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Let U be a smooth connected complex algebraic variety, and let f : U → C∗ be
an algebraic map. To the pair (U, f) one can associate an infinite cyclic cover Uf ,
and (homology) Alexander modules are defined as the homology groups of this
cover. In two recent works, the first of which is joint with C. Geske, L. Maxim
and B. Wang, we developed two different ways to put a mixed Hodge structure
on Alexander modules. Since they are not finite dimensional in general, each
approach replaces the Alexander module by a different finite dimensional module:
one of them takes the torsion submodule, the other takes finite dimensional
quotients, and the constructions are not directly comparable. In this note, we
show that both constructions are compatible, in the sense that the map from
the torsion to the quotients is a mixed Hodge structure morphism.
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1. INTRODUCTION

The goal of this note is to establish the relation between two recent con-
structions of mixed Hodge structures (MHS) on Alexander modules. Let us
start by defining Alexander modules. Let U be a smooth connected complex
algebraic variety, and let f : U → C∗ be an algebraic map. From this infor-
mation, one can construct an infinite cyclic cover of U , that we denote Uf ,
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by pulling back the exponential map exp: C → C∗, i.e. as the following fiber
product:

(1)
Uf ⊂ U × C C

U C∗.

f̃

⌟
π exp

f

The exponential is a regular cover with deck group π1(C∗) ∼= Z. Therefore,
so is its pullback π : Uf → U . The (one variable, homological, with rational
coefficients) Alexander modules of the pair (U, f) are the homology groups
Hi(U

f ,Q) for i ≥ 0. They naturally have an automorphism, given by the
effect in homology of the counterclockwise generator of π1(C∗), seen as a deck
transformation. This gives them the structure of a Q[t±1]-module.

One motivation for this construction is the following analogy: suppose
that f : U → S1 is a locally trivial fibration. Then, an infinite cyclic cover
Uf → U can be constructed by pulling back the universal covering map R→S1.
In this case, the map f̃ : Uf → R appearing in the pullback diagram is a locally
trivial fibration over a contractible base, so Uf is homotopy equivalent to the
fiber of the map f̃ , or equivalently, to the fiber of f . Therefore, Hi(U

f ,Q) will
compute the homology of the fiber. In our situation, f is an algebraic map to
C∗ ≃ S1, and it need not be a locally trivial fibration, but it may be thought
of as a generalization of the homology of the fiber.

A well-known example is the following situation: let f : Cn → C be a non-
constant polynomial, cutting out a hypersurface H ⊂ Cn. Let U = Cn \H, so
that f restricts to a map U → C∗. Alexander modules have been long studied
in this context, e.g. [4, 5, 12, 14, 15].

This paper studies mixed Hodge structures on the Alexander modules.
The fundamental theorem concerning mixed Hodge structures, see Deligne [2],
states that the (co)homology of complex algebraic varieties has a mixed Hodge
structure. The coverings Uf that we are concerned with are not algebraic
varieties in general, and the corresponding Alexander modules are finitely gen-
erated Q[t±1]-modules, but not necessarily finite dimensional over Q. As a
result, to develop a Hodge theory for the homology of Uf , one needs to extract
meaningful finite dimensional Q-vector spaces from the Alexander modules.
We outline two main strategies to do this:

1. Restricting our focus to the largest possible finite dimensional submod-
ule, namely, the torsion submodule TorsRHi(U

f ,Q), where R := Q[t±1]. This
is the approach taken by C. Geske, L. Maxim, B. Wang and the authors in [7].
In loc. cit., a canonical and functorial MHS is constructed on TorsRHi(U

f ,Q),
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and it is shown to satisfy many desirable properties, many of which resemble
those of the fiber of f .

2. Restricting instead to finite dimensional quotient modules. More re-
cently, in [9], the authors have constructed a MHS on every quotient of the

module Hi(U
f ,Q) of the form

Hi(U
f ,Q)

(tN − 1)mHi(Uf ,Q)
, for m,N ≥ 1. Further-

more, they are compatible via the natural quotient maps between them (vary-
ing both m and N), so one may even consider their inverse limit when m→∞.
Note that Hi(U

f ,Q) is a finitely generated module over the principal ideal do-
main (PID) R, so it is the direct sum of its torsion and its free parts. It follows
from the results of [1] that the torsion part is annihilated by (tN−1)m for some
m and N , so these quotients contain more information than TorsRHi(U

f ,Q)
in the following sense: the Alexander module embeds into the inverse limit of
these quotients.

