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Algebra environments capture properties of non-commutative conditional expec-
tations in a general algebraic setting. Their study relies on algebraic geometry,
topology, and differential geometry techniques. The structure algebraic and Ba-
nach manifolds of algebra environments and their Zariski and smooth tangent
vector bundles are particular objects of interest. A description of derivations
on algebra environments compatible with geometric structures is an additional
issue. Grassmann and flag manifolds of unital involutive algebras and spaces of
projective compact group representations in C∗-algebras are analyzed as struc-
ture manifolds of associated algebra environments.

AMS 2020 Subject Classification: 08A05, 22C05, 22D20, 32K05.

Key words: algebraic and Banach manifolds, Zariski and smooth tangent spaces,
principal fiber bundles, Ehresmann connections, projective compact
group representations.

INTRODUCTION

The concept of algebra environments deconstructs non-commutative con-
ditional expectations. We start their study based on an algebraic geometry
approach and eventually refine the investigation by relying on topology and
differential geometry techniques. The general results turn out to be useful in
analyzing spaces of projective compact group representations in C∗-algebras
from a geometric perspective. Specific examples include n-fold product, Clif-
ford algebra, and cyclic group algebra environments.

Algebra environments provide frameworks with relevance in Clifford anal-
ysis, differential geometry, and operator theory. Though subsequently we will
not elaborate on such issues, the last section of the article includes comments
and references that would make the points.

The term algebra without other specifications refers to associative, dis-
tributive complex algebras. Definitions and results for real algebras are derived
by making appropriate adjustments. We may assume that an algebra U is uni-
tal with unit 1U, or involutive with an involution operation ∗. The norms of
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Banach algebras will be denoted by ∥ · ∥, with a few exceptions imposed by
existing standards. We will be using Lie algebras too, for which the attributes
associative, distributive, or involutive have their particular interpretations.

To motivate the concept of algebra environments, we recall the definition
of non-commutative conditional expectations in different algebraic settings.

Definition (Non-commutative conditional expectations). Suppose E is an
algebra and A ⊆ E a subalgebra. A linear operator Π : E → E with range
Ran(Π) = A is called a non-commutative conditional expectation from E onto
A provided

(i) Π(aα) = aΠ(α), Π(αa) = Π(α)a, a ∈ A, α ∈ E,

(ii) Π(1E) = 1A, if E, A are unital,

(iii) Π(α∗) = Π(α)∗, α ∈ E, whenever E, A are involutive,

(iv) ||Π(α)|| ≤ ||α|| and Π(α∗α) ≥ 0, α ∈ E, if E, A are Banach ∗-algebras.

By design, algebra environments are close relatives of non-commutative condi-
tional expectations. Anticipating Definition 1.1 in Section 1, we assume that
Π : E → A is a linear mapping from an algebra E into a unital algebra A,
subject to two requirements,

(i) E is a unital A-bimodule,

(ii) Π : E → A is an A-bilinear mapping,

and refer to (E,Π,A) as an environment with total algebra E, base algebra A,
and environment projection Π. Additional assumptions yield special classes of
environments. When E and A are involutive and Π preserves the involutions,
(E,Π,A) is called an involutive environment. If E and A are Banach algebras
and Π is continuous, (E,Π,A) is referred to as a Banach algebra environment.

For any environment (E,Π,A), we introduce an algebraic set S(E) ⊆ E
consisting of idempotents of E that satisfy a specific system of equations. The
elements of S(E) are called geometric E-structures on algebra A. If (E,Π,A)
is involutive, the set S∗(E) ⊆ S(E) of self-adjoint structures is an algebraic
set, too. Section 1 analyzes the structure manifolds S(E) and S∗(E) by relying
on algebraic geometry concepts. The goal is to describe the Zariski tangent
spaces Talg

α S(E), α ∈ S(E), and Talg
α S∗(E), α ∈ S∗(E). This is accomplished

by assigning to each structure α ∈ S(E) a linear mapping Σα : E → A called the
symbol operator, that will serve as an important tool for many other purposes.
The main result is stated as Theorem A in Subsection 1.3. An application
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concerning complex structures on Grassmann and flag manifolds of involutive
unital algebras is outlined in Subsection 1.4. In addition, associated with
each α ∈ S(E), we construct an involution Γα : Der(E,Π,A) → Der(E,Π,A)
on the Lie algebra Der(E,Π,A) of derivations on (E,Π,A), and show that
its eigenspace corresponding to λ = 1 is the Lie subalgebra of derivations
compatible with α.

Section 2 develops a differential geometry approach. Based on Section
1, we prove that the structure manifolds S(E) and S∗(E) of an involutive Ba-
nach algebra environment (E,Π,A) are Banach manifolds, and their connected
components are base spaces of principal fiber bundles defined in terms of base
algebra A and geometric E-structures on A. The symbol operators Σα : E → A
prove critical in introducing Ehresmann connections on such principal fiber
bundles. Smooth curves γ : R → S(E) have local horizontal lifts that will
be used to define and characterize geodesics. We prove that when A is a C∗-
algebra, a geodesic path γ0 : [0, τ ] → S∗(E) with length L(γ0) < π is minimal
compared with smooth curves γ : [0, τ ] → S∗(E) with the same endpoints.

Section 3 analyzes the spaces R(G, ε,A) and R∗(G, ε,A) of continuos pro-
jective representations, or unitary representations, of a compact group G with
a two-cocycle ε into a unital C∗-algebra A. We define an involutive Banach
algebra environment E[G, ε,A ] and prove that the two spaces of representa-
tions are the structure manifolds of E[G, ε,A ]. This result enables us to access
techniques developed in Sections 1 and 2 and derive several consequences. For
instance, we show that each continuous representation is similar to a unitary
representation and R∗(G, ε,A) is a deformation retract of R(G, ε,A).

Section 4 includes comments and appropriate references underlining work
done by many authors who developed lines of research with noteworthy con-
sequences. Part of our results and proofs were motivated by–and benefitted
from–their insightful contributions. Several applications of algebra environ-
ments and a list of related specific issues will be referred to, as well.

1. ALGEBRA ENVIRONMENTS–GEOMETRIC APPROACH

Algebra environments provide a suitable framework for implementing an
algebraic geometry approach. As specific outcomes, we define two algebraic
sets called structure manifolds of algebra environments, describe their Zariski
tangent spaces, set up several appropriate tools, and determine the derivations
on algebra environments compatible with prescribed geometric structures.
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1.1. Algebra environments–Definitions

We start by introducing the category of algebra environments, its objects
and homomorphisms, and two subcategories with additional properties.

Definition 1.1. An algebra environment (E,Π,A) consists of two algebras
E and A, called the total and base algebras, and a linear mapping Π : E → A
called the environment projection, subject to the requirements

(i) base algebra A is unital with unit 1A,

(ii) total algebra E is a unital A-bimodule,

(iii) Π : E → A is an A-bilinear mapping.

Whenever convenient, we refer to (E,Π,A) as environment E and regard A
and Π as implicitly related objects. The elements of A will be denoted by
a, b, . . . , x, y, . . . , and the elements of E by α, β, . . . , φ, ψ, . . . . The products of
x, y ∈ A, or φ,ψ ∈ E, are denoted by xy and φ× ψ, respectively. The left and
right products of a ∈ A and α ∈ E are expressed as a · α and α · a. For a ∈ A
and α, β ∈ E, requirement (ii) includes the properties 1A · α = α · 1A = α, and

a · (α× β) = (a · α)× β, (α× β) · a = α× (β · a), (α · a)× β = α× (a · β).
Definition 1.2. Let (E,ΠE,A,A) and (F,ΠF,B,B) be two environments.

An environment homomorphism from (E,ΠE,A,A) to (F,ΠF,B,B) is a pair
(Θ,Θ0), with Θ : E → F and Θ0 : A → B algebra homomorphisms such that

(i) Θ0(1A) = 1B,

(ii) Θ(a · α) = Θ0(a) ·Θ(α), Θ(α · a) = Θ(α) ·Θ0(a), a ∈ A, α ∈ E,

(iii) Θ0 ◦ΠE,A = ΠF,B ◦Θ.

Definition 1.3. An environment (E,Π,A) is involutive provided the total
and base algebras E and A are involutive,

(i) (a · α)∗ = α∗ · a∗, (α · a)∗ = a∗ · α∗, a ∈ A, α ∈ E,

(ii) Π(α∗) = Π(α)∗, α ∈ E.

Definition 1.4. An environment (E,Π,A) is a Banach algebra environ-
ment if both E and A are Banach algebras,

(i) ∥a · α∥ ≤ ∥a∥ ∥α∥, ∥α · a∥ ≤ ∥α∥ ∥a∥, a ∈ A, α ∈ E,

(ii) Π : E → A is continuous.

For each subcategory, the environment homomorphisms are consistent with the
additional structures of the total and base algebras.
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1.2. Stucture manifolds

Definition 1.5. The structure manifold of an environment (E,Π,A) is the
set S(E) = S(E,Π,A) of elements α ∈ E that satisfy the algebraic equations

(i) Π(α) = 1A,

(ii) α× α = α,

(iii) Π(φ× α) · α = φ× α, φ ∈ E,

(iv) α ·Π(α× ψ) = α× ψ, ψ ∈ E,

(v) Π(φ× α)Π(α× ψ) = Π(φ× α× ψ), φ, ψ ∈ E.

If (E,Π,A) is involutive, S∗(E) = S∗(E,Π,A) is defined by also assuming that

(vi) α∗ = α.

The elements α ∈ S(E) are called geometric E-structures on base algebra A.

We note that the list of requirements in Definition 1.5 is not minimal. For
instance, instead of (i) and (ii), we may require Π(α × α) = 1A and from
this derive (i) and (ii) based on (iii) or (iv). Moreover, property (v) is a
direct consequence of either (iii) or (iv). For involutive environments, if α ∈
S(E) then α∗ ∈ S(E), and assumptions (iii) and (iv) equivalent. Actually, for
some classes of algebra environments the algebraic sets S(E) and S∗(E) are
completely defined by requirements (i), (v), or (i), (v), and (vi), respectively.

To each α ∈ S(E), we associate a subalgebra Aα of base algebra A by

(1.1) Aα = {x ∈ A : x · α = α · x },

and the linear mapping πα : A → A defined as

(1.2) πα(x) = Π(α · x× α) = Π(α× x · α), x ∈ A.

If (E,Π,A) is an involutive environment and α ∈ S∗(E), subalgebra Aα is
involutive and πα(x

∗) = πα(x)
∗, x ∈ A.

Proposition 1.6. Operator πα : A → A is a projection with range Aα,

(1.3) π2α = πα, Ran(πα) = Aα,

such that

(1.4) πα(1A) = 1A,

(1.5) πα(x a) = xπα(a), πα(a x) = πα(a)x, x ∈ Aα, a ∈ A.
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Essentially, Proposition 1.6 points out that each πα : A → A, α ∈ S(E), is a
non-commutative conditional expectation from A onto Aα.

Proof. Requirements (iii) and (iv) in Definition 1.5 imply

πα(x) ·α = Π(α ·x×α) ·α = α ·x×α = α×x ·α = α ·Π(α×x ·α) = α ·πα(x),

for any x ∈ A, and consequently,

(1.6) πα(x) ∈ Aα, x ∈ A, i.e., Ran(πα) ⊆ Aα.

Moreover, if x ∈ Aα, then

(1.7) πα(x) = Π(α · x× α) = Π(x · α× α) = Π(x · α) = xΠ(α) = x.

Statement (1.3) follows from (1.6) and (1.7). The proof of (1.4) reduces to

πα(1A) = Π(α · 1A × α) = Π(α× α) = Π(α) = 1A.

In its turn, (1.5) follows from

πα(x a) = Π(α · x a× α) = Π(x · α · a× α) = xΠ(α · a× α) = xπα(a),

and

πα(a x) = Π(α× a x · α) = Π(α× a · α · x) = Π(α× a · α)x = πα(a)x.

The proof is complete.

We note that each subalgebra Aα, α ∈ S(E), has a direct complement,
the subspace A⊥

α ⊆ A given by

(1.8) A⊥
α = {x ∈ A : πα(x) = 0},

range of the complement projection π⊥α : A → A, π⊥α = IdA − πα.

1.3. Zariski tangent spaces

We are going to define the Zariski tangent spaces Talg
α S(E) and Talg

α S∗(E)
to the algebraic manifolds S(E) and S∗(E) at α ∈ S(E), or α ∈ S∗(E). Al-
gebraic geometry textbooks, as for instance Munford [53], provide explicit de-
scriptions of Zariski tangent spaces to algebraic sets. We will just do what
Pierre de Fermat did, and rely on an approach that uses dual numbers. The
algebra of complex dual numbers is Λ#(C) = Λ0(C)⊕Λ1(C), the exterior alge-
bra of C with the usual structures, including an involution and a distinguished
element δ ∈ Λ1(C), the dual unit, with the properties:

(1.9) δ∗ = δ, δ2 = 0.
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The set {1, δ}, 1 ∈ Λ0(C) ≡ C, δ ∈ Λ1(C) ≡ Cδ, provides a linear basis for
Λ#(C) ≡ C[δ] = C+ Cδ = {ζ + η δ : ζ, η ∈ C}.

