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INTRODUCTION

Since the eighties, the study of the theory of complex analytic and alge-
braic varieties has been enriched by the study of pseudo-holomorphic and com-
plex symplectic varieties. In the case of curves in the projective plane, these
new objects are strongly related to braid monodromy, see [17, 14, 13], and can
be constructed by local deformations of arrangements of algebraic plane curves
which can be expressed in terms of braid monodromy factorizations which are
locally algebraic.

The starting point of this paper is an unpublished idea of S. Yu. Orevkov,
which is explained in [12] and outlined in Section 2. The main idea is to de-
form symplectically a tricuspidal quartic (or deltoid) such that the tangent
lines to the cusps are not concurrent. The idea of Orevkov, performed in detail
by M. Golla and L. Starkston, is to apply a standard Cremona transforma-
tion in order to obtain an irreducible symplectic curve with a configuration of
topological type of singularities which does not exist in the algebraic category.
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In this work, we replace the Cremona transformation by a Kummer cover,
in order to compare the symplectic and algebraic structures of curves of de-
gree 4n with 3n singularities having the topological type of u2n − v3 = 0. The
case n = 2 offers significant interesting properties and we focus our attention
on this case since the study of algebraic structures seems to be cumbersome for
n > 2. We prove the existence of symplectic curves Csymp of degree 8 with 6
singular points of type E6.

For n = 2 the primary goal is to determine all algebraic curves of degree 8
with 6 singular points with the topological type of E6. Unfortunately, the goal
was too ambitious and has not been reached. As it usually happens, the exis-
tence of symmetries is helpful and in this paper, we determine all such curves
fixed by a non-trivial projective automorphism. There is exactly one such curve
C8,2 (up to projective automorphism, of course) fixed by an involution and four
such curves Ci

8,3, i = 1, . . . , r, invariant by an automorphism of order 3; there
are no more invariant by automorphism curves. These four curves have equa-
tions in conjugate number fields Ki ⊂ C isomorphic to Q[t]/p(t) where p(t) is
an irreducible polynomial of degree 4. A main question is if they share topo-
logical properties. Two of the roots of p(t) are real and two complex conjugate;
in this last case, complex conjugation is a homeomorphism of P2 reversing ori-
entations on the curves. In the general case, most likely these curves are rigid
by dimension arguments.

Another result in this paper is that there is no homeomorphism of P2

sending Csymp to an algebraic symmetric curve, but it may be isotopic to a
non-symmetric one (if such a curve exists). There is also no homeomorphism
of P2 sending C8,2 to one of the Ci

8,3, and, besides complex conjugation, we do

not know the existence of homeomorphism of P2 exchanging the curves Ci
8,3

(respecting or reversing orientations).

Some proofs need non-straightforward computer algebra steps and rely
heavily on computations in Sagemath [19]. The steps are described in several
notebooks in https://github.com/enriqueartal/SymplecticOctics which
can be executed either on a computer with the last version of Sagemath or
online using Binder [18].

In Section 1, we describe some known properties of the deltoid and com-
pute a special presentation of the fundamental group of the complement of the
deltoid and the tangent lines at the cusps. In Section 2, we study the topology
of a symplectic deformation of the previous arrangement of curves.

https://github.com/enriqueartal/SymplecticOctics
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1. THE DELTOID AND ITS TANGENTS AT THE SINGULAR
POINTS

The deltoid (or tricuspidal quartic, i.e, plane quartic with three ordinary
cusps) is an important plane projective curve. It is rigid, in the sense, that two
deltoids are projectively isomorphic. As it is the dual of a nodal cubic, it has
the following well-known property.

Property 1.1. The three tangent lines at the cusps of a deltoid are con-
current lines.

A symmetric equation of the deltoid is

y2z2 + z2x2 + x2y2 − 2xyz(x+ y + z) = 0.

The equation of the curve in the right-hand side of Figure 1 is

v4 + 4(1 + u)v3 + 18uv2 − 27u2 = 0;

the line at infinity is the tangent line to one of the cusps; the other cusps are
(0, 0), (1,−3) and they have vertical tangent lines. The vertical lines u = a,
a ∈ R, intersect the real part of the curve at two real points (solid curves in
the right-hand side of Figure 1) and at two other points (a, v0(a)±

√
−1v1(a)),

v0(a) ∈ R, v1(a) ∈ R>0; the dotted curve in the right-hand side of Figure 1
represents (a, v0(a)). This picture provides a topological model of the curve
and its tangents.

L1

L2

L∞ L1L∞

L2 L∞

Figure 1 – Left: usual deltoid. Right: real picture with real parts of non-real
branches.

Using the techniques of [3], applied to the right-hand side of Figure 1, we
obtain the following result. The justification of this figure can be found in the
notebook ConstructionSymplecticGroup.

Proposition 1.2. The braid monodromy of the deltoid projecting from
the intersection point of the tangent line to the cusps, when one of these tan-
gents is the line at infinity (as in Figure 1, right) is given by (σ2 ·σ1)2 (for L1)
and (σ2 · σ3)2 (for L2).
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(u0, v0)

u = u0

ℓ1 ℓ2ℓ∞

(u0, v0)
v = v0

Figure 2 – Generators of the presentation in Proposition 1.2. The base point is
(u0, v0), where 0 < u0 < 1 (the u-coordinates) of the affine singular points, and

v0 ≫ 0.