In fact, the construction in [9] is much more general, and it allows one
to replace C∗ with any semiabelian variety G, where its universal cover takes
the role of the exponential map, and the homology groups become groups over
the group ring of π1(G) ∼= Zr (i.e. a Laurent polynomial ring). In place of
(tN − 1)m, one may take the m-th power of the ideal (g− 1 | g ∈ H), where H
can be any finite index subgroup of π1(G).

Regarding the approach in (2), and taking a geometric point of view on
the module structure, SpecQ[π1(G)] is the character variety of G, i.e. the
space parametrizing rank 1 Q-local systems. Let m be the augmentation ideal
of G, i.e. (g − 1 | g ∈ G). Then, taking the inverse limit lim←−m

Q[π1(G)]/m
m

corresponds to restricting to a formal neighborhood of the identity. Alexander
modules are quasicoherent sheaves on the character variety, and the inverse

limit lim←−m

Hi(U
f ,Q)

mmHi(Uf ,Q)
is the restriction of this sheaf to the formal neighborhood

of the identity. This is reminiscent of the study of resonance varieties, as in
[17, 19]: it is a module from which one can construct the restriction of the
Alexander varieties to the formal neighborhood of the identity. In [19] (see
also [16]), the relation is explained in detail.

The two constructions outlined in (1) and (2) are similar, but indepen-
dent. This raises the question of their relationship, which this paper aims to
answer. We prove the following theorem (Corollary 5.11).

Theorem 1.1. Let U be a smooth connected complex algebraic variety
with an algebraic map f : U → C∗, and let π : Uf → U be the infinite cyclic
cover in Diagram (1). Let m,N ≥ 1, i ≥ 0, and R = Q[π1(C∗)] ∼= Q[t±1].
Consider the MHS on TorsRHi(U

f ,Q) mentioned in (1) (from [7]), and the
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MHS on Hi(U
f ,Q)

(tN−1)mHi(Uf ,Q)
mentioned in (2) (from [9]). Since they are a sub-

module and a quotient of the i-th Alexander module, respectively, there is a
natural composition map:

TorsRHi(U
f ,Q) ↪→ Hi(U

f ,Q) ↠
Hi(U

f ,Q)

(tN − 1)mHi(Uf ,Q)
.

This composition map is a MHS morphism for all m,N ≥ 1 and all i ≥ 0.
Moreover, there exists N ∈ Z≥1 such that this composition map is injective for
m≫ 1.

To make sense of the theorem, let us comment on the difference between
the constructions of both MHS. The main tool in both cases are Deligne’s mixed
Hodge complexes of sheaves, which endow their hypercohomology spaces with
MHS. Both constructions use a mixed Hodge complex of sheaves that we call
“thickening”, which is obtained as a deformation of a known mixed Hodge
complex of sheaves. These were constructed in [7], and later vastly generalized
in [9]. Both constructions use the same mixed Hodge complexes to perform
a thickening, although the corresponding thickenings and filtrations defined
therein are slightly different.

The first hurdle is that the theory of mixed Hodge complexes of sheaves is
well-suited for cohomology, so the problem must be translated to cohomology
in order to use these tools.

The cohomology groups H i(Uf ,Q) are very badly behaved. They are the
dual spaces to Hi(U

f ,Q), which might be infinite dimensional. Therefore, the
cohomology groups can have uncountable dimension. The more manageable
approach is to dualize over R, by using local systems. There is a natural local
system of R-modules L (see Definition 2.11) such that Hi(U,L) ∼= Hi(U

f ,Q).
If we let L be the R-dual local system, we are interested in the cohomology of
H i(U,L).

When it comes to the question of how to relate the homology Alexan-
der modules to the cohomology of L, parts (1) and (2) take very different
approaches. The approach in (1) is roughly to dualize over R, and to use the
Universal Coefficient Theorem over a PID to obtain isomorphisms

(2) HomQ(TorsRHi(U,L),Q) ∼= TorsRH
i+1(U,L).

These isomorphisms are difficult to work with: they rely on an isomorphism
that exists for a finite dimensionalQ[t±1]-moduleA, Ext1R(A,R)

∼=HomQ(A,Q).
This is, of course, false for general finitely generated modules, and it is not clear
how it can lift to the worlds of sheaves and/or triangulated categories, two of
the most useful tools at our disposal.