We next associate an augmentation U[δ] to any algebra U defined as

U[δ] = U⊗ C[δ] = U+ U δ = {u+ v δ : u, v ∈ U },
with natural addition, and multiplication consistent with (1.9). Consequently,
an algebra environment (E,Π,A) has an extension (E[δ],Π[δ],A[δ]), where the
elements of E[δ] are of the form α+ θ δ, α, θ ∈ E, and

(1.10) Π[δ](α+ θ δ) = Π(α) + Π(θ) δ ∈ A[δ].

The unit of base algebra A[δ] is 1A. If (E,Π,A) is an involutive environment,
the extension (E[δ],Π[δ],A[δ]) is involutive, too.

Definition 1.7. Let E be an environment with structure manifold S(E).

(i) The Zariski tangent space Talg
α S(E) to S(E) at α ∈ S(E) consists of

all elements θ ∈ E such that α + θ δ ∈ S(E[δ]), the structure manifold
associated with the augmented environment (E[δ],Π[δ],A[δ]).

(ii) For an involutive algebra environment, the Zariski tangent space Talg
α S∗(E)

to S∗(E) at α ∈ S∗(E) is defined by assuming that α+ θ δ ∈ S∗(E[δ]).

We refer to θ ∈ Talg
α S(E) as tangent E-structures on A at α.

Lemma 1.8. If α ∈ S(E), then θ ∈ Talg
α S(E) only if

(i) Π(θ) = 0,

(ii) θ × α+ α× θ = θ,

(iii) Π(φ× θ) · α+Π(φ× α) · θ = φ× θ, φ ∈ E,

(iv) θ ·Π(α× ψ) + α ·Π(θ × ψ) = θ × ψ, ψ ∈ E,

(v) Π(φ× θ)Π(α× ψ) + Π(φ× α)Π(θ × ψ) = Π(φ× θ × ψ), φ,ψ ∈ E.

If (E,Π,A) involutive and α ∈ S∗(E), then θ ∈ Talg
α S∗(E) provided, in addition,

(vi) θ∗ = θ.

Proof. The proof of property (i) follows from requirement (i) in Definition
1.5 and equation (1.10). Assuming that Π[δ](α+ θ δ) = 1A, we get

1A = Π(α) + Π(θ)δ = 1A +Π(θ)δ,

i.e., Π(θ) = 0. Property (ii) is a consequence of (α+ θδ)× (α+ θδ) = α+ θδ,
which is requirement (ii) in Definition 1.5. The other properties are derived
from requirements (iii)–(vi) in a similar way.
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The comments made right after Definition 1.5 indicate that the list of
properties in Lemma 1.8 is redundant. Eventually, we will give some simpler
and more reliable descriptions of Talg

α S(E) and Talg
α S∗(E) as main results in

this section.

Definition 1.9. A derivation on an algebra U is a linear mapping
D : U → U with the property D(uv) = D(u)v + uD(v), u, v ∈ U. If U is
involutive, we may assume that D is involution preserving, i.e., D(u∗) = D(u)∗,
u ∈ U.

The space of derivations on U, denoted by Der(U), is a Lie algebra with the
Lie product [ · , · ] given by the commutator of two derivations, i.e.,

[D,D′ ] = DD′ −D′D, D, D′ ∈ Der(U).

The subspace Der∗(U) of involution preserving derivations is a Lie subalgebra.

Definition 1.10. A derivation on an environment (E,Π,A) is a pair (D,D0),
where D ∈ Der(E) and D0 ∈ Der(A), such that

D(a · φ) = D0(a) · φ+ a · D(φ), D(φ · a) = D(φ) · a+ φ · D0(a),

for all a ∈ A and φ ∈ E, and

Π(D(φ)) = D0(Π(φ)), φ ∈ E.

A derivation (D,D0) on an involutive environment is involution preserving
provided the derivations D and D0 are involution preserving.

In case the environment projection Π : E → A is surjective, Definition 1.10
implies that D0 is uniquely determined by D. The space Der(E,Π,A) of deriva-
tions on (E,Π,A) is a Lie algebra with the Lie product given by

[(D,D0), (D′,D′
0)] = ([D,D′], [D0,D′

0]), (D,D0), (D′,D′
0) ∈ Der(E,Π,A).

The subspace Der∗(E,Π,A) of involution preserving derivations on an involu-
tive environment is a Lie subalgebra.

Lemma 1.11. Let (D,D0) be a derivation on (E,Π,A):

(i) If α ∈ S(E), then θ = D(α) ∈ Talg
α S(E).

(ii) If (E,Π,A) is involutive, (D,D0) is involution preserving, and α ∈ S∗(E),

then θ = D(α) ∈ Talg
α S∗(E).

Proof. We have to show that θ = D(α) satisfies the equations in
Lemma 1.8. All we need is to apply (D,D0) to each equation in Definition 1.5.
Equation (i) in Lemma 1.8, for instance, follows from

Π(θ) = Π(D(α)) = D0(Π(α)) = D0(1A) = 0.
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The proof of equation (ii) is elementary too, and goes as follows,

θ × α+ α× θ = D(α)× α+ α×D(α) = D(α× α) = D(α) = θ.

The other equations, (iii)–(vi), have similar straightforward proofs.

Actually, Lemma 1.11 yields the tangent spaces Talg
α S(E) and Talg

α S∗(E)
in their entirety. To justify this expected claim, we need a few new tools.

Each x ∈ A defines the inner derivation D0,x = [x , · ] ∈ Der(A) given by
D0,x(a) = [x , a ] = x a − a x, a ∈ A, as well as a derivation Dx = [x , · ] ∈
Der(E) defined by Dx(φ) = [x , φ ] = x · φ − φ · x, φ ∈ E. We refer to
the so defined pair (Dx,D0,x), which is a derivation on (E,Π,A), as the inner
derivation associated with x ∈ A. We note that (Dx,D0,x) ∈ Der∗(E,Π,A) if
and only if x∗ = −x, i.e., x ∈ Ash, the subspace of skew-hermitian
elements of A. Related to inner derivations on algebra environments we define
the following two linear mappings,

(1.11) D0 : A → Der(A), D0(x) = D0,x, D : A → Der(E), D(x) = Dx.

The next definition introduces a new concept, quite useful in analyzing struc-
ture manifolds of algebra environments and their Zariski tangent spaces.

Definition 1.12. Let (E,Π,A) be an algebra environment and α ∈ S(E).
The associated symbol operator is defined by

(1.12) Σα : E → A, Σα(φ) = 2−1Π(φ× α− α× φ), φ ∈ E.

For an involutive environment (E,Π,A) and α ∈ S∗(E), the symbol operator is

(1.13) Σα,∗ : Eh → A, Σα,∗ = Σα|Eh, Eh = {φ ∈ E : φ∗ = φ }.

Before proceeding with a technical result, we refer to equations (1.1), (1.2),
(1.8) in Subsection 1.2 for definitions of subalgebra Aα ⊆ A, conditional expec-
tation πα : A → A with range Aα, and the direct complement A⊥

α = A⊖ Aα.

Proposition 1.13. Let (E,Π,A) be an environment and α ∈ S(E). The
symbol operator Σα : E → A has the following properties:

(i) RanΣα = A⊥
α .

(ii) If θ ∈ Talg
α S(E) and x = Σα(θ), then θ = D(x)(α).

If (E,Π,A) is involutive and α ∈ S∗(E), then

(iii) RanΣα,∗ = A⊥
α ∩ Ash, Ash = {x ∈ A : x∗ = −x }.

(iv) If θ ∈ Talg
α S∗(E) and x = Σα,∗(θ), then θ = D(x)(α).
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Proof. We rely on several previous definitions and results. Suppose φ ∈ E
and let x = Σα(φ) ∈ A. Using equation (1.12) and requirements (iii) and (iv)
in Definition 1.5, we get

α× x · α = 2−1 [α×Π(φ× α) · α− α ·Π(α× φ)× α ]

= 2−1 (α× φ× α− α× φ× α) = 0,
hence πα(x) = Π(α × x · α) = 0, i.e., x ∈ A⊥

α . Consequently, Ran(Σα) ⊆ A⊥
α .

Next, choose an arbitrary x ∈ A⊥
α and let φ = x · α− α · x ∈ E. Observe that

φ×α−α×φ = (x ·α−α ·x)×α−α× (x ·α−α ·x) = x ·α−2α ·x×α+α ·x.

Therefore, since Π(α) = 1, we have

Σα(φ) = 2−1Π(φ× α− α× φ) = x− πα(x) = x,

hence A⊥
α ⊆ Ran(Σα). We just proved statement (i), Ran(Σα) = A⊥

α .

Assume now that θ ∈ Talg
α S(E) and let x = Σα(θ) ∈ A⊥

α . By parts (i)
and (ii) in Lemma 1.8, we know that

Π(θ) = 0, θ × α+ α× θ = θ.

Consequently, θ × α− α× θ = 2 θ × α− θ = θ − 2α× θ, and (1.12) implies

(1.14) x = Σα(θ) = Π(θ × α) = −Π(α× θ).

Using once more requirements (iii) and (iv) in Definition 1.5, we get

D(x)(α) = x · α− α · x = Π(θ × α) · α+ α ·Π(α× θ) = θ × α+ α× θ = θ.

The proof of statement (ii) is concluded.

For statement (iii), since α∗ = α, we observe that

Σα(φ)
∗ = −Σα(φ

∗), (x · α− α · x)∗ = − (x∗ · α− α · x∗),

for any φ ∈ E and x ∈ A⊥
α . Therefore, if φ ∈ Eh, then x = Σα(φ) ∈ Ash, and

whenever x ∈ Ash, then φ = x · α− α · x ∈ Eh with Σα(φ) = x.
Statement (iv) follows from statement (ii). The proof is complete.

A quick inspection of the proof of Proposition 1.13 shows that the Zariski
tangent spaces to structure manifolds are completely determined by only two,
or three, requirements in Lemma 1.8.

Corollary 1.14. Suppose α ∈ S(E) or α ∈ S∗(E) and θ ∈ E.

(i) θ ∈ Talg
α S(E) if and only if Π(θ) = 0 and θ × α+ α× θ = θ.

(ii) θ ∈ Talg
α S∗(E) if, in addition, θ∗ = θ.

We are now in a position to state the first main result in our article.
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Theorem A (Zariski tangent spaces to S(E) and S∗(E)). Let (E,Π,A)
be an algebra environment and assume that α ∈ S(E).

(i) The linear mapping Tα : A⊥
α → Talg

α S(E) defined by

(1.15) Tα(x) = D(x)(α) = x · α− α · x, x ∈ A⊥
α ,

is a vector space isomorphism.

(ii) The linear mapping Pα : E → E given by

(1.16) Pα(φ) = Σα(φ) · α− α · Σα(φ), φ ∈ E,

is a projection of E onto the Zariski tangent space Talg
α S(E).

Suppose next that (E,Π,A) is an involutive environment and α ∈ S∗(E).

(iii) The linear mapping Tα,∗ : A⊥
α ∩ Ash → Talg

α S∗(E) defined as the restric-
tion and corestriction of Tα is a vector space isomorphism.

(iv) The linear mapping Pα,∗ : Eh → Eh defined as the restriction and core-
striction of Pα is a projection of Eh onto the Zariski tangent space
Talg
α S∗(E).

Proof. Let RanTα and KerTα denote the range and the kernel of Tα.
We get RanTα ⊆ Talg

α S(E) as a consequence of Lemma 1.11. Proposition 1.13

shows that for each θ ∈ Talg
α S(E), we have x = Σα(θ) ∈ A⊥

α and Tα(x) = θ.

Therefore, RanTα = Talg
α S(E). We conclude the proof of statement (i) by

observing that KerTα = A⊥
α ∩ {x ∈ A : x · α = α · x } = A⊥

α ∩ Aα = { 0 }. The
just completed proof points out that the inverse of Tα : A⊥

α → Talg
α S(E) is the

restriction Σα|Talg
α S(E) : Talg

α S(E) → A⊥
α of the symbol operator.

Statement (ii) is yet another consequence of previous results. Suppose
φ ∈ E and take x = Σα(φ) ∈ A. From equation (1.16) and Lemma 1.11 we get

Pα(φ) = D(x)(α) ∈ Talg
α S(E), hence RanPα ⊆ Talg

α S(E). On the other hand,

if θ ∈ Talg
α and x = Σα(θ), then Proposition 1.13 implies Pα(θ) = θ. The last

two observations clearly show that P2
α = Pα and RanPα = Talg

α S(E).
The remaining statements are derived from the previous ones. To get (iii)

from (i), we note that since α∗ = α, if x ∈ A⊥
α , then θ = Tα(x) ∈ Talg

α S∗(E),
i.e., θ∗ = θ, if and only if x ∈ Ash. With regard to statement (iv), from (ii) we

know that RanPα,∗ ⊆ Talg
α S(E). By Definition 1.12, we have

Σα(φ)
∗ = 2−1Π(φ× α− α× φ)∗ = 2−1Π(α∗ × φ∗ − φ∗ × α∗),

for any φ ∈ E. Under the additional assumption φ ∈ Eh, from φ∗ = φ and
α∗ = α it follows that

Σα(φ)
∗ = 2−1Π(α× φ− φ× α) = −Σα(φ).
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Therefore, using equation (1.16) we get,

Pα,∗(φ)
∗ = α× Σα(φ)

∗ − Σα(φ)
∗ × α = −α× Σα(φ) + Σα(φ)× α = Pα,∗(φ),

i.e., Pα,∗(φ) ∈ Talg
α S∗(E), and consequently RanPα,∗ ⊆ Talg

α S∗(E). It remains

to observe that for each θ ∈ Talg
α S∗(E) by equations (1.16) and (1.14) we have,

Pα,∗(θ) = Σα(θ) · α− α · Σα(θ) = Π(θ × α) · α+ α ·Π(α× θ)

= θ × α+ α× θ = θ.