As a consequence, the fundamental group G∆L of the complement of the
deltoid and the lines L1, L2, L∞ is generated by c1, . . . , c4, ℓ1, ℓ2, ℓ∞ with the
relations

(R1) [ℓ2, c1] = 1

(R2) ℓ−1
2 · c2 · ℓ2 = (c2 · c3 · c4) · c3 · (c2 · c3 · c4)−1

(R3) ℓ−1
2 · c3 · ℓ2 = (c2 · c3) · c4 · (c2 · c3)−1

(R4) ℓ−1
2 · c4 · ℓ2 = c2

(R5) ℓ−1
1 · c1 · ℓ1 = (c1 · c2) · c3 · (c1 · c2)−1

(R6) ℓ−1
1 · c2 · ℓ1 = (c1 · c2) · c1 · (c1 · c2)−1

(R7) ℓ−1
1 · c3 · ℓ1 = c1 · c2 · c−1

1

(R8) [ℓ1, c4] = 1

(R9) c · ℓ1 · ℓ2 · ℓ∞ = 1

where c = c1 · . . . · c4.
This monodromy can also be computed using Sagemath [19] with the

optional package Sirocco [15], but in this case it can be done directly.
In the presentation of G∆L, we may omit the generator ℓ∞ using (R9)

which comes from the situation at infinity. Actually, the Zariski-van Kampen
method can be thought to happen in the blow-up of the projection point (the
point at infinity of the vertical lines), see Figure 3. Then (R9) comes from the
boundary of a neighbourhood of the exceptional divisor E, see [16, 6]. Note
that the natural meridian e of E is the inverse of c. The normal crossing
situation implies that e (and hence c and ℓ1 · ℓ2 · ℓ∞) commute with ℓ1, ℓ2, ℓ∞.
This is a consequence of (R2)-(R7): ℓ1, ℓ2 commute with c as their conjugation
action comes from braids.
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L∞L2L1 L∞L2L1

−1 E

Figure 3 – Blow-up of the projection point.

Remark 1.3. Note thatG∆L is a semidirect product F4⋊F2 where c1, . . . , c4
are the generators of normal subgroup F4, ℓ1, ℓ2 are the generators of F2 and
(R2)-(R7), determine the conjugation action.

This group has been computed in [1], but we need the above computation
both for completeness and to deal with the symplectic deformations.

2. SYMPLECTIC DEFORMATIONS

In the context of symplectic geometry, it is possible to construct a deltoid
for which the pseudo-holomorphic tangent lines at the cusps are not concurrent.
This was communicated a long time ago to the author by S. Yu. Orevkov and
was formally written in [12, § 8]. Moreover, it can be done as a deformation of
the algebraic curve which is an isotopy outside a neighbourhood of the triple
point.

L∞L2L1 L∞L2L1

Figure 4 – Symplectic deformation of an ordinary triple point.

Using the classical Seifert-van Kampen theorem, the fundamental group
of the complement of this symplectic curve has the same presentation of the
algebraic one, adding the relations from the situation in the right-hand side of
Figure 4, i.e., [ℓ1, ℓ2] = [ℓ1, ℓ∞] = [ℓ2, ℓ∞] = 1. This technique has been used
in [5, 2, 8] Actually, the following holds.

Corollary 2.1. The fundamental group Gs∆L of the complement of the
symplectic deltoid and the tangent lines at the cusps has the generators and
relators of Proposition 1.2 plus the relation

(R10) [ℓ1, ℓ2] = 1.
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It is useful to have a semidirect presentation of this group.

Corollary 2.2. The group Gs∆L is a semidirect product G0⋊Z2 where
the action is as in the algebraic case and

G0 = ⟨c1, . . . , c4 | c3 · c4 · c3 = c4 · c3 · c4, c1 · c2 · c1 = c2 · c1 · c2 ⟩.

Proof. We start with the semidirect product structure G∆L = F4 ⋊ F2

and the natural epimorphism G∆L ↠ Gs∆L:

1 F4 G∆L F2 1

1 G0 Gs∆L Z2 1.

The semidirect structure comes from the fact that the below exact sequence
splits as seen in the relations. The conjugation in the first exact sequence is
given by the action of the braids τ1 := (σ2 ·σ1)2 (for ℓ1) and τ2 := (σ2 ·σ3)2 (for
ℓ2). Since ℓ1, ℓ2 commute in Gs∆L, then in G0 we have the relations (checked
in ConstructionSymplecticGroup)

cτ1·τ2i = cτ2·τ1i , i = 1, . . . , 4,

which translates into the relations in the statement.

3. ALGEBRAIC AND SYMPLECTIC CREMONA
TRANSFORMATIONS

Following the ideas of Orevkov, Golla and Starkston formalized in [12, § 8]
an example of rational singular curves which exist in the symplectic category
and not in the algebraic one.

The most well-known birational is the map

P2 P2

[x : y : z] [yz : zx : xy].

It is obtained geometrically by the blow-up of the points [1 : 0 : 0], [0 : 1 : 0], [0 :
0 : 1] and the blow-down of the strict transforms of the lines x = 0, y = 0, z = 0
which are pairwise disjoint smooth rational (−1)-curves. We can also consider
a symplectic Cremona transformation which gives the following result.

Proposition 3.1 ([12, § 8]). Let Σalg (resp., Σsymp) be the space of al-
gebraic (resp., symplectic) irreducible curves of degree 8 in P2 having three
singular points with the topological type of u(v3 + u5) = 0.
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(1) The space Σalg is empty.

