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We present an alternative construction – using forcing, instead of diamond prin-
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few operators and present some open problems.

AMS 2020 Subject Classification: 47A53, 03E65, 54D80.

Key words: Banach spaces C(K), indecomposable Banach spaces, forcing, few
operators, Efimov’s problem.

1. INTRODUCTION

In [10], Koszmider constructed an example of a Banach space of the
form C(K) with few operators in the sense that every bounded linear operator
T : C(K) −→ C(K) satisfies T (fn)(xn) → 0, whenever (fn)n∈N is a bounded
pairwise disjoint (i.e., fn · fm = 0, for n ̸= m) sequence in C(K) and (xn)n∈N
is a sequence in K such that fn(xn) = 0, for every n ∈ N. Such operators
are called weak multipliers and we say that K is a weakly Koszmider space
if all bounded linear operators on C(K) are weak multipliers. Also in [10],
Koszmider constructed a Banach space of the form C(K) with few operators
in the sense that every operator on C(K) is a multiplication by a continu-
ous functions plus a strictly singular operator. Such operators are called weak
multiplications and we say that K is a Koszmider space if all bounded linear
operators on C(K) are weak multiplications. It is clear that a weak multipli-
cation is a weak multiplier and therefore, every Koszmider space is a weakly
Koszmider space.

When K is a connected Koszmider space (as it is constructed in [10], us-
ing CH, and in [17], in ZFC), C(K) is an indecomposable Banach space, which
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means that it cannot be written as the direct sum of two infinite-dimensional
subspaces. This is related to the result of Gowers and Maurey (see [7] and [8])
about general Banach spaces: a construction of a Banach space where all op-
erators have the form λI + S, where λ is a scalar (real or complex), I is the
identity operator and S is strictly singular. Such space is hereditarily indecom-
posable, i.e., all its closed subspaces are indecomposable. Banach spaces of the
form C(K) cannot be hereditarily indecomposable, since it always contains c0
as a subspace.

Two of the most important questions arisen from this subject, the first
one asked in the original paper [10]: Is there a compactum K such that every
closed L ⊂ K is a weakly Koszmider space? Given a cardinal κ, is it possible
to build a (connected) Koszmider space with weight κ?

The first question was answered positively, under axiom ♢, in [4]. Since
neither βN neither a convergent sequence is a weakly Koszmider space, this
provides another consistent counter-example for the Efimov’s problem (the first
one was given by [6], assuming CH, which is weaker than ♢). We will refer to
infinite compact spaces with the property that every infinite closed subspace
is weakly Koszmider as hereditarily weakly Koszmider space.

The hereditarily indecomposable Banach space constructed by Gowers
and Maurey is separable. It is proved in [18] that the maximum density of an
hereditarily indecomposable Banach space is 2ω. This is the density of C(K)
constructed in [10], as well as in [4], regarding that the density of C(K) is
the weight of K. Koszmider spaces have uncountable weight and the authors
in [14] showed that there is no bound on the weight of connected Koszmider
spaces and, consequently, there is no bound on sizes of indecomposable Banach
spaces.

A consistent construction of a Koszmider space with weight ω1 < 2ω

was made in [3]. Other examples of Koszmider spaces with weight 2ω1 > 2ω

were constructed in [11] (where K is 0-dimensional) and in [13] (where K is
connected). All the three constructions use forcing.

In this paper, we present a new method of construction of a hereditarily
weakly Koszmider space using forcing. The notion of the forcing is given in
Section 3 and the main result is proved in Section 4, where we work in the
generic extension. Section 2 shows the basic results and terminology used in
the paper.

Using forcing instead of the diamond principle simplifies the notation in
several aspects, providing a cleaner proof for whom is acquainted with the
forcing technique.

In Section 5, we provide a new result about the density of C(K) with
few operators. We show that the classical constructions of C(K) with few
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operators imposes an upper bound for the density of C(K). Finally, Section
6 discusses some open problems concerning the theory of hereditarily weakly
Koszmider spaces.

2. COMPLETE EXTENSIONS BY CONTINUOUS FUNCTIONS

In this section, we state some basic terminology used in [4] and [10].
If f is a real continuous function on a compact space K, we denote by

supp(f) the closure of {x ∈ K : f(x) ̸= 0} in K. We say that two real functions
f and g on the same domain are disjoint if f(x) · g(x) = 0, for every x in the
domain of f and g.

If K is a compact Hausdorff space, we denote by C(K) the Banach space
of all continuous function from K into R, normed by the supremum. We
denote by M(K) the Banach space of the Radon measures on K, normed by
the variation of the measure.

All topological spaces appearing in this paper are Hausdorff.