Part (2) takes a different approach, which is to take finite dimensional
quotients of L and L, and relate the (co)homology of these using the Universal
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Coefficient Theorem over Q. Therefore, to relate both structures, one must
first understand how these two dualities are related.

Our goal is to understand the relation between these approaches at the
level of sheaves. However, notice that there is a shift in equation (2), which
does not appear in the duality over Q. Therefore, if there are morphisms of
sheaves that realize these identities, they must have a cohomological shift, and
therefore, they will be morphisms in the derived category.

The main technique used in this paper to overcome this hurdle is to find
objects in the derived category (i.e. complexes of sheaves) that interpolate
between these two approaches. Then, we must give these complexes of sheaves
the structure of a mixed Hodge complex. This would be an arduous task, as
their definition is very involved. However, a combination of properties of mixed
Hodge complexes in previous work and of well-known constructions, such as
the mixed cone (see Definition 4.4), make this task much simpler. In fact, we
do not explicitly use the definition of a mixed Hodge complex of sheaves in this
note.

The simpler duality used in the newer construction in [9] makes some of
the proofs of the key results therein much simpler than the proofs of the anal-
ogous results in our initial approach in [7], despite the more general setting.
Theorem 1.1 bridges the gap between those constructions, and allows one to
apply the newer techniques and constructions to the original MHS of [7]. Con-
versely, there are properties proved in [7] that are not generalized in the newer
construction. Notably, [7, Theorem 1.8] shows that the MHS can be compared
to the limit MHS on the nearby cycles, which is specific to C∗, so no analogous
theorem is proved in [9]. Further, several structure results are proved, such as
a bound on the possible nonzero weights. As a corollary of Theorem 1.1, all
these results apply to the MHS in [9] for the case when the semiabelian variety
G is C∗.

There had been other prior approaches to the construction of MHS on
the torsion part of Alexander modules in some particular cases [4, 10, 11,
13, 14], see the introduction of [7] for a comparison. In [7], it is shown that
the MHS constructed therein agrees with the one in [4], which applies to the
particular case of complements of hypersurfaces transversal at infinity, and
which was recovered by different techniques in [14]. Therefore, as a corollary
to Theorem 1.1, we can also conclude that the MHS of [4, 14] are compatible
with the one in [9].

In Section 2, we give an overview of previous results that will be necessary
for the proof, and establish the notation for the rest of the paper. In Section 3,
we state some properties of mixed Hodge complexes, as well as some details of
the constructions in [7] and [9]. Section 4 contains the construction of mixed
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Hodge complexes and mixed Hodge structures that will be used to interpolate
between both constructions. Finally, in Section 5, we prove the theorem.

2. PRELIMINARIES AND NOTATION

2.1. Alexander modules

Definition 2.1. Throughout the whole note, U will denote a smooth con-
nected complex algebraic variety, and f : U → C∗ will be an algebraic map.
The infinite cyclic cover associated to f is the pullback of exp: C→ C∗ by f ,
i.e. the covering (Uf , π) in the following diagram:

Uf := {(x, z) ∈ U × C | f(x) = ez} C

U C∗.

f̃

π exp

f

It will always be denoted as Uf .

Since exp is a regular covering with deck group π1(C∗) ∼= Z, so is its
pullback π. In other words, the counterclockwise generator of π1(C∗) acts as
(x, z) 7→ (x, z + 2πi).

Definition 2.2. Let i ≥ 0. The i-th (univariable, homological) Alexander
module of (U, f) (with coefficients in Q) is Hi(U

f ,Q).

Notation 2.3. We will let R = Q[π1(C∗)]. If we let t be the counterclock-
wise generator of π1(C∗), then we obtain an isomorphism R ∼= Q[t±1]. We will
identify R and Q[t±1] throughout the paper in this way.

Remark 2.4. Since Uf has an action of π1(C∗) ∼= Z, so do the Alexander
modules. Therefore, they have the structure of an R-module. Since algebraic
varieties have the homotopy type of a finite CW complex, Alexander modules
are finitely generated R-modules.

2.2. The group ring and its quotients

We will define some notation related to R that we use throughout this
paper.

Notation 2.5. For m ∈ Z≥1, we define the rings R∞ and Rm by

R∞ :=
∞∏
j=0

Symj H1(C∗,Q); Rm :=
R∞∏∞

j=m Symj H1(C∗,Q)
.
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If we let s be the counterclockwise generator of H1(C∗,Q), then we obtain
isomorphisms R∞ ∼= QJsK and Rm

∼= R∞/s
mR∞. We define R−m by

R−m := HomQ(Rm,Q).