The immediate conclusions are RanPα,∗ = Talg
α S∗(E) and P2

α,∗ = Pα,∗.

1.4. Grassmann and flag manifolds

Theorem A will play an important role subsequently. The next appli-
cation is related to geometric properties of Grassmann and flag manifolds of
involutive unital algebras and provides a description of their complex struc-
tures.

Suppose A is an involutive unital algebra and let En(A) = A×A× · · ·A,
n ≥ 2, be the n-fold product of A with itself. The operations on En(A) and the
A-bimodule structure are defined componentwise. We introduce the involutive
n-fold product environment (En(A),Π,A) with projection Π given by

Π(φ) = x1 + x2 + · · ·+ xn, φ = (x1, x2, . . . , xn) ∈ En(A).

We denote by E(A) and P(A) the spaces of idempotents and projections of A,

E(A) = {e ∈ A : e2 = e}, P(A) = {p ∈ A : p2 = p = p∗}.

Proposition 1.15. The structure manifold S(En(A)) consists of n-tuples
e = (e1, e2, · · · , en) of elements of E(A) that are n-partitions of 1A, i.e.,

ei ej = 0, 1 ≤ i, j ≤ n, i ̸= j, e1 + e2 + · · ·+ en = 1A.

For each e ∈ S(En(A)), equations (1.1), (1.2) imply that subalgebra Ae ⊆ A and
projection πe : A → A onto Ae are given by

Ae = {x ∈ A : x · e = e · x } = {x ∈ A : x ei = ei x, 1 ≤ i ≤ n },

πe(x) = Π(e · x× e) = e1 x e1 + e2 x e2 + · · ·+ en x en, x ∈ A.

The direct complement A⊥
e = A⊖ Ae of Ae has the next description,

A⊥
e = {x ∈ A : πe(x) = 0} = Ae,+ ⊕ Ae,−,

Ae,+ = ⊕1≤i<j≤n eiA ej , Ae,− = ⊕1≤j<i≤n eiA ej .
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According to equation (1.15), Te : A
⊥
e → Talg

e S(En(A)) is defined as

Te(x) = x · e− e · x = (x e1 − e1 x, x e2 − e2 x, . . . , x en − en x), x ∈ A⊥
e .

The structure manifold S∗(En(A)) ⊆ S(En(A)) consists of n-partitions of 1A
denoted by p = (p1, p2, . . . , pn) with components pi ∈ P(A), 1 ≤ i ≤ n. The
descriptions of Ap ⊆ A, πp : A → A, and A⊥

p = A ⊖ Ap = Ap,+ ⊕ Ap,− are

similar, and Tp,∗ : A
⊥
p ∩ Ash → Talg

p S∗(En(A)) has the explicit definition

Tp,∗(x) = x ·p−p ·x = (x p1−p1 x, x p2−p2 x, . . . , x pn−pn x), x ∈ A⊥
e ∩Ash.

Proof. Calculations based on previous definitions and equations.

The tangent spaces Talg
e S(En(A)), e ∈ S(En(A)), are complex subspaces

of En(A), whereas the tangent spaces Talg
p S∗(En(A)), p ∈ S∗(En(A)), are real

subspaces of En(A)h. In spite of this, each Talg
p S∗(En(A)), p ∈ S∗(En(A)), has

an entire collection of complex structures, that can be constructed by adapting
classical results due to Borel, Hirzebruch [8] to our algebraic setting.

Using the isomorphism Tp,∗ : A⊥
p ∩ Ash → Talg

p S∗(En(A)), it would be

enough to set up complex structures on A⊥
p ∩Ash. To this end, observe first that

any x ∈ A⊥
p has a unique decomposition x = x+ + x−, x+ ∈ Ap,+, x− ∈ Ap,−.

The requirement x ∈ Ash reduces to x∗ = x∗++x
∗
− = −x = −x+−x−, therefore

x− = −x∗+ and x = x+ − x∗+. Select a subset C ⊆ { (i, j) : 1 ≤ i < j ≤ n },
denote its complement by Cc, and define J+p,C : Ap,+ → Ap,+ by

J+p,C(x+) =
√
−1

∑
(i, j)∈C

xij −
√
−1

∑
(i, j)∈Cc

xij ,

for any x+ =
∑

1≤i< j≤n

xij , xij ∈ piA pj . Next, let Jp,C : A⊥
p ∩ Ash → A⊥

p ∩ Ash

be the linear mapping given by

Jp,C(x) = J+p,C(x+)− J+p,C(x+)
∗, x = x+ − x∗+ ∈ A⊥

p ∩ Ash, x+ ∈ Ap,+.

Since J2p,C = −IdA⊥
p ∩Ash

, we conclude that Jp,C is a complex structure. The

conjugate of Jp,C is Jp,Cc . The standard complex structure on S∗(En(A)) cor-
responds to C = {(i, j) : 1 ≤ i < j ≤ n}, and its conjugate to Cc = ∅.

We still need to define the Grassmann and flag manifolds of A. Specifi-
cally, an n-flag in A, n ≥ 2, is an n-tuple P = (P1, P2, . . . Pn) of projections
such that 0 ≤ P1 ≤ P2 ≤ · · · ≤ Pn = 1A, where P ≤ P ′, P, P ′ ∈ P(A), provided
PP ′ = P . The equations

P1 = p1, P2 = p1 + p2, . . . , Pn = p1 + p2 + · · ·+ pn,
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assign an n-flag to each p = (p1, p2, . . . , pn) ∈ S∗(En(A)). The process is
reversible, hence the space of all n-flags, denoted by Pn(A), and the structure
manifold S∗(En(A) are in a one-to-one correspondence. This observation shows
that Pn(A) is an algebraic subset of En(A)h with 2n(n−1)/2 complex structures.
In particular, P2(A) = {(p, 1A) : p ∈ P(A)} ≡ P(A) – the Grassmann manifold
of A – has just the standard complex structure and its conjugate.

1.5. Geometric structures and conjugation operators

Definition 1.10 introduced the space Der(E,Π,A) of derivations on an
algebra environment (E,Π,A). We use the two linear mappings D : A →
Der(E) and D0 : A → Der(A) given by equation (1.11) to define an associate
mapping,

(1.17) (D,D0) : A → Der(E,Π,A), (D,D0)(x) = (D(x),D0(x)), x ∈ A.

Suppose α ∈ S(E) and for the rest of this subsection let Σα : Talg
α S(E) → A

be the restriction of the general symbol operator to Talg
α S(E). Prompted by

Lemma 1.11, we define the mapping

Θα : Der(E,Π,A) → Talg
α S(E), Θα(D,D0) = D(α), (D,D0) ∈ Der(E,Π,A).

Part (ii) of Proposition 1.13 can be restated as follows.

Lemma 1.16. The composite mapping given by

Talg
α S(E) Σα−→ A

(D,D0)−→ Der(E,Π,A)
Θα−→ Talg

α S(E)

satisfies the property Θα ◦ (D,D0) ◦ Σα = Id
Talg

α S(E). □

Definition 1.17. A derivation (D,D0) ∈ Der(E,Π,A) is called compatible
with an E-structure α ∈ S(E) on A provided Θα(D,D0) = D(α) = 0. The
space of derivations compatible with α ∈ S(E) is denoted by Derα,0(E,Π,A).

Derα,0(E,Π,A) is a Lie subalgebra of Der(E,Π,A), that turns out to be an
eigenspace of an involution on Der(E,Π,A) defined in terms of α ∈ S(E).

Definition 1.18. The conjugation operator on Der(E,Π,A) associated with
a geometric E-structure α ∈ S(E) on base algebra A is defined as

Γα : Der(E,Π,A) → Der(E,Π,A), Γα = IdDer(E,Π,A) − 2 (D,D0) ◦ Σα ◦ Θα.

The derivation (D†,D†
0) = Γα(D,D0) is called the α-conjugate of (D,D0).

Theorem B (Conjugation operator and compatible derivations). The
operator Γα : Der(E,Π,A) → Der(E,Π,A) has the following properties:
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(i) Γα is an involution on Der(E,Π,A), i.e.,Γ2
α = IdDer(E,Π,A), or

(D† †,D† †
0 ) = (D,D0), (D,D0) ∈ Der(E,Π,A).

(ii) Θα ◦ Γα = −Θα, i.e.,

D†(α) = −D(α), (D,D0) ∈ Der(E,Π,A).

(iii) (D,D0) ∈ Derα,0(E,Π,A) only if Γα(D,D0) = (D,D0), i.e.,

(D†,D†
0) = (D,D0).

Proof. Properties (i) and (ii) are both direct consequences of Lemma 1.16
and Definition 1.18. Specifically,

Γ2
α = IdDer(E,Π,A) − 4 (D,D0) ◦ Σα ◦ Θα + 4 ((D,D0) ◦ Σα ◦ Θα)

2

= IdDer(E,Π,A) − 4 (D,D0) ◦ Σα ◦ Θα + 4 (D,D0) ◦ Σα ◦ Id
Talg

α S(E) ◦ Θα,

hence Γ2
α = IdDer(E,Π,A), and

Θα ◦ Γα = Θα − 2Θ ◦ (D,D0) ◦ Σα ◦ Θα = Θα − 2 Id
Talg

α S(E) ◦ Θα = −Θα.

Property (iii), which identifies Derα,0(E,Π,A) with the space of self-conjugate
derivations in Der(E,Π,A), i.e., the eigenspace of Γα corresponding to the
eigenvalue λ = 1, follows from Definition 1.16 and the previous results. If
(D,D0) ∈ Derα,0(E,Π,A), then Θα (D,D0) = 0 and from Definition 1.18, we
get Γα(D,D0) = (D,D0). Conversely, if Γα(D,D0) = (D,D0), property (ii)
shows that Θα (D,D0) = −Θα (D,D0), hence Θα (D,D0) = 0.

Corollary 1.19. The operators Γ+
α , Γ

−
α : Der(E,Π,A) → Der(E,Π,A),

Γ+
α = (IdDer(E,Π,A) + Γα)/2, Γ−

α = (IdDer(E,Π,A) − Γα)/2),

are complementary projections on the space Der(E,Π,A), i.e.,

(Γ+
α )

2 = Γ+
α , (Γ−

α )
2 = Γ−

α , Γ+
α Γ−

α = Γ−
α Γ+

α = 0, Γ+
α + Γ−

α = IdDer(E,Π,A),

such that Derα,0(E,Π,A) = RanΓ+
α = KerΓ−

α .

Corollary 1.20. Suppose θ ∈ Talg
α S(E) and let Derα,θ(E,Π,A) be de-

fined as

Derα,θ (A) = {(D,D0) ∈ Der(E,Π,A) : Θα (D,D0) = θ}.

Then Derα,θ(E,Π,A) = (D,D0) ◦ Σα(θ) + Derα,0 (E,Π,A).
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1.6. Functorial properties

Let (Θ,Θ0) : (E,ΠE,A,A) → (F,ΠF,B,B) be an environment homomor-
phism, and let S(E) ⊆ E and S(F) ⊆ F be the structure manifolds associated
with the two environments. Consider Θ | S(E) : S(E) → F and denote its range
by RanΘ | S(E). By applying (Θ,Θ0) to each equation in Definition 1.5 and
based on Definition 1.2, we derive the next result.

Lemma 1.21. Suppose that α ∈ S(E). The element β = Θ(α) ∈ F satis-
fies the algebraic equations:

(i) ΠF,B(β) = 1B,

(ii) β × β = β,

(iii) ΠF,B(Θ(φ)× β) · α = Θ(φ)× β, φ ∈ E,

(iv) β ·ΠF,B(β ×Θ(ψ)) = β ×Θ(ψ), ψ ∈ E,

(v) ΠF,B(Θ(φ)× β)ΠF,B(β × θ(ψ)) = ΠF,B(Θ(φ)× β ×Θ(ψ)), φ,ψ ∈ E.

If the environments are involutive and α ∈ S∗(E), i.e., α
∗ = α, then

(vi) β∗ = β.

From Definition 1.5, we get the following consequence.

Corollary 1.22. If (Θ,Θ0) is onto, then RanΘ | S(E) ⊆ S(F). If the
environments are involutive, then RanΘ | S∗(E) ⊆ S∗(F).

In the same setting, with regard to Zariski tangent spaces there is also a
natural functorial property. This time we rely on either Lemma 1.8, or Corol-
lary 1.14, that characterize tangent vectors to structure manifolds as solutions
to some equations. Applying (Θ,Θ0) to each equation, we have the next result.

Corollary 1.23. Suppose (Θ,Θ0) is onto, α ∈ S(E), β = Θ(α) ∈ S(F),
and let Talg

α S(E) ⊆ E and Talg
β S(F) ⊆ F be the associated Zariski tangent

spaces. Then RanΘ |Talg
α S(E) ⊆ Talg

β S(F). If the environments are involutive

and α ∈ S∗(E), then RanΘ |Talg
α S∗(E) ⊆ Talg

β S∗(F).