(2) The space Σsymp is non-empty and it can be embedded in the space of
symplectic deltoids such that their tangent lines to the cuspidal points are
not concurrent.

We can go further and compute some topological invariants of this curve,
in particular the fundamental group of its complement.

Corollary 3.2. If C ∈ Σsymp comes from a Cremona transformation
associated to the tangent lines of a symplectic deltoid (isotopic to an algebraic
one), then its fundamental group is the non-abelian semidirect product Z/3 ⋊
Z/8.

Proof. If P is an ordinary double point and two commuting meridians
of the branches, then a meridian of the exceptional component of the blow-up
of P is the product of the meridians, see e.g. [4, Lemma 3.6] (a probably
well-known result).

The complement of C is homeomorphic to the complement of the strict
transform of the deltoid and the tangent lines by the blow-ups. For the total
transform, we have to add the exceptional components. From the deformation
in Figure 4, we see that these meridians are ℓ1 · ℓ2, ℓ1 · ℓ∞, and ℓ2 · ℓ∞.

From [10, Lemma 4.18], the fundamental group of the complement of the
strict transform is obtained by killing these meridians. These new relations
are summarized in

ℓ := ℓ1 = ℓ2 = ℓ∞, ℓ2 = 1
and clearly imply (R10). The relation (R9) becomes c = ℓ. Relations (R1) and
(R8) become [ℓ, c1] = [ℓ, c2]; since (R4) becomes c2 = c4, we also obtain that ℓ
is central. From (R5) we can eliminate c1 and from a simple computation, we
obtain that c2, c3 generate with the relations

c2 · c3 · c2 = c3 · c2 · c3, c22 · c23 central and of order 2.

The normal subgroup of order 3 is generated by c2 · c−1
3 = (c2 · c3)4 and the

subgroup of order 8 is generated by c2.

Remark 3.3. This group is also the fundamental group of the complement
of an algebraic curve, as it is shown using similar techniques in [20].

4. KUMMER COVERS

With the same ideas as in Section 3, we are going to construct new exam-
ples replacing the standard Cremona transformation by Kummer covers, i.e.,
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Galois covers

P2 P2

[x : y : z] [xn : yn : zn].

Starting from three pseudo-holomorphic non-concurrent lines, there is a sym-
plectic counterpart.

Let us recall that an E6-singularity is a germ of plane curve singularity in
a smooth surface isomorphic to u3 − v4 = 0 in (C2, 0) (with local coordinates
u, v).

Proposition 4.1. There are irreducible symplectic curves Csymp of de-
gree 8 in P2 with 6 singular points of type E6 for which the fundamental group
Gsymp of their complement is generated by c′1, c2, c3, c4, c

′
1 = c−1

2 · c1 · c2, with
relations

[c2, c4] = [c′1, c3] = 1, c′1 · c2 · c′1 = c2 · c′1 · c2, c3 · c2 · c3 = c2 · c3 · c2,
c3 · c4 · c3 = c4 · c3 · c4, (c2 · c′1 · c3 · c4)2 = 1,

and the conjugation action is derived from the action in Remark 1.3.

As in Section 3, we denote by Λsymp and Λalg the spaces of symplectic or
algebraic curves of degree 8 having 6 singular points of type E6.

Proof. The existence of such a curve Csymp comes from a symplectic Kum-
mer cover for n = 2, starting from a symplectic deltoid as in Section 2, taking
the tangent lines to the cusps for the ramification lines of the Kummer cover.
The degree of the preimage of the deltoid is 8 and each cusp produces two E6

points.
For the fundamental group, let Gorb22 be the orbifold fundamental group

of the complement of the deltoid where the orbifold structure comes from the
action of Z/2× Z/2 as deck group of the Kummer cover.

Hence, G is the quotient of the group in Corollary 2.1 with some extra
relations

(R11) ℓ21 = 1

(R12) ℓ22 = 1

(R13) ℓ2∞ = 1.

As we see from the proof of Corollary 2.2, this group G is a semidirect prod-
uct Gsymp ⋊ Z/2 × Z/2. In order to find Gsymp, we consider the relations

c
τj
i = c

τ−1
j

i , for i = 1, . . . , 4 and j = 1, 2. Moreover, we can combine the re-
lations (R9) and (R13) to rewrite them in terms only of c1, . . . , c4. Replacing
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c1 by c′1, we obtain the relation of the statement. Details can be found in
ConstructionSymplecticGroup.

Since the fundamental group of the complement of Csymp is the kernel of
the epimorphism G → Z/2× Z/2 given by

ci 7→ (0, 0), ℓ1 7→ (1, 0), ℓ2 7→ (0, 1), ℓ∞ 7→ (1, 1),

we obtain that this group is Gsymp.

Remark 4.2. Using GAP4 [11] via Sagemath [19], we have:

G/G′ ∼= Z/8, G′/G′′ ∼= Z/3,

G′′/G′′′ ∼= (Z/2)6, G′′′/G(4) ∼= Z9 ⊕ (Z/2)5 ⊕ Z/4.

We need to understand Λalg in order to check if the elements found in
Λsymp are isotopic to algebraic curves. Unfortunately, computations are cum-
bersome and our attempts failed. Most probably this space is discrete, and we
have been able to obtain some particular elements. Some geometric properties
of these curves are presented in the following section.

5. SYMMETRIES AND OTHER PROPERTIES
OF CURVES IN ΛΛΛalg

We want to study the properties of the curves in Λalg. We start with the
symmetry properties. Let us recall that the automorphism group of P2 is the
group PGL(3;C). The elements of finite order correspond to diagonalizable
matrices (up to scalar multiplication) whose eigenvalues are roots of unity.

