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In this paper, we collect the main properties of free curves in the complex pro-
jective plane and a lot of conjectures and open problems, both old and new. In
the quest to understand the mystery of free curves, many tools were developed
and many results were obtained, which apply to any reduced plane curve, and
some of them are recorded here.
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1. INTRODUCTION

The notion of free hypersurface, or free divisor, has a long and fascinating
history. This concept was considered mostly in the following two settings,
namely

(L) The local setting, where one looks at germs of hypersurfaces, as in the
seminal paper by K. Saito [48]. In particular, any plane curve singularity
is known to be free.

(P) The projective setting, where one considers hypersurfaces in a complex
projective space Pn, as for instance in [6, 11, 23, 50, 51, 54]. In par-
ticular, the free projective hypersurfaces satisfy a lot of restrictions, for
instance they must be rather singular, namely the singular locus must
have codimension one.

Note that the central hyperplane arrangements in some affine space Cm

can be considered from both view-points, and Terao’s Conjecture, see Section 3
below for the case m = 3, is a beautiful open problem in this area. More
generally, any hypersurface in Cm defined by a homogeneous polynomial can
be considered from both view-points, and freeness in one setting is the same
as freeness in the other.
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In this paper, we consider only reduced curves in the complex projective
plane P2. In Section 2, we recall some of the main properties of free curves as
well as a number of general results on plane curves, helping us in the under-
standing of free curves.

In Section 3, we discuss several stronger versions of Terao’s Conjecture
in the case of line arrangements in P2. Though a lot of effort was devoted to
this conjecture over the last 40 years or so, only partial results are known, see
[1, 5, 10, 45, 54, 57]. The main interest of these stronger versions of Terao’s
Conjecture is that they refer to properties of any line arrangement, and hence,
they tell something new about any line arrangement, and sometimes about any
plane curve. In Remark 3.3, we explain how starting with a pair of line arrange-
ments A and A′, having the same intersection lattice but distinct invariants
related to the minimal resolution of their Jacobian ideal, for instance the ar-
rangements constructed by Ziegler in [58], new such pairs can be obtained by
adding new lines.

In Section 4, we discuss new invariants, related to the defects of some
linear systems with respect to the singular subscheme of a plane curve, and
state a new equivalent version of Terao’s Conjecture, see Conjecture 4.2, and
dismiss a natural stronger version of Terao’s Conjecture, see Question 4.6.

In Section 5, we discuss the relation between rational cuspidal plane
curves and the free curves. It is the study of this relation that conducted
us to introduce the notion of nearly free curve in [25]. The conjecture, saying
that any rational cuspidal plane curve is either free or nearly free is known
to hold for all even degree curves and in “most” cases for odd degree curves.
However, this conjecture is still open in full generality.

In Section 6, we start by recalling a result due to A. du Plessis and C.T.C.
Wall [31], see Theorem 2.4, which gives lower and upper bounds for the total
Tjurina number τ(C) of a reduced curve C. In some cases, the curves realizing
the maximal value for τ(C) are exactly the free curves. In this section, we
investigate the non-free curves for which these bounds are attained and put
forth a number of open questions.

In Section 7, we discuss the existence of some free curves having only
simple singularities of type A,D,E. These curves are strongly related to the
maximizing curves introduced by U. Persson [47]. For such a maximizing curve
C, the associated smooth surface X̃ obtained as the minimal resolution of
the double cover X of P2 ramified along C might have the maximal possible
Picard number. For this geometric construction, the degree of C must be even.
However, the odd degree curves with similar properties from the view-point of
free curves were introduced in [20] and until now their existence is limited to
odd degrees up to 9.
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Finally, in Section 8, we introduce the supersolvable plane curves in anal-
ogy to supersolvable line arrangements, a classical notion in hyperplane ar-
rangement theory. We conjecture that such supersolvable curves are free in
Conjecture 8.2. Then, we recall both a general result supporting this con-
jecture, see Theorem 8.3, and several, in fact countable many examples of
supersolvable curves, where the freeness is not a consequence of this result.

2. BASIC FACTS AND NOTIONS RELATED TO FREE CURVES

Let S = C[x, y, z] be the polynomial ring in three variables x, y, z with
complex coefficients, and let C : f = 0 be a reduced curve of degree d ≥ 3
in the complex projective plane P2. We denote by Jf the Jacobian ideal of f ,
i.e. the homogeneous ideal in S spanned by the partial derivatives fx, fy, fz
of f , and by M(f) = S/Jf the corresponding graded quotient ring, called the
Jacobian (or Milnor) algebra of f . Consider the graded S-module of Jacobian
syzygies of f or, equivalently, the module of derivations killing f , namely

(2.1) D0(f) = {ρ = (a, b, c) ∈ S3 : afx + bfy + cfz = 0}.

This module is also denoted in the literature by AR(f) (all Jacobian relations
for f) and Syz(f), the Jacobian syzygies of f . According to Hilbert Syzygy
Theorem, the graded Jacobian algebra M(f) has a minimal free resolution of
the form

(2.2) 0 → F3 → F2 → F1 → F0,

where clearly F0 = S, F1 = S3(1− d) and the morphism F1 → F0 is given by

(a, b, c) 7→ afx + bfy + cfz.