Definition 2.1. Let K be a compact space and let (fn)n∈N be a bounded
pairwise disjoint sequence in C(K). We define

D((fn)n∈N) =
⋃

{U : U is open and {n : U ∩ supp(fn) ̸= ∅} is finite}

and
∆((fn)n∈N) = K ∖D((fn)n∈N).

The following lemma is immediate from the definition.

Lemma 2.2. Let K be a compact space and let (fn)n∈N be a bounded
pairwise disjoint sequence in C(K). Then ∆((fn)n∈a) ⊂ ∆((fn)n∈b), for all
infinite subsets a ⊂ b ⊂ N.

Lemma 2.3 ([10, Lemma 4.1]). Let K be a compact space and let (fn)n∈N
be a bounded pairwise disjoint sequence in C(K). Then:

(i) f ∈ C(K) is sup{fn : n ∈ N} in the lattice C(K) if, and only if,

{x ∈ K : Σn∈Nfn(x) ̸= f(x)}

is nowhere dense in K;

(ii) D((fn)n∈N) is an open dense subset of K and Σn∈Nfn is continuous on
D((fn)n∈N).

Definition 2.4. Suppose that K is compact, L ⊆ K × [0, 1] and (fn)n∈N
is a pairwise disjoint sequence of continuous functions from K into [0, 1]. Let
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π : L −→ K be the standard projection. We say that L is an extension of K by
(fn)n∈N – and we will denote by K((fn)n∈N) – if L is the closure of the graph
of Σn∈Nfn|D((fn)n∈N). We say that L is a complete extension if, moreover, for
every x ∈ K, π−1[{x}] is either a singleton or {x} × [0, 1].

Lemma 2.5 ([10, Lemmas 4.2 and 4.4] and [4, Lemma 3.6]). Let (fn)n∈N
be a pairwise disjoint sequence of continuous functions from K into [0, 1], L =
K((fn)n∈N) and π : L −→ K be the standard projection. Then:

(i) The function f : L → [0, 1] defined by f(x, t) = t is the supremum of
(fn ◦ π)n∈N in C(L);

(ii) If M is a nowhere dense set in K, then π−1[M ] is a nowhere dense set in
L. In particular, if (gn)n∈N has supremum in C(K), then (gn ◦π)n∈N has
supremum in C(L);

(iii) If K is connected and L is a complete extension of K, then L is also
connected.

3. DEFINING THE FORCING

We suppose CH holds in the ground model V . Let κ be an uncountable
cardinal.

For I ⊆ J ⊆ κ, we denote by πJ,I the standard projection from [0, 1]J

onto [0, 1]I , given by πJ,I(x) = x|I . When J is clear from the context, we will
denote πJ,I simply by πI . In particular, we will denote πκ,I by πI .

For a an infinite subset of N and (Fn)n∈a a sequence of closed subsets
of a topological space K, we say that (Fn)n∈a converges to x ∈ K if the set
{n ∈ a : Fn ̸⊆ U} is finite, for every open neighbourhood U of x.

We define the forcing ⟨P,≤⟩ taking P the set of all 4-uples
p = (Ip,Kp,Pp,Bp) which satisfy the following conditions:

P1 Ip ⊆ κ and |Ip| ≤ ω;

P2 Kp ⊆ [0, 1]Ip is compact and connected;

P3 Pp is a countable set of 4-uples ((Fn)n∈N, a, b, z) such that

• (Fn)n∈N is a pairwise disjoint sequence of closed subsets of Kp;

• a, b are disjoint infinite subsets of N;
• z ∈ Kp;

• (Fn)n∈a and (Fn)n∈b converge to z.
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P4 Bp = {(xpξ , y
p
ξ ) : ξ ∈ Ip}, where xpξ , y

p
ξ ∈ Kp and xpξ |Ip∩ξ = ypξ |Ip∩ξ.

The order ≤ is defined by taking q ≤ p if, and only if,

O1 Iq ⊇ Ip;

O2 πIq ,Ip [Kq] = Kp;

O3 If M is nowhere dense in Kp, then π−1
Iq ,Ip

[M ] is nowhere dense in Kq;

O4 For every ((Fn)n∈N, a, b, z) ∈ Pp, there exists ((F ′
n)n∈N, a

′, b′, z′) ∈ Pq such
that

• |b′ ∖ b ∪ a′ ∖ a| < ω;

• z′|Ip = z;

• F ′
n = π−1

Iq ,Ip
[Fn], for every n ∈ N.

O5 For every ξ ∈ Ip, we have xqξ|Ip = xpξ and yqξ |Ip = ypξ .

Lemma 3.1. (P,≤) is σ-closed.

Proof. Let (pn)n∈N be a decreasing sequence in P. We have to define
p = (Ip,Kp,Pp,Bp) such that p ∈ P and p ≤ pn, for all n ∈ N.