Example 5.1. The involutions of P2 correspond to matrices which are
conjugate to the diagonal matrix (1, 1,−1), i.e., conjugate to the automorphism
Φ : P2 → P2 such that Φ([x : y; z]) = [x : y : −z]. These automorphisms have
an isolated fixed point, [0 : 0 : 1] (for the eigenspace of dimension 1), and a
line of fixed points, z = 0 (for the eigenspace of dimension 2).

The quotient of P2 by an involution is isomorphic to the weighted projec-
tive plane P2

(1,1,2). Let ω := (p, q, r) be a positive integer vector with pairwise

coprime weights and consider the weighted projective plane P2
ω, see [9] for

details. It is a normal projective surface structure in the quotient

C3 \ {0}/(x, y, z) ∼ (tpx, tqy, trz);

its elements are denoted by [x : y : z]ω. The curves are the zero loci of ω-
weighted homogeneous polynomials, since they are in general Weil divisors.
Bézout’s formula is also valid in the weighted projective planes. Namely, if
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C1, C2 are curves defined by ω-weighted homogeneous polynomials of degrees
d1, d2, respectively, then

(5.1) C1 · C2 =
d1 · d2
p · q · r

.

Lemma 5.2. Let C ∈ Λalg be symmetric by the action of a projective
involution Φ2. Then, two of the singular points are in the line of fixed points
in Φ2 and the other ones form two orbits.

Proof. We can assume that Φ2([x : y : z]) = [x : y : −z]; let F8(x, y, z) = 0
be the equation of C. Since the curve is invariant, we have that F8(x, y, z) =
F8(x, y,−z), i.e., F8(x, y, z) = G8(x, y, z

2) where G8 is a (1, 1, 2)-weighted ho-
mogeneous polynomial of degree 8. The quotient C̃ of C is a curve in P2

(1,1,2)

with equation G8(x2, y2, z2) = 0.

An E6 point cannot be the isolated fixed point [0 : 0 : 1] of Φ2. Let us
assume that no singular point is in the line of fixed points. Then, the quotient
of C in P2

(1,1,2) is a curve of degree 8 with three triple points of type E6. There
is no line L1 of equation ax2+ by2 = 0 through two singular points. If it would
be the case, since L1 is of degree 1, we would have

4 =
degL1 · deg C̃

2
= L1 · C̃ ≥ 3 + 3,

so it is not possible. It is not difficult to check that three points in P2
(1,1,2) such

that no pair is contained in a line, are contained in a curve C2 of degree 2.
Then

8 =
degC2 · deg C̃

2
= C2 · C̃ ≥ 3 + 3 + 3,

which is also impossible. The only possible case is the one in the statement.

Example 5.3. There are two types of automorphisms P2 of order 3. The
first one corresponds to matrices which are conjugate to the diagonal matrix

(1, 1,−ζ), where ζ := exp 2
√
−1π
3 , with one isolated fixed point and a line of

fixed points.

The second type corresponds to matrices which are conjugate to the di-
agonal matrix (ζ, ζ, 1) and has three isolated fixed points. There are exactly
three fixed lines, the lines joining the fixed points.

Lemma 5.4. Let C ∈ Λalg be symmetric by the action of a projective
automorphism Φ3 of order 3. Then, Φ3 has no line of fixed points, there are 2
orbits and the curve passes through two isolated fixed points of Φ3 (tangent to
the fixed lines not containing the two fixed points in the curve).
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Proof. Let us suppose first that Φ3 has a line of fixed points. At most
two singular points can be in this line by Bézout’s Theorem, but actually none
of them can be in the line since the orbits have one or three elements. But
the points in the orbits are aligned which is contradiction again with Bézout’s
Theorem.

Hence, Φ3 has three fixed points, say P1, P2, P3. These points cannot be
singular points of the curve since an E6 cannot be an isolated fixed point of an
action of order 3.

Hence, the singular points form two orbits. Let us consider the lines
joining the fixed points, say Li is the line joining Pj and Pk, {i, j, k} = {1, 2, 3}.
Since the action is free on Li \ {Pj , Pk}, it must intersect C with intersection
number 6. This is only achieved (after reordering) if P1, P2 ∈ C, P3 /∈ C, L2 is
tangent to C at P1 and L1 is tangent to C at P2.

Example 5.5. There are several types of automorphisms of order n > 3,
depending on the different configurations of eigenvalues.

Lemma 5.6. There is no C ∈ Λalg symmetric by the action of a projective
automorphism Φ of order n > 3.

Proof. Note first that we cannot have a line of fixed points, only isolated
points. The case n > 7 is ruled out immediately.

For n = 4, there are two possible types of automorphisms Φ4, conjugate
to the diagonal matrices of either (

√
−1, 1, 1) or (

√
−1,−1, 1). The first case

(with one isolated fixed point and a line of fixed points) is ruled out as in
the first part of the proof of Lemma 5.4. For the second case, we have three
isolated fixed points of order 4. The line joining two of them, say P1, P2, is a
line of fixed points for Φ2

4. The points Pi cannot be singular points of the curve
C. The only possible option is to have an orbit of four singular points and
another one of two points. But the orbit of four points is formed by aligned
points and it is forbidden by Bézout’s Theorem.