With this notation, the graded S-module of Jacobian syzygies D0(f) has the
following minimal resolution

0 → F3(d− 1) → F2(d− 1).

We say that C : f = 0 is an m-syzygy curve if the module F2 has rank m. Then
the module D0(f) is generated by m homogeneous syzygies, say ρ1, ρ2, . . . , ρm,
of degrees dj = deg ρj ordered such that

1 ≤ d1 ≤ d2 ≤ · · · ≤ dm.

We call these degrees (d1, . . . , dm) the exponents of the curve C and ρ1, . . . , ρm
a minimal set of generators for the module D0(f). The smallest degree d1 is
sometimes denoted by mdr(f) and is called the minimal degree of a Jacobian
relation for f .
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The curve C is free when m = 2, since then D0(f) is a free module of
rank 2, see for instance [48, 50, 51, 54]. Moreover, there are two classes of
3-syzygy curves which are intensely studied, since they are in some sense the
closest to free curves. First, we have the nearly free curves, introduced in [25]
and studied in [2, 6, 11, 38] which are 3-syzygy curves satisfying d3 = d2 and
d1 + d2 = d. Then, we have the plus-one generated line arrangements of level
d3, introduced by Takuro Abe in [1] and recently studied in [40, 42], which
are 3-syzygy line arrangements satisfying d1 + d2 = d. In general, a 3-syzygy
curve will be called a plus-one generated curve if it satisfies d1 + d2 = d. In
particular, nearly free curves are a special type of plus-one generated curves.
The study of these classes of curves goes naturally together, as the following
result shows, see for it and other similar results [15, 41].

Theorem 2.1. Let C : f = 0 be a reduced curve in P2, L a line in
P2, which is not an irreducible component of C. We assume that the union
C ′ = C ∪ L : f ′ = 0 is a free curve. Then, the curve C is either free or a
plus-one generated curve.

We have the following characterizations for free and plus-one generated
curves, see [27, Theorem 2.3], where D0(f) is denoted by AR(f).

Theorem 2.2. Let C : f = 0 be a reduced plane curve of degree d and
let d1 and d2 be the minimal degrees of a minimal system of generators for the
module of Jacobian syzygies D0(f) as above. Then the following hold.

1. The curve C is free if and only if d1 + d2 = d− 1.

2. The curve C is plus-one generated if and only if d1 + d2 = d.

3. In all the other cases, d1 + d2 > d.

Let If denote the saturation of the ideal Jf with respect to the maximal
ideal m = (x, y, z) in S and consider the following local cohomology group,
usually called the Jacobian module of f ,

N(f) = If/Jf = H0
m(M(f)).

We set n(f)k = dimN(f)k for any integer k and introduce the freeness defect
of the curve C by the formula

ν(C) = max
j

{n(f)j}

as in [2]. Note that C is free if and only if N(f) = 0, see for instance [51], and
hence in this case ν(C) = 0, and C is nearly free if and only if ν(C) = 1, see
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[25]. If we set T = 3(d−2), then the sequence n(f)k is symmetric with respect
to the middle point T/2, that is one has

(2.3) n(f)a = n(f)b

for any integers a, b satisfying a + b = T , see [49, 52]. It was shown in [21,
Corollary 4.3] that the graded S-module N(f) satisfies a Lefschetz type prop-
erty with respect to multiplication by generic linear forms. This implies, in
particular, the inequalities

(2.4) 0 ≤ n(f)0 ≤ n(f)1 ≤ ... ≤ n(f)[T/2] ≥ n(f)[T/2]+1 ≥ ... ≥ n(f)T ≥ 0.

Moreover, for a 3-syzygy curve C of degree d with the exponents (d1, d2, d3),
we have the following formula for the initial degree of the graded module N(f),
see [27, Theorem 3.9].

(2.5) σ(C) = min{k : N(f)k ̸= 0} = 3(d− 1)− (d1 + d2 + d3).

For a reduced curve C, we denote by τ(C) its total Tjurina number, that is the
sum of the Tjurina numbers of all the singularities of C. The following result
shows that the invariants ν(C) and τ(C) are closely related.

Theorem 2.3. Let C : f = 0 be a reduced plane curve of degree d in P2

and let r = mdr(f). Then the following hold.

1. If r < d/2, then

ν(C) = (d− 1)2 − r(d− 1− r)− τ(C).

2. If r ≥ (d− 2)/2, then

ν(C) =

⌈
3

4
(d− 1)2

⌉
− τ(C).

Here, for any real number u, ⌈u⌉ denotes the round up of u, namely the
smallest integer U such that U ≥ u. Written down explicitly, this means that
for d = 2m even and r ≥ m − 1, one has ν(C) = 3m2 − 3m + 1 − τ(C),
while for d = 2m + 1 odd and r ≥ m, one has ν(C) = 3m2 − τ(C). For
(d − 2)/2 ≤ r < d/2, both formulas in (1) and (2) apply, and they give the
same result for ν(C).

We continue this section by recalling the following result due to du Plessis
and Wall, see [31, Theorem 3.2] as well as [32] for an alternative approach.

