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We survey recent developments in the study of torus equivariant motivic Chern
and Hirzebruch characteristic classes of projective toric varieties, with appli-
cations to calculating equivariant Hirzebruch genera of torus-invariant Cartier
divisors in terms of torus characters, as well as to general Euler–Maclaurin type
formulae for full-dimensional simple lattice polytopes. We present recent results
by the authors, emphasizing the main ideas and some key examples. This in-
cludes global formulae for equivariant Hirzebruch classes in the simplicial context
proved by localization at the torus fixed points, weighted versions of a classical
formula of Brion, as well as of the Molien formula of Brion–Vergne. Our Euler–
Maclaurin type formulae provide generalizations to arbitrary coherent sheaf co-
efficients of the Euler–Maclaurin formulae of Cappell–Shaneson, Brion–Vergne,
Guillemin, etc., via the equivariant Hirzebruch–Riemann–Roch formalism. Our
approach, based on motivic characteristic classes, allows us, e.g., to obtain such
Euler–Maclaurin formulae also for (the interior of) a face. We obtain such re-
sults also in the weighted context, and for Minkovski summands of the given
full-dimensional lattice polytope.
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1. INTRODUCTION. HISTORICAL OVERVIEW

Counting lattice points in full-dimensional polytopes is a problem with
a long mathematical history. A natural generalization of this problem is to
compute the sum of the values of a suitable continuous function f at the
lattice points contained in a polytope P . The resulting expression is called the
Euler–Maclaurin formula for f and P .
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As observed by Danilov [16], the lattice point counting problem is closely
related to the Riemann–Roch theorem [2], via the correspondence between lat-
tice polytopes and toric varieties. An n-dimensional toric variety X = XΣ is
an irreducible normal variety on which the complex affine n-torus T ≃ (C∗)n

acts with an open orbit, e.g., see [15, 16, 21]. Toric varieties arise from combi-
natorial objects Σ ⊂ N ⊗R ≃ Rn called fans, which are collections of cones in
a lattice N ≃ Zn. Here, N corresponds to one-parameter subgroups of T. Let
M ≃ Zn be the character lattice of T. From a full-dimensional lattice polytope
P ⊂ M ⊗ R ≃ Rn one constructs (via the associated inner normal fan ΣP of
P ) a toric variety XP := XΣP

, together with an ample Cartier divisor DP ,
so that the number of lattice points of P , i.e., points of M ∩ P , is computed
by the holomorphic Euler characteristic χ(XP ,O(DP )). The Riemann–Roch
theorem expresses the latter in terms of the Chern character of O(DP ) and the
Baum–Fulton–MacPherson homology Todd class td∗(XP ) := td∗([OXP

]) of the
toric variety XP (cf. [2]), thus reducing the lattice point counting problem to
a characteristic class computation (see [21, Section 5.3] for more details).

In [26, 27], the second and third author computed the motivic Chern class
mCy and, resp., homology Hirzebruch classes Ty∗ [5] of (possibly singular) toric
varieties. In particular, they obtained new, or recovered well-known, formulae
for the Baum–Fulton–MacPherson Todd classes td∗(X) = T0∗(X). By taking
advantage of the torus-orbit decomposition and the motivic properties of the
homology Hirzebruch classes, one can express the latter in terms of the (dual)
Todd classes of closures of orbits. As a consequence, by generalizing Danilov’s
observation, one shows that the weighted lattice point counting, where each
point in a face E of the polytope P carries the weight (1 + y)dim(E), amounts
to the computation of the Hirzebruch class Ty∗(XP ) of the associated toric
variety.

An Euler–Maclaurin formula relates the sum
∑

m∈P∩M f(m) of the val-
ues of a suitable function f at the lattice points in a full-dimensional lattice
polytope P ⊂ MR := M ⊗ R to integrals over the polytope and/or its faces.
In [12], we consider f to be a polynomial on MR, or an exponential function
f(m) = e⟨m,z⟩, or products of these two types, where ⟨·, ·⟩ : M ×N → Z is the
canonical pairing and z ∈ NC := N ⊗Z C = HomR(MR,C).

Khovanskii and Pukhlikov [25] obtained an Euler–Maclaurin formula for
the sum of the values of a polynomial over the lattice points in regular lat-
tice polytopes (corresponding to smooth projective toric varieties). The first
substantial advance for non-regular polytopes was a different type of Euler–
Maclaurin formula for simple polytopes achieved by the first and fourth au-
thors in [13, 29]. A few years later, the Khovanskii–Pukhlikov formula was
extended to simple lattice polytopes by Brion–Vergne [7, 8], the latter us-
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ing the equivariant Hirzebruch–Riemann–Roch theorem for the correspond-
ing complete simplicial toric varieties, together with localization techniques in
equivariant cohomology. Other Euler–Maclaurin type formulae were obtained
by Guillemin [23] by using methods from symplectic geometry and geometric
quantization, by Karshon et al. [24] by combinatorial means, etc. While most
of the above-mentioned Euler–Maclaurin formulae are obtained by integrating
the function f over a dilation of the polytope, the Cappell–Shaneson approach
involves a summation over the faces of the polytope of integrals (over such
faces) of linear differential operators with constant coefficients, applied to the
function; see also [9] for some formulae of this type. Later on, these Euler–
Maclaurin formulae have been extended (even for non-simplicial toric varieties,
resp., non-simple lattice polytopes) by Berline–Vergne [3, 4] and Garoufalidis–
Pommersheim [22], together with Fischer–Pommersheim [20], to local formulae
satisfying a Danilov condition (see also the work of Pommershein–Thomas [28]
for such formulae for the Todd class in the non-equivariant context). In the
geometric context of toric varieties, all of these Danilov type formulae are tied
to the birational invariance of the (equivariant) Todd class of the structure
sheaf. However, this birational invariance property does not apply to the more
general context considered in our paper [12].

In this survey, we overview some of the recent results obtained in [12],
where we consider T-equivariant versions mCT

y and TT
y∗ := tdT∗ ◦ mCT

y of the
motivic Chern and, resp., Hirzebruch characteristic classes of [5], and extend
the formulae from [26, 27] to the equivariant setting. As in [12], we also elab-
orate here on the relation (cf. also [8]) between the equivariant toric geometry
via the (equivariant) Hirzebruch–Riemann–Roch (abbreviated HRR for short)
and Euler–Maclaurin type formulae for simple lattice polytopes (corresponding
to simplicial toric varieties).

Our main results from [12] provide generalizations to arbitrary coherent
sheaf coefficients, which for natural choices related to the toric variety (or the
polytope) give uniform geometric proofs of the Euler–Maclaurin formulae of
Brion–Vergne and, resp., Cappell–Shaneson, via the equivariant Hirzebruch–
Riemann–Roch formalism. Our approach is based on motivic characteristic
classes and allows us to obtain such Euler–Maclaurin formulae also for (the
interior of) a face, as well as for the polytope with several facets (i.e., codimen-
sion one faces) removed, e.g., for the interior of the polytope. Moreover, we
prove such results also in the weighted context, as well as for N-Minkowski sum-
mands of the given full-dimensional lattice polytope (corresponding to globally
generated torus invariant Cartier divisors in the toric context). Similarly, some
of these results are extended to local Euler–Maclaurin formulae for the tangent
cones at the vertices of the given full-dimensional lattice polytope (fitting with
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localization at the torus fixed points in equivariant K-theory and equivariant
(co)homology).