In the case n = 5, let Φ5 be such a automorphism. If there is a line of fixed
points, we conclude again as in the first part of the proof of Lemma 5.4. Let
us assume that there are three isolated fixed points, which cannot be singular
in the curve. The set singular points must be the union of orbits of 5 elements,
which is not possible.

For the case n = 6, the restrictions for n = 2, 3 give only one possible
case, corresponding to an automorphism Φ6 conjugate to a diagonal matrix
(−ζ,−ζ, 1), hence only three fixed points which cannot be singular points.
The singular points form one orbit; then, for Φ3

6 we would have three orbits of
two points which has been ruled out in Lemma 5.2.
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These curves have interesting properties from the birational point of view.
Let C ∈ Λalg (though most of the following facts may be also valid in the
symplectic case). Le P1, . . . , P6 be the singular points. They are not in a
conic (from the Bézout Theorem). Let Ci, 1 ≤ i ≤ 6, be the unique conic
passing through P1, . . . , P̂i, . . . , P6. Again, by Bézout’s Theorem, these conics
are irreducible.

Proposition 5.7. Let Ψ : P2 99K P2 be the birational map obtained
by blowing-up the points P1, . . . , P6 and blowing-down the strict transforms of
C1, . . . , C6. Let Q1, . . . , Q6 be the images of the conics and let D1, . . . ,D6 the
images of the exceptional components.

Then, the strict transform of C is a smooth quartic curve D passing
through the points Q1, . . . , Q6. There exist six points R1, . . . , R6 such that as
divisors

D · Di = Q1 + · · ·+ Q̂i + · · ·+Q6 + 3Ri.

These twelve points are pairwise distinct.

Note that in particular, C is not hyperelliptic.

Proof. The map Ψ factors are illustrated in the following diagram

X

P2 P2

σ1 σ2

Ψ

The map σ1 is the composition of the blow-ups of the points P1, . . . , P6. Under
these blow-ups, let us denote by Di the exceptional divisors, and denote also
by Ci the strict transform of Ci. As each conic has been affected by 5 blow-ups,
(Ci)2X = −1, and these strict transforms are pairwise disjoint. Hence, the map
σ2 is the blow-down of the curves Ci. Under these blow-downs, the images
Di = σ2(Di) are conics; they pass through 5 of the six exceptional points
Qj = σ2(Cj).

The other interesection point is the strict transform of a singular point
which becomes a smooth point after blowing-up having intersection number 3
with the exceptional divisor.

Unfortunately, this description is not useful for the computations.

6. ALGEBRAIC CURVES WITH Z/2Z/2Z/2-ACTION

From the lemmas in Section 5, we can assume that C8,2 ∈ Λalg is fixed
by the involution Φ2 : P2 → P2 given by Φ2([x : y : z]) = [x : y : −z] and that
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two of the E6 points are P1 = [1 : 0 : 0] and P2 = [0 : 1 : 0]. The isolated fixed
point [0 : 0 : 1] is not in the curve. The tangent lines to Pi must be fixed by
the action and it is easily seen that they are not tangent to z = 0, hence the
tangent lines are Lx : {x = 0} and Ly : {y = 0}.

The quotient P2/Φ2 is isomorphic to the weighted projective plane P2
ω,

ω = (1, 1, 2), and the map is π : P2 → P2
ω where π([x : y : z]) = [x : y : z2]ω.

From the orbifold point of view there is an orbifold X2 constructed on P2
ω with

the usual orbifold structure around [0 : 0 : 1]ω and also on the line Lz : {z = 0},
with an action of the cyclic group of order 2.

Lemma 6.1. Let C̃8,2 := Φ2(C8,2). Then C̃8,2 is a curve of ω-degree 8,
with two singular points E6 and two ordinary cusps (not two of them in the
same curve of ω-degree 1). Moreover, there is a curve of ω-degree 2 tangent to
the two cusps.

This is obvious from the description of C8,2. Note that the two cusps
come from singular points in the line of fixed points, so they are not in a curve
of ω-degree 1; for any other pair of points, the fact that two singular points
are not on a curve of ω-degree 1 follows immediately from (5.1).

The way to compute the space of all such curves (up to automorphism)
is the following one. We start with a polynomial

f(x, y, z) =
∑

i+j+2k=8

aijkx
iyjzk.

Since it does not pass through [0 : 0 : 1]ω, we may assume that a004 = 1. Recall
that

AutP2
ω =

{
ΦB,c |

∣∣B ∈ GL(2;C), c ∈ C3
}

where ΦB,d([x : y : z]ω) = [b11x+b12y : b21x+b22y : z+cxxx
2+cxyxy+cyyy

2]ω
for

B =

b11 b12

b21 b22

 , c = (cxx, cxy, cyy).

Note that ΦB,c = Φ−B,c. Using this group, we can assume that the two cusps
are at [1 : 0 : 0]ω and [0 : 1 : 0]ω and z = 0 is the 2-curve tangent to the cusps
and one of E6 points is [1 : 1 : 1]ω. The coordinates of the other E6 need to be
computed. Note that [x : y : z]ω 7→ [y : x : z]ω is the only automorphism fixing
this family of curves.

Remark 6.2. Altough the above approach is quite natural, computations
become too heavy and they do not end with a solution.
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There is an automorphism of P2
ω sending the above family of curves to

curves satisfying:

� the E6 points are at [1 : 0 : 0]ω and [0 : 1 : 0]ω;

� the cusps are at [1 : 1 : 0]ω and [a1 : 1 : 1]ω;

� the 2-curve tangent to the cusps is z = bxy for some b;

� as with the previous family, they are fixed by [x : y : z]ω 7→ [y : x : z]ω.