Theorem 2.4. For positive integers d and r, define two new integers by

τ(d, r)min = (d− 1)(d− r − 1) and τ(d, r)max = (d− 1)2 − r(d− r − 1).
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Then, if C : f = 0 is a reduced curve of degree d in P2 and r = mdr(f), one
has

τ(d, r)min ≤ τ(C) ≤ τ(d, r)max.

Moreover, for r = mdr(f) ≥ d/2, the stronger inequality

τ(C) ≤ τ(d, r)max −
(
2r + 2− d

2

)
holds.

Remark 2.5. Let C : f = 0 be a reduced curve of degree d in P2 and
r = mdr(f). Note that the function τ(d, r)max, regarded as a function of r,
occurs also in Theorem 2.3 (1), which can be restated as

(2.6) τ(C) + ν(C) = τ(d, r)max,

for r = mdr(f) < d/2. The inequality τ(C) ≤ τ(d, r)max in Theorem 2.4 is
made more precise, when r < d/2, by the result in Theorem 2.3 (1).

At the end of the proof of Theorem 2.4, in [31], the authors state the
following very interesting consequence (of the proof, not of the statement) of
Theorem 2.4.

Corollary 2.6. Let C : f = 0 be a reduced curve of degree d in P2 and
r = mdr(f). One has

τ(C) = τ(d, r)max

if and only if C : f = 0 is a free curve, and then r < d/2.

Since a plane curve C is free if and only if ν(C) = 0, this characterization
of free curves follows also from Theorem 2.3, as explained in Remark 2.5.

In paper [11], we have given an alternative proof of Corollary 2.6 and
have shown that a plane curve C is nearly free, which can be defined by the
property ν(C) = 1, if and only if a similar property holds. Namely, one has
the following result, an obvious consequence of Theorem 2.3 and Theorem 2.4.

Corollary 2.7. Let C : f = 0 be a reduced curve of degree d in P2 and
r = mdr(f). One has

τ(C) = τ(d, r)max − 1

if and only if C : f = 0 is a nearly free curve, and then r ≤ d/2.

3. TERAO’S CONJECTURE AND SOME GENERALIZATIONS

We say that Terao’s Conjecture holds for a free line arrangement A if
any other line arrangement B having an isomorphic intersection lattice of type
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L(B) = L(A), is also free, see [10, 45, 57]. Terao’s Conjecture is known to hold
in many cases, for instance when the number of lines in A is at most 14, see
[5, 16]. The open question is the following. For a more general version, refer
to [45, Conjecture 4.138].

Conjecture 3.1. Terao’s Conjecture holds for any free line arrange-
ment A.

Remark 3.2. Since the total Tjurina number τ(A) is determined by the
intersection lattice L(A), see formula (6.3) below, a possible approach to prov-
ing Terao’s Conjecture may be to check that A : f = 0 and B : g = 0 satisfy
mdr(f) = mdr(g) and then apply Corollary 2.6. However, when A : f = 0 is
a non-free line arrangement, examples due to G. Ziegler in [58] show that the
invariant mdr(f) is not combinatorially determined. Consider the following
two arrangements:

A : f = xy(x− y − z)(x− y + z)(2x+ y − 2z)(x+ 3y − 3z)(3x+ 2y + 3z)

(x+ 5y + 5z)(7x− 4y − z) = 0,

and, respectively, by

A′ : f ′ = xy(4x−5y−5z)(x−y+z)(16x+13y−20z)(x+3y−3z)(3x+2y+3z)

(x+ 5y + 5z)(7x− 4y − z) = 0

see [10, Remark 8.5], but beware a misprint in the equation for A′ given there.
This pair of arrangements satisfy mdr(f) = 5 and mdr(f ′) = 6, though A
and A′ have the same combinatorics. More precisely, the exponents of A are
(5, 6, 6, 6), while the exponents of A′ are (6, 6, 6, 6, 6, 6).

Both arrangements A and A′ have 6 triple points and 18 double points.
For the arrangement A, the 6 triple points are situated on a conic, while for
the arrangement A′ this is not the case. An insight into the geometry of the
arrangement A is provided in the paper [29].

Remark 3.3. There is an interesting question to find new pairs of line
arrangements, say B : g = 0 and B′ : g′ = 0 such that their intersection lattices
verify L(B) = L(B′) ̸= L(A) and mdr(g) ̸= mdr(g′). One way to do this is to
add lines to the line arrangements A and A′ in Remark 3.2. Add a generic line
L1 to the arrangement A and get in this way a new arrangement A1 : f1 = 0.
Then add a generic line L′

1 to the arrangement A′ and get in this way a new
arrangement A′

1 : f ′
1 = 0. Using [3, Theorem 3.3] or [19, Corollary 6.4], we

see that mdr(f1) = 6 and mdr(f ′
1) = 7, though clearly A1 and A′

1 have the
same combinatorics. Then choose a double point p ∈ A1 and a double point
p′ ∈ A′

1, which correspond to each other under the isomorphism of intersection
lattices L(A1) = L(A′

1). Then add generic lines L2 passing through p and L′
2
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passing through p′ to A1 and, respectively, to A′
1 to get new arrangements

A2 : f2 = 0 and A′
2 : f ′

2 = 0. Using [3, Theorem 3.3] or [19, Corollary 6.4],
we see that mdr(f2) = 7 and mdr(f ′