2. ALGEBRA ENVIRONMENTS–TOPOLOGICAL APPROACH

The goal of this section is to prove that the structure manifolds S(E) =
S(E,Π,A) and S∗(E) = S∗(E,Π,A) of an involutive Banach algebra environ-
ment (E,Π,A) are more than just algebraic subsets of total algebra E. With
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topological structures inherited from E, both turn out to be smooth Banach
manifolds. Definition 1.5 makes us to expect that S(E) is complex analytic and
S∗(E) is real analytic. For general results concerning Banach manifolds, prin-
cipal fiber bundles, and symmetric spaces, we refer to Bourbaki [15], Helgason
[25], Kobayashi, Nomizu [28], Lang [29], Upmeier [64].

2.1. Smooth tangent spaces

Let (E,Π,A) be an involutive Banach algebra environment. Though the
smooth structures on S(E) and S∗(E) are not yet defined, the Zariski tangent

spaces Talg
α S(E), α ∈ S(E), and Talg

α S∗(E), α ∈ S∗(E), could be described using
a standard differential geometry device.

Definition 2.1. An element θ ∈ E is called a smooth tangent vector to
S(E) at α ∈ S(E) provided there exists a smooth function γ : R → E such that

(2.1) γ(t) ∈ S(E), t ∈ R, γ(0) = α, γ′(0) = θ,

where γ′ = d γ/d t. The set of all such θ ∈ E is denoted by T∞
α S(E).

Similarly, if α ∈ S∗(E), an element θ ∈ E is called a smooth tangent vector to
S∗(E) at α provided there exists a smooth function γ : R → E such that

(2.2) γ(t) ∈ S∗(E), t ∈ R, γ(0) = α, γ′(0) = θ.

The set of all such θ ∈ E is denoted by T∞
α S∗(E).

Lemma 2.2. The smooth and Zariski tangent spaces coincide, i.e.,

(i) T∞
α S(E) = Talg

α S(E), α ∈ S(E),

(ii) T∞
α S∗(E) = Talg

α S∗(E), α ∈ S∗(E).

Proof. Suppose θ ∈ T∞
α S(E). From (2.1), we have

(2.3) Π(γ(t)) = 1A, γ(t)× γ(t) = γ(t), t ∈ R.

Taking derivatives of each equation in (2.3) at t = 0 we get

(2.4) Π(θ) = 0, θ × α+ α× θ = θ,

which by Corollary 1.14 implies θ ∈ Talg
α S(E). Next, assume that θ ∈ Talg

α S(E).
Using part (i) in Theorem A there exists a unique x ∈ A⊥

α such that

(2.5) θ = Dx(α) = x · α− α · x.

Direct calculations show that the smooth function

(2.6) γ : R → E, γ(t) = exp(tx) · α · exp(tx)−1, t ∈ R,
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satisfies requirements (2.1), hence θ ∈ T∞
α S(E).

The proof of statement (ii) is similar. Suppose first that θ ∈ T∞
α S∗(E).

From (2.2), in addition to (2.3), we have γ(t)∗ = γ(t), t ∈ R. Therefore, in

addition to (2.4), we get θ∗ = θ, which together imply θ ∈ Talg
α S∗(E). Assuming

that θ ∈ Talg
α S∗(E), by part (iii) in Theorem A there exists x ∈ A⊥

α ∩ Ash that
yields (2.5). Since each exp(tx), t ∈ R, is a unitary element of A, the smooth
function defined as in (2.6) satisfies (2.2), hence θ ∈ T∞

α S∗(E).

Lemma 2.2 justifies the use of notation TαS(E) and TαS∗(E) for either
Zariski or smooth tangent spaces to structure manifolds. Perhaps we should
note that by only using Definition 2.1, without Lemma 2.2 it would be tedious
to even get that the sets of smooth tangent vectors are vector spaces.

2.2. Topological properties of S(E) and S∗(E)

We continue assuming that (E,Π,A) is an involutive Banach environment.
Both S(E) and S∗(E) are closed subsets of E, and the norm of E makes each a
metric space. We denote by G(A) the Banach Lie group of invertible elements
of A, and by U(A) = {u ∈ G(A) : u−1 = u∗} the subgroup of unitary elements.

Definition 2.3. Two structures α, β ∈ S(E) are G(A)-equivalent provided
there exists a ∈ G(A) such that β = a · α · a−1. Two structures α, β ∈ S∗(E)
are called U(A)-equivalent if there exists u ∈ U(A) such that β = u · α · u∗.
The equivalence classes of a structure α are denoted by G(A)[α], or U(A)[α].

Proposition 2.4. Suppose α, β ∈ S(E), or α, β ∈ S∗(E), satisfy

(2.7) ||α− β|| < ||Π||−1 ||α||−1.

Then α and β are G(A)-equivalent, or U(A)-equivalent, respectively.

Proof. For α, β ∈ S(E), let a = Π(β × α) ∈ A. From requirements (iii)
and (iv) in Definition 1.5, we get

(2.8) a · α = β · a = β × α.

Since Π(α× α) = 1A, we have 1A − a = Π((α− β)× α), and (2.7) implies

(2.9) ||1A − a|| ≤ ||Π|| ||α− β|| ||α|| < 1.

Therefore, a ∈ G(A), and according to (2.8), β = a · α · a−1.

Next, suppose α, β ∈ S∗(E) and, as before, let a = Π(β×α). Since α∗ = α
and β∗ = β, from (2.8), we get α · a∗ = a∗ · β, so

(2.10) α · (a∗a) = a∗ · β · a = (a∗a) · α.
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Since a∗a ∈ G(A) is positive, using holomorphic functional calculus one defines
the absolute value of a as

|a| = (a∗a)1/2 = exp(1/2 log(a∗a)),

where exp is the exponential function and log the principal branch of the
logarithmic function. We note that |a| is invertible and, from (2.10), we get

α · |a| = |a| · α, α · |a|−1 = |a|−1 · α.
To conclude the proof, let u = a |a|−1 ∈ U(A) and observe that

β · u = β · a |a|−1 = a · α · |a|−1 = a |a|−1 · α = u · α,
i.e., α and β are U(A)-equivalent.

Corollary 2.5. The equivalence classes G(A)[α], α ∈ S(E), U(A)[α],
α ∈ S∗(E), are open and closed subsets of S(E) and S∗(E), respectively.

Recall that for each structure α ∈ S(E), we introduced the subalgebra
Aα ⊆ A defined by Aα = {x ∈ A : x · α = α · x}. Since Aα is a Banach
subalgebra of A, the associated groups G(Aα) and U(Aα) are Lie subgroups of
G(A) and U(A).

Theorem C (Principal fiber bundle property). Let ρG,α, α ∈ S(E), and
ρU,α, α ∈ S∗(E), be the mappings defined by:

(2.11) ρG,α : G(A) → G(A)[α], ρG,α(a) = a · α · a−1, a ∈ G(A),

(2.12) ρU,α : U(A) → U(A)[α], ρU,α(u) = u · α · u∗, u ∈ U(A).

(i) If α ∈ S(E), then ρG,α : G(A) → G(A)[α] is a principal fiber bundle with
structure group G(Aα) and the equivalence class G(A)[α] is homeomor-
phic to the coset space G(A)/G(Aα).

(ii) If α ∈ S∗(E), then ρU,α : U(A) → U(A)[α] is a principal fiber bundle with
structure group U(Aα) and the equivalence class U(A)[α] is homeomor-
phic to the coset space U(A)/U(Aα).

Proof. We start with statement (i). Essentially, we need to prove the
existence of continuous local cross-sections of ρG,α. Select α0 ∈ G(A)[α] and
define the open ball

B(α0) = {β ∈ S(E) : ||α0 − β|| < ||Π||−1 ||α0||−1 }.
By Proposition 2.4, B(α0) is an open subset of G(A)[α0] = G(A)[α]. Next
choose a ∈ G(A) such that α0 = a · α · a−1 and let σ : B(α0) → G(A) be the
continuous mapping given by

(2.13) σ(β) = Π(β × α0) a, β ∈ B(α0).
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From the proof of Proposition 2.4, we know that Π(β × α0) ∈ G(A), and

(2.14) β = Π(β × α0) · α0 ·Π(β × α0)
−1,

for any β ∈ B(α0). Therefore, the mapping σ is well defined, i.e., its values are
in G(A), and from (2.13) and (2.14), we get

ρG,α ◦ σ(β) = σ(β) · α · σ(β)−1 = Π(β × α0) a · α · a−1Π(β × α0)
−1

= Π(β × α0) · α0 ·Π(β × α0)
−1 = β, β ∈ B(α0),

i.e., ρG,α ◦ σ = IdB(α0), and that concludes the proof.
Statement (ii) has a quite similar proof. Suppose α ∈ S∗(E), and pick an

element α0 ∈ U(A)[α]. Define the open ball

B∗(α0) = {β ∈ S∗(E) : ||α0 − β|| < ||Π||−1 ||α0||−1 },

and observe that by Proposition 2.4 B∗(α0) is a subset of U(A)[α0] = U(A)[α].
Choose u ∈ U(A) such that α0 = u · α · u∗ and let σ∗ : B∗(α0) → U(A) be the
continuous mapping given by

σ∗(β) = Π(β × α0)u, β ∈ B(α0).

Since Π(β × α0) ∈ U(A), and

β = Π(β × α0) · α0 ·Π(β × α0)
∗,

for any β ∈ B∗(α0), the mapping σ∗ is well defined and simple calculations
show that ρU,α ◦ σ∗ = IdB∗(α0). The proof of Theorem C is complete.

2.3. Banach manifold structures on S(E) and S∗(E)

In this subsection, we prove that the spaces S(E) and S∗(E) with their
natural topologies are Banach manifolds. We start with a simple observation.
The entire space S(E) is a union of mutually disjoint G(A)-equivalence classes.
Therefore, in order to get a Banach manifold structure on G(A), it is enough to
prove that each class G(A)[α], α ∈ S(E), is a Banach manifold. Similarly, for
S∗(E), we have to prove that each equivalence class U(A)[α], α ∈ S∗(E), has a
Banach manifold structure. Based on Theorem C in the previous subsection,
we will reach our goal by proving the next sequel to that theorem.

Theorem D (Banach manifold property of S(E) and S∗(E)).

(i) If α ∈ S(E), the coset space G(A) /G(Aα) is a complex analytic mani-
fold. Moreover, the G(A)-equivalence class G(A)[α] with manifold struc-
ture inherited from G(A)/G(Aα) is a complex analytic submanifold of the
Banach space E.
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(ii) If α ∈ S∗(E), the coset space U(A)/U(Aα) is a real analytic manifold.
Moreover, the U(A)-equivalence class U(A)[α] with manifold structure
inherited from U(A)/U(Aα) is a real analytic submanifold of the real Ba-
nach space Eh.

Proof. We rely on a general result labeled 4.12.5 in Bourbaki [15] that
we will recall as part of the proof. To begin with, we consider the complex
analytic action ρG : G(A)× E → E of group G(A) on E defined by

(2.15) ρG(a, φ) = a · φ · a−1, a ∈ G(A), φ ∈ E.

If α ∈ S(E), the equivalence class G(A)[α] is the orbit of α under this action.
In other words, G(A)[α] is the range of the mapping ρG,α : G(A) → E given by

(2.16) ρG,α(a) = a · α · a−1, a ∈ G(A).

According to 4.12.5 in Bourbaki [15], in order to prove statement (i), we have to
show that ρG,α : G(A) → E is a subimersion. Explicitly, we need to check that
the associated tangent mapping at each point a ∈ G(A), i.e., the differential
dρG,α(a) : TaG(A) → TρG,α(a)E ≡ E of ρG,α, has the following two properties:

(i) Ker dρG,α(a) has a closed complement in TaG(A),

(ii) Ran dρG,α(a) is closed, with a closed complement in E.

We proceed by assuming that a ∈ G(A) is fixed and note that

TaG(A) = aA = { a x : x ∈ A }.

From (2.16) we get

(2.17) dρG,α(a)(a x) = a · (x · α− α · x) · a−1, x ∈ A.

Therefore, Ker dρG,α(a) = aAα, where Aα = {x ∈ A : x · α = α · x }. Since,
as we proved in Subsection 1.2, Aα has the closed direct complement A⊥

α in A
defined by equation (1.8), property (i) is completely proved. Property (ii) is
also a consequence of results from Section 1. Equation (2.17) is equivalent to

dρG,α(a)(a x) = a · dρG,α(1A)(x) · a−1, x ∈ A,

hence Ran dρG,α(a) = aRandρG,α(1A) a
−1. By part (i) in Theorem A, we have

Ran dρG,α(1A) = {x · α− α · x : x ∈ A } = Tα S(E),

which by Lemma 1.8 is a closed subspace of E. In addition, part (ii) of the
same theorem indicates that Tα S(E) is the range of the continuous projection
Pα : E → E, and for that reason Tα S(E) has a closed direct complement
Tα S(E)⊥ in E. The proof of statement (i) is complete.
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Statement (ii) follows from similar arguments and a few appropriate ad-
justments. This time, we consider the real analytic action ρU : U(A)×Eh → Eh,

ρU(u, φ) = u · φ · u∗, u ∈ U(A), φ ∈ Eh.

If α ∈ S∗(E), the U(A)-equivalence class U(A)[α] is the range of the mapping
ρU,α : U(A) → Eh given by

ρU,α(u) = u · α · u∗, u ∈ U(A).