The conditions about the singular points give a system of equations. Di-
rect attempts failed and in the notebook OcticInvolution of Sagemath we
obtain the existence of a unique solution up to automorphism. We have nor-
malized this solution to have a simpler form.

Theorem 6.3. Let C8,2 be a projective plane curve of degree 8 having 6
singular points of type E6 and fixed by an involution. Then it is projectively
equivalent to the curve of equation

−11

3
x5y3 − 407

16
x4y4 − 44x3y5 − 11

8
x4y2z2 +

33

2
x2y4z2 +

27

176
x4z4

− 4

11
x3yz4 − 49

11
x2y2z4 − 48

11
xy3z4 +

243

11
y4z4 − 5

6
x2z6 + 10y2z6 + z8 = 0.

This curve is not fixed by any other automorphism.

The proof of the unicity relies on the Sagemath notebooks, but the fact
that this equation satisfies the condition is much easier, see the notebook
CheckCurveInvolution.

Theorem 6.4. The fundamental group of the complement of C8,2 is

G2 = ⟨x, y, z | [x, z] = 1, xyx = yxy, yzy = zyz, (xy2z)2 = 1⟩,
G2/G

′
2
∼= Z/8, G′

2/G
′′
2
∼= Z/3, G′′

2/G
′′′
2
∼= (Z/2)4 G′′′

2
∼= Z3 × Z/2.

In particular, it is not isomorphic to the fundamental group in Proposition 4.1,
and hence, C8,2 is not isotopic to the symplectic curve in Section 4.

This theorem has been proved using Sagemath and Sirocco, see the de-
tails in the notebook FundamentalGroupInvolution. Note that Sirocco uses
interval arithmetic which certifies the results.

7. ALGEBRAIC CURVES WITH Z/3Z/3Z/3-ACTION

From the lemmas of Section 5, we may assume that the automorphism
of order 3 is Φ3 : P2 → P2, Φ3([x : y; z]) = [ζx : ζy : z] where ζ is a primitive
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cubic root of unity. Let C8,3 ∈ Λalg be fixed by the Φ3. Let X3 := P2/Φ3 be
its quotient and let D8,3 ⊂ X3 be the image of C8,3. The surface X3 is normal
with three isolated cyclic points of type 1

3(1,−1). This notation stands for the
following. Let µd be the group of d-roots of unity in C. Then 1

d(a, b) is the
quotient of C2 by the action of µd defined by ζ · (x, y) = (ζax, ζby).

X3

E6 E6

Ly Lx

Lz

X̂3E6 E6

1
3(1, 2)

1
3(1, 2)

1
3(1, 1)

1
3(1, 1)Lx Ly

Lz

E

Figure 5 – Surface X3 with the image of the curve and (1, 1)-blow-up of (B1).

There is a birational transformation to pass from X3 to P2. These are
the steps:

(B1) (1, 1)-blow-up of the image of [0 : 0 : 1] in X3, with exceptional com-
ponent E. We obtain a singular ruled surface with four singular points
in two fibers, the strict transforms of Lx, Ly. The new ones are of type
1
3(1, 1). The two sections in the right-hand side of Figure 5 have self-
interesection 1

3 (Lz below) and −1
3 (E above), see [7] for details on

weighted blow-ups.

(B2) (1, 1)-blow-up of the two points of type 1
3(1, 1), with exceptional compo-

nents Ex, Ey of self-interesection −3. The self-interesection of the strict
transforms of Lx, Ly is −1

3 .

(B3) Blow-down of the strict transforms of the images of the lines x = 0,
y = 0; it is the inverse of a (1, 3)-blow-up of a smooth points. The result
is a smooth surface, actually the Hirzebruch ruled surface Σ1 where the
(−1)-curve is E.

(B4) Contract the (−1)-curve E.

Actually, all this operation has simple coordinates. The composition of
the quotient and the birational map is a rational map Θ : P2 99K P2 given by

Θ([x : y : z]) = [x3 : y3 : xyz].
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E6 E6

1
3(1, 2)

1
3(1, 2)

Lx Ly

Ex Ey

Lz

E

Σ1E6 E6

(v − u2)(v2 − u6) = 0

Ex Ey

Lz

E

P2

E6 E6

(v − u2)(v2 − u6) = 0

Ey Ex

Lz

Figure 6 – (1, 1)-Blow-ups of (B2), blow-downs of (B3) and blow-down of (B4).

Lemma 7.1. Let C be the image of C8,3 by Θ. Then C is a curve of
degree 8, with two singular points E6 and two singularities with the topological
type of (u− v2)(u2 − v6) = 0 having maximal contact with the tangent line.

We proceed as in Section 6. Let us take

f(x, y, z) =
∑

i+j+k=8

aijkx
iyjzk.

with a008 = 1 since [0 : 0 : 1] /∈ C. We place the reducible singular points at
[1 : 0 : 0] and [0 : 1 : 0] with respective tangent lines y = 0 and z = 0. One of
the E6 points is at [1 : 1 : 1], and for the other one, we use two new variables.
The only automorphism fixing this family of curves is [x : y : z] 7→ [y : x : z].

The system of equations is more complicated that the one in Section 6,
but we managed to obtain the solutions using Sagemath, see the notebook
OcticAuto3. In Appendix A, the common procedure is explained. To describe
the solution, we need to introduce the number field K := Q[η], where η is a
solution of p(t) := t4 − 2t3 + t2 − 2t − 2. This polynomial has two real roots
η1, η2 and two complex conjugate roots η3, η4.