2) = 8, though clearly A2 and A′
2 have the

same combinatorics. Finally, choose a double point q ∈ A2 and a double point
q′ ∈ A′

2, which correspond to each other under the isomorphism of intersection
lattices L(A2) = L(A′

2). Add a generic line L3 through the point q to the
arrangement A2 and get in this way a new arrangement A3 : f3 = 0. Then
add a generic line L′

3 through the point q′ to the arrangement A′
2 and get in

this way a new arrangement A′
3 : f ′

3 = 0. By using [3, Theorem 3.3] or [19,
Corollary 6.4], we see that mdr(f3) = 8 and mdr(f ′

3) = 9, though clearly A1

and A′
1 have the same combinatorics. In particular, they have both 8 triple

points and 42 nodes. Note that the first two steps of the above construction
can be interchanged and that by varying the choices of the points p and q
several isomorphism classes of intersection lattices L(A2) and L(A3) can be
obtained.

A different approach for the construction of pairs B : g = 0 and B′ : g′ = 0
such that their intersection lattices verify L(B) = L(B′) and mdr(g) ̸= mdr(g′)
can be found in [30].

Remark 3.4. Note that if the line arrangement A : f = 0 is free and
the line arrangement B : g = 0 satisfies L(A) = L(B), this clearly implies
that deg(f) = deg(g) and also mdr(g) ≤ mdr(f) in view of Theorem 2.4 and
Corollary 2.6. It follows that Terao’s Conjecture is implied by the following.

Conjecture 3.5. Let A : f = 0 be a line arrangement in P2 with
d = deg f and mdr(f) < d/2. Then the integer mdr(f) is combinatorially
determined.

Remark 3.6. We say that two arrangements A : f = 0 and B : g = 0
have the same weak combinatorial type if for any integer k ≥ 2, the number of
points of multiplicity k is the same in both A and B. There are examples of
pairs of arrangements A and B, having the same weak combinatorial type, and
such that A is free and B is not free, see [39]. Since the weak combinatorial
type determines the total Tjurina number by the formula (6.3), it follows that
in these examples one has mdr(g) < mdr(f) < d/2.

Theorem 2.3 suggests that the following stronger version of H. Terao’s
Conjecture 3.1 might be true, which is clearly equivalent to Conjecture 3.5.

Conjecture 3.7. Let A : f = 0 be a line arrangement in P2. Then the
invariant ν(A) is combinatorially determined.

For a reduced plane curve one may state the following.
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Conjecture 3.8. Let C : f = 0 be a reduced plane curve P2. Then the
invariant ν(C) is determined by the degree of C and the list of the analytic
types of the isolated singularities of C.

Note that both these conjectures hold when r = mdr(f) ≥ (d − 2)/2
in view of Theorem 2.3. In particular, the two arrangements A and A′ from
Remark 3.2 satisfy ν(A) = ν(A′) = 6.

Consider the sheafification EC := D̃0(f) of the graded S-module D0(f),
which is a rank two vector bundle on P2, see [49] for details. Moreover, recall
that

(3.1) EC = T ⟨C⟩(−1),

where T ⟨C⟩ is the sheaf of logarithmic vector fields along C as considered for
instance in [22, 38, 49]. One has, for any integer k,

(3.2) H0(P2, EC(k)) = D0(f)k and H1(P2, EC(k)) = N(f)k+d−1,

where d = deg(f), for which we refer to [49, Proposition 2.1]. Note that
C : f = 0 is a free curve with exponents (d1, d2) if and only if the vector
bundle EC splits as a direct sum

(3.3) EC = OP2(−d1)⊕OP2(−d2).

In general, let (dL0
1 , dL0

2 ), with dL0
1 ≤ dL0

2 , denote the generic splitting type of
the vector bundle EC along a generic line L0 in P2. Then Proposition 3.2 in [2]
implies that dL0

1 = r for r < (d− 2)/2 and dL0
1 = ⌊(d− 1)/2⌋ for r ≥ (d− 2)/2,

where r = mdr(f). Then [2, Theorem 1.1] says that

(d− 1)2 − dL0
1 dL0

2 = τ(C) + ν(C).

Since dL0
1 +dL0

2 = d−1 by [2, Proposition 3.1], Conjecture 3.7 may be restated
as follows.

Conjecture 3.9. Let C : f = 0 be a line arrangement in P2. Then
the generic splitting type (dL0

1 , dL0
2 ) of the vector bundle EC = T ⟨C⟩(−1) is

combinatorially determined.

Note that Conjecture 3.9 is just the question asked in [7, Question 7.12].

4. SOME RELATED RESULTS

Here, we discuss an alternative view on the S-module

D0(f) = AR(f) = Syz(f).
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Let Ωj by the graded S-module of global, polynomial differential j-forms in
C3, for j = 0, 1, 2, 3. Note that Ω0 = S and Ω3 = Sdx ∧ dy ∧ dz = S(−3). To
a triple ρ = (a, b, c) ∈ S3, we associate the 2-form

ω(ρ) = ady ∧ dz − bdx ∧ dz + cdx ∧ dy.