Multiplication on Rm gives R−m the structure of an R∞-module.

Definition 2.6. We consider the following ring monomorphism:

R −→ R∞

t −→ es =
∞∑
j=0

sj

j!
.

Throughout this paper, R∞ and every other R∞-module is seen as an R-module
via this homomorphism.

Remark 2.7. For all m ≥ 1, there is a canonical R∞-linear isomorphism
R−m = HomQ(Rm,Q) ∼= s−mR∞

R∞
, given by this perfect pairing:

⟨·, ·⟩m :
s−mR∞
R∞

×Rm −→ Q

(g(s), α(s)) 7−→ res0(gα),

where res0 denotes the residue at the point s = 0 (i.e. the coefficient of s−1, or
equivalently, for every Laurent polynomial h(s) in s, res0 h(s) is the residue of
h(s)ds).

Remark 2.8. If we let K be the field of fractions of R, one can define
the residue res : K → Q as the sum of residues over every pole (i.e. at b ∈ C,
one considers the coefficient of (t− b)−1). Note that the homomorphism from

Definition 2.6 induces an isomorphism (t−1)−mR
R

∼= s−mR∞
R∞

, and furthermore,
that both residues agree.

Remark 2.9. Under the isomorphism of Remark 2.7, the dual of the pro-

jection Rm1 ↠ Rm2 for m1 ≥ m2 > 0 is the inclusion
s−m2R∞
R∞

↪→ s−m1R∞
R∞

.

Remark 2.10. Let {1∨, s∨, . . . , (sm−1)∨} be the basis of R−m that is dual
to {1, s, . . . , sm}. The isomorphism of Remark 2.7 sends (si)∨ ∈ R−m to

s−1−i ∈ s−mR∞
R∞

. This follows from checking that ⟨sj , si⟩m = res0 s
j+i = 1

if j + i = −1 and vanishes otherwise. In [9, Example 2.60], an isomorphism
Rm
∼= R−m is described, sending (si)∨ to sm−1−i. Therefore, the composition

with this isomorphism is multiplication by sm: s−mR∞
R∞

∼=−→ R−m
∼=−→ Rm.
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2.3. Alexander modules and local systems

In order to make computations about Alexander modules, we will regard
them as the homology of a certain local system, or the cohomology of its dual.
Here, we will define it and recall some of its properties.

Definition 2.11. Let U, f, Uf , π be denoted as in Definition 2.1. We define
L = π!QUf , as a sheaf in U .

Remark 2.12. Since π is a covering map, L is a locally constant sheaf,
i.e. a local system. On a simply connected neighborhood of any x ∈ U , it
is isomorphic to

⊕
x′∈f−1(x)Q (note that this would be a direct product if we

used the pushforward π∗QUf instead).
Furthermore, on such a neighborhood, this direct sum decomposition pro-

vides a basis on which the deck group π1(C∗) acts transitively and freely. There-
fore, L is locally isomorphic to R, and globally it is a local system of rank 1
free R-modules.

Proposition 2.13. Let i ≥ 0. There is a canonical R-module isomor-
phism Hi(U

f ,Q) ∼= Hi(U,L).

Proof. This follows from writing the complexes that compute both ho-
mology groups, and noticing that they are the same. For the definition of
the chain complex computing local system homology, see [3, Section 2.5] or
Proposition 2.19 below.

Definition 2.14 ([9, Remark 2.25]). Let L be as in Definition 2.11. Through-
out, we will denote by L = HomR(L, R) its R-dual local system.

Remark 2.15. In fact, there is a canonical isomorphism of Q-local systems
L ∼= L. It does not preserve the R-module structure, but rather the generator
t ∈ R acts on L as t−1 acts on L. We will not use this fact here. For a proof,
see [9, Remark 2.16].

Remark 2.16. For every m ∈ Z \ {0}, the perfect pairing

(3)

(
R−m ⊗R L

)
× (Rm ⊗R L) Q

(ϕ⊗ a , α⊗ b) ϕ(α · a(b)).

induces an isomorphism between one of the local systems in the pairing and
the Q-dual of the other.