Let Ip =
⋃

n∈N Ipn , Kp the inverse limit of (Kpn)n∈N and Bp = {(xpξ , y
p
ξ ) :

ξ ∈ Ip}, where xpξ =
⋃

n≥n0
xpnξ , ypξ =

⋃
n≥n0

ypnξ and n0 is the least integer such
that ξ ∈ Ipn0

. Clearly Ip and Bp satisfy the conditions P1 and P4. Moreover,
since inverse limits preserve compactness and connectedness, Kp satisfies P2.

In order to define Pp, we will define a function ϕ whose domain is
⋃
Ppn

and Pp will be taken as the range of ϕ.
Let Q ∈ Pn0 , for some n0. Fix a sequence ((Fn

m)m∈N, an, bn, zn)n≥n0

such that Q = ((Fn0
m )m∈N, an0 , bn0 , zn0) and, for every n > n0, the 4-uple

((Fn
m)m∈N, an, bn, zn) ∈ Ppn is obtained from ((Fn−1

m )m∈N, an−1, bn−1, zn−1) us-
ing condition O4 of the order ≤.

For each m ∈ N, take Fm the inverse limit of (Fn
m)n≥n0 . Let a be an

infinite pseudo-intersection of (an)n≥n0 , i.e., a ∖ an is finite, for every n ≥ n0

(the existence of a follows from [2, Theorem 3.1] and the fact that an+1 ∖ an
is finite, for every n ∈ N).

Let b′ be an infinite pseudo-intersection of (bn)n≥n0 and take b = b′ ∖ a.
Clearly, a ∩ b′ is finite and, hence, b is still a pseudo-intersection of (bn)n≥n0 .

Finally, take z =
⋃

n≥n0
zn and define ϕ(Q) = ((Fm)m∈N, a, b, z). Now we

will prove P3. Disjointness of a and b follows immediately from the definition.
Clearly, z ∈ Kp and (Fm)m∈N is a pairwise disjoint sequence of closed subsets
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of Kp. Suppose that (Fm)m∈a does not converge to z. It means that there exist
a basic open neighbourhood U of z, an infinite c ⊂ a and a sequence (xm)m∈c
such that xm ∈ Fm ∖ U , for every m ∈ c. Taking n ∈ N such that U depends
only on coordinates in Ipn , we have that πIpn [U ] is an open neighbourhood
of zn, in Kpn , and xm|Ipn ∈ Fn

m ∖ πIpn [U ], for every m ∈ c. Since a ∖ an is
finite, an ∩ c is an infinite subset of an, which leads us to a contradiction with
condition P3 of pn. We prove analogously that (Fm)m∈b converges to z.

It remains to prove that p ≤ pn, for every n ∈ N. Condition O1, O2 and
O5 are trivial, and O4 follows from the definition of ϕ. Let us verify O3. Let
M be a nowhere dense subset of Kpn , for some n, and suppose that π−1

Ip,Ipn
[M ]

is not nowhere dense in Kp. Let V ⊆ π−1
Ip,Ipn

[M ] be a basic non-empty open set
and take m > n such that the coordinates which determine V belong to Ipm .
We notice that π−1

Ipm ,Ipn
[M ] is nowhere dense in Kpm , because pm ≤ pn and M

is nowhere dense in Kpn . Since π−1
Ip,Ipn

[M ] ⊆ π−1
Ip,Ipn

[M ], we have

πIp,Ipm [V ] ⊆ πIp,Ipm [π−1
Ip,Ipn

[M ]] = πIp,Ipm [π−1
Ip,Ipm

[π−1
Ipm ,Ipn

[M ]]] = π−1
Ipm ,Ipn

[M ]

and πIp,Ipm [V ] is open in Kpm , which contradicts the fact that π−1
Ipm ,Ipn

[M ] is
nowhere dense in Kpm .

Lemma 3.2. Let p ∈ P. Given

(a) a pairwise disjoint sequence (fn : n ∈ N) from Kp into [0, 1];

(b) a relatively discrete sequence (xn)n∈N of distinct points of Kp such that
xn /∈ supp(fm), for every n,m ∈ N;

(c) an ε > 0;

(d) a bounded sequence (µn : n ∈ N) of Radon measures on K such that
|
∫
fndµn| > ε, for every n ∈ N;

there exist q ≤ p, δ > 0, infinite b ⊂ a ⊂ N, z′ ∈ Kq and continuous functions
f ′
n : Kp −→ [0, 1] such that supp(f ′

n) ⊂ supp(fn) and

(e) |
∫
f ′
ndµn| > δ and Σ{

∫
f ′
md|µn| : m ̸= n,m ∈ a} < δ/3, for every n ∈ a;

(f) Kq = Kp((f
′
n)n∈b) is a complete extension;

(g) (f ′
n ◦ πIq ,Ip)n∈b has supremum in C(Kq);

(h) ((π−1
Iq ,Ip

[{xn}])n∈N, b, a∖ b, z′) ∈ Pq.
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Proof. It follows mostly from [1, Lemma 2.10] and the definition of P,
taking Iq = Ip ∪ {α}, for α any upper boundary of Ip in κ. However, we have
to define Bq and prove condition O5 to guarantee that q ≤ p. In fact, it is
enough to define xqξ and yqξ as any extensions of xpξ and ypξ , respectively, in Kq,

for ξ ∈ Ip, and xqα = yqα as any element of Kq. Since α > ξ, for every ξ ∈ Ip,
condition O5 of q ≤ p clearly holds.