We have to show that ρU,α : U(A) → Eh is a subimersion at each u ∈ U(A), i.e.,
to check that the differential dρU,α(u) : TuU(A) → TρU,α(u)Eh ≡ Eh satisfies
the following counterparts of properties (i) and (ii),

(iii) Ker dρU,α(u) has a closed complement in TuU(A),

(iv) Ran dρU,α(u) is closed, with a closed complement in Eh.

It all reduces to justify two claims. First, Aα ∩ Ash has a closed com-
plement in Ash, which implies (iii), and second, Ran dρU,α(1A) = Tα S∗(E) =
Tα S(E) ∩ Eh is a closed subspace of Eh with a closed complement, which
yields (iv). Both claims are consequences of results from Section 1 related to
involutive algebra environments and their structure manifolds. The proof is
complete.

Lemma 2.6. Suppose σ ∈ S(E) and let α = a · σ · a−1 ∈ G(A)[σ], where
a ∈ G(A). Let Aσ,Aα ⊆ A be the associated subalgebras with corresponding
projections πσ, πα : A → A. Consider the algebra automomorphism

τσ,α : A → A, τσ,α(z) = a z a−1, z ∈ A.

Then τσ,α ◦ πσ = πα ◦ τσ,α and z ∈ A⊥
σ only if τσ,α(z) ∈ A⊥

α .

In case σ ∈ S∗(E) and a = u ∈ U(A), then α ∈ U(A)[σ], τσ,α : A → A is an
involutive automomorphism, and z ∈ A⊥

σ ∩ Ash only if τσ,α(z) ∈ A⊥
α ∩ Ash.

Proof. The only statement that requires a proof is τσ,α ◦ πσ = πα ◦ τσ,α.
Using equation (1.2) for the two projections, from σ = a−1 · α · a we have

τσ,α ◦ πσ(z) = τσ,α(Π(σ · z × σ)) = aΠ(a−1 · α · a z × a−1 · α · a)a−1

= Π(α · a z × a−1 · α) = Π(α · a z a−1 × α) = πα ◦ τσ,α(z), z ∈ A.

Property z ∈ A⊥
σ only if τσ,α(z) ∈ A⊥

α is a direct consequence, and the proof of
the second part is similar.

The next result will provide the Banach manifolds S(E) and S∗(E) with
appropriate charts and atlases.
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Theorem E (Analytic atlases on S(E) and S∗(E)). Suppose σ ∈ S(E),
α ∈ G(A)[σ] ⊆ S(E), and let expα : A⊥

α → G(A)[σ] be the complex analytic
mapping defined by

(2.18) expα(x) = exp (x) · α · exp (x)−1, x ∈ A⊥
α .

For σ ∈ S∗(E) and α ∈ U(A)[σ] ⊆ S∗(E) let expα,∗ : A⊥
α ∩ Ash → U(A)[σ] be

the real analytic mapping given by

(2.19) expα,∗(x) = exp (x) · α · exp (x)∗, x ∈ A⊥
α ∩ Ash.

The two mappings are well defined and have the following properties:

(i) There exist an open neighborhood Wα of 0 in A⊥
α and an open neighbor-

hood Vα of α in G(A)[σ] such that the mapping

εα : Wα → Vα, εα(x) = expα(x), x ∈ Wα,

is a diffeomorphism. Next, let τσ,α : A → A be the automorphism in
Lemma 2.6 and introduce the open neighborhood Uα = τ−1

σ,α(Wα) of 0 in

A⊥
σ . The complex analytic function

(2.20) χσ,α : Uα → Vα, χσ,α(z) = expα ◦τσ,α(z), z ∈ Vα,

is a chart on G(A)[σ]. The collection of charts {χσ,α : α ∈ G(A)[σ]} is
an atlas on G(A)[σ] with model Banach space A⊥

σ .

(ii) There exist an open neighborhood Wα,∗ of 0 in A⊥
α ∩ Ash and an open

neighborhood Vα,∗ of α in U(A)[σ] such that the mapping

εα,∗ : Wα,∗ → Vα,∗, εα,∗(x) = expα,∗(x), x ∈ Wα,∗

is a diffeomorphism. Introduce the open neighborhood Uα,∗ = τ−1
σ,α(Wα,∗)

of 0 in A⊥
σ ∩Ash and the real analytic chart on U(A)[σ] ⊆ S∗(E) given by

(2.21) χσ,α,∗ : Uα,∗ → Vα,∗, χσ,α,∗(z) = expα,∗ ◦τσ,α(z), z ∈ Vα,∗.

The collection of charts {χσ,α,∗ : α ∈ U(A)[σ]} is an atlas on U(A)[σ]
with model Banach space A⊥

σ ∩ Ash.

Proof. We start with statement (i). We first observe that expα(0) = α.
Next, we use equation (2.18) and compute the differential of expα at 0 ∈ A⊥

α ,
which is the linear mapping d expα(0) : T0A

⊥
α ≡ A⊥

α → Tα S(E) given by

d expα(0)(x) = x · α− α · x, x ∈ A⊥
α .

Comparing the last equation with equation (1.15) in part (i) of Theorem A
that defines the linear mapping Tα : A⊥

α → Tα S(E), we get

d expα(0)(x) = Tα(x), x ∈ A⊥
α , i.e., d expα(0) = Tα.
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Consequently, d expα(0) : T0A
⊥
α → Tα S(E) is a Banach space isomorphism,

and expα yields a diffeomorphism εα from an open neighborhood Wα of 0 in
A⊥
α to an open neighborhood Vα of α ∈ G(A)[σ]. Using the open set Uα and

equation (2.20), we get the chart χσ,α : Uα → Vα on G(A)[σ]. Since by Theorem
D we already know that S(E) is a Banach manifold, different charts χσ,α, χσ,β,
α, β ∈ G(A)[σ], with overlapping domains are analytically correlated and for
this reason the collection of charts is an analytic atlas on G(A)[σ].

With regard to statement (ii), similar calculations show that

d expα,∗(0)(x) = Tα,∗(x), x ∈ A⊥
α ∩ Ash, i.e., d expα,∗(0) = Tα,∗,

where Tα,∗ : A⊥
α ∩ Ash → TαS∗(E) is the Banach space isomorphism in part

(iii) in Theorem A. The rest of the proof is obvious.

2.4. Standard Ehresmann connections and geodesics

Theorem C and part of the proof of Theorem D imply the existence of nat-
ural Ehresmann connections on the Banach principal fiber bundles associated
with structure manifolds of algebra environments. The article by Ehresmann
[22] is a recommended reference in this regard. The related concepts of hori-
zontal lifts of smooth curves and smooth geodesics would just upgrade our tool
kit.

Supose (E,Π,A) is a Banach algebra environment, α ∈ S(E), and let

ρG,α : G(A) → G(A)[α], ρG,α(a) = a · α · a−1, a ∈ G(A),

be the principal fiber bundle introduced in Theorem C. As part of the proof
of Theorem D, we noted that dρG,α(a) : TaG(A) → TρG,α(a)

G(A)[α], where
TaG(A) = aA = {a x : x ∈ A}, a ∈ G(A), is given by

dρG,α(a)(a x) = a · (x · α− α · x) · a−1, x ∈ A.

According to custom, the vertical subspace of TaG(A) is defined as

VaG(A) = Ker dρG,α(a) = aAα, Aα = {x ∈ A : x · α = α · x}.

Definition 2.7. The standard Ehresmann connection on G(A) assigns to
each a ∈ G(A) the closed direct complement of VaG(A) in TaG(A) given by

HaG(A) = aA⊥
α , A⊥

α = A⊖ Aα = {x ∈ A : πα(x) = Π(α · x× α) = 0},

called the horizontal subspace at a.

Definition 2.8. Let γ : R → S(E) be a smooth curve with γ(0) = α. A
local horizontal lift of γ centered at α is a smooth mapping Γ : (− ε, ε) → G(A),
ε > 0, satisfying the following requirements,
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(i) γ(t) = Γ(t) · α · Γ(t)−1, t ∈ (− ε, ε), Γ(0) = 1A,

(ii) Γ′(t) ∈ HΓ(t)G(A) = Γ(t)A⊥
α , t ∈ (−ε, ε),

where Γ′(t) = dΓ(t)/d t is computed by regarding Γ as an A-valued function.

Proposition 2.9. Requirements in Definition 2.8 are equivalent to

(2.22) Γ′(t) = Σγ(t)(γ
′(t))Γ(t), γ′(t) = d γ(t)/d t, t ∈ (−ε, ε), Γ(0) = 1A,

where γ′(t) = d γ(t)/d t is computed by regarding γ as an E-valued function.

Proof. Requirement (ii) states that Γ(t)−1 Γ′(t) ∈ A⊥
α , i.e.,

(2.23) πα( Γ(t)
−1 Γ′(t) ) = Π(α · Γ(t)−1 Γ′(t)× α ) = 0, t ∈ (− ε, ε).

Since Π is A-bilinear, left multiplication by Γ(t) ∈ G(A) and requirement (i)
yield the equivalent equation

(2.24) Π(γ(t) · Γ′(t)× α) = 0.

From (i) we have γ(t) · Γ(t) = Γ(t) · α, hence

γ′(t) · Γ(t) + γ(t) · Γ′(t) = Γ′(t) · α, i.e., γ(t) · Γ′(t) = Γ′(t) · α− γ′(t) · Γ(t).

Substituting the last equation into (2.24), we get

(2.25) Π(Γ′(t) · α× α− γ′(t)× Γ(t) · α) = 0.

Since α×α = α, Γ(t) ·α = γ(t) ·Γ(t), and Π(α) = 1A, equation (2.25) becomes

(2.26) Γ′(t) = Π( γ′(t)× γ(t) ) · Γ(t).

Since γ′(t) ∈ Tγ(t)S(E), according to equation (1.14) in Subsection 1.3, we
have

Σγ(t)(γ
′(t))Γ(t) = Π(γ′(t)× γ(t)) = −Π(γ(t)× γ′(t)),

hence (2.26) reduces to equation (2.22).
We next prove that any local solution to the initial value problem (2.22)

is a local horizontal lift of γ centered at α = γ(0). Since Γ(0) = 1A, we assume
that ε > 0 is small enough such that Γ(t) ∈ G(A), t ∈ (−ε, ε), and define

δ : (− ε, ε) → S(E), δ(t) = Γ(t)−1 · γ(t) · Γ(t), t ∈ (−ε, ε).

Using equation (2.22), simple calculations show that

δ′(t) = −Γ(t)−1Γ′(t)Γ(t)−1 · γ(t) · Γ(t) + Γ(t)−1 · γ′(t) · Γ(t)
+ Γ(t)−1 · γ(t) · Γ′(t)

= −Γ(t)−1Σγ(t)(γ
′(t)) · γ(t) · Γ(t) + Γ(t)−1 · γ′(t) · Γ(t)

+ Γ(t)−1 · γ(t) · Σγ(t)(γ
′(t)) Γ(t).
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Left and right multiplications by Γ(t) and Γ(t)−1, both in G(A), yield

Γ(t) δ′(t)Γ(t)−1 = −Σγ(t)(γ
′(t)) · γ(t) + γ′(t) + γ(t) · Σγ(t)(γ

′(t)).

We now adapt statement (ii) in Proposition 1.13 to this situation and get

γ′(t) = Σγ(t)(γ
′(t)) · γ(t)− γ(t) · Σγ(t)(γ

′(t)),

an equation that implies Γ(t)δ′(t)Γ(t)−1 = 0, hence δ′(t) = 0. Consequently,
δ : (− ε, ε) → S(E) is a constant function and

(2.27) δ(t) = Γ(t)−1 · γ(t) · Γ(t) = δ(0) = α, i.e., γ(t) = Γ(t) · α · Γ(t)−1.

We just derived requirement (i). From equation (2.22), we next have

πα(Γ(t)
−1Γ′(t)) = Π[α · Γ(t)−1Γ′(t)× α] = Π[α · Γ(t)−1Σγ(t)(γ

′(t))× Γ(t) · α].
Using (2.27), we substitute α = Γ(t)−1 · γ(t) · Γ(t) and get

πα(Γ(t)
−1Γ′(t)) = Π[Γ(t)−1 · γ(t) · Σγ(t)(γ

′(t))× γ(t) · Γ(t)]
= Γ(t)−1Π[γ(t) · Σγ(t)(γ

′(t))× γ(t)]Γ(t)

= Γ(t)−1πγ(t)(Σγ(t)(γ
′(t)))Γ(t).

By Proposition 1.13, RanΣγ(t) = A⊥
γ(t), i.e., πγ(t)(Σγ(t)(γ

′(t)) = 0, hence

πα(Γ(t)
−1Γ′(t)) = 0, i.e., Γ(t)−1Γ′(t) ∈ A⊥

α , or Γ′(t) ∈ Γ(t)A⊥
α = HΓ(t)G(A),

which is requirement (ii) in Definition 2.8. The proof is complete.

Existence and uniqueness of local solutions of (2.22) leads to the following.

Corollary 2.10. Any smooth curve γ : R → S(E) has a unique local
horizontal lift Γ : (−ε, ε) → G(A), ε > 0, centered at α = γ(0).