Remark 2.17. Note that, since R∞ is a flat R-module (see Definition 2.6),
there are natural isomorphisms for every i ≥ 0:

R∞ ⊗R H
i(U,L) ∼= H i(U,R∞ ⊗R L) and R∞ ⊗R Hi(U,L) ∼= Hi(U,R∞ ⊗R L).
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For any R-module A, let A1 denote the submodule of elements that are anni-
hilated by a power of (t − 1). Using the flatness again, TorsR∞(R∞ ⊗R A) ∼=
R∞ ⊗R TorsRA ∼= A1. If we take the torsion part above, we have:

TorsRH
i(U,L)1 ∼= TorsR∞ H i(U,R∞ ⊗R L) and

TorsRHi(U,L)1 ∼= TorsR∞ Hi(U,R∞ ⊗R L).

Remark 2.18. For any A-module R and any m ≥ 0, the identity of A
induces an isomorphism

A

(t− 1)mA
∼= Rm ⊗R A.

In particular, this can be applied to H i(U,L) and Hi(U,L) for any i ≥ 0, and
to the sheaves L and L themselves. In [8], the notation Lm is used to denote
the quotient, and in [9], the tensor products are used. Note that due to this
isomorphism, they coincide canonically.

2.4. Relation between homology and cohomology

We will need a way to relate homology and cohomology of local systems,
while keeping track of the precise map, so we will state here the precise relation.
This is well known, and similar results can be found in [3, Section 2.5].

Proposition 2.19. Let S be a commutative ring, and let L be a local
system of S-modules on a connected locally contractible space U . Let x ∈ U ,
let π1 = π1(U, x), and let Ũ be the universal cover of U . Let C•(Ũ) be the
singular chain complex of Ũ with coefficients in S (placed such that C0(Ũ) is
at degree 0), which is a complex of free right S[π1]-modules. Let Lx denote the
stalk of L at x, seen as a complex of left S[π1]-modules. Consider the following
complexes:

C•(U,L) := C•(Ũ)⊗S[π1] Lx;

C•(U,L) := Hom•S[π1]
(C•(Ũ), Lx).

(4)

Then, following [20, IV.3] (see also [7, Definition 2.10]), the i-th homology
(i.e. cohomology in degree −i) of C•(U,L) is Hi(U,L), and H

i(C•(U,L)) ∼=
H i(U,L).

Definition 2.20. For a complex of local systems of S-modules L•, we can
make the analogous definition to the one above:

C•(U,L
•) := Tot•(C•(Ũ)⊗S[π1] L

•
x);

C•(U,L•) := Tot•(Hom•,•S[π1]
(C•(Ũ), L•x)).
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Theorem 2.21. Let S be a commutative ring, let M be an S module, and
let L1, L2 be two S-local systems on a connected locally contractible space U .
Consider a locally defined bilinear pairing ⟨·, ·⟩ : L1⊗SL2 →M , or equivalently,
a morphism L1 → HomS(L2,M) Then,

1. The pairing ⟨·,·⟩ induces a map of complexes

C•(U,L1)→ Hom•S(C•(U,L2),M).

2. Suppose we have two more local systems L̃i, maps ψi : L̃i → Li for
i = 1, 2, an S-module M̃ and a map ψM : M → M̃ . Then, functoriality of the
(co)chain complex and composition with ψM yields a map:

C•(U, L̃1)→ C•(U,L1)→ Hom•S(C•(U,L2),M)→ Hom•S(C•(U, L̃2), M̃).

This composition is induced by the pairing ψM ◦ ⟨ψ1(·), ψ2(·)⟩.

3. Taking cohomology yields composition maps

H i(U,L1)→ H i(Hom•S(C•(U,L2),M))→ HomS(Hi(U,L2),M).

4. If ⟨·,·⟩ is perfect, i.e. it is an isomorphism L1
∼= HomS(L2,M), then the

map in (1) is an isomorphism of complexes. Furthermore, if M is an injective
S-module, the maps in (3) are isomorphisms H i(U,L1) ∼= HomS(Hi(U,L2),M)
for all i.

Proof. Let x, π1 and C•(Ũ) be as in Proposition 2.19. Let Li,x denote
the stalk of Li at x.

1. The induced map is as follows:

HomS[π1](Ci(Ũ), L1,x) HomS

(
Ci(Ũ)⊗S[π1] L2,x,M

)
ϕ (γ ⊗ b 7→ ⟨ϕ(γ), b⟩) .