Then ρ ∈ D0(f) if and only if df ∧ ω(ρ) = 0, where df = fxdx+ fydy + fzdz
is the differential of f . In other words, we have

(4.1) AR(f)(−2) = ker{df : Ω2 → Ω3}.

We define the submodule of Koszul-type relations KR(f) to be

(4.2) KR(f)(−2) = im{df : Ω1 → Ω2}

and note thatKR(f) is generated by 3 obvious relations of degree d−1, namely

(fy,−fx, 0), (fz, 0,−fx) and (0, fz,−fy).

Finally, consider the quotient of essential relations

(4.3) ER(f) = AR(f)/KR(f),

or, in cohomological terms, ER(f)(−2) = H2(Ω∗, df∧). To state the following
key result, we recall some more notation. Let J = Jf be the Jacobian ideal of f
and I = If be its saturation with respect to the maximal ideal (x, y, z). Then
the singular subscheme Σf of the reduced curve C : f = 0 is the 0-dimensional
scheme defined by the ideal I and we consider the following sequence of defects

(4.4) defk Σf = τ(C)− dim
Sk

Ik
.

With this notation, one has the following result, see [9, Theorem 1].

Theorem 4.1. Let C : f = 0 be a degree d reduced curve in P2. If Σf

denotes its singular locus subscheme, then

dimER(f)2d−5−k = defk Σf

for 0 ≤ k ≤ 2d− 5 and dimER(f)j = τ(C) for j ≥ 2d− 4.

It follows that Terao’s Conjecture 3.1 is equivalent to the following, recall
Conjecture 3.5.

Conjecture 4.2. Let A : f = 0 be a line arrangement in P2 having
d = deg f and mdr(f) < d/2. Then, the largest integer k such that defk Σf ̸= 0
is combinatorially determined.

Corollary 4.3. Let C : f = 0 be a degree d free curve in P2, with
exponents (d1, d2). Then

defk Σf = τ(C)− dimM(f)k = 0



11 On free curves and related open problems 139

for k > k1 = 2d− 5− d1 and

defk1 Σf = τ(C)− dimM(f)k1 > 0.

Note that we have

(4.5) defk Σf = τ(C)− dim
Sk

Jk
+ n(f)k.

We introduce the following.

Definition 4.4. For a homogeneous reduced polynomial f ∈ Sd, one de-
fines

(i) the coincidence threshold

ct(f) = max{q : dimM(f)k = dimM(fs)k for all k ≤ q},

with fs a homogeneous polynomial in S of the same degree d as f and
such that Cs : fs = 0 is a smooth curve in P2.

(ii) the stability threshold

st(f) = min{q : dimM(f)k = τ(C) for all k ≥ q}.

It is clear that one has

(4.6) ct(f) ≥ mdr(f) + d− 2,

with equality for mdr(f) < d− 1. The invariant st(f) is more mysterious, the
equality in (4.5) implies that

st(f) = min{q : dimN(f)k = defk Σf for all k ≥ q}.

These new invariants ct(f) and st(f) enter into the following result, see [11,
Corollary 1.7] and recall that T = 3(d− 2).

Theorem 4.5. Let C : f = 0 be a degree d reduced curve in P2. Then C
is a free (respectively, nearly free) curve if and only if

ct(f) + st(f) = T (respectively, ct(f) + st(f) = T + 2).

In the remaining cases, one has ct(f) + st(f) ≥ T + 3.

It follows that a new stronger form of Terao’s Conjecture might be the
following.

Question 4.6. Let A : f = 0 be a line arrangement in P2. Is the invariant

ct(f) + st(f)

combinatorially determined ?
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For the two degree 9 line arrangements considered by Ziegler and recalled
above in Remark 3.2, we have ct(f)=12, st(f)=14, ct(f ′)=13 and st(f ′)=13,
hence

ct(f) + st(f) = ct(f ′) + st(f ′) = T + 5 = 26 and ν(A) = 6.

However, for the pair of line arrangementsA1 andA′
1, constructed as in Remark

3.3, one has ct(f1) = 14, st(f1) = 16 and ct(f ′
1) = 15, st(f ′

1) = 16. This shows
that Question 4.6 has a negative answer.

The relation between this invariant ct(f)+st(f) and the defect of freeness
ν(C) is also an open problem. For a plus-one generated curve C : f = 0, we
have

ct(f) + st(f) = T + ν(C) + 1,

see [27, Proposition 3.7]. However, the formulas in (6.2) below show that such
a linear dependence cannot hold in general, even for 3-syzygy curves.

5. FREENESS PROPERTIES OF RATIONAL CUSPIDAL
CURVES

A plane rational cuspidal curve is a rational curve C : f = 0 in the
complex projective plane P2, having only unibranch singularities. The study of
these curves has a long and fascinating history, some long-standing conjectures,
as the Coolidge–Nagata conjecture being proved only recently, see [36]. The
classification of such curves is not easy, there are a wealth of examples even
when additional strong restrictions are imposed, see [33, 34, 43, 46].