In what follows, we give a brief description of some of our main results
from [12], emphasizing the main ideas and some key examples. We invite the
interested reader to consult [12] for more details and complete proofs of these
results. For simplicity, in this survey we formulate the K-theoretical results
for a projective toric variety, whereas for the cohomological counterparts we
further restrict to the simplicial context (e.g., the toric variety associated to a
simple full-dimensional lattice polytope); see [12] for more general statements.

2. EQUIVARIANT HIRZEBRUCH–RIEMANN–ROCH

We first introduce some notations.

2.1. Rational equivariant cohomology

Let X = XΣ be an n-dimensional projective simplicial toric variety with
fan Σ ⊂ NR = N⊗R and torus T = TN . Denote by H∗

T(X;Q) the (Borel-type)
rational equivariant cohomology of X, and note that for a point space one has

(ΛT)Q := H∗
T(pt;Q) ≃ Q[t1, . . . , tn].

Let M be the dual lattice of N ≃ Zn. Viewing characters m ∈ M (resp.,
χm ∈ Z[M ] ≃ KT

0 (pt)) of T as T-equivariant line bundles Cχm over a point
space pt gives an isomorphism M ≃ PicT(pt). Taking the first equivariant
Chern class c1T (or the dual −c1T) gives an isomorphism

c = c1T, resp., s = −c1T : M ≃ H2
T(pt;Z).

Hence, upon choosing a basis mi (i = 1, . . . , n) of M ≃ Zn, one has that
H∗

T(pt;Q) = (ΛT)Q ≃ Q[t1, . . . , tn], with ti = ±c1T(Cχmi ) for i = 1, . . . , n.

Moreover, H∗
T(X;Q) can be described as an H∗

T(pt;Q) = (ΛT)Q-algebra. This
fact plays an important role for proving Euler–Maclaurin type formulae. In
fact, we will be working with the completions Ĥ∗

T(X;Q) :=
∏

i≥0 H i
T(X;Q)

and (Λ̂T)Q ≃ Q[[t1, . . . , tn]] of these rings. It is important to note that the

equivariant Chern character chT and equivariant Todd homology class trans-
formation tdT∗ of Edidin–Graham [19] and Brylinski–Zhang [10] take values in
an analytic subring (cf. [12, Proposition 5.17])

(H∗
T(X;Q))an ⊂ Ĥ∗

T(X;Q) ,

with Q{t1, . . . , tn} ≃ (H∗
T(pt;Q))an =: (Λan

T )Q ⊂ (Λ̂T)Q the subring of con-

vergent power series (around zero) with rational coefficients, i.e., after pairing
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with z ∈ NC one gets a convergent power series function in z around zero,
whose corresponding Taylor polynomials have rational coefficients. Here, we
use equivariant Poincaré duality ĤT

∗ (X;Q) ≃ Ĥ∗
T(X;Q) between equivariant

homology and cohomology for simplicial toric varieties, to view these classes
in equivariant cohomology.

2.2. Generalized equivariant Hirzebruch–Riemann–Roch formula
and applications

Let X = XΣ be a projective toric variety, with a T-equivariant coherent
sheaf F . In this section, we do not need to assume that X is simplicial. The
cohomology spaces H i(X;F) are finite dimensional T-representations, vanish-
ing for i large enough. Using the corresponding T-eigenspaces H i(X;F)χm as
in [15, Proposition 1.1.2], on which t ∈ T acts as multiplication by χm(t), the
(cohomological) Euler characteristic of F is defined by

(1) χT(X,F) =
∑
m∈M

n∑
i=0

(−1)i dimCH i(X;F)χm · ec(m) ∈ (Λan
T )Q ⊂ (Λ̂T)Q .

For E , resp., F , a T-equivariant vector bundle, resp., coherent sheaf on X, one
then has the following equivariant Hirzebruch–Riemann–Roch formula (see [18,
Theorem 3.1(b,c)]):

(2) χT(X, E ⊗ F) =

∫
X
chT(E) ∩ tdT∗ ([F ]),

where
∫
X : ĤT

∗ (X;Q) → ĤT
∗ (pt;Q) = (Λ̂T)Q is the equivariant pushforward for

the constant map X → pt. Here,

tdT∗ : KT
0 (X) −→ ĈH

T
∗ (X)⊗Q −→ ĤT

2∗(X;Q)

is the equivariant Riemann–Roch map of Edidin–Graham [18, Theorem 3.1],
with the same functoriality as in the nonequivariant case of Baum–Fulton–
MacPherson [2], and we use the completions

ĈH
T
∗ (X)⊗Q :=

∏
i≤dim(X)

CHT
i (X)⊗Q, and ĤT

∗ (X;Q) :=
∏

i≤dim(X)

ĤT
i (X;Q).

(These equivariant Chow and homology groups can be non-zero also in neg-
ative degrees.) Compare also with [10] for the homological version of this
transformation. The equivariant Todd class of X is defined as:

tdT∗ (X) := tdT∗ ([OX ]T]).

If X is smooth, one also has the normalization property (see [1, Section 6.1]):

tdT∗ (X) = TdT(TX) ∩ [X]T,
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with TdT(TX) the equivariant cohomological Todd class of the tangent bundle
TX of X.

Formula (2) is extended in [12] to a generalized equivariant Hirzebruch–
Riemann–Roch formula, cf. [12, Theorem 3.14] (where it is proved more gen-
erally for closed algebraic subsets of X defined by T-invariant closed subsets,
using the corresponding sheaves of Ishida p-forms Ω̃p

X instead of the Zariski
sheaves):

χT
y (X,OX(D)) : =

n∑
p=0

χT(X, Ω̂p
X ⊗OX(D)) · yp

=

∫
X
chT(OX(D)) ∩ TT

y∗(X),

(3)

with D a T-invariant Cartier divisor on X, chT the equivariant Chern char-
acter, and Ω̂p

X the sheaf of Zariski p-forms on X. Here, we use the following
explicit description of the equivariant motivic Chern class mCT

y (X) and, resp.,

equivariant Hirzebruch class TT
y∗(X) of X, obtained in [12, Proposition 3.5]):

(4)

mCT
y (X) =

dim(X)∑
p=0

[Ω̂p
X ]T·yp ∈ KT

0 (X)[y] and TT
y∗(X) =

dim(X)∑
p=0

tdT∗ ([Ω̂
p
X ]T)·yp.

The reader unfamiliar with these characteristic class notions, can take the
above formulae from (4) as their definitions.