2. Part (2) is straightforward from the definition.

3. For part (3), one can write the definition of H i(Hom•S(C•(U,L2),M))
and notice that there is a naively defined map from H i(Hom•S(C•(U,L2),M)),
a subquotient of HomS(Ci(U,L2),M), to HomS(H

i(C•(U,L2)),M), given by
restricting a homomorphism from Ci(U,L2) to H1(C•(U,L2)), its subquotient.

4. Let us denote L2 = L and L1 = Hom(L,M). For part (4), the map
above is the tensor-hom adjunction isomorphism (here, we are using that for a
local system, Hom commutes with taking stalks):
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C•(U,HomS(L,M)) = Hom•S[π1]
(C•(Ũ),HomS(Lx,M)) ∼=

Hom•S(C•(Ũ)⊗S[π1] Lx,M) = Hom•S(C•(U,L),M).

Taking cohomology on the left-hand side, we obtain H i(U,HomS(L,M)). Tak-
ing cohomology on the right-hand side of the isomorphism, and using the hy-
pothesis that M is injective, we obtain:

H i(Hom•S(C•(U,L),M)) ∼= HomS(H
−i(C•(U,L)),M) ∼=

HomS(Hi(U,L),M).

We will need the following version of the Universal Coefficient Theorem,
which can be found in [7, Lemma 2.12] with a very similar formulation. We
include its proof because the precise definition of the morphism UCT will be
important in the proof of Lemma 5.6.

Theorem 2.22 (Universal Coefficient Theorem). Let U be a connected
locally contractible space, and let L be a local system of free R-modules on U .
For every i, there is an injective map that is an isomorphism onto the torsion:

(5) UCT : Ext1R(TorsR(Hi(U,L)), R) ↪→ H i+1(U,HomR(L,R)).

This map is defined as follows: Let K be the field of fractions of R. Then,
I• := (K → K/R) is an injective resolution of R (with the inclusion R→ K),

and there is a map in the derived category K/R → I•[1]
∼=−→ R[1]. Then, the

map UCT in (5) is the composition of the dashed arrows below. Note that the
dashed arrows are uniquely determined by this diagram.

Ext1R(Hi(U,L), R) Ext1R(TorsR(Hi(U,L)), R)

HomR(Hi(U,L),K/R) HomR(TorsRHi(U,L),K/R)

H i(Hom•R(C•(U,L), R[1])) H i+1(U,HomR(L,R)).

∼=

∼=K/R→R[1]

K/R→R[1]

Theorem 2.21 (4)

∼=

Proof. Considering C•(U,L), as in Proposition 2.19, we consider the short
exact sequence 0→ K/R→ I•[1]→ K[1]→ 0, and we apply Hom•R(C•(U,L), ·)
(recall that Hom• : Tot ◦Hom•,•), to obtain a short exact (since C•(U,L) is a
complex of free R-modules) sequence:

0→ Hom•R(C•(U,L),K/R)→ Hom•R(C•(U,L), I
•[1])

→ Hom•R(C•(U,L),K[1])→ 0.
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If we let I = K or I = K/R, then I is injective, and taking the cohomology of
these complexes we obtain:

H i(Hom•R(C•(U,L), I))
∼= HomR(H

−i(C•(U,L)), I) (I is injective)

= HomR(Hi(U,L), I). (Theorem 2.21, (4))

Also, we have a quasi-isomorphism I• ∼= R given by R → K, so up to this
map, we have,

H i(Hom•R(C•(U,L), I
•[1]))

∼= H i(RHom•R(C•(U,L), R[1])) (I• ∼= R)

∼= H i(Hom•R(C•(U,L), R[1])) (C•(U,L) is free)

∼= H i+1(C•(U,HomR(L,R))) (Theorem 2.21, (4))

∼= H i+1(U,HomR(L,R)). (Proposition 2.19)

Therefore, the short exact sequence above induces the long exact sequence

(6) · · · → HomR(Hi(U,L),K)→ HomR(Hi(U,L),K/R)

→ H i+1(U,HomR(L,R))→ · · ·

Note that, by the description of the maps above, the second map is indeed
induced by K/R → R[1], since it was constructed as the composition of the
inclusion of K/R into I•[1] with the inverse of the quasi-isomorphism R[1] →
I•[1] and the isomorphism from Theorem 2.21.