We have remarked in [23] that many plane rational cuspidal curves are
free. The remaining examples of plane rational cuspidal curves in the available
classification lists turned out to satisfy a weaker homological property, which
was chosen as the definition of a nearly free curve, see [25]. Subsequently, a
number of authors have established interesting properties of this class of curves,
see [6, 38]. In view of the above remark, we have conjectured in [25, Conjecture
1.1] the following surprising fact.

Conjecture 5.1. Any plane rational cuspidal curve C is either free or
nearly free.

This conjecture was proved in [25, Theorem 3.1] for curves C whose degree
d is even, as well as for some cases when d is odd, e.g. when d = pk, for a
prime number p > 2. It turns out that a rational cuspidal curve C : f = 0
with mdr(f) = 1 is nearly free. Indeed, this follows from [12, Proposition 4.1].
To see this, note that the implication (1) ⇒ (2) there holds for any d ≥ 2.
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Assume from now on that d is odd, and let

(5.1) d = pk11 · pk22 · · · pkmm
be the prime decomposition of d. We assume also that m ≥ 2, the case m = 1
of our conjecture being settled in [25, Corollary 3.2]. By changing the order

of the primes pj ’s if necessary, we can and do assume that pk11 > p
kj
j , for any

2 ≤ j ≤ m. Set e1 = d/pk11 . With these assumptions and notations, we have
the following results, see [26].

Theorem 5.2. Let C : f = 0 be a rational cuspidal curve of degree
d = 2d′ + 1 an odd number. Then mdr(f) ≤ d′ and if equality holds, then C is
either free or nearly free.

Theorem 5.3. Let C : f = 0 be a rational cuspidal curve of degree
d = 2d′ + 1, an odd number as in (5.1). Then, if

mdr(f) ≤ r0 :=
d− e1

2
,

then C is either free or nearly free. In particular, the following hold.

i) If d = 3pk, with p a prime number, then C is either free or nearly free.

ii) d = 5pk, with p a prime number, pk > 3, then C is either free or nearly
free, unless mdr(f) = d′ − 1.

Remark 5.4. Note that, for d ̸= 15, we have e1 ≤ d/7 and hence

r0 =
d− e1

2
≥

⌈
d(1− 1

7)

2

⌉
=

⌈
3d

7

⌉
.

Therefore, the only cases not covered by our results correspond to curves of
odd degree d, such that r = mdr(f) satisfies⌈

3d

7

⌉
+ 1 ≤ r0 + 1 ≤ r ≤ d′ − 1 =

d− 3

2
.

Corollary 5.5. A rational cuspidal curve C : f = 0 of degree d with
r = mdr(f) is either free or nearly free, if one of the following conditions holds.

1. r ≤ 15, or

2. d ≤ 90, unless we are in one of the following situations.

i) d = 35 and r = 16;

ii) d = 45 and r = 21;
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iii) d = 55 and r = 26;

iv) d = 63 and r ∈ {29, 30};
v) d = 65 and r = 31;

vi) d = 77 and r ∈ {36, 37};
vii) d = 85 and r = 41.

In the excluded situations, our results do not allow us to conclude, and
hence, Conjecture 5.1 is still open.

Here is a recent additional result in this area, see [15, Theorem 1.5].
Consider an affine plane curve X : g(x, y) = 0 given by a reduced polynomial
g ∈ R = C[x, y] of degree d. Then the projective closure X of X is the curve
in P2 defined by the polynomial

f(x, y, z) = zdg(
x

z
,
y

z
).

Recall that a contractible, irreducible affine plane curveX is given, in a suitable
global coordinate system (u, v) on C2 by the equation up − vq = 0 for some
relatively prime integers p ≥ 1 and q ≥ 1, see [35, 37]. In particular, X
has at most a unique singular point a, which is a cusp of type (p, q), namely
the singularity (X, a) is given in local analytic coordinates (u′, v′) at a by the
equation u

′p − v
′q = 0. When X is smooth, then X is isomorphic to C and g

is a component of an automorphism of C2, see [4, 53]. We say that in this case
X has a cusp of type (1, 1).

Theorem 5.6. With the above notation, assume that X is irreducible and
contractible and has a cusp of type (p, q) such that either p or q is relatively
prime to d + 1, where d = degX = degX. Then the projective closure X of
the affine plane curve X is a rational cuspidal curve which is either free or
plus-one generated.

All the proofs of the results in this section, in spite of their purely algebraic
statements, use a deep result due to U. Walther involving mixed Hodge theory
and D-modules, see [56, Theorem 1.6].

6. CURVES WITH MINIMAL AND MAXIMAL TOTAL
TJURINA NUMBERS

Consider a reduced curve C : f = 0 of degree d and set r = mdr(f).
Then, Theorem 2.4 gives upper and lower bounds for the total Tjurina number
τ(C) as functions of d and r. Moreover, we know that when r < d/2 the upper
bound is obtained exactly for a free curve, recall Corollary 2.6. Also, it was
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shown in [24] that for any r < d/2 there is a free curve with exponents d1 = r
and d2 = d− 1− r. The situation of the equality

(6.1) τ(C) = τ(d, r)max −
(
2r + 2− d

2

)
for r ≥ d/2 seems to be more subtle. A reduced curve C : f = 0 of degree d,
such that r = mdr(f) and the equality (6.1) holds for C is called a maximal
Tjurina curve of type (d, r). In the paper [28], we have put forth the following.