Lemma 3.3. Given p ∈ P and α < κ, there exist q ≤ p and ξ > α such
that ξ ∈ Iq and xqξ ̸= yqξ .

Proof. Fix z ∈ Kp and (zn)n∈N a sequence in Kp converging to z. Let Vn

open neighbourhoods of zn pairwise disjoint whose diameters converge to zero.
Assume z /∈ Vn, for every n. Fix continuous functions fn : Kp −→ [0, 1] such
that fn(zn) = 1 and supp(fn) ⊂ Vn. Define µn = δzn and ε = 1

2 . Take (xn)n∈N
any relatively discrete sequence in Kp.

Take ξ > max{α, sup Ip} in κ and q ≤ p as in Lemma 3.2, taking Iq =
Ip ∪ {ξ}. By item (e), we have f ′

n(zn) > δ. Therefore, taking t a limit point
of {f ′

n(zn) : n ∈ N}, we have t ≥ δ and (z, t) ∈ Kq. Define xqξ = (z, 0) and

yqξ = (z, t).

Lemma 3.4. Let p ∈ P. Take (fn)n∈N a pairwise disjoint sequence of con-
tinuous functions from Kp into [0, 1] and suppose that (fn)n∈N has supremum f
in C(Kp). Hence, for every q ≤ p, f ◦πIq ,Ip is the supremum of (fn ◦πIq ,Ip)n∈N
in C(Kq).

Proof. By [10, Lemma 4.1], f is the supremum of (fn)n∈N in C(Kp) if,
and only if, the set

∆(f, (fn)n∈N) = {x ∈ Kp : Σn∈Nfn(x) ̸= f(x)}

is nowhere dense in Kp.
Since ∆(f ◦ πIq ,Ip , (fn ◦ πIq ,Ip)n∈N) = π−1

Iq ,Ip
[∆(f, (fn)n∈N)], by condition

P3 and [10, Lemma 4.3] it follows that ∆(f ◦πIq ,Ip , (fn ◦πIq ,Ip)n∈N) is nowhere
dense in Kq, proving that f ◦πIq ,Ip is the supremum of fn◦πIq ,Ip in C(Kq).

4. GENERIC EXTENSION

Since P is σ-closed, P does not add countable sets (see [15]). In particular,
P does not add real numbers and, hence, [0, 1]V = [0, 1]V [G] in any generic
extension V [G].

Let G be a P-generic over V . In V [G], define IG = ∪{Ip : p ∈ G}. Let
İG be a P-name for IG in V .



68 A. S. V. Barbeiro and R. A. Fajardo 8

Lemma 4.1. IG is unbounded in (κ)V [G].

Proof. Immediate consequence of Lemma 3.3, which proves that the set
{p ∈ P : ∃ξ > α(ξ ∈ Ip)} is dense in P, for every α < κ.

Lemma 4.2. For every p ∈ P, C(Kp)
V [G] = C(Kp)

V and M(Kp)
V [G] =

M(Kp)
V .

Proof. Since P does not add countable subsets of sets in the ground model,
we have [0, 1]V [G] = [0, 1]V . Let f : Kp −→ R be a continuous function in V [G].
We have to prove that f ∈ V and f is continuous in V . Since Kp ⊆ [0, 1]Ip ,
Kp is metrizable and separable. Let E be a countable dense subset of Kp and
take g = f |E . Clearly, g is a countable subset of Kp × R and, hence, g ∈ V .

For each x ∈ Kp, using metrizability of Kp and density of E, we find a
sequence (xn)n∈N in E which converges to x, in V . By the fact that the forcing
does not add real numbers and, consequently, it does not add basic open sets
of [0, 1]Ip , the notion of convergence is absolute for V and V [G], and, therefore,
xn converges to x in V [G]. By continuity of f in V [G] it implies that f(xn)
converges f(x) and, in particular, g(xn) = f(xn) also converges to f(x) in V .
Hence, we may define a function h : Kp −→ R in V given by

h(x) = lim
n→∞

g(xn),

where (xn)n∈N is a sequence in E converging to x. By the below observations,
the above limit exists and does not depend on the choice of (xn)n∈N. Moreover,
h is continuous in V and h(x) = f(x), for every x, proving that f ∈ C(Kp)

V .