Next, since K → K/R is an injective resolution of R, for any R-module
A, coker(HomR(A,K) → HomR(A,K/R)) ∼= Ext1R(A,R), and furthermore,
this map is induced by I• ∼= R, so we have

0→ Ext1R(Hi(U,L), R)→ H i+1(U,HomR(L,R))→ · · ·

In particular, the composition

HomR(Hi(U,L),K/R)→ coker(HomR(Hi(U,L),K)→
HomR(Hi(U,L),K/R))→ Ext1R(Hi(U,L), R)

is indeed induced by K/R → R[1] as well. Note that only the torsion part
contributes to the Ext group, so the above map factors through the quotient
Ext1R(TorsRHi(U,L), R):

0→ Ext1R(TorsRHi(U,L), R)→ H i+1(U,HomR(L,R))→ · · ·

It only remains to prove that the map is an isomorphism onto the torsion:
it is injective due to the exactness of (6). By the exactness, its cokernel is
isomorphic to the degree zero cohomology of HomR(Hi+1(U,L), I

•). Since I• is
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an injective resolution ofR, the cokernel is isomorphic to HomR(Hi+1(U,L), R),
which is a free module. This shows that indeed the map is surjective onto the
torsion.

Corollary 2.23. Let K∞ be the field of fractions of R∞. Since R∞ is
flat over R, everything in Theorem 2.22 can be tensored with R∞ to obtain an
analogous result. In particular, we obtain the following commutative diagram:

HomR∞(Hi(U,R∞ ⊗R L),K∞/R∞)

H i(Hom•R∞(C•(U,R∞ ⊗R L), R∞[1]))

Ext1R∞(Hi(U,R∞ ⊗R L), R∞)

H i+1(U,HomR∞(R∞ ⊗R L,R∞))

Ext1R∞(TorsR∞(Hi(U,R∞ ⊗R L)), R∞)

HomR∞(TorsR∞ Hi(U,R∞ ⊗R L),K∞/R∞).

K∞/R∞→R∞[1]

K∞/R∞→R∞[1]

Theorem 2.21 (4)

∼=
∼=

Finally, let us recall a result that can be proved using Proposition 2.19,
and will be of use later.

Proposition 2.24. Let L be a local system of finitely generated free
R-modules (we will apply this statement for L and L). Next, the projection
L↠ Rm ⊗R L induces monomorphisms
(7)

Hi(U,L)

(t− 1)mHi(U,L)
↪→ Hi(U,Rm⊗RL) and

H i(U,L)

(t− 1)mH i(U,L)
↪→ H i(U,Rm⊗RL).

Furthermore, if m≫ 1, there are also monomorphisms induced by the identity
of Hi(U,L) and H

i(U,L), respectively:

(8) TorsRHi(U,L)1 ↪→
Hi(U,L)

(t− 1)mHi(U,L)

and TorsRH
i(U,L)1 ↪→

H i(U,L)

(t− 1)mH i(U,L)
.

The subindex 1 denotes the submodule annihilated by a power of t − 1, as in
Remark 2.17.
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Proof. We apply Proposition 2.19, and next we have that the projection
L↠ Rm ⊗R L induces the following morphisms:

Rm ⊗R C•(U,L) = Rm ⊗R (C•(Ũ)⊗R[π1] Lx) ∼=
C•(Ũ)⊗R[π1] (Rm ⊗R Lx) = C•(U,Rm ⊗R L);

Rm ⊗R C
•(U,L) = Rm ⊗R Hom•S[π1]

(C•(Ũ), Lx) ∼=

Hom•S[π1]
(C•(Ũ), Rm ⊗R Lx) = C•(U,Rm ⊗R L).

Note further that, indeed, both morphisms are induced by the map on stalks
1⊗R IdLx : Lx → Rm ⊗R Lx.

If we let C denote either C•(U,L) or C
•(U,L), it is a complex of finitely

generated free R-modules. The question is whether Hi(C)
(t−1)mHi(C)

→H i(Rm⊗RC)

is an injection. This follows from the long exact sequence in cohomology applied
to the short exact (because C is a complex of free modules) sequence

0→ C
(t−1)m−−−−→ C → Rm ⊗R C → 0.

It induces the short exact sequence

0→ H i(C)

(t− 1)mH i(C)
→ H i(Rm ⊗R C),

so indeed, the maps (7) are injective. When m is large enough that we have
(t− 1)m · TorsRH i(C)1 = 0 (using the fact that L is finitely generated), then