Let now P be a full-dimensional lattice polytope in MR ≃ Rn with associ-
ated toric variety X = XP with torus T, inner normal fan Σ = ΣP and ample
Cartier divisor D = DP . As a consequence of (3), we obtain the following
weighted formula (see [12, Corollary 3.15]):

(5) χT
y (X,OX(D)) =

∑
E⪯P

(1 + y)dim(E) ·
∑

m∈Relint(E)∩M

es(m),

where the first sum is over the faces E of P and Relint(E) denotes the relative
interior of the face E. Let us also explain the use of s(m) instead of c(m) in
the above formula, in the simple case when y = 0. Formula (5) is then based
on the vanishing of higher cohomology of OX(D), together with (e.g., see [15,
Proposition 4.3.3])

(6) Γ(X;OX(D)) =
⊕

m∈P∩M
C · χm ⊂ C[M ] = Γ(T,OT),

with T acting on Γ(T,OT) as follows: if t ∈ T and f ∈ Γ(T,OT), then we have
that t · f ∈ Γ(T,OT) is given by p 7→ f(t−1 · p), for p ∈ T (see [15, page 18]),
so that Γ(X;OX(D))χ−m = C · χm for all m ∈ P ∩M .
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Let us next consider a globally generated T-invariant Cartier divisor D′

on X = XΣ, with associated (not necessarily full-dimensional) lattice polytope
PD′ ⊂ MR. Let XD′ be the toric variety of the lattice polytope PD′ , defined
via the corresponding generalized fan Σ′ as in [15, Proposition 6.2.3]. There is
a proper toric morphism f : X → XD′ , induced by the corresponding lattice
projection N → ND′ given by dividing out by the minimal cone of the gener-
alized fan of PD′ . In particular, f : X → XD′ is a toric fibration. For σ′ a cone
in the generalized fan Σ′ of PD′ , let

(7) dℓ(X/σ′) := |Σℓ(X/σ′)|,

with

(8) Σℓ(X/σ′) := {σ ∈ Σ | f(Oσ) = Oσ′ , ℓ = dim(Oσ)− dim(Oσ′)},

where Oσ (σ ∈ Σ) and Oσ′ (σ′ ∈ Σ′) are T-, and, resp., T′-orbits, and | − |
denotes the cardinality of a finite set. If E is the face of PD′ corresponding
to σ′ ∈ Σ′, we denote these multiplicities by dℓ(X/E). Then, we have the
following generalization of formula (5) (see [12, Corollary 3.17] for a more
general statement):

χT
y (X,OX(D′)) =

=
∑

E⪯PD′

(∑
ℓ≥0

(−1)ℓ · dℓ(X/E) · (1 + y)ℓ+dim(E)

)
·

∑
m∈Relint(E)∩M

es(m).
(9)

By forgetting the T-action (i.e., setting s(m) = 0 for all m ∈ M), we get
a weighted lattice point counting for lattice polytopes associated to globally
generated T-invariant Cartier divisors:

χy(X,OX(D′)) =

=
∑

E⪯PD′

(∑
ℓ≥0

(−1)ℓ · dℓ(X/E) · (1 + y)ℓ+dim(E)

)
· |Relint(E) ∩M |.(10)

3. LOCALIZED EQUIVARIANT MOTIVIC CHERN AND
HIRZEBRUCH CLASSES

In [12, Section 4], we apply localization techniques in T-equivariant K-
theory for toric varieties (due to Brion–Vergne [8]), and T-equivariant coho-
mology for simplicial toric varieties (due to Brylinski–Zhang [10] in the more
general equivariant homology context), for the calculation of the T-equivariant
motivic Chern (and Hirzebruch classes) of (simplicial) projective toric varieties.

Let X = XΣ be an n-dimensional projective toric variety with torus
T = TN , so the fixed-point set XT ̸= ∅. Let xσ ∈ XT be the fixed point for
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σ ∈ Σ(n), with Uσ the corresponding T-invariant open affine variety. Consider
next the multiplicative subset S ⊂ Z[M ] = KT

0 (pt) generated by the elements
1−χm, for 0 ̸= m ∈ M . Then, we have the localization isomorphism of Brion–
Vergne, KT

0 (X
T)S ≃ KT

0 (X)S , induced from the inclusion of fixed points; see
[8, Proposition 1.5]. The projection map

prxσ : KT
0 (X)S ≃ KT

0 (X
T)S → KT

0 (xσ)S = Z[M ]S ,

can be calculated, after restriction to Uσ, as prxσ = S ◦ χT
σ , with

χT
σ : KT

0 (Uσ) → Z[M ]sum ⊂ Z[[M ]]

being the local counterpart of the equivariant Euler characteristic (1) (using
χm ∈ Z[M ] instead of ec(m) as in [12, Section 4.1]). Here, as in [8, Section
1.3] (see also [15, Definition 13.2.2]), a formal power series f ∈ Z[[M ]] is called
summable if there is g ∈ Z[M ] and a finite subset I ⊂ M \ {0} such that in
Z[[M ]] one has: f ·

∏
m∈I(1− χm) = g. Let

S(f) := g ·
∏
m∈I

(1− χm)−1 ∈ Z[M ]S

be the sum of f , which is easily seen to be independent of the factorization.
Let Z[[M ]]Sum ⊂ Z[[M ]] be the subset of summable elements in Z[[M ]]. This
is a Z[M ]-submodule of Z[[M ]], and the summation map S induces a homo-
morphism of Z[M ]-modules

S : Z[[M ]]Sum → Z[M ]S .

We then have (cf. [12, Example 4.6] for a more general version):

(11) χT
σ(mCT

y (X)|Uσ) =
∑
τ⪯σ

(1+y)dim(Oτ )
∑

m∈Relint(σ∨∩τ⊥)∩M

χ−m ∈ Z[M ]sum⊗ZZ[y],

where the first sum is over the faces of σ, σ∨ is the dual cone, and τ⊥ ⊂ MR is
the orthogonal of τ ⊂ NR with respect to the canonical pairing. For y = 0, this
specializes to χT

σ(OX |Uσ), since X has rational singularities, so that one has
mCT

0 (X) = [OX ]T ∈ KT
0 (X). As a consequence, we get the following weighted

version of Brion’s formula (cf. [12, Corollary 4.8]).

Corollary 3.1. Let P be a full-dimensional lattice polytope with asso-
ciated projective toric variety X = XP and ample Cartier divisor D = DP .
For each vertex v of P , consider the cone Cv = Cone(P ∩M − v) = σ∨

v , with
faces Ev = Cone(E ∩M − v) for v ∈ E. Then the following identity holds in
Z[M ]S ⊗Z Z[y]:

χT(X,mCT
y (X)⊗OX(D)) =

=
∑

v vertex

χ−v · S
( ∑

v∈E⪯P

(1 + y)dim(E) ·
∑

m∈Relint(Ev)∩M

χ−m

)
.

(12)
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Brion’s formula [6] is obtained from (12) by specializing to y = 0.

In the case of a smooth cone σ with mσ,i, i = 1, . . . , n, the minimal
generators of σ∨, formula (11) becomes

χT
σ(mCT

y (X)|Uσ) =
n∏

i=1

(
1 + (1 + y) ·

∑
k≥1

(χ−mσ,i)k
)
,

hence

S(χT
σ(mCT

y (X)|Uσ)) =
n∏

i=1

(
1 + (1 + y) · χ−mσ,i

1− χ−mσ,i

)

=
n∏

i=1

1 + y · χ−mσ,i

1− χ−mσ,i
∈ Z[M ]S .