Assume next that (E,Π,A) is an involutive Banach algebra environment
and α ∈ S∗(E). The principal fiber bundle introduced in Theorem C is

ρU,α : U(A) → U(A)[α], ρU,α(u) = u · α · u∗, u ∈ U(A).

For each u ∈ U(A), TuU(A) = uAsh = {ux : x ∈ Ash}. The differential of
ρU,α, dρU,α(u) : TuU(A) → TρU,α(u)

U(A)[α], is given by

dρU,α(u)(ux) = u · (x · α− α · x) · u∗, x ∈ Ash.

The vertical subspace of TuU(A) is VuU(A) = Ker dρU,α(u) = uAα ∩ Ash.

Definition 2.11. The Ehresmann connection on U(A) is defined using as
complements of VuU(A) the horizontal subspaces HuU(A) = uA⊥

α ∩ Ash.

The local horizontal lift Γ : (−ε, ε) → U(A) of a smooth curve γ : R → S∗(E)
centered at α = γ(0) is introduced by adapting Definition 2.8, and is the unique
local solution of the initial value problem

Γ′(t) = Σγ(t),∗(γ
′(t)) Γ(t), t ∈ (−ε, ε), Γ(0) = 1A.
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The standard Ehresmann connections on G(A) and U(A) provide canonical
linear connections on the structure manifolds S(E) or S∗(E) that could be
used to define geodesics. We are not going to follow this traditional approach.
Since structure manifolds are closed submanifolds of Banach spaces, we would
rely on a geometric definition that uses the projections Pα : E → E, α ∈ S(E),
or Pα,∗ : Eh → Eh, α ∈ S∗(E), onto the tangent spaces TαS(E) or TαS∗(E)
defined in parts (ii) and (iv) of Theorem A. Their complementary subspaces,
denoted by T⊥

αS(E) or T⊥
αS∗(E), are called normal spaces.

Definition 2.12. Suppose (E,Π,A) is a Banach algebra environment. A
smooth curve γ : (τ, ε) → S(E), −∞ ≤ τ < ε ≤ ∞, is a geodesic provided

(2.28) γ′′(t) ∈ T⊥
γ(t)S(E), i.e., Pγ(t)(γ

′′(t)) = 0, t ∈ (τ, ε).

If (E,Π,A) is involutive, the smooth geodesics γ : (τ, ε) → S∗(E) satisfy

(2.29) γ′′(t) ∈ T⊥
γ(t)S∗(E), i.e., Pγ(t),∗(γ

′′(t)) = 0, t ∈ (τ, ε).

Proposition 2.13. Suppose γ : (−ε, ε) → S(E) is smooth with γ(0) = α
and γ′(0) = θ ∈ TαS(E). Let x = Σα(θ) ∈ A⊥

α , and let Γ : (−ε, ε) → G(A) be
the horizontal lift of γ centered at α. The following statements are equivalent:

(i) γ is a geodesic.

(ii) Σγ(t)(γ
′′(t)) = 0, t ∈ (−ε, ε).

(iii) Σγ(t)(γ
′(t)) = x, t ∈ (−ε, ε).

(iv) Γ(t) = exp(tx), t ∈ (−ε, ε).

Proof. Equation (1.16) in Subsection 1.3 that defines Pγ(t) implies

Pγ(t)(γ
′′(t)) = Σγ(t)(γ

′′(t)) · γ(t)− γ(t) · Σγ(t)(γ
′′(t)), t ∈ (−ε, ε).

Consequently, (2.28) in Definition 2.11 is equivalent to Σγ(t)(γ
′′(t)) ∈ Aγ(t).

By part (i) in Proposition 1.13, we have Σγ(t)(γ
′′(t)) ∈ A⊥

γ(t), regardless any

assumptions. Therefore, statements (i) and (ii) are equivalent.

Direct calculations lead to

d

dt
Σγ(t)(γ

′(t)) = 2−1 d

dt
Π(γ′(t)× γ(t)− γ(t)× γ′(t)) = Σγ(t)(γ

′′(t)).

Assuming (ii), we get that Σγ(t)(γ
′(t)) is a constant function with value at t = 0

equal to Σα(θ) = x, which is statement (iii). Since obviously (ii) follows from
(iii), statements (ii) and (iii) are equivalent. The initial value problem (2.22)
in Proposition 2.9 implies that (iii) is equivalent to Γ′(t) = xΓ(t), Γ(0) = 1A,
with the unique solution Γ(t) = exp(tx). The proof is complete.
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Corollary 2.14. For any α ∈ S(E) and θ ∈ TαS(E) there exists a
unique geodesic γ : (−∞,∞) → S(E) with γ(0) = α and γ′(0) = θ given by

(2.30) γ(t) = exp(tx) · α · exp(tx)−1, x = Σα(θ) ∈ A⊥
α , t ∈ (−∞,∞).

Whenever α ∈ S∗(E) and θ ∈ TαS∗(E), the previous equation defines the unique
geodesic γ : (−∞,∞) → S∗(E) with initial values γ(0) = α, γ′(0) = θ, where
x = Σα,∗(θ) ∈ A⊥

α ∩ Ash and exp(tx) ∈ U(A), t ∈ (−∞,∞).

In particular, all geodesics on S(E) or S∗(E) are complete.

We will conclude Section 2 with a result that points out an expected
property of short geodesic paths on S∗(E) under the assumption that A is a
C∗-algebra. As prerequisites, we need to define the length of smooth paths on
S∗(E) and find a convenient way of computing it.

To this end, let γ : [ 0, ε ] → S∗(E) be a smooth path with associated
horizontal lift Γ : [ 0, ε ] → U(A), Γ(0) = 1A. The tangent space TαS∗(E) ⊆
Eh has a norm inherited from Eh, which is not adequate with regard to our
purposes. Instead, we introduce on TαS∗(E) a norm || · ||α using the norm || · ||
of A. From Theorem A, we know that Σα,∗|TαS∗(E) : TαS∗(E) → A⊥

α ∩Ash is
a vector space isomorphism. Consequently, the function

|| · ||α : TαS∗(E) → [ 0,∞ ), || θ ||α = ||Σα,∗(θ) ||, θ ∈ TαS∗(E),

is a bona fide norm. Returning to γ : [ 0, ε ] → S∗(E), we define its lenght as

(2.31) L(γ) =

∫ ε

0
|| γ′(t) ||γ(t) dt.

Lemma 2.15. Under previous assumptions, using Γ′ : [0, ε] → A, we have

(2.32) L(γ) =

∫ ε

0
||Γ′(t) ||dt.

Proof. Let α = γ(0). The derivative of γ(t) = Γ(t) · α · Γ(t)−1 equals

γ′(t) = Γ′(t) · α · Γ(t)−1 − Γ(t) · α · Γ(t)−1 Γ′(t) Γ(t)−1.

Substituting Γ′(t) = Σγ(t),∗(γ
′(t)) Γ(t), we get

γ′(t) = Σγ(t),∗(γ
′(t)) Γ(t) · α · Γ(t)−1 − Γ(t) · α · Γ(t)−1 · Σγ(t),∗(γ

′(t))

= Σγ(t),∗(γ
′(t)) · γ(t)− γ(t) · Σγ(t),∗(γ

′(t)).

Therefore, || γ′(t) ||γ(t) = ||Σγ(t),∗(γ
′(t)) ||. Since A is a C∗-algebra,

||Γ′(t) ||2 = ||Γ′(t)Γ′(t)∗ || = ||Σγ(t),∗(γ
′(t))Γ(t)Γ(t)∗Σγ(t),∗(γ

′(t))∗ ||.

Since Γ(t) ∈ U(A), we get ||Γ′(t) ||2 = ||Σγ(t),∗(γ
′(t)) ||2, and consequently

|| γ′(t) ||γ(t) = ||Σγ(t),∗(γ
′(t)) || = ||Γ′(t) ||. (2.32) is derived from (2.31).
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The anticipated property of geodesics is the minimality of their length.

Proposition 2.16. Let γ0 : [ 0, ε ] → S∗(E) be a smooth geodesic with
L(γ0) < π. Suppose γ : [ 0, ε ] → S∗(E) is another smooth path that has the
same endpoints, γ(0) = γ0(0), γ(ε) = γ0(ε). Then L(γ0) ≤ L(γ).

Proof. Let Γ0,Γ : [0, ε] → U(A), Γ0(0) = Γ(0) = 1A be the horizontal lifts
of γ0 and γ. Define α = γ0(0), θ = γ′0(0), and x = Σα,∗(θ) ∈ A⊥

α ∩ Ash. Part
(iii) in Proposition 2.13 implies Γ′

0(t) = exp(tx)x, hence ||Γ′
0(t) || = ||x ||.

Let ϕ be a state on A such that ϕ(x∗ x) = ||x ||2, and consider the associ-
ated Gelfand–Naimark–Segal cyclic representation ρϕ : A → L(Hϕ), where Hϕ

is a Hilbert space with inner product ⟨ · | · ⟩ and ξϕ ∈ Hϕ is a unit cyclic vector.
The link between state ϕ and representation ρϕ is given by

(2.33) ϕ(a) = ⟨ ρϕ(a) ξϕ | ξϕ ⟩, a ∈ A,

We pick u ∈ U(A) such that Γ(ε) = uΓ0(ε)u
∗, and introduce the smooth paths

(2.34) c0, c : [ 0, ε ] → Hϕ, c0(t) = ρϕ(Γ0(t)) ξϕ, c(t) = ρϕ(u
∗ Γ(t)u) ξϕ.

Since Γ0(t),Γ(t), u ∈ U(A) and ξϕ is a unit vector, the values of c0 and c are on
the unit sphere Sϕ of Hϕ. The two paths start at c(0) = c0(0) = ξϕ and end at
c(ε) = c0(ε) = ρϕ(Γ0(ε)) ξϕ. We claim that L(γ0) = L(c0), and c0 : [ 0, ε ] → Sϕ
is a geodesic on Sϕ. First, we note the following two consequences of (2.34),

c′0(t) = ρϕ(Γ
′
0(t)) ξϕ = ρϕ(exp(tx)) ρϕ(x) ξϕ,

|| c′0(t) ||2 = || ρϕ(x) ξϕ ||2 = ⟨ ρϕ(x) ξϕ | ρϕ(x) ξϕ ⟩ = ⟨ ρϕ(x∗x) ξϕ | ξϕ ⟩.

By (2.33) and from the assumption on ϕ we get || c′0(t) ||2 = ϕ(x∗x) = ||x ||2.
Since we just proved that ||Γ′

0(t) || = || c′0(t) ||, equation (2.32) implies

(2.35) L(γ0) =

∫ ε

0
||Γ′

0(t) ||dt =
∫ ε

0
|| c′0(t) ||dt = L(c0).

To prove the second half of our claim we need to check that c′′0(t) is a normal
vector to Sϕ, or, equivalently, that c′′0(t) and c0(t) are colinear vectors in Hϕ.
Using (2.34) again, we get

c′′0(t) = ρϕ(Γ
′′
0(t)) ξϕ = ρϕ(exp(tx)) ρϕ(x

2) ξϕ = − ρϕ(exp(tx)) ρϕ(x
∗x) ξϕ,

an equation with two consequences. Because || c0(t) || = 1, we have

|| c′′0(t) || · || c0(t) || = || c′′0(t) || ≤ ||x∗x || = ||x ||2,

| ⟨ c′′0(t) | c0(t) ⟩ | = | ⟨− ρϕ(exp(tx)) ρϕ(x
∗x) ξϕ | exp(tx)) ξϕ ⟩ |

= | ⟨ ρϕ(x∗x) ξϕ | ξϕ ⟩ | = ϕ(x∗x) = ||x ||2.
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Therefore,

(2.36) || c′′0(t) || · || c0(t) || ≤ | ⟨ c′′0(t) | c0(t) ⟩ |.

Combined with Cauchy–Schwarz inequality, (2.36) turns out to be an equality,
hence c′′0(t) and c0(t) are colinear vectors in Hϕ.

The path c : [ 0, ε ] → Sϕ defined in (2.34) has the same endpoints as c0.
Under assumption L(γ0) < π, which according to (2.35) reduces to L(c0) < π,
c0 is the shortest path on the unit sphere Sϕ from c0(0) to c0(ε), hence

(2.37) L(c0) ≤ L(c).

It remains to observe that

|| c′(t) || = || ρϕ(u∗ Γ′(t)u) ξϕ || = || ρϕ(u)∗ ρϕ(Γ′(t)) ρϕ)u) ξϕ || ≤ ||Γ′(t) ||,

which leads to

(2.38) L(c) =

∫ ε

0
|| c′(t) ||dt ≤

∫ ε

0
||Γ′(t) ||dt = L(γ).

The proof is completed by assembling (2.35), (2.37), and (2.38).

3. PROJECTIVE COMPACT GROUP REPRESENTATIONS

In this section, we analyze the spaces R(G, ε,A) and R∗(G, ε,A) of pro-
jective continuos representations, or projective continuous unitary represen-
tations of a compact group G with a two-cocycle ε in a unital C∗-algebra
A. To this end, we will introduce an involutive Banach algebra environment
E[G, ε,A ] associated with G, ε, and A. The goal is to prove that the two
spaces of representations are the structure manifolds of E[G, ε,A ]. Specifi-
cally, R(G, ε,A) = S(E[G, ε,A]) and R∗(G, ε,A) = S∗(E[G, ε,A]). This result
will enable us to rely on the algebraic and differential geometry techniques
developed in Sections 1 and 2.