We concluded that C(Kp)
V [G] ⊆ C(Kp)

V . Conversely, we proceed anal-
ogously to prove that a continuous real function defined on Kp in V is also
continuous in V [G].

Finally, since we may identify Radon measures on Kp with functions on
a countable basis of Kp with range in R, the proof that M(Kp)

V [G] = M(Kp)
V

is analogous.

Lemma 4.3. If p ⊩ (İ ⊆ İG) ∧ (|İ| ≤ ω̌), then there exists q ≤ p such
that q ⊩ İ ⊆ Ǐq.

Proof. Let α̇n names for elements of κ such that

p ⊩ İ = {α̇n : n ∈ Ň}.

Take p−1 = p. Suppose we have defined pn−1, for some n ≥ 0. Let
p′n, qn ∈ P and αn ∈ κ such that p′n ≤ pn−1 and

p′n ⊩ α̇n = α̌n, α̌n ∈ Ǐqn , q̌n ∈ Ġ.
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Since p′n ⊩ p̌′n, q̌n ∈ Ġ, there exist p′′n ≤ p′n and pn ∈ P such that

p′′n ⊩ p̌n ≤ p̌′n, q̌n.

By absoluteness of the order of P, we have

pn ⊩ p̌n ≤ p̌′n, q̌n.

Hence, pn ⊩ Ǐqn ⊆ Ǐpn and

pn ⊩ α̇n = α̌n, α̌n ∈ Ǐpn .

Since (pn)n∈N is decreasing and P is σ-closed, there exists q ∈ P such that
q ≤ pn, for every n ∈ N. Therefore,

q ⊩ ∀n ∈ Ň α̇n = α̌n, α̌n ∈ Ǐq.

I.e., q ⊩ İ ⊆ Ǐq, proving the lemma.

In V [G] we define

K = {x ∈ [0, 1]IG : ∀p ∈ G(x|Ip ∈ Kp)}

as a topological subspace of [0, 1]IG .
Let K̇ and Ġ P-names for K and G, respectively.

Theorem 4.4. In V [G], let K be as above.

(A) K is compact and connected;

(B) Given

(a) a pairwise disjoint sequence of continuous functions (fn : n ∈ N)
from K into [0, 1];

(b) a relatively discrete sequence (xn : n ∈ N) of points of K such that
fn(xm) = 0, for every n,m ∈ N;

(c) an ε > 0;

(d) a bounded sequence (µn)n∈N on M(K) such that |
∫
fndµn| > ε, for

every n ∈ N;

there exist δ > 0, infinite b ⊆ a ⊆ N and continuous functions f ′
n from

K into [0, 1] such that

(e) supp(f ′
n) ⊆ supp(fn), for every n ∈ N;

(f) |
∫
f ′
ndµn| > δ and Σ{

∫
f ′
md|µn| : m ̸= n,m ∈ a} < δ/3, for every

n ∈ a;

(g) {f ′
n : n ∈ b} has supremum in C(K);
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(h) {xn : n ∈ b} ∩ {xn : n ∈ a∖ b} ≠ ∅.

(C) For every closed L ⊆ K, every operator in C(L) is a weak multiplier.

Proof. To prove (A), we notice that K =
⋂

p∈G π−1
IG,Ip

[Kp] and, by com-

pactness of each Kp, K is closed and compact in [0, 1]IG . Suppose by contra-
diction that K is not connected. Let V and W be disjoint open sets of K such
that K ∖ V ∪ W = ∅. By compactness, we may assume that V and W are
finite unions of basic open sets and, therefore, they are determined by finite
coordinates. Hence, there exists p ∈ G such that Ip contains all the coordinates
which determine V and W . This implies that πIp [V ] and πIp [W ] are disjoint
open sets whose union is Kp, contradicting connectedness of Kp.

Now we will prove part (B). Let (fn)n∈N, (µn)n∈N, (xn)n∈N and ε as in
the items from (a) to (d) of part (B).

By Tietze’s theorem there exist continuous functions f̃n : [0, 1]IG −→
[0, 1] such that f̃n|K = fn. By a theorem of Mibu (see [16]) there exists a
countable I ⊆ IG such that f̃n(x) = f̃n(y), whenever x|I = y|I and n ∈ N.

Let µ′
n ∈ M(Kp) defined as µ′

n(A) = µn(π
−1
Ip

[A]) for every Borel set

A ⊂ Kp. We notice that
∫
gdµ′

n =
∫
g ◦ πIpdµn, for every g ∈ C(Kp).

Let ḟn, µ̇
′
n, ẋn and İ be P-names for the objects described above. By

Maximum Principle (see [15]) we may assume that P forces items (a) to (d)
and İ satisfies the condition of Mibu’s Theorem. We have to prove that for
every p ∈ P there exists q ≤ p which forces items (e) to (h).