(13)

In the case of a simplicial cone, we get similar explicit formulae by using a
Lefschetz type variant trT

′
σ of the Euler characteristic χT

σ , and a corresponding
summation map (see [12, Section 4.1] for more details). This Lefschetz type
variant is an adaptation of the classical linear algebra formula (with trace
denoted by tr)

dimV G =
1

|G|
∑
g∈G

tr(g : V → V ),

for a finite linear group action of G on a finite dimensional complex vector space
V . Let σ ∈ Σ(n) be an n-dimension simplicial cone with u1, . . . , un ∈ N = Nσ

the generators of the rays ρj ∈ σ(1) of the cone σ, j = 1, . . . , n. Let N ′ =
N ′

σ be the finite index sublattice of N generated by u1, . . . , un, and consider
σ ∈ N ′

R = NR so that it is smooth with respect to the lattice N ′. With T, T′

the corresponding n-dimensional tori of the lattices N , resp., N ′, the inclusion
N ′ ↪→ N induces a toric morphism π : U ′

σ → Uσ of the associated affine toric
varieties. Let Gσ be the finite kernel of the epimorphism π : T′ → T, so that
U ′
σ/Gσ ≃ Uσ. Let m

′
σ,1, . . . ,m

′
σ,n be the dual basis in the dual lattice M ′ = M ′

σ

of N ′, with corresponding characters aρj : Gσ ⊂ T′ ≃ (C∗)n → C∗ of Gσ given
by the projection onto the ρj-th factor. With these notations, we have (see
[12, Example 4.4] for more details, and compare also with [17]):

(14) S(χT
σ(mCT

y (X)|Uσ)) =
1

|Gσ|
∑
g∈Gσ

n∏
i=1

1 + y · aρi(g−1) · χ−m′
σ,i

1− aρi(g
−1) · χ−m′

σ,i

.

Here, aρi(g
−1) ∈ C∗ are the traces of the action of g−1 on the 1-dimensional

T′-representations corresponding to the characters χ−m′
σ,i . For y = 0, (14)

specializes to the Molien formula of Brion–Vergne [8].
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We next assume that X is a projective simplicial toric variety, and we
discuss some cohomological counterparts of the above localization formulae.
Let L ⊂ (ΛT)Q = H∗

T(pt;Q) be the multiplicative subset generated by the
elements ±c(m), for 0 ̸= m ∈ M . With xσ ∈ XT a fixed point corresponding
to σ ∈ Σ(n), there is an associated cohomological localization map at xσ,

(15)
i∗σ

EuTX(xσ)
: Ĥ∗

T(X;Q)L −→ Ĥ∗
T(xσ;Q)L = L−1(Λ̂T)Q,

with iσ : {xσ} ↪→ X the inclusion map, and EuTX(xσ) the generalized Euler
class of the fixed point xσ in X defined by

0 ̸= EuTX(xσ) := i∗σ

(
mult(σ) ·

∏
ρ∈σ(1)

[Dρ]T

)
∈ Q · L.

Here, [Dρ]T denotes the equivariant fundamental class of the T-invariant divisor
Dρ corresponding to the ray ρ ∈ Σ(1), and mult(σ) = |Gσ| is the multiplicity of

σ. Moreover, if
∫
X : Ĥ∗

T(X;Q)L → Ĥ∗
T(pt;Q)L = L−1(Λ̂T)Q is the equivariant

Gysin map (or, equivalently, the equivariant pushforward) for the constant
map X → pt, then

(16)

∫
X

=
∑

σ∈Σ(n)

i∗σ
EuTX(xσ)

: Ĥ∗
T(X;Q)L → Ĥ∗

T(pt;Q)L.

See [12, Proposition 4.17] for more details.

These K-theoretic and cohomological localization maps are compatible
with the equivariant Todd class transformation of Edidin–Graham [18] (and
Brylinski–Zhang [10]), in the following sense:

Proposition 3.2. Let F be a T-equivariant coherent sheaf on the pro-
jective simplicial toric variety X = XΣ, and let xσ ∈ XT be a given fixed point
of the T-action. Then:

(17) tdT∗ ([F ])xσ :=
i∗σtd

T
∗ ([F ])

EuTX(xσ)
= chT((S◦χT

σ)(F)) ∈ L−1(Λan
T )Q ⊂ L−1(Λ̂T)Q,

with chT : Z[M ]S → L−1(Λan
T )Q induced by the T-equivariant Chern character

on a point space. Moreover, the cohomological Euler characteristic of F can be
calculated via localization at the T-fixed points as:

(18) χT(X,F) =
∑

σ∈Σ(n)

tdT∗ ([F ])xσ ∈ L−1(Λan
T )Q ⊂ L−1(Λ̂T)Q .

For the simplicial cone σ ∈ Σ(n) corresponding to xσ ∈ XT, formula (14)
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implies by applying the Chern character the following:

TT
y∗(X)xσ := tdT∗ ([mCT

y (X)])xσ

=
1

|Gσ|
∑
g∈Gσ

n∏
i=1

1 + y · aρi(g−1) · e−c(m′
σ,i)

1− aρi(g
−1) · e−c(m′

σ,i)
,

(19)

By specializing (19) to y = 0, we get a formula for the localized Todd class
tdT∗ (X)xσ = TT

0∗(X)xσ , similar to [8].

4. EQUIVARIANT HIRZEBRUCH CLASSES

The characteristic class formulae of [27, 26] for the motivic Chern and
Hirzebruch classes are extended to the equivariant setting in [12, Section 3] by
using the global Cox construction [14] which we now recall.

4.1. Cox construction

For each ray ρ ∈ Σ(1) in the fan Σ of the projective simplicial toric variety
X = XΣ, denote by uρ the corresponding ray generator. Let r = |Σ(1)| be the
number of rays in the fan Σ. Using the fact that N ≃ HomZ(C∗,T) is identified
with the one-parameter subgroups of T, define the map of tori

γ : T̃ := (C∗)r −→ T by (tρ)ρ 7→
∏

ρ∈Σ(1)

uρ(tρ),

and let G := ker(γ). Let Z(Σ) ⊂ Cr be the variety defined by the monoidal
ideal generated by the elements x̂σ :=

∏
ρ/∈σ(1) xρ, for σ ∈ Σ, with (xρ)ρ∈Σ(1)

the coordinates on Cr. Then the varietyW := Cr\Z(Σ) is a toric manifold, and
there is a toric morphism π : W → X. The group G acts onW by the restriction
of the diagonal action of (C∗)r, and the toric morphism π is constant on G-
orbits. Moreover, Cox [14] proved that if X = XΣ is a projective simplicial
toric variety, then X is the geometric quotient X = W/G.

Let

aρ : (C∗)r → C∗

be the projection onto the ρ-th factor. For a cone σ ∈ Σ, let Gσ be defined by

Gσ := {g ∈ G | aρ(g) = 1 if ρ /∈ σ(1)}

≃ {(tρ)ρ∈σ(1) | tρ ∈ C∗,
∏

ρ∈σ(1)

uρ(tρ) = 1},(20)

so Gσ depends only on σ. Moreover, for σ ∈ Σ(n) a top-dimensional cone,
the last description of Gσ coincides with the definition of Gσ used in the local
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quotient description needed for formula (14). Note also that the corresponding
characters aρ in the global and local situations are identified. If τ ⪯ σ is a face
of σ, then by (20), one gets

τ ⪯ σ =⇒ Gτ ⊆ Gσ ⊂ G.