3.1. Group with two-cocycle convolution algebras

Suppose G is a separable compact group with unit e and let µ be the Haar
measure of G with µ(G) = 1. Let A be a unital C∗-algebra and denote by G(A)
and U(A) the groups of invertible and unitary elements of A. In particular,
U(C) = {ζ ∈ C \ {0} : ζ−1 = ζ−}, where ζ− is the complex conjugate of ζ ∈ C.

Definition 3.1. A continuous function ε : G × G → C \ {0} is called a
unitary two-cocycle of G provided



31 Algebra environments I 47

(i) ε(g, e) = ε(e, h) = 1, g, h ∈ G,

(ii) ε(g, h) ε(gh, k) = ε(g, hk) ε(h, k), g, h, k ∈ G,

(iii) ε(g, h)−1 = ε(g, h)−, i.e., ε(g, h) ∈ U(C), g, h ∈ G.

The complex conjugate ε− of a two-cocycle ε is a two-cocycle, too. The con-
stant function ε0 : G×G → U(C), ε0(g, h) = 1, g, h ∈ G, is referred to as the
trivial two-cocycle of G.

Definition 3.2. A continuous projective representation of group G with
unitary two-cocycle ε in C∗-algebra A is a continuous mapping α : G→ A such
that

(i) α(e) = 1A,

(ii) α(g)α(h) = ε(g, h)α(gh), g, h ∈ G,

(iii) α(g−1) = ε(g, g−1)α(g)−1, g ∈ G.

The space of continuous representations is denoted byR(G, ε,A). If in addition

(iv) α(g)−1 = α(g)∗, g ∈ G,

we refer to α as a unitary projective representation of G with two-cocycle ε,
and denote the space of unitary representations by R∗(G, ε,A).

If ε = ε0 one gets the usual spaces of continuous representations of G in A.

Properties (i) and (ii) imply α(g) ∈ G(A), g ∈ G, and property (iii) is an
obvious consequence. Under requirement (iv), we have α(g) ∈ U(A), g ∈ G.
We note that the defining properties of the unitary two-cocycle ε are consistent
with, and could be recovered from, requirements (i), (ii), and (iii) in Definition
3.2. For instance, property (ii) in Definition 3.1 is a consequence of requirement
(ii) in Definition 3.2 in conjunction with

[α(g)α(h)]α(k) = α(g)[α(h)α(k)], g, h, k ∈ G.

We next introduce the involutive Banach algebra C(G, ε,A) of continuos func-
tions from G to A with multiplication provided by the convolution ε-product,
(3.1)

φ× ψ(g) =

∫
G
ε(gk−1, k)− φ(gk−1)ψ(k) dµ(k), φ, ψ ∈ C(G, ε,A), g ∈ G,

and involution defined as

(3.2) φ∗(g) = ε(g, g−1)φ(g−1)∗, φ ∈ C(G, ε,A), g ∈ G.
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The natural norm on the convolution algebra C(G, ε,A) is given by

||φ||1 =
∫
G
||φ(g)||dµ(g), φ ∈ C(G, ε,A).

Actually, instead of || · ||1 we will be using the equivalent norm

||φ||∞ = sup {||φ(g)|| : g ∈ G}, φ ∈ C(G, ε,A).

Algebra C(G, ε,A) has unit only if group G is finite. When that is not the case,
we select a collection {Kn, n ≥ 1} of compact neighborhoods of unit e ∈ G and
a collection of continuous functions {un : G→ R, n ≥ 1} with the properties

Kn+1 ⊆ Kn,
∞⋂
n=1

Kn = {e}, support un ⊆ Kn,

∫
Kn

un(k) dµ(k) = 1.

The functions {δn ∈ C(G, ε,A) : δn(g) = un(g)1A, g ∈ G, n ≥ 1} with supports
{Kn, n ≥ 1} provide an approximate unit on C(G, ε,A), i.e.,

(3.3) lim
n
δn × φ = lim

n
φ× δn = φ, φ ∈ C(G, ε,A).

Associated with any δ ∈ C(G, ε,A) and g, h ∈ G, we introduce the functions

Lg(δ), Rh(δ) : G→ A, Lg(δ)(k) = δ(gk), Rh(δ)(k) = δ(kh), k ∈ G.

Proposition 3.3. The continuous linear operator

(3.4) Π : C(G, ε,A) → A, Π(φ) = φ(e), φ ∈ C(G, ε,A),

has the following properties:

(i) Π(aφ) = aΠ(φ), Π(φa) = Π(φ)a, a ∈ A, φ ∈ E,

(ii) Π(φ∗) = Π(φ)∗, φ ∈ E,

(iii) Π(φ∗ × φ) ≥ 0, φ ∈ E.

Moreover, for any φ ∈ E, g, h ∈ G, we have

(iv) lim
n

Π(Lg(δn)× φ) = ε(g−1, g)−φ(g),

(v) lim
m

Π(φ×Rh(δm)) = ε(h, h−1)−φ(h),

(vi) lim
n,m

Π(Lg(δn)× φ×Rh(δm)) = ε(g−1, g)−ε(g, h)ε(h, h−1)−φ(gh).

Proof. Properties (i) and (ii) are obvious, and property (iii) follows from
(3.1) and (3.2) by observing that

Π(φ∗ × φ) =

∫
G
ε(g−1, g)− φ∗(g−1)φ(g) dµ(g)
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=

∫
G
ε(g−1, g)−ε(g−1, g)φ(g)∗φ(g) dµ(g)

=

∫
G
φ(g)∗φ(g) dµ(g) ≥ 0.

To get property (iv), we note that

Π(Lg(δn)× φ) =

∫
G
ε(g−1k, k−1g)− Lg(δn)(g

−1k)φ(k−1g) dµ(k)

=

∫
Kn

ε(g−1k, k−1g)− δn(k)φ(k
−1g) dµ(k),

and then just take the limit as n→ ∞, hence k → e. Property (v) is proved in
a similar way. Property (vi) is an extension of (iv) and (v). By (iv) we have

lim
n

Π(Lg(δn)× φ×Rh(δm))

= ε(g−1, g)−φ×Rh(δm)(g)

= ε(g−1, g)−
∫
G
ε(ghk−1, kh−1)−φ(ghk−1)Rh(δm)(kh−1) dµ(k)

= ε(g−1, g)−
∫
Km

ε(ghk−1, kh−1)−φ(ghk−1) δm(k) dµ(k).

Consequently, if m→ ∞, hence k → e, we get

(3.5) lim
n,m

Π(Lg(δn)× φ×Rh(δm)) = ε(g−1, g)− ε(gh, h−1)−φ(gh).

It remains to observe that requirements (ii) and (i) in Definition 3.1 imply

ε(g, h) ε(gh, h−1) = ε(h, h−1), i.e., ε(gh, h−1)− = ε(g, h) ε(h, h−1)−,

and conclude that equation (3.5) proves property (vi).

3.2. Projective compact group algebra environments

Definition 3.4. Suppose G is a compact group with a continuous uni-
tary two-cocycle ε and let A be a unital C∗-algebra. The associated involu-
tive Banach algebra environment E[G, ε,A] = (E,Π,A) has total algebra E =
C(G, ε,A), base algebra A, and environment projection Π : C(G, ε,A) → A
given by (3.4).

If ε = ε0, by regarding each a ∈ A as a constant function in C(G, ε0,A),
equations (3.1) and (3.2) make A ⊆ C(G, ε0,A) an involutive subalgebra, and
Lemma 3.3 shows that Π : C(G, ε0,A) → A is a non-commutative conditional
expectation from C(G, ε0,A) onto A.
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Theorem F (Spaces of representations as structure manifolds). Let
S(E[G, ε,A]) and S∗(E[G, ε,A]) be the structure manifolds of the involutive
environment E[G, ε,A]. Then

(i) R(G, ε,A) = S(E[G, ε,A]),

(ii) R∗(G, ε,A) = S∗(E[G, ε,A]).

Proof. We first prove that α ∈ R(G, ε,A) implies α ∈ S(E[G, ε,A]). We
just need to check requirements (i)–(v) in Definition 1.5 of S(E[G, ε,A]). Re-
quirement (i) is obvious, and requirement (ii) follows from

α× α(g) =

∫
G
ε(gk, k−1)−α(gk)α(k−1) dµ(k)

=

∫
G
ε(gk, k−1)−ε(gk, k−1)α(g) dµ(k)

=

∫
G
α(g) dµ(k) = α(g), g ∈ G.

With regard to requirement (iii), we note that (3.1) and Definition 3.2 imply

Π(φ× α)α(g) = φ× α(e)α(g) =

∫
G
ε(k−1, k)−φ(k−1)α(k)α(g) dµ(k)

=

∫
G
ε(k−1, k)−ε(k, g)φ(k−1)α(kg) dµ(k), φ ∈ C(G, ε,A), g ∈ G.

Direct calculations based on Definition 3.1 show that

ε(k−1, k)−ε(k, g) = ε(k−1, kg)−, k, g ∈ G,

and the previous equation reduces to Π(φ× α)α(g) = φ× α(g) for any g ∈ G.
Requirement (iv) has a similar proof, and (v) follows from (iii) and (iv).

Our next task is to show that α ∈ S(E[G, ε,A ] ) implies α ∈ R(G, ε,A).
Properties Π(α) = 1A and α(e) = 1A are equivalent. Requirement (v) in
Definition 1.5 yields

Π(Lg(δn)× α)Π(α×Rh(δm)) = Π(Lg(δn)× α×Rh(δm)), n,m ≥ 1.

Using the last three statements in Proposition 3.3 and taking limits, we get
α(g)α(h) = ε(g, h)α(gh), g, h ∈ G, an equation that proves statement (i). For
statement (ii), we only have to check that property (iv) in Definition 3.2 and
requirement (vi) in Definition 1.5, i.e., α∗ = α, are equivalent.

Corollary 3.5. Spaces R(G, ε,A) and R∗(G, ε,A) are Banach mani-
folds. Their tangent spaces have the following descriptions:
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(i) TαR(G, ε,A), α ∈ R(G, ε,A), consists of all θ ∈ C(G, ε,A) such that

θ(e) = 0, θ(g)α(h) + α(g)θ(h) = ε(g, h) θ(gh), g, h ∈ G.

(ii) If α ∈ R∗(G, ε,A), TαR∗(G, ε,A) = TαR(G, ε,A) ∩ C(G, ε,A)h.

Proof. Direct consequences of Corollary 1.14.

As a brief comment related to Theorem G, we note that Definition 2.3 of G(A)
or U(A) equivalent geometric structures on A reduces to the concepts of similar,
or unitarily equivalent group representations. Proposition 2.4 implies that any
α, β ∈ R(G, ε,A), or α, β ∈ R∗(G, ε,A), with ||α − β||∞ < ||Π||−1||α||−1

∞ are
similar or unitarily equivalent, respectively.

On the other hand, we recall that there is a concept of co-homologous two-
cocycles on a group, and co-homologous two-cocycles yield isomorphic group
algebras. Perhaps the reader would be interested to figure out when the en-
vironments associated with different two-cocycles on a compact group G and
arbitrary C∗-algebras A are isomorphic.

3.3. Representations and conjugation operators

We introduce a class of derivations on E[G, ε,A ] related to derivations
on A.

Proposition 3.6. Suppose D0 = ∂ ∈ Der(A) and define the linear map-
ping D with domain C(G, ε,A) by

(3.6) D(φ) = ∂ ◦ φ, φ ∈ C(G, ε,A).

Then (D,D0) is a derivation on algebra environment E[G, ε,A].

Proof. Consistent with Definition 1.10, there are several things we have
to check. First, we claim that D is an operator on C(G, ε,A). The critical
part is to show that D(φ) ∈ C(G, ε,A) for any φ ∈ C(G, ε,A). Since A is a
C∗-algebra, we rely on a result proved by Sakai [60], which states that each
∂ ∈ Der(A) is continuos. The other properties,

D(φ× ψ) = D(φ)× ψ + φ×D(ψ), φ, ψ ∈ C(G, ε,A),

D(aφ) = ∂(a)φ+ aD(φ), a ∈ A, φ ∈ C(G, ε,A),

are consequences of (3.6) and (3.1). Perhaps we should note that the continuity
of ∂ ∈ Der(A) makes it possible to apply ∂ to both sides of equation (3.1) and
to move it inside the integral.
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Lemma 1.11 in Section 1 provides alternate justifications of statements
(i) and (ii) in Corollary 3.5.

Corollary 3.7. Suppose ∂ ∈ Der(A) and let α ∈ R(G, ε,A). Then
D(α) ∈ TαR(G, ε,A). In addition, if ∂ ∈ Der∗(A) and α ∈ R∗(G, ε,A), then
D(α) ∈ TαR∗(G, ε,A).

To derive Corollary 3.5, we just apply ∂ to each equation in Definition 3.2.

Suppose α ∈ R(G, ε,A) and let Derα,0(A) = {∂ ∈ Der(A) : ∂ ◦ α = 0} be
the Lie subalgebra of derivations on A compatible with α. We next introduce
natural counterparts of the operators Σα, Θα, and Γα defined in Section 1.
For convenience, we denote the new operators, adapted to the current setting,
using the same symbols.

Definition 3.8. Suppose that α ∈ R(G, ε,A).