Fix p ∈ P. By Lemma 4.3 there exists r ≤ p such that r ⊩ İ ⊆ Ǐr.
By Mibu’s Theorem and πIr [K] = Kr there exist P-names ġn for continuous
functions from Kr into [0, 1] such that

r ⊩ ġn(ẋ|Ǐr) = ḟn(ẋ), for every ẋ ∈ K̇.

Clearly, r forces that (ġn)n∈N are pairwise disjoint. We have r ⊩ J̇ ⊇ Ǐr
and

r ⊩ ḟn ◦ πJ̇ = ġn ◦ πJ̇ ,Ǐr ,
for every n ∈ N.

Taking gn = valG(ġn), by Lemma 4.2 we have gn ∈ V .
Let νn ∈ M(Kr) defined by νn(A) = µn(π

−1
Ir

[A]), for every Borel set
A ⊂ Kr.

We may also assume that there exist zn ∈ Kr, for n ∈ N, such that

(∗) r ⊩ žn = ẋn|Ǐr .
By Lemma 3.2 there exist q ≤ r, δ > 0, infinite b ⊂ a ⊂ N, z′ ∈ Kq and

continuous functions g′n : Kr −→ [0, 1] such that supp(g′n) ⊂ supp(gn) and

(i) |
∫
g′ndνn| > δ and Σ{

∫
g′md|νn| : m ̸= n,m ∈ a} < δ/3, for every n ∈ a;
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(ii) Kq = Kr((g
′
n)n∈b) is a complete extension;

(iii) (g′n ◦ πIq ,Ir)n∈b has supremum in C(Kq);

(iv) ((π−1
Iq ,Ir

[{zn}])n∈N, b, a∖ b, z′) ∈ Pq.

Let ġ be a P-name for the supremum of (ǧ′n ◦ πIq ,Ir)n∈b in C(Kq). We
may assume that such condition is forced by q.

In V [G] define f ′
n = g′n ◦πIq . Clearly (e) holds. Item (f) follows from (i).

In order to prove (g) and (h) and conclude the proof of part (B), it is sufficient
to prove that:

(v) q ⊩ ġ ◦ πIq is the supremum of (ḟ ′
n)n∈b in C(K̇) and

{ẋn : n ∈ b̌} ∩ {ẋn : n ∈ ǎ∖ b̌} ≠ ∅.

Suppose that q ̸⊩ ġ ◦ πIq = sup(ḟ ′
n)n∈b. We have

q ⊩ ḟ ′
n(x) = ġ′n(x|Ǐr) = ġ′n ◦ πIp,Ir(x) ≤ ġ(x|Ǐq) = ġ ◦ πIq(x)

and, so, there exist s ≤ q and a P-name ḣ for a continuous function from K
into [0, 1] such that s ⊩ ḟ ′

n ≤ ḣ < ġ ◦ πǏq , for every n ∈ b. By Mibu’s theorem

there exist s′ ≤ s and J̇ such that

s′ ⊩ J̇ ⊆ İG, |J̇ | = Ň and, if x|J̇ = y|J̇ then ḣ(x) = ḣ(y).

By Lemma 4.3 there exists t ≤ s′ such that t ⊩ J̇ ⊆ Ǐt. Hence, there exists a
P-name ḣ′ for a continuous function from Kt into [0, 1] such that

t ⊩ ḣ = ḣ′ ◦ πǏt , ġ′n ◦ πǏr ≤ ḣ.

Since t ≤ s, there exists a P-name ẋ for an element of K such that

t ⊩ ḣ′(ẋ|Ǐt) = ḣ(ẋ) < ġ ◦ πǏr(ẋ) = ġ ◦ πǏt,Ǐq(ẋ|Ǐq).

Therefore, t forces that ġ ◦ πǏt,Ǐq is not the supremum of (ġ′n ◦ πǏr)n∈b in Kr,
because

t ⊩ ġ′n ◦ πǏt,Ǐr ≤ ḣ′ < ġ ◦ πǏt,Ǐr .
This contradicts Lemma 3.4.

To prove the second part of (v), suppose that

q ̸⊩ {ẋn : n ∈ b̌} ∩ {ẋn : n ∈ ǎ∖ b̌} ≠ ∅.

By compactness of K, there exist s ≤ q and P-names V̇1 and V̇2 of basic open
sets of K such that

s ⊩ V̇1 ∩ V̇2 = ∅, {ẋn : n ∈ b̌} ⊆ V̇1, {ẋn : n ∈ ǎ∖ b̌} ⊆ V̇2.
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Let İ be a P-name such that s ⊩ İ = {α ∈ ǏG : π{α}[V̇1] ̸= π{α}[K̇] or

π{α}[V̇2] ̸= π{α}[K̇]}.
Since V̇1 and V̇2 are P-names for basic open sets, we may assume that

s ⊩ |İ| < ω. By Lemma 4.3 there exists t ≤ s such that

t ⊩ İ ⊆ Ǐt.