Consider next the finite set

GΣ :=
⋃
σ∈Σ

Gσ =
⋃

σ∈Σ(n)

Gσ.

4.2. Equivariant Hirzebruch classes of simplicial toric varieties

The equivariant Hirzebruch class TT
y∗(X) of a projective simplicial toric

variety is computed by the following (cf. [12, Theorem 3.22]):

Theorem 4.1. Let X := XΣ be an n-dimensional simplicial projective
toric variety with fan Σ. Then
(21)

TT
y∗(X) = (1 + y)n−r ·

∑
g∈GΣ

∏
ρ∈Σ(1)

Fρ ·
(
1 + y · aρ(g) · e−Fρ

)
1− aρ(g) · e−Fρ

∈ Ĥ∗
T(X;Q)[y] ,

with Fρ = [Dρ]T denoting the equivariant fundamental class of the T-invariant
divisor Dρ corresponding to the ray ρ ∈ Σ(1).

For y = 0, with TT
0∗(X) = tdT∗ (X) the equivariant Todd class of X,

formula (21) specializes to the classical counterpart of Brion–Vergne [8] for
the equivariant Todd class of X. A more general statement is obtained in
[12, Theorem 3.28], for the equivariant Hirzebruch classes of complements of
T-invariant divisors in X.

Theorem 4.1 is proved in [12, Subsection 3.3] by using the equivariant
Lefschetz–Riemann–Roch theorem of Edidin–Graham [19] for the geometric
quotient π : W → X = W/G (in our setup, this is more concrete than the
approach used in [11, Theorem 5.1] based on the global finite quotient real-
ization of a projective simplicial toric variety). This can be seen as the global
version of the previously discussed local Lefschetz-type arguments. These two
pictures fit geometrically via the following identifications. For σ ∈ Σ(n) a
top-dimensional cone, let Uσ be the T-invariant open affine subset of X con-
taining the corresponding T-fixed point xσ. We have π−1(Uσ) ≃ Cn× (C∗)r−n,
with T̃ ≃ T′ × (C∗)r−n acting on the respective factors, the factor Cn corre-
sponding to the rays of σ, and (C∗)r−n acting freely by multiplication on itself.
Similarly, G ≃ Gσ × (C∗)r−n, with Gσ ⊂ T′ the finite subgroup introduced
before. So, above Uσ, π can be factorized as a composition of the free quotient
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π̃ : Cn × (C∗)r−n → Cn by the (C∗)r−n-action, followed by a finite quotient
map π = πσ : Cn → Cn/Gσ = Uσ.

Let us now indicate how localization can be used for a second proof of
Theorem 4.1 (see [12, Subsection 4.3.2] for a more general result).

Proof of Theorem (4.1). One starts by noticing that, for a projective sim-
plicial toric variety, the map⊕

σ∈Σ(n)

i∗σ : Ĥ∗
T(X;Q) ↪→

⊕
σ∈Σ(n)

Ĥ∗
T(xσ;Q)

obtained by restriction to T-fixed points is injective (see, for example, [12,
Subsection 2.5]). By localizing at the multiplicative set L, one gets by the
exactness of localization an injective map⊕

σ∈Σ(n)

i∗σ : Ĥ∗
T(X;Q)L ↪→

⊕
σ∈Σ(n)

Ĥ∗
T(xσ;Q)L.

So it is enough to check formula (21) by using, for each fixed point xσ, σ ∈ Σ(n),
the induced restriction map prxσ

(22) Ĥ∗
T(X;Q) → Ĥ∗

T(X;Q)L→Ĥ∗
T(xσ;Q)L → Ĥ∗

T′(xσ;C)L′ ,

with the middle arrow given by i∗σ
EuT

X(xσ)
as in (15), and L′⊂(ΛT′)C=H∗

T′(pt;C)
is the multiplicative set generated by the elements ±a · c(m′), for 0 ̸= m′ ∈ M ′

and a ∈ C∗ (using the notations preceeding formula (14)). Also the direct
sum

⊕
σ∈Σ(n) prxσ of these induced restriction maps is still injective, since the

localization map on the integral domain Ĥ∗
T(xσ;Q) → Ĥ∗

T(xσ;Q)L is injective,

and i∗σ
EuT

X(xσ)
differs from i∗σ by the unit

EuTX(xσ) = |Gσ|
∏

ρ∈σ(1)

i∗σFρ ∈ Ĥ∗
T(xσ;Q)L.

Moreover, no information is lost if we consider complex instead of rational
coefficients.

It thus suffices to prove the equality of both sides of formula (21) af-
ter applying the cohomological localization map (15) for any σ ∈ Σ(n), with
i∗σT

T
y∗(X)

EuT
X(xσ)

= TT
y∗(X)xσ as in (19).

If g ∈ GΣ \ Gσ, there exists a ρ ∈ Σ(1) with aρ(g) ̸= 1, so that one
factor on the restriction of the right-hand side of (21) to Uσ becomes 0. Hence
the summation on the right-hand side of (21) reduces after restriction to Uσ

to a summation over g ∈ Gσ. If g ∈ Gσ and ρ /∈ σ(1), then aρ(g) = 1, so

that the restriction of the factor
Fρ·

(
1+y·aρ(g)·e−Fρ

)
1−aρ(g)·e−Fρ

to Uσ becomes 1+ y. With
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r−n = |Σ(1)\σ(1)|, this will in turn cancel the factor (1+y)n−r of formula (21).
Therefore, we get

1

EuTX(xσ)
· i∗σ

(
(1 + y)n−r ·

∑
g∈GΣ

∏
ρ∈Σ(1)

Fρ ·
(
1 + y · aρ(g) · e−Fρ

)
1− aρ(g) · e−Fρ

)

=
1

EuTX(xσ)
· i∗σ

( ∑
g∈Gσ

∏
ρ∈σ(1)

Fρ ·
(
1 + y · aρ(g) · e−Fρ

)
1− aρ(g) · e−Fρ

)

=
1

|Gσ|
∑
g∈Gσ

i∗σ

( ∏
ρ∈σ(1)

1 + y · aρ(g) · e−Fρ

1− aρ(g) · e−Fρ

)
.

This expression reduces to formula (19), as desired, after noticing that, for
ρ = ρi any ray of σ(1), one gets that i∗σFρi = c(m′

σ,i), as well as by changing g

by g−1 in Gσ.

4.3. Equivariant Hirzebruch classes of orbit closures

Let X = XΣ be as before a projective simplicial toric variety with torus
T = TN . Then, the fan of the toric variety Vσ given by the closure of the
orbit Oσ corresponding to the cone σ ∈ Σ can be described as follows. Let
N(σ) = N/Nσ, with Nσ denoting the sublattice of N spanned by the points
in σ ∩N . Let TN(σ) = N(σ)⊗Z C∗ be the torus associated to N(σ). For each
cone ν ∈ Σ containing σ, let ν be the image cone in N(σ)R under the quotient
map NR → N(σ)R. Then

(23) Star(σ) = {ν ⊆ N(σ)R | σ ⪯ ν}
is a simplicial fan in N(σ)R, with associated toric variety isomorphic to Vσ

(see, e.g., [15, Proposition 3.2.7]). Note that T acts on Vσ via the morphism
T = TN → TN(σ) induced by the quotient map N → N(σ).