Theorem 7.2. Let C8,3 be a projective plane curve of degree 8 having 6
singular points of type E6 and fixed by an automorphism of order 3. Then it
is projectively equivalent to a curve Cηi

8,3 whose equation is obtained as follows.
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Let

G0(x, y, z) =
F (x3, y3, xyz)

x8y8
,

where F is the equation in Appendix B. Then, G(x, y, z) := G0(x+ ζy, x+
ζy, z) with coefficients in K = Q[ηi]. This curve is not fixed by any other
automorphism.

The fundamental group of the complement of any such curve is cyclic of
order 8.

The proof of this theorem can be checked in OcticAuto3. The compu-
tation of the fundamental group takes much longer than it took in the case of
Section 6 and it has been done with Sagemath and Sirocco, see the notebook
FundamentalGroupAuto3.

As for the other type of curves, the long computation is only needed to
prove that these curves are the only ones. It is easier to prove that they satisfy
the required condition, see CheckCurveAuto3.

8. ALTERNATIVE WAY TO COMPUTE
THE FUNDAMENTAL GROUPS

There is an alternative way to compute this fundamental group. We can
compute Gorb

3 := πorb
1 (X3 \Dηi

8,3) and Gorb
2 := πorb

1 (X2 \ C̃8,2). In this particular
situation, it does not really save computation time but in other cases it allows
to obtain a faster and computer-free approach.

The orbifold fundamental group πorb
1 (X2 \ C̃8,2) is computed following

several steps, see Alternatives2:

(Orb21) Blow up [0 : 0 : 1]ω; we obtain a surface Σ2 (a ruled Hirzebruch sur-
face) with an exceptional component E, with self-interesection −2. We
compute the group π1(Σ2 \ (C̃8,2 ∪ Lz ∪ E)).

(Orb22) To compute this group we consider an affine chart, say the comple-
ment of E and Lx, using the standard Zariski-van Kampen method. In
Alternatives2, we have a finitely presented group with five generators
x0, . . . , x4, where x2 is a meridian of Lz and e := (x0 · . . . · x4)−1 is a
meridian of E. Following [13], a meridian of Lx is e2.

(Orb23) The group G2
orb is obtained by adding the relations x22 = e2 = 1.

(Orb24) The group G2 is the kernel of the map Gorb
2 ↠ Z/2 defined by xi 7→ 0,

i ̸= 2, and x2 7→ 1. In Alternatives2, we prove that x2 is central and
of order 2. Hence Gorb

2
∼= G2 × Z/2.
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(Orb25) Actually G2 is the orbifold fundamental group of the complement of C̃8,2,
where the unique orbifold point is the singular one.

We follow a similar strategy to compute the orbifold fundamental groups
Gorb

3 = πorb
1 (X3 \ D̃ηi

8,3), see Alternatives3:

(Orb31) We start with the final birational model of the rational map and compute
π1(P2 \ (D̃ηi

8,3 ∪Ex ∪Ey)). Actually, we take the affine chart of the com-
plement of Ex and compute the fundamental group of the complement
of D̃ηi

8,3 and Ey.

(Orb32) Using the standard Zariski-van Kampen method, we obtain in the note-
book Alternatives3 a finitely presented group with generators x0, . . ., x8,
and ey, where ey is a meridian of Ey, the xi’s are meridians of D̃ηi

8,3,

e := (x0 · . . . · x8)−1 is a meridian of E, and ex := e−1
y · e is a meridian of

Ex.

(Orb33) Following [16], we deduce that for the group Gorb
3 , we have to add the

relations deduced from the divisor E + Ex + Ey in Figure 7:

ex · ey = e (known), e = e3x = e3y ⇒ e = ex · ey = e3x = 1.

(Orb34) With this new relation, we have computed in Alternatives3 that all the
groups are Z/24 and hence, we recover the abelianity of G3.

E6 E6

Lx(−1) (−1)Ly

Ex(−3) (−3)Ey

Lz(−1)

E(−1)

−2 −2

−2 −2

Figure 7 – Minimal resolution of X̂3.

In Alternatives3, we have computed a simplified braid monodromy for
D̃ηi

8,3 which may give some hints about the topological equivalence of these
curves.
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9. CONCLUSIONS

We summarize the results as open questions.

(C1) There is no homeomorphism Φi : P2 → P2 such that Φi(C
ηi
8,3) = C8,2.

(C2) There is no homeomorphism Ψi : P2 → P2 such that Ψi(C
ηi
8,3) = Csymp.

(C3) There is no homeomorphism Ψi : P2 → P2 such that Ψi(C8,2) = Csymp.

(C4) The complex conjugation is a homeomorphism Φ : P2 → P2 such that
Φ(Cη3

8,3) = Cη4
8,3.

(C5) The existence of homeomorphisms Φi,j : P2 → P2 such that Φ(Cηi
8,3)=C

ηj
8,3

is an open question, for i ̸= j and {i, j} ≠ {3, 4}.

(C6) The existence of a homeomorphism Φ3,4 : P2 → P2 such that Φ(Cη3
8,3) =

Cη4
8,3 which preserves the orientation of the curves is an open question.

(C7) The existence of other curves in Λalg is an open question.

(C8) The existence of curves in Λalg isotopic to Csymp is an open question.