Conjecture 6.1. For any integer d ≥ 3 and for any integer r such that
d/2 ≤ r ≤ d−1, there are maximal Tjurina curves of type (d, r). Moreover, for
d/2 ≤ r ≤ d− 2, there are maximal Tjurina line arrangements of type (d, r).

This conjecture was shown to hold for many pairs (d, r), and, in particular,
for all pairs as above with d ≤ 11, see [3, 28], but the general case is still
open. In many cases, these constructed maximal Tjurina curves are either line
arrangements, or irreducible curves with interesting geometrical properties, e.g.
for the pair (d, r) = (d, d− 1) we get as maximal Tjurina curves the maximal
nodal curves, namely irreducible nodal curves of degree d having

g = (d− 1)(d− 2)/2

nodes, see [28, 44].
One can ask for upper bounds for the total Tjurina number of a hyper-

surface V in Pn having only isolated singularities, in the case n ≥ 3. In this
setting, some results and some open problems are stated in [14].

Let us have a look now at the curves C for which the total Tjurina
number τ(C) has the minimal possible value given in Theorem 2.4. The Thom–
Sebastiani plane curves, that is the plane curves

C : f(x, y, z) = g(x, y) + zd = 0

where g(x, y) is a homogeneous polynomial in x and y of degree d show that
this lower bound is effective. In other words, they give examples of curves for
any d and r = mdr(f) such that

τ(C) = τ(d, r)min = (d− 1)(d− r − 1),

see [27, Example 4.5]. More precisely, if m denotes the number of distinct
linear factors of g(x, y), then r = m− 1 and τ(C) = (d− 1)(d−m). With this
notation, one also has

(6.2) ct(f) + st(f) = (d+m− 3) + (2d+m− 5) = T + 2m− 2,

while ν(C) = m(m− 2)+1, see [27, Example 3.8]. This shows that the answer
to the open problem mentioned after Question 4.6 is not easy.
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It is a remarkable fact in our opinion that this lower bound τ(d, r)min is
not optimal if we restrict our attention to line arrangements, as shown in [13].
When C is a line arrangement, its global Tjurina number, coincides with its
global Milnor number µ(C), and is given by

(6.3) τ(C) =
∑
p

(n(p)− 1)2,

the sum being over all multiple points p of C, and n(p) denoting the multiplicity
of C at p. Let m(C) be the maximal multiplicity of a point in C, and n(C)
the maximal multiplicity of a point in C \ {p}, where p is any point in C of
multiplicity m(C). Note that

1 ≤ n(C) ≤ m(C) ≤ d.

Moreover, m(C) = d if and only if mdr(f) = 0, and m(C) = d − 1 if and
only if mdr(f) = 1, see [17, Proposition 4.7]. With this notation, we have the
following result, see [13].

Theorem 6.2. Let C : f = 0 be an arrangement of d ≥ 4 lines in P2

which is not free. If we set r = mdr(f) ≥ 2 and τ(d, r)min = (d− 1)(d− r− 1),
then the following hold.

i) With the above notation, one has

τ(C) ≥ τ ′(d, r)min := τ(d, r)min +

(
r

2

)
+

(
n(C)

2

)
+ 1.

ii) If r ̸= d−m(C), then the possibly stronger inequality

τ(C) ≥ τ ′′(d, r)min := τ(d, r)min +

(
r

2

)
+

(
m(C)

2

)
+ 1

holds.

The line arrangements such that r = mdr(f) ∈ {0, 1, 2} are classified, see
[55] or [17, Theorem 4.11] for the case r = 2, which is the only difficult case. In
addition, the case 2 = n(C) ≤ m(C) ≤ d − 2, corresponds to the intersection
lattice L(C) being the lattice L(d,m(C)) discussed in [17, Proposition 4.7],
i.e. the intersection lattice of an arrangement obtained from m(C) concurrent
lines by adding d − m(C) lines in general position. For the remaining line
arrangements, we have the following.

Corollary 6.3. Let C : f = 0 be an arrangement of d lines in P2 which
is not free and such that r = mdr(f) ≥ 3 and n(C) ≥ 3. Then

τ(C) ≥ τN (d, r)min := τ(d, r)min +

(
r

2

)
+ 4 ≥ τ(d, r)min + 7.
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However, it is an open question to find the best lower bound for the global
Tjurina number of line arrangements.

7. FREE CURVES WITH ADE SINGULARITIES

As we have already remarked above, it was shown in [24] that for any
r < d/2 there is a free curve C with exponents d1 = r and d2 = d− 1− r. We
can ask about the existence of such a curve when we impose the extra condition
that C has only simple singularities A,D,E. This question arose naturally in
the paper [20], where we showed that the maximizing curves introduced by
U. Persson [47] were, in fact, a class of free curves with A,D,E singularities.
Here are the necessary definition.

Definition 7.1. A reduced curve C in P2 of even degree d = 2m ≥ 4 is a
maximizing curve if C has only simple singularities A,D,E and

τ(C) = 3m(m− 1) + 1.