The T-equivariant Hirzebruch class of the T-equivariant closed inclusion
iσ : Vσ ↪→ X of the projective simplicial toric variety Vσ is computed by:

TT
y∗([Vσ ↪→ X]) = (1 + y)n−r ·

∑
g∈GStar(σ)

mult(σ) ·
∏

ρ∈σ(1)

Fρ·

·
∏

ρ∈Star(σ)(1)

Fρ ·
(
1 + y · aρ(g) · e−Fρ

)
1− aρ(g) · e−Fρ

.

(24)

Here, mult(σ) = |Gσ| is the multiplicity of σ, and ρ ∈ Star(σ)(1) is a short
notation for ρ ∈

⋃
σ⪯ν ν(1) \ σ(1), with GStar(σ) the group of the Cox con-

struction for the fan Star(σ) corresponding to the orbit closure Vσ. Also,
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TT
y∗([Vσ ↪→ X]) = (iσ)∗T

T
y∗(Vσ) by functoriality, and we have the identification

TT
y∗(Vσ) = T

TN(σ)
y∗ (Vσ) via a choice of splitting for the projection T → TN(σ) (see

[12, Corollary 3.13]). Formula (24) follows from formula (21) together with the
projection formula and

[Vσ]T = mult(σ) ·
∏

ρ∈σ(1)

Fρ.

For y = 0, one gets a similar formula for the pushforward of the equivariant
Todd classes

tdT∗ (Vσ) = TT
0∗(Vσ) = T

TN(σ)

0∗ (Vσ) = td
TN(σ)
∗ (Vσ).

5. EULER–MACLAURIN FORMULAE

We now describe applications of the results mentioned above to Euler–
Maclaurin formulae for full-dimensional simple lattice polytope.

5.1. Euler–Maclaurin formulae via polytope dilation

Let P be a full-dimensional simple lattice polytope in MR ≃ Rn, with
toric variety X = XP , inner normal fan Σ = ΣP , and ample Cartier divisor
D = DP . Let Σ(1) be the set of rays of Σ, corresponding to the facets F of
P . For each ray ρ ∈ Σ(1), let uρ ∈ N be the corresponding ray generator.
As before, we let Fρ := [Dρ]T be the equivariant fundamental class of the T-
equivariant divisor Dρ on X corresponding to the ray ρ ∈ Σ(1). Let P (h) be
the dilation of P with respect to the vector h = (hρ)ρ∈Σ(1) with real entries
indexed by the rays of Σ. So, if P is defined by inequalities of the form

⟨m,uρ⟩+ cρ ≥ 0,

with uρ the ray generators and cρ ∈ Z, for each ρ ∈ Σ(1), then P (h) is defined
by inequalities

⟨m,uρ⟩+ cρ + hρ ≥ 0,

for each ρ ∈ Σ(1). In these notations, we have that D=DP =
∑

ρ∈Σ(1) cρ ·Dρ. If
the hρ’s are small enough, then P (h) is also a full-dimensional simple polytope.
Recall here that ⟨·, ·⟩ : M ×N → Z is the canonical pairing.

In the above notations, we have the following result obtained from [12,
Theorem 5.1].
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Theorem 5.1.∫
P (h)

e⟨m,z⟩ dm =
∑

σ∈Σ(n)

e⟨i
∗
σ [DP (h)],z⟩

⟨EuTX(xσ), z⟩

=
∑

σ∈Σ(n)

e⟨i
∗
σc

T
1(OX(DP )),z⟩

⟨EuTX(xσ), z⟩
· e

∑
ρ hρ⟨i∗σFρ,z⟩ ,

(25)

with the canonical pairing extended to z ∈ NC := N ⊗Z C = HomR(MR,C).

The proof of this theorem follows similar arguments of Brion–Vergne [8,
Theorem 4.5]. Starting with the Riemann sum approximation of an integral,
we have:

lim
k→∞

1

kn

∑
m∈k·P (h)∩M

e⟨m, 1
k
·z⟩ = lim

k→∞

1

kn

∑
m∈P (h)∩ 1

k
M

e⟨m,z⟩

=

∫
P (h)

e⟨m,z⟩ dm,

(26)

with the Lebesgue measure dm normalized so that the unit cube in M ⊂ MR
has volume 1 (which explains the use of the factor 1

kn ). If the hρ’s are small
rational numbers, then one can choose a large k ∈ N so that k ·P (h) is a lattice
polytope in Rn with respect to the lattice M . The left-hand side of (26) is then
computed by applying the function ⟨−, 1k · z⟩ to the localized Riemann–Roch
formula (obtained by combining (5) y = 0 with (18)) for the lattice polytope
k · P (h) with k · [DP (h)]T = [k ·DP (h)]T :

(27)
∑

m∈k·P (h)∩M

es(m) =
∑

σ∈Σ(n)

i∗σ
(
ek·[DP (h)]T

)
EuTX(xσ)

· i∗σ(tdT∗ (X)) ∈ L−1(Λan
T )Q ,

together with

(28) lim
k→∞

〈
i∗σ(td

T
∗ (X)),

1

k
· z

〉
= 1.

Next, the latter equality is derived by using the explicit formula (21) for
tdT∗ (X) = TT

0∗(X).

Remark 5.2. The left-hand side of (25) is a continuous function in h near
zero, and for all z ∈ NC, whereas the right-hand side is an analytic function in
h near zero, and for z ∈ NC away from the linear hyperplanes ⟨i∗σFρ, z⟩ = 0 for
each ray ρ ∈ σ(1) of σ ∈ Σ(n). But then both sides of this equality have to be
analytic functions in h near zero and all z ∈ NC, with the corresponding Taylor
series around zero converging uniformly on small compact neighborhoods of
zero in the variables h and z (cf. also [24, page 27]).
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Let P be a full-dimensional simple lattice polytope in MR, and fix a face
E of P . Let σ := σE be the corresponding cone in the inner normal fan Σ = ΣP

of P , with Vσ = VσE = VE the closure of the orbit of σ in X = XP . Denote
by iE = iσ : Vσ ↪→ X the closed inclusion map. Then Vσ is a simplicial toric
variety whose fan is Star(σ), as defined in formula (23), which is built from
cones τ ∈ Σ that have σ as a face. With these notations, we have similarly
(see [12, Theorem 7.12]):

Theorem 5.3.
(29)∫

E(h)
e⟨m,z⟩ dm =

= mult(σE) ·
∑

σ∈Σ(n)

e⟨(i
∗
σc

T
1(OX(DP )),z⟩

⟨EuTX(xσ), z⟩
· e

∑
ρ hρ⟨i∗σFρ,z⟩ ·

∏
ρ∈σE(1)

⟨i∗σFρ, z⟩ .

Here, the Lebesgue measure dm on E(h) is normalized so that the unit
cube in the lattice Span(E0)∩M has volume 1, with E0 := E−m0 a translation
of E by a vertex m0 ∈ E.