10. PERSPECTIVES

A direct approach to compute Λalg seems to be hopeless. Isolating special
properties for the known solutions would help to get new ideas that would allow
either to discard new cases or to obtain some new ones. We know that there
is no more curve in Λalg fixed by a non-trivial homeomorphism.

In particular, we are going to compute the smooth quartics of Section 5.
Let us consider the 2-dimensional projective system formed by the closure of
the family of quintics having ordinary double points at the six points P1, . . . , P6.
The intersection number of two such quintics at the base points is at least 24,
so, they intersect at another point. If we blow up the six points, the strict
transforms of the quintics are smooth rational curves with self-intersection −1.

In this closure, we also find the curves formed by Ci and a line passing
through Pi, which are exceptional elements of the family. Their strict trans-
forms are disjoint from the strict transforms of the irreducible quintics in the
system. The Cremona transformation described in Proposition 5.7 is obtained
by blowing-down the strict transforms of these conics.

The notebooks Birational2 and Birational3 contain the computations
leading to the following results. Moreover, the systems of points described in
Proposition 5.7 are also computed.
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Theorem 10.1. The curve C8,2 is birationally equivalent to

z4 − 3x2z2 + y2z2 − 36x3y + 45x2y2 − 12xy3 = 0.

Theorem 10.2. The curve Cηi
8,3 is birationally equivalent to

z4 +
3

38
b12xyz

2 +
1

19
(2b01 + ζc01)x

3z +
1

19
(2b01 + ζc01)y

3z +
3

19
b20x

2y2 = 0,

where

b12 = −97η3i − 23η2i − 130ηi − 92

b01 = 74η3i + 6η2i + 109ηi + 75

c01 = −51η3i + η2i − 42ηi − 35

b20 = 3596η3i + 585η2i + 4862ηi + 3325.

A. STRATEGY OF THE COMPUTATIONS

In Sections 6 and 7, we need to find the zero locus of an ideal J0 in a ring
C[a1, . . . , an]. More precisely, we look for non-degenerate solutions, since the
conditions imposed are closed conditions and the space we are looking for is
only locally-closed.

The existence of degenerate solutions is a big computational problem.
The strategy followed consists to define a tree of ideals whose root is J0. This
tree has levels and at each level we eliminate a variable.

Let us assume that we have inductively constructed an ideal Jj,k ⊂
C[a1, . . . , an−k]. Using heuristic arguments, we choose a generator f0 of the
ideal and a variable, say an−k, and we compute the resultants with respect to
an−k of f0 with the other generators. We factorize each one of these resultants
and we eliminate the factors which are known to provide degenerate solutions.
With the remaining factors, we combine them to give a family of ideals Jj′,k+1

in C[a1, . . . , an−k].

Some of the leaves of this tree stop with no solution and we pay attention
to the ones ending in prime ideals of C[a1].

Fix one of these leaves. Actually, these ideals have coefficients in Q. A
prime ideal Ji′,n−1 ⊂ C[a1] determines an extension L1 of Q where a solution
has leaves. Replacing the value of a1 by this solution in the ideal Ji,n−2, we
obtain a new ideal in L1[a2]. We factorize these principal ideals. Either some
of these processes stop with no solution or we end with one solution.

In both cases, we end with only one algebraic solution. For the case of
Section 6, the solution lives in a degree 2 extension of Q but the symmetry
allows us to end with a rational solution. In the case of Section 7, the solution
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lives in K1 = Q[η, ζ], extension of Q of degree 8. The symmetry allows us to
end with a solution K1 = Q[η], extension of Q of degree 4.

B. EQUATIONS

Let K1 := Q[η, ζ] and let σ be the non-trivial automorphism of K1; the
field Q[η] is the fixed field by σ. When η is real, σ is the complex conjugation.
A curve of Lemma 7.1 is of the form

F (x, y, z) =F0(xy, z) + 2xyz(xF1(xy, z) + yF σ
1 (xy, z))

+ x2y2(x2F2(xy, z) + y2F σ
2 (xy, z)),

where F0, F1, F2 ∈ K[t, z]. We have

F0(t, z) =z8 +
2r16
19

tz6 ++
3r24
192

t2z4 +
2r32
192

t3z2 +
4r40
19

t4,

r16 = 437η3 − 1270η2 + 1130η − 1696

r24 = −596956η3 + 1619007η2 − 1523682η + 2184414

s23 = −2064411η3 + 5739587η2 − 5326476η + 7777170

s40 = 11524593η3 − 28834395η2 + 28396048η − 38303610.

F1(t, z) =
r15 + ζs15

193
z4 +

r23 + ζs23
192

tz2 + 6
r31 + 4ζs31

192
t2,

r15 = −157924η3 + 308331η2 − 356378η + 387894

s15 = 182695η3 − 547611η2 + 485700η − 752178

r23 = 1276065η3 − 3104444η2 + 3107094η − 4100620

s23 = −2064411η3 + 5739587η2 − 5326476η + 7777170

r31 = −5295773η3 + 14400235η2 − 13528408η + 19435018

s31 = 6353433η3 − 16472958η2 + 15895154η − 22035984.

F2(t, z) =
r22 + 2ζs22

19
z2 + 2

r30 + 4ζs30
19

t.

r22 = 74354η3 − 196839η2 + 187718η − 264358

s22 = 138989η3 − 356263η2 + 346016η − 475522

r30 = −8288405η3 + 21480135η2 − 20732048η + 28731618

s30 = −2845567η3 + 7360179η2 − 7111716η + 9841218.
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