Hence, t forces that πǏt [V̇1] and πǏt [V̇2] separate {ẋn|Ǐt : n ∈ b̌} and

{ẋn|Ǐt : n ∈ ǎ∖ b̌} in Kt. I.e.,

(∗∗) t ⊩ {ẋn|Ǐt : n ∈ b̌} ∩ {ẋn|Ǐt : n ∈ ǎ∖ b̌} = ∅ in Ǩt.

This contradicts (iv) and conditions P3 and O4 of the definition of the forcing.
In fact, by (∗) we have xn|It ∈ π−1

It,Ir
[{zn}], for every n ∈ N. Moreover, by

(iv) and O4 there exist z′′ ∈ Kt and infinite disjoint a′, b′ ⊆ N such that
((π−1

It,Ir
[{zn}])n∈N, a′, b′, z′′) ∈ Pt. By P3 this implies that (π−1

It,Ir
[{zn}])n∈a′ and

(π−1
It,Ir

[{zn}])n∈b′ converge to z′′ and, since a′ ∖ b and b′ ∖ (a∖ b) are finite, we
get a contradiction with (∗∗).

Part (C) follows immediately from (B) and [5, Theorem 2.2].

Corollary 4.5. The infinite compact topological space K is an Efimov
space.

Proof. Let L ⊆ K be any infinite closed subspace. By the above theo-
rem, every operator on C(L) is a weak multiplier and therefore C(L) is not
isomorphic to its hyperplanes (see [10]). Thus, if L is a nontrivial convergent
sequence with its limit or if L is homeomorphic to βN, then we would have
C(L) ∼= c0 ∼= c0 ⊕ R or C(L) ∼= l∞ ∼= l∞ ⊕ R, which is a contradiction.

5. ON THE DENSITY OF C(K) WITH FEW OPERATORS

In [12], Koszmider showed that a sufficient condition on K to guarantee
that C(K) have few operators is the following: there exists a dense subset
E ⊆ K such that for every sequence (xn)n∈N in E and every sequence of open
sets (Un)n∈N ⊆ K such that xn /∈ Um for all m and n, there exists M ⊆ N
infinite and coinfinite satisfying {xn : n ∈ M} ∩ {xn : n ∈ N \M} ̸= ∅ and⋃

{Un : n ∈ M}∩
⋃

{Un : n ∈ N \M} = ∅. We will prove that this condition,
commonly used in the constructions of Banach spaces C(K) with few operators,
imposes an upper bound for the density of C(K) or, equivalently, for the weight
of K.
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Lemma 5.1. If K is a compact topological space with density κ and E ⊆ K
is a dense subset, then there exists a sequence (Xα)α∈κ of subsets of E such
that each Xα = {xαn : n ∈ N}, where (xαn)n∈N is an infinite relatively discrete
sequence, and Xβ ∩Xα = ∅ ∀β < α.

Proof. We will construct the sequence (Xα)α∈κ by transfinite induction.
For this purpose, let us fix α < κ and suppose that we have already constructed
Xβ ⊆ E, for β < α. Now, define X =

⋃
β<αXβ =

⋃
β<α {x

β
n : n ∈ N}. Since

|X| < d(K) = κ we have that K \X is an infinite open subset and, using the
fact that E is dense, we conclude that (K \X) ∩ E is also infinite. Hence, we
can take (xαn)n∈N an infinite relatively discrete sequence in E \ X and define
Xα = {xαn : n ∈ N}. To see that the sequence (Xα)α∈κ satisfies the condition
of the statement, take any β < α. Since Xα ⊆ E \Xβ ⊆ K \Xβ, we have that
Xβ ∩Xα = ∅.

Lemma 5.2 ([9, Theorem 2.7]). Let K be a compact topological space 1.
Then w(K) ≤ 2d(K).

Theorem 5.3. Let K be a compact topological space and suppose that
there exists a dense set E ⊆ K such that for every sequence (xn)n∈N in E
and every sequence of open sets (Un)n∈N ⊆ K such that xn /∈ Um for all m
and n, there exists M ⊆ N infinite and coinfinite satisfying {xn : n ∈ M} ∩
{xn : n ∈ N \M} ̸= ∅ and

⋃
{Un : n ∈ M} ∩

⋃
{Un : n ∈ N \M} = ∅. Then

w(K) ≤ 22
2ω

.