By comparison of formulae (25) and (29), one gets the following key for-
mula relating integrals over the dilated polytope to integrals about the dilated
faces:

(30)

∫
E(h)

f(m)e⟨m,z⟩ dm = mult(σE) ·
∏

ρ∈σE(1)

∂

∂hρ

∫
P (h)

f(m)e⟨m,z⟩ dm ,

Based on the above, we get the following abstract Euler–Maclaurin for-
mula for P a full-dimensional simple lattice polytope in MR, based on the
equivariant Hirzebruch–Riemann–Roch theorem (see [12, Theorem 5.18, Corol-
lary 5.21, Proposition 5.22]):

Theorem 5.4. Let [F ] ∈ KT
0 (X) be fixed, and choose a convergent power

series p(xρ) ∈ Q{xρ | ρ ∈ Σ(1)} so that p(Fρ) = tdT∗ ([F ]) ∈ (H∗
T(X;Q))an.

Then, with p( ∂
∂h) the corresponding infinite order differential operator obtained

from p(xρ) by substituting xρ 7→ ∂
∂hρ

, for all ρ ∈ Σ(1), we have that, for any
polynomial function f on MR,

p
( ∂

∂h

)(∫
P (h)

f(m) · e⟨m,z⟩ dm
)
|h=0

=

=
∑
m∈M

( n∑
i=0

(−1)i · dimCH i(X;OX(D)⊗F)χ−m

)
· f(m) · e⟨m,z⟩ ,

(31)

as analytic functions in z ∈ NC with z small enough.
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For f = 1, one first proves the formula

p
( ∂

∂h

)(∫
P (h)

e⟨m,z⟩ dm
)
|h=0

= ⟨χT(X,OX(D)⊗F), z⟩

=
∑
m∈M

( n∑
i=0

(−1)i · dimCH i(X;OX(D)⊗F)χ−m

)
· e⟨m,z⟩

(32)

via the application of the operator p
(

∂
∂h

)
(−)|h=0 to formula (25), together with

the localized equivariant Hirzebruch–Riemann–Roch formula (18). To get (31),
we apply the operator f

(
∂
∂z

)
to the last term of formula (32), seen as a formal

power series in z.
Note that by evaluating formula (31) at z = 0 and for f = 1 (i.e., forget-

ting the T-action), we get a generalized volume formula, namely,

p
( ∂

∂h

)(
vol P (h)

)
|h=0

= χ(X,OX(D)⊗F),

with vol P (h) =
∫
P (h) dm the volume of P (h) and the Lebesgue measure

normalized so that the unit cube in M ⊂ MR has volume 1. For the case
when F = OX (corresponding to counting points in P ∩ M) and F = ωX

(corresponding to counting points in Int(P ) ∩M), see [7, Theorem 2.15].

For suitable choices of [F ] ∈ KT
0 (X), formula (31) can be specialized to

yield old and new Euler–Maclaurin type formulae. We include below several
such examples, but see [12, Sections 5.3 and 6.2] for more details and examples
(like, e.g., a (weighted) Euler–Maclaurin formula for a simple lattice polytope
with some facets removed, cf. [12, Theorem 5.25]).

Example 5.5. We list below several specializations of formula (31) for
appropriate choices of [F ] ∈ KT

0 (X) and explicit convergent power series
p(xρ) ∈ Q{xρ | ρ ∈ Σ(1)} so that p(Fρ) = tdT∗ ([F ]) ∈ (H∗

T(X;Q))an. See
[12, Sections 5.3 and 6.2] for complete details.

(a) For [F ] = mCT
y (X) ∈ KT

0 (X)[y], with corresponding operator given
by formula (21),

Ty

( ∂

∂h

)
:= (1 + y)n−r ·

∑
g∈GΣ

∏
ρ∈Σ(1)

∂
∂hρ

·
(
1 + y · aρ(g) · e

− ∂
∂hρ

)
1− aρ(g) · e

− ∂
∂hρ

,

formula (31) becomes (for z ∈ NC small enough) the following weighted Euler–
Maclaurin formula for P :

Ty

( ∂

∂h

)(∫
P (h)

f(m) · e⟨m,z⟩dm
)
|h=0

=

=
∑
E⪯P

(1 + y)dim(E)
∑

m∈Relint(E)∩M

f(m) · e⟨m,z⟩.
(33)
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(b) For F = OX the structure sheaf of X, having the corresponding opera-
tor Todd

(
∂
∂h

)
= T0

(
∂
∂h

)
, formula (31) reduces to the classical Euler–Maclaurin

formula of Brion–Vergne [8] for simple lattice polytopes, and Khovanskii–
Pukhlikov [25] for Delzant lattice polytopes (corresponding to smooth pro-
jective toric varieties), namely:

(34) Todd
( ∂

∂h

)(∫
P (h)

f(m) · e⟨m,z⟩ dm
)
|h=0

=
∑

m∈P∩M
f(m) · e⟨m,z⟩.

(c) For F = ωX the canonical sheaf of X, with corresponding dual Todd
operator

(35) Todd∨
( ∂

∂h

)
:=

∑
g∈GΣ

∏
ρ∈Σ(1)

aρ(g) · ∂
∂hρ

· e−
∂

∂hρ

1− aρ(g) · e
− ∂

∂hρ

∈ Q
{ ∂

∂hρ
| ρ ∈ Σ(1)

}
,

given by the coefficient of yn in Ty(
∂
∂h), formula (31) reduces to the Euler–

Maclaurin formula for the interior of P :

(36) Todd∨
( ∂

∂h

)(∫
P (h)

f(m) · e⟨m,z⟩ dm
)
|h=0

=
∑

m∈Int(P )∩M

f(m) · e⟨m,z⟩ .

(d) Let [F ] = [(iE)∗mCT
y (VE)] ∈ KT

0 (X)[y], with E a face of P and
iE = iσ : Vσ = VE ↪→ X the inclusion of the orbit closure for the cone σ
corresponding to E. For the operator given by formula (24), i.e.,

TE
y

( ∂

∂h

)
:= (1 + y)n−r ·

∑
g∈GStar(σ)

mult(σ) ·
∏

ρ∈σ(1)

∂

∂hρ
·

·
∏

ρ∈Star(σ)(1)

∂
∂hρ

(
1 + y · aρ(g) · e

− ∂
∂hρ

)
1− aρ(g) · e

− ∂
∂hρ

,

(37)

with Star(σ)(1) and GStar(σ) as in Section 4.3, formula (31) reduces to a
weighted Euler–Maclaurin formula for the face E of P :

TE
y

( ∂

∂h

)(∫
P (h)

f(m) · e⟨m,z⟩ dm
)
|h=0

=

=
∑
E′⪯E

(1 + y)dim(E′) ·
∑

m∈Relint(E′)∩M

f(m) · e⟨m,z⟩.
(38)

(e) For [F ] = [(iE)∗OVE
] ∈ KT

0 (X), with operator ToddE
(

∂
∂h

)
= TE

0

(
∂
∂h

)
,

formula (31) reduces to an Euler–Maclaurin formula for the face E of P :

(39) ToddE

( ∂

∂h

)(∫
P (h)

f(m) · e⟨m,z⟩ dm
)
|h=0

=
∑

m∈E∩M
f(m) · e⟨m,z⟩,
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(f) For [F ] = [(iE)∗ωVE
] ∈ KT

0 (X), with operator

Todd∨E

( ∂

∂h

)
:=

∑
g∈GStar(σ)

mult(σ) ·
∏

ρ∈σ(1)

∂

∂hρ
·

·
∏

ρ∈Star(σ)(1)

aρ(g) · ∂
∂hρ

· e−
∂

∂hρ

1− aρ(g) · e
− ∂

∂hρ

(40)

given by the coefficient of ydim(E) in TE
y ( ∂

∂h), formula (31) reduces to an Euler–
Maclaurin formula for the interior of the face E of P :

(41) Todd∨E

( ∂

∂h

)(∫
P (h)

f(m) · e⟨m,z⟩ dm
)
|h=0

=
∑

m∈Relint(E)∩M

f(m) · e⟨m,z⟩.