(i) The operator Σα : TαR(G, ε,A) → A⊥
α is defined by

Σα(θ) = 2−1Π(θ×α−α×θ) = 2−1 (φ×α−α×φ)(e), θ ∈ TαR(G, ε,A).

(ii) The operator Θα : Der(A) → TαR(G, ε,A) is given by

Θα(∂) = ∂ ◦ α, ∂ ∈ Der(A).

(iii) The conjugation operator Γα : Der(A) → Der(A) is defined as

Γα = IdDer(A) − 2 D ◦ Σα ◦ Θα,

where D : A → Der(A) assigns inner derivations to elements of A, i.e.,

D(x)(a) = xa− ax, x, a ∈ A.

The next proposition collects consequences of results from Subsection 1.4.

Proposition 3.9. Assume that α ∈ R(G, ε,A) and ∂ ∈ Der(A):

(i) Θα ◦ D ◦ Σα = IdTα R(G,ε,A).

(ii) Γ2
α = IdDer(A), Θα ◦ Γα = −Θα, and Θα(∂) = 0 only if Γα(∂) = ∂.

(iii) The operators Γ+
α ,Γ

−
α : Der(A) → Der(A),

Γ+
α = (IdDer(A)) + Γα)/2, Γ−

α = (IdDer(A) − Γα)/2,

are complementary projections on the space Der(A), i.e.,

(Γ+
α )

2 = Γ+
α , (Γ

−
α )

2 = Γ−
α , Γ

+
α Γ−

α = Γ−
α Γ+

α = 0, Γ+
α + Γ−

α = IdDer(A),

and Derα,0(A) = Ran(Γ+
α ) = Ker(Γ−

α ) is a Lie subalgebra of Der(A).
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3.4. Case study–Clifford algebras

This subsection includes a brief description of Clifford algebras as an
example of group with two-cocycle convolution algebras that deserve special
attention due to their algebraic and geometric properties. For additional de-
tails, we refer to Atiyah, Bott, Shapiro [7], Chevalley [17], and Louenesto [31].

The real Clifford algebra Cn,m(R), n,m ≥ 0, of signature (n,m) is defined
by assuming that R⊕Rn+m ⊆ Cn,m(R), 1Cn,m(R) = 1 ∈ R, and the orthonormal
basis {e1, e2, . . . , en+m} for Rn+m is a complete set of generators with relations

ei ej + ej ei = 0, 1 ≤ i, j ≤ n+m, i ̸= j,

e2k = −1, 1 ≤ k ≤ n, e2k = 1, n+ 1 ≤ k ≤ n+m.

In particular, C0,0(R) = R. Assuming that (n,m) ̸= (0, 0) and 0 ≤ p ≤ n+m,
we let Ipn+m denote the collection of all p-element subsets I ⊆ {1, 2, . . . , n+m}.
If p = 0, I0n+m = {∅}. Each I ∈ Ipn+m, p ≥ 1, is expressed as a p-tuple

I = (i1, i2, . . . , ip), 1 ≤ i1 < i2 < · · · < ip ≤ n+m.

We form the union In+m =
⋃n+m

p=0 Ipn+m, and next assign to every I ∈ In+m

the element eI ∈ Cn,m(R) given by

e∅ = 1, eI = ei1ei2 · · · eip , I = (i1, i2, . . . , ip), 1 ≤ p ≤ n+m.

Since these are all possible reduced products of generators of Cn,m(R), the set
{eI : I ∈ In+m} is a linear basis for Cn,m(R). Operation ∆ of symmetric
difference introduces a group structure on In+m, and the Clifford relations
yield a function

ε = εn,m : In+m × In+m → {1,−1},
uniquely determined by the requirements

eI eJ = ε(I, J) eI∆J , I, J ∈ In+m.

Function εn,m is a two-cocycle on In+m. The defining properties

ε(I, ∅) = ε(∅, I) = 1, I ∈ In+m,

ε(I, J)ε(I∆J,K) = ε(I, J∆K)ε(J,K), I, J,K ∈ In+m,

are derived from

eIe∅ = e∅eI = eI , I ∈ In+m,

(eIeJ)eK = eI(eJeK), I, J,K ∈ In+m.

Consequently, Cn,m(R) is the group algebra of In+m with two-cocycle εn,m. The
natural involution and norm provided by the general definitions for compact
groups with two-cocycles make Cn,m(R) a Z2-graded unital C∗-algebra. The
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linear basis {eI : I ∈ In+m} consists of unitary elements of Cn,m(R). Moreover,
Cn,m(R) has an inner product ⟨ · | · ⟩ such that {eI : I ∈ In+m} is an orthonor-
mal basis, and the function τ : Cn,m(R) → R, τ( · ) = ⟨ e∅ | · ⟩ is a faithful trace.
The associated environments E[In+m, εn,m,A] with an arbitrary base algebra
A and total algebra Cn,m(R)⊗R A are called Clifford algebra environments.

Clifford algebras are usually called geometric algebras. The algebras
Cn,0(R) in particular form the class of Euclidean Clifford algebras. The first
three non-trivial such algebras are C1,0(R) = C, the complex numbers, C2,0(R) =
H, the Hamilton quaternions, and C3,0(R) = H ⊕ H, the split biquaternions.
Complex Clifford algebras, Cn,m(C) = Cn,m(R) ⊗R C, are complexifications of
the real ones, and Cn,0(C), n ≥ 1, are called hermitian Clifford algebras.

3.5. Additional properties of spaces of representations

This subsection points out properties of R(G, ε,A) and R∗(G, ε,A) that
are not derived from the structure manifolds S(E[G, ε,A]) and S∗(E[G, ε,A]).

Suppose α ∈ R(G, ε,A) and note that α∗ ∈ R(G, ε,A). Define a ∈ A as

a = Π(α∗ × α) = α∗ × α(e) =

∫
G
α(g)∗α(g) dµ(g).

Requirements (iii) and (iv) in Definition 1.5 imply

a · α = Π(α∗ × α) · α = α∗ × α = α∗ ·Π(α∗ × α) = α∗ · a.

We observe that a ∈ G(A), hence α∗ and α are similar representations. In
addition, a is positive and by using functional calculus we define powers of a
with real exponents by

at = exp(t log(a)) ∈ G(A), t ∈ R,

and introduce the smooth path on R(G, ε,A) defined by

(3.7) γ : [0, 1] → R(G, ε,A), γ(t) = at · α · a−t, 0 ≤ t ≤ 1.

Obviously, by (3.7) each γ(t) is a representation similar to α. We claim that the
midpoint of γ, γ(1/2) = a1/2 ·α·a−1/2, is in R∗(G, ε,A), i.e., γ(1/2) is a unitary
representation. One expects this because γ(0) = α and γ(1) = α∗. For the
proof, we just note that γ(1/2)∗ = a−1/2·α∗·a1/2 = a−1/2 a·α·a−1 a1/2 = γ(1/2).
The following result summarizes our previous observations.

Proposition 3.10. R(G, ε,A) and R∗(G, ε,A) have the next properties:

(i) Any α ∈ R(G, ε,A) and its conjugate α∗ ∈ R(G, ε,A) are similar.

(ii) Each α ∈ R(G, ε,A) is similar to a unitary representation.
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(iii) R∗(G, ε,A) is a deformation retract of R(G, ε,A).

We end this subsection with some comments and an example. Suppose
thatG is abelian and ε = ε0. Under these assumptions, we can use the Pontrya-
gin dual group Ĝ of G, Pontryagin duality theorem, and Fourier transforms
to switch from representations of G to representations of Ĝ. The geometric
properties of spaces of representations of G have natural counterparts in terms
of Ĝ. Moriss [52] is an excellent reference in this regard.

To make a point, let Un = {ζ ∈ C : ζn = 1}, n ≥ 2, be the cyclic
group of n-th roots of unity, with generator ω = exp(2π

√
−1/n). Each uni-

tary representation α ∈ R∗(Un ,A) of group Un into A is determined by the
element α(ω) = u ∈ U(A) with un = 1A, and any such u ∈ U(A) yields
α ∈ R∗(Un ,A) by α(ωk) = uk, 0 ≤ k ≤ n − 1. Elementary spectral theory
implies that spec(u) ⊆ Un . Consequently, there exists a projection n-partition
p = (p1, p2, . . . , pn) of 1A such that

(3.8) u = p1 + ω p2 + ω2p3 + · · ·+ ωn−1pn.

The process works both ways. If p = (p1, p2, . . . , pn) is a projection n-partition
of 1A and u is defined by (3.8), then u ∈ U(A) and un = 1A. Using the n-fold
product algebra environment (En(A),Π,A) introduced in Subsection 1.3 and
a result proved there, we conclude that R∗(Un ,A) and the structure manifold
S∗(En(A)) of (En(A),Π,A) are difeomorphic real analytic Banach manifolds,
and R∗(Un ,A) has 2

n(n−1)/2 complex structures.

4. CONCLUDING COMMENTS

Over the years, a great deal of developments made apparent the important
part played by non-commutative conditional expectations in operator algebra
theory. The article by Takesaki [63] and all the references therein deserve a
special mention in this regard. Kadison [26] is yet another highly recommended
source of information, with a particular emphasis on the role of group algebras.
The comprehensive monograph by Strătilă [62] on modular theory in operator
algebras covers the intricate transition from basic requisites and early results
to recent discoveries with far-reaching consequences.

Structure manifolds of group with two-cocycle algebra environments and
the requirements in Definition 1.7 were introduced in Martin [35], as means
of studying spaces of projective compact group representations in C∗-algebras.
The group of order two yields Grassmann manifolds, an object investigated
by Porta, Recht [54] and Salinas [61], two early articles that prompted us to
search for a concept adapted to more general settings including, for instance,
cyclic groups of higher order that generate flag manifolds of C∗-algebras.
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Notewothy contributions to the development of lines of research centered
on a multitude of themes implicitly related to Banach algebra environments
and spaces of group representations are due to Andruchow, Stojanoff [4], An-
druchow, Recht [5], Beltita [8], Beltita, Gale [9, 10], Corach, Porta, Recht [19],
Lubotzky, Magid [32], Magid [33], Wilkins [65].

C∗-algebra environments were defined and studied in Martin, Salinas [47].
Sections 1 and 2 include new and simplified proofs of results from this article,
although many issues such as normalized lifts of continuous curves on structure
manifolds to the groups of invertible or unitary elements of the base algebra, or
linear connections on structure manifolds have been left out. The two sequels,
Martin, Salinas [48, 49] analyze flag manifolds of C∗-algebras and generalize
results from Cowen, Douglas [20] in a C∗-algebra framework. Holomorphic
mappings of several complex variables with values in Grassmann manifolds,
hermitian holomorphic vector bundles of finite or infinite rank, and n-tuples
of Hilbert space operators in Cowen–Douglas classes, which all have a role in
developing holomorphic spectral theory, are investigated in Martin [46].

An incipient use of the symbol and conjugation operators Σα and Γα in
connection with geometric structures and derivations on smooth vector bundles
is illustrated in Martin [34]. Their significance becomes apparent in Martin
[44], an article that provides explicit ways of finding the linear connections on
Clifford vector bundles used to define Dirac and Laplace operators, and to set
up Bochner–Weitzenböck and Bochner–Kodaira–Nakano curvature identities.

Clifford algebra environments provide a framework for developing Clif-
ford analysis and spin geometry, two research areas related to the study of
Dirac and Laplace operators in appropriate topological settings. Algebraic
K-theory, Euclidean harmonic analysis, and in particular the theory of singu-
lar integral operators, are also worth mentioning in this regard. For specific
details, we refer to Anglés [6], Berline, Getzler, Vergne [11], Brackx, Delange,
Sommen [16], Colombo, Sabadini, Sommen, Struppa [18], Gilbert, Murray [23],
Gürlebeck, Sprössig [24], Karoubi [27], Lawson, Michelsohn [30], Mitrea [51],
Rocha–Chavez, Shapiro, Sommen [56]. The volumes edited by Ablamowicz
[1], Bernstein, Kähler, Sabadini, Sommen [12, 13], Qian, Hempfling, McIntosh,
Sommen [55], Ryan [57], Ryan, Sprössing [58], Sabadini, Shapiro, Sommen [58]
include proceedings of international conferences organized by several academic
institutions, attended by scientists interested in Clifford analysis and its appli-
cations. The volume edited by Alpay [2] as part of an ongoing project provides
an excellent illustration of the full scope of past and current developments
in quaternion and Clifford analysis. The recent article by Alpay, Cerejeiras,
Kaehler [3] introduces generalized Clifford Zn-graded algebras, n = 3, n = 6,
that we expect to trigger new inquiries.
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For more applications of algebra environments related to harmonic anal-
ysis and multivariable operator theory, we direct the attention of our reader to
two groups of articles, Martin [36–39], and Martin [40–43, 45], Martin, Salinas
[50]. The list of specific issues includes Dirac operators with coefficients in a C∗-
algebra, Cauchy–Pompeiu and Bochner–Martinelli–Koppelman representation
formulas in a Banach algebra setting, maximal and fractional integral oper-
ators in Clifford analysis, generalizations of Ahlfors–Beurling and Alexander
inequalities, quantitative Hartogs–Rosenthal theorems, Bochner–Weitzenböck
and Bochner–Kodaira–Nakano self-commutator identities, extensions of Put-
nam inequality and singular integral models of seminormal systems of operators
using Riesz transforms.
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