For such a maximizing curve C, the associated smooth surface X̃ obtained
as the minimal resolution of the double cover X of P2 ramified along C might
have the maximal possible Picard number. From this perspective, it is very
interesting to classify, or at least to produce many examples of such maximizing
curves. The main result of the paper [20] can be formulated as follows.

Theorem 7.2. Let C be a plane curve of degree d = 2m ≥ 4 having only
A,D,E singularities. Then C is a maximizing curve if and only if C is a free
curve with the exponents (m− 1,m).

Moreover, it was shown in [47] that maximazing curves exist for any even
degree d = 2m ≥ 4. For instance, the family of curves in [47, Lemma 7.8]

C2(m+1) : xy[(x
m + ym + zm)2 − 4(xmym + ymzm + zmxm)] = 0

is maximizing, and hence, we get a curve of even degree d = 2(m + 1) which
is free with exponents (d1, d2) = (m,m + 1). Motivated by Definition 7.1, we
introduced in [20] the following definitions for the odd degree curves.

Definition 7.3. A reduced curve C in P2 with only A,D,E singularities
and of odd degree d = 2m+ 1 ≥ 5 is a maximizing curve if

τ(C) = 3m2 + 1.

This definition was chosen in view of the following result.

Proposition 7.4. Let C :f=0 be a reduced curve of degree n=2m+1 ≥ 5
with at most A,D,E singularities. Then one of the following three situations
occurs, where r = mdr(f).
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a) r = m− 1 and τ(C) ≤ τ(n, r)max = 3m2 + 1.

b) r = m and τ(C) ≤ τ(n, r)max = 3m2.

c) r > m and τ(C) < 3m2 − 1.

In both cases a) and b), the equality holds if and only if the curve C is free.

The following question is natural.

Question 7.5. Do maximizing curves C2m+1 exist in any degree d = 2m+
1 ≥ 5?

In [20], we have constructed maximizing curves of degree 5 and 7. A
maximizing curve of degree 9 is constructed in [18, Example 6.4], as follows.
The curve

C : f = xyz
(
(x2 + y2 + z2)3 − 27x2y2z2

)
= 0

has six singularities E7 at the points (0 : 1 : ±i), (1 : 0 : ±i) and (1 : ±i : 0),
and seven nodes A1 at the points (1 : ±1 : ±1), (1 : 0 : 0), (0 : 1 : 0) and
(0 : 0 : 1). It follows that

τ(C) = 6 · 7 + 7 · 1 = 49,

and this equality implies that C is maximizing by Definition 7.3. Also, Propo-
sition 7.4 tells us that C is a free curve with exponents (3, 5).

For odd degree d = 2m+1 ≥ 11 it seems that no such maximazing curve
is known at this time.

8. FREENESS PROPERTIES OF SUPERSOLVABLE PLANE
CURVES

We start with some definitions, see [18].

Definition 8.1. Given a reduced plane curve C, we say that p ∈ C is a
modular point for C if the central projection

πp : P2 \ {p} → P1

induces a locally trivial fibration of the complement M(C) = P2 \ C. We say
that a reduced plane curve C is supersolvable if it has at least one modular
point.

The map induced by πp is a locally trivial fibration if and only if for any
line Lp passing through p and not an irreducible component of C, one has the
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following properties for the intersection multiplicities of the line Lp and the
curve C:

(C,Lp)p = multp(C) and (C,Lp)q = 1 for any q ∈ C ∩ Lp, q ̸= p.

When C is a line arrangement, this definition of a modular point coincides
with the usual one, and a line arrangement is supersolvable by definition if it
has a modular point. In particular, the existence of a modular point for a line
arrangement C implies that C is free, see for all these well-known facts [10, 45].
The following conjecture was stated in [18, Conjecture 1.10].

Conjecture 8.2. Any supersolvable plane curve is free.

One rather general setting where this conjecture holds is the following,
see [18, Theorem 1.11].

Theorem 8.3. Let C0 be a reduced plane curve, let p ∈ M(C0) be a
point in the complement of C0 and let A be the set of lines L passing through
p such that there is a point q ∈ L ∩ C0 with (C0, L)q > 1. Assume that all
the singularities of the curve C obtained by adding all the lines in A to C0

are quasi-homogeneous. Then C is supersolvable and free. In particular, this
holds when all the singularities s ∈ C0 have multiplicity 2, and p is not on any
tangent cone TCs(C0) for (C0, s) a singularity of C0 with µ(C0, s) ≥ 3.

However, many other supersolvable curves are known to be free. For
instance, the free curve

C : f = yz(ym + zm)(xmym + ymzm + xmzm) = 0

constructed in [18, Theorem 1.8] is of a different nature, since in this case

p ∈ C0 : x
mym + ymzm + xmzm = 0

and the curve C has not only quasi-homogeneous singularities. Hence, it gives
new examples where Conjecture 8.2 holds. In the same paper, countable ex-
amples of conic-line arrangements were constructed, where the Conjecture 8.2
holds even in the presence of non-quasi-homogeneous singularities, see [18, Re-
mark 7.4]. An equation for such a conic-line arrangement is

C : f = x(xm + zm)(x2m + (xz + y2)m) = 0.

Here, p = (0 : 1 : 0) is a modular point and q = (0 : 0 : 1) ∈ C is not a
quasi-homogeneous singularity for C.
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