Proof. Let d(K) = κ and E ⊆ K be a dense subset. Take (xαn)n∈N,α∈κ
a sequence satisfying the statement of Lemma 5.1 and consider the func-
tion φ : κ −→ P(P(N)) given by φ(α) = {M ⊆ N infinite and coinfinite :
{xαn : n ∈ M} ∩ {xαn : n ∈ N \M} ≠ ∅}. Suppose by contradiction that κ >
22

ω
. Hence there exist α, β ∈ κ such that β < α and φ(β) = φ(α). Using the

normality of K and the fact that {xβn : n ∈ N}∩ {xαn : n ∈ N} = ∅, we can take
(Un)n∈N ⊆ K a pairwise disjoint sequence of open nonempty subsets satisfying

xαn ∈ Un and xβn /∈ Um for all m and n. By hypothesis, there exists M ⊆ N
infinite and coinfinite such that {xβn : n ∈ M} ∩ {xβn : n ∈ N \M} ̸= ∅ and⋃

{Un : n ∈ M}∩
⋃
{Un : n ∈ N \M} = ∅. In particular, M ∈ φ(β) and then

M ∈ φ(α). Hence, we have {xαn : n ∈ M} ∩ {xαn : n ∈ N \M} ̸= ∅, which is a
contradiction because {xαn : n ∈ M}∩ {xαn : n ∈ N \M} ⊆

⋃
{Un : n ∈ M}∩⋃

{Un : n ∈ N \M} = ∅. Therefore, we conclude that κ ≤ 22
ω

and, by

Lemma 5.2, we have that ω(K) ≤ 2d(K) ≤ 22
2ω

.

1The same result holds for regular topological spaces in general.
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6. FINAL REMARKS AND OPEN PROBLEMS

The space K constructed using the technique of forcing has weight at
least 2ω and therefore C(K) has density at least 2ω since the weight of K is
equal to the density of C(K). In fact, K has weight at least 2ω because every
weakly Koszmider space has uncountable weight (see [10]). We started the
construction assuming that CH occurs in the ground model V and since the
forcing is σ-closed, we have that CH also occurs in the extension. Moreover,
we have the following results:

Lemma 6.1. If P preserves cardinals and κ is regular, then K has
weight κ.

Proof. Let λ be the weight of K. Suppose that λ < κ and we will get a
contradiction. Let B be a basis for K with cardinality λ. By compactness of K
we may assume, without loss of generality, that each element of B depends on
a finite number of coordinates and, therefore, by regularity of κ, there exists
α < κ such that every element of B depends on coordinates below α. By
Lemma 3.3, we have that

Dα = {p ∈ P : ∃β > α (β ∈ Ip ∧ xpβ ̸= ypβ)}
is dense in P and, hence, G∩Dα ̸= ∅. Let p̃ ∈ G∩Dα and fix β > α such that
β ∈ Ip̃ ∧xp̃β ̸= yp̃β. Define xβ =

⋃
p∈G xpβ and yβ =

⋃
p∈G ypβ. Therefore, xβ ̸= yβ

and there exist elements of B which separate xβ and yβ. By hypothesis, the
separation happens below α, which gets to a contradiction, since by P4 and
O5, we have xβ|α = yβ|α.

Theorem 6.2. Suppose κ = ω2 = 2ω1 in the ground model V . If P is
ω2-c.c then:

(a) (2ω1)V [G] = (2ω1)V ;

(b) K has weight κ = ω2 = 2ω1 > 2ω.

Proof. Since P preserves cardinals, to prove item (a) we have to prove
that (2ω1)V [G] = κ. Let X be a subset of ω1 in V [G]. Let σ be a nice
name for X, i.e.,

σ = ∪ξ∈ω1{ξ̌} ×Aξ,
where each Aξ is an antichain in P. Since P is ω2-c.c, we have |Aξ| ≤ ω1.
Using CH in the ground model, we have |P| = κ = 2ω1 . Therefore, there exist
ω1 × (2ω1)ω1 = 2ω1 = κ nice names for subsets of ω1,proving that 2ω1 = κ in
V [G].

Part (b) follows immediately from (a) and Lemma 6.1.



15 Hereditarily weakly Koszmider space 75

Theorem 6.2 shows us that if κ = ω2 = 2ω1 and P is ω2-c.c then K will
have weight bigger than 2ω, responding affirmatively to the following problem:

Problem 6.3. Is it relatively consistent with ZFC that there exists a con-
nected hereditarily weakly Koszmider space of weight bigger than 2ω?

In [14], the authors prove that there is no bound on size of Banach spaces
of continuous functions with few operators. The technique used is quite dif-
ferent from the usual techniques and it is based on the ideas contained in [20]
and [21]. The following question is probably the most interesting question in
the context of hereditarily weakly Koszmider spaces:

Problem 6.4. Is there any bound on the weight of hereditarily weakly
Koszmider spaces?
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