Example 5.6. More general examples of explicit weighted Euler–Maclaurin
formulae can be obtained by twisting the classes [F ] := [mCT

y (X)] ∈ KT
0 (X)[y]

by OX(D′ −D), for D = DP the original ample divisor associated to the full-
dimensional simple lattice polytope P , and D′ any T-invariant Cartier divisor
on X (see [12, Theorem 6.2, Corollary 6.3, Example 6.9]).

Let D′ be a globally generated T-invariant Cartier divisor on X, with
associated (not necessarily full-dimensional) lattice polytope PD′ ⊂ MR, e.g.,
as in [15, Proposition 6.2.3]. Let D′ − D =

∑
ρ∈Σ(1) dρDρ as a T-invariant

Cartier divisor. LetXD′ be the toric variety of the lattice polytope PD′ , defined
via the corresponding generalized fan. Consider the infinite order differential
operator

(42) T ′
y

( ∂

∂h

)
:= e

∑
ρ∈Σ(1) dρ·

∂
∂hρ · Ty

( ∂

∂h

)
∈ Q

{ ∂

∂hρ
| ρ ∈ Σ(1)

}
[y].

Formula (31) reduces to the following new weighted Euler–Maclaurin formula:

(43) T ′
y

( ∂

∂h

)(∫
P (h)

f(m) · e⟨m,z⟩ dm
)
|h=0

=

=
∑

E⪯PD′

(∑
ℓ≥0

(−1)ℓ·dℓ(X/E)·(1+y)ℓ+dim(E)

)
·

∑
m∈Relint(E)∩M

f(m)·e⟨m,z⟩,

with multiplicities dℓ(X/E) = dℓ(X/σ′) as in (7), and the face E of PD′ corre-
sponding to the cone σ′ ∈ Σ′. Note that in this context PD′ is a N-Minkowski
summand of the original polytope P , see [15, Corollary 6.2.15]. Forgetting the
T-action (i.e., for f = 1 and z = 0), one gets the following volume formula
(fitting with (10)):



21 Euler–Maclaurin formulae 125

T ′
y

( ∂

∂h

)
(vol P (h))|h=0

=

=
∑

E⪯PD′

(∑
ℓ≥0

(−1)ℓ · dℓ(X/E) · (1 + y)ℓ+dim(E)

)
· |Relint(E) ∩M |.

(44)

5.2. Euler–Maclaurin formulae of Cappell–Shaneson type

Let P be a full-dimensional simple lattice polytope in MR, as above. Let
σE be the cone in Σ = ΣP corresponding to the face E of P , and let VE = VσE

be the closure of the T-orbit in X corresponding to σE . Then, the equivariant
fundamental classes [VE ]T generate Ĥ∗

T(X;Q) as an Ĥ∗
T(pt;Q) = (Λ̂T)Q-algebra

(e.g., see [12, Remark 7.15]). Let now [F ] ∈ KT
0 (X) be fixed, and choose

elements pE(ti) ∈ Ĥ∗
T(pt;Q) = (Λ̂T)Q

s≃ Q[[t1, . . . , tn]] with

(45) tdT∗ ([F ]) =
∑
E⪯P

pE(ti)[VE ]T ∈ Ĥ∗
T(X;Q) .

With these notations, we can now state an abstract Euler–Maclaurin formula
coming from the equivariant Hirzebruch–Riemann–Roch theorem, in terms of
integrals over the faces of a polytope, instead of using a dilated polytope, see
[12, Theorem 7.16]:

Theorem 5.7. Let X = XP be the projective simplicial toric variety
associated to the full-dimensional simple lattice polytope P ⊂ MR. Let Σ := ΣP

be the inner normal fan of P , and D := DP the ample Cartier divisor associated
to P . Then for a polynomial function f on MR, we have:∑

E⪯P

∫
E
(pE(∂i)f)(m) dm =

=
∑
m∈M

( n∑
i=0

(−1)i · dimCH i(X;OX(D)⊗F)χ−m

)
· f(m) .

(46)

Here, we have ∂i =
∂
∂ti

, with respect to the coordinates ti of MR ≃ Rn.

Theorem 5.7 follows by applying the operator p(∂i,
∂
∂h)(−)|h=0 with

(47) p(∂i,
∂

∂h
) :=

∑
E⪯P

(
mult(σE) ·

∏
ρ∈σE(1)

∂

∂hρ

)
· pσE (∂i),

to formula (25), together with the key formula (30) and the localized equivari-
ant Hirzebruch–Riemann–Roch formula (18).
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Remark 5.8. The drawback of formulae (45) and (46) is that the coeffi-
cients pE(ti) ∈ Ĥ∗

T(pt;Q) and the corresponding differential operators are not
explicitly known in general.

In the classical case F := OX , this is exactly Cappell–Shaneson’s recipe
for the definition of the differential operators pE(∂i), described here geometri-
cally in terms of the equivariant Todd class tdT∗ (X) := tdT∗ ([OX ]) ∈ Ĥ∗

T(X;Q)
(see [13, Theorem 2] or [29, Section 6.2]). In this case, (46) reduces to the
Cappell–Shaneson Euler–Maclaurin formula:

(48)
∑
E⪯P

∫
E
(pE(∂i)f)(m) dm =

∑
m∈P∩M

f(m).

See [12, Example 7.18] for further specializations of formula (46).

5.2.1 Generalized reciprocity for Dedekind sums via
Euler–Maclaurin formulae

We conclude this note with the following application of formula (46), see
[12, Corollary 7.19]:

Corollary 5.9. In the context of Theorem 5.7, one gets the following
identity:

(49)
∑
v∈P

(
pv(∂i)f

)
(0) =

∑
m∈M

( n∑
i=0

(−1)i · dimCH i(X;F)χ−m

)
· f(m).

where the left hand-sum is over the vertices of P .

Example 5.10. Let P be a full-dimensional simple lattice polytope in MR,
as before. If F = OX in (49), one gets for a polynomial function f on MR the
following identity:

(50)
∑
v∈P

(pv(∂i)f) (0) = f(0).

For instance, in the case of lattice polygons, this formula yields generaliza-
tions of reciprocity laws for classical Dedekind sums (using, e.g., the explicit
description of the operators pv(∂i) from [13, page 889]).
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