1. Let F = Fui(G) or F = Fco(G). The following hold:

(1) F is a convex cone and G(1{q=∞}q) = 0 for all q ∈ F .

(2) If q ∈ F and q′ ∈ E+ with q′ ≤ q, then q′ ∈ F .

(3) If q ∈ E+ and, for every ε > 0, there are q′ ∈ F and q′′ ∈ E+ with
q = q′ + q′′ and Gq′′ ≤ ε, then q ∈ F .
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Clearly, (1) holds for Fco(G) as well, and to get (2) it suffices to observe
that taking h := 1{q>0}q

′/q, we have G(fq′) = G(fhq) for every f ∈ Eb. For (3)
it suffices to note that ∥Kq′′∥ = ∥Gq′′∥∞ and every limit of compact operators
on Eb is compact.

2. RELATION BETWEEN Fco(G) AND Fui(G)

Theorem 2.1. If there is a strictly positive function in Fco(G), then
Fco(G) contains Fui(G).

Proof. Let q0 ∈ Fco(G), q0 > 0, and q ∈ Fui(G). To prove q ∈ Fco(G)
we may, by Lemma 1.1(1), assume that q < ∞. Let ε > 0 and let g ∈ E+ be
integrable such that Ax := {G(x, ·)q > g} satisfies

(2)

∫
Ax

G(x, ·)q dµ < ε, x ∈ E.

Since {Mq0 < q} ↓ ∅ as M ↑ ∞, there is M ∈ N such that, defining A :=
{Mq0 < q},

(3)

∫
A
g dµ < ε.

Let q′ := 1E\Aq and q′′ := 1Aq. Then q = q′+q′′, q′ ≤ Mq0. By Lemma 1.1(2),
q′ ∈ Fco(G). Moreover, G(x, ·)q ≤ g on E \Ax. So, by (2) and (3),

Gq′′(x) =

∫
A
G(x, ·)q dµ ≤

∫
Ax

G(x, ·)q dµ+

∫
A\Ax

g dµ < 2ε, x ∈ E.

By Lemma 1.1(3), the proof is finished.

Theorem 2.2. If there is a strictly positive function in Fui(G), then
Fui(G) contains Fco(G).

Proof. Let q0 ∈ Fui(G), q0 > 0, q ∈ Fco(G) and ε > 0. By Lemma 1.1,(1),
G(1{q>Mq0}q) ↓ 0 pointwise as M ↑ ∞, hence uniformly on E, by compactness
of Kq. So there exists M ∈ N such that

(4) A := {q > Mq0} satisfies G(1Aq) ≤ ε.

By assumption, there is an integrable g ∈ E+ such that, for every x ∈ E,

(5) Ax := {G(x, ·)q0 ≥ g} satisfies

∫
Ax

G(x, ·)q0 dµ ≤ ε/M.

Let us fix x ∈ E and define Bx := {G(x, ·)q ≥ Mg}. Then

Bx \A ⊂ {Mg ≤ G(x, ·)q ≤ G(x, ·)Mq0} ⊂ Ax,
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and hence, by (5),∫
Bx\A

G(x, ·)q dµ ≤ M

∫
Ax

G(x, ·)q0 dµ ≤ ε.

Thus
∫
Bx

G(x, ·)q dµ ≤ 2ε, by (4). Since Mg is integrable, the proof is finished.

Corollary 2.3. If both Fui(G) and Fco(G) contain strictly positive func-
tions, then Fco(G) = Fui(G).

Let G′ : E × E → [0,∞] be E ⊗ E-measurable and suppose that G′ ≤ G.
Then, of course, Fui(G) ⊂ Fui(G

′). So Theorems 2.2 and 2.1 also imply the
following.

Corollary 2.4. If both Fui(G) and Fco(G
′) contain strictly positive func-

tions, then Fco(G) ⊂ Fco(G
′).

Remark 2.5. Of course, the preceding results immediately yield corre-
sponding statements for arbitrary E-measurable numerical functions q on E
using q = q+ − q−.

3. EXAMPLES IN POTENTIAL THEORY

3.1. First example

Let E be a Borel set in Rd, d ≥ 1, let E be the σ-algebra of all Borel
sets in E and µ be the restriction of Lebesgue measure on (E, E). Further, let
G : E × E → [0,∞] and φ : [0,∞) → [0,∞] be measurable such that

G(x, y) ≤ φ(|x− y|), x, y ∈ E,

and, for some a, r,∈ (0,∞), φ ≤ a on (r,∞) and
∫ r
0 φ(t)td−1dt < ∞.

Proposition 3.1.

F := {q ∈ E+ : q integrable, q ≤ 1, lim|x|→∞ q(x) = 0}

is contained in Fui(G), and Fco(G) ⊂ Fui(G).

Proof. By Theorem 2.2, it clearly suffices to prove F ⊂ Fui(G). To that
end, we may assume without loss of generality that

E = Rd and G(x, y) = φ(|x− y|), x, y ∈ Rd

(first extend G to R
d × Rd by G(x, y) := 0, if x or y are in the

complement of E).
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Let q ∈ F . For x ∈ E and r > 0, we defineB(x, r) := {y ∈ E : |y−x| < r}.
Defining fx := 1B(x,r)G(x, ·), we then have

G(x, ·)q ≤ aq + fxq, x ∈ E.

So it suffices to show that the functions fxq, x ∈ E, are uniformly integrable.

Let ε > 0 and b := 1 +
∫
f0 dµ. Then b < ∞, by assumption on φ, and

we may choose R > 0 such that q ≤ ε/b on B(0, R)c. If x ∈ B(0, R+ r)c, then
B(x, r) ∩B(0, R) = ∅, and hence

(6)

∫
fxq dµ ≤ ε

b

∫
fx dµ =

ε

b

∫
f0 dµ ≤ ε.

Suppose now that x ∈ B(0, R + r), and hence B(x, r) ⊂ B(0, R + 2r). Let
M > a such that

∫
{f0>M} f0 dµ < ε and g := M1B(0,R+2r). Then

(7)

∫
{fxq≥g}

fxq dµ ≤
∫
{fx≥M}

fx dµ =

∫
{f0≥M}

f0 dµ < ε.

Thus, the functions fxq, x ∈ E, are uniformly integrable.

3.2. Second example

Let (X,W) be a balayage space such that W contains a function
0 < w0 ≤ 1 (see [3, 5, 6, 7]), and let G : X ×X → [0,∞] be Borel measurable
such that, for every y ∈ X, G(·, y) is a potential on X which is harmonic on
X \ {y}.

Let µ be a positive Radon measure onX and let B(X), C(X), respectively,
denote the set of all Borel measurable numerical functions, continuous real
functions, respectively, on X. We recall that, for every positive f ∈ B(X),
the function Gf :=

∫
G(·, y)f(y) dµ(y) is lower semicontinuous, by Fatou’s

Lemma.

Proposition 3.2. If there exists q ∈ B(X), q > 0, such that Gq ∈ C(X),
then Fui(G) ⊂ Fco(G).

Proof. By Theorem 2.1, it suffices to find a strictly positive function q0 ∈
Fco(G).

We choose compact sets Ln, n ∈ N, covering X. Let n ∈ N and

qn := 1Lnq.

Since Gqn + G(1 − qn) = Gq ∈ C(X), we know that qn is a continuous real
potential. It is harmonic on X \ Ln. Let an := supGqn(Ln)/ inf w0(Ln).



16 W. Hansen 6

Obviously, Gqn ≤ anw0 on Ln, hence on X. So Gqn ≤ an and, by [7,
Proposition 4.1], qn ∈ Fco(G). Using Lemma 1.1, we finally obtain that

q0 :=
∑

n∈N
(an2

n)−1qn ∈ Fco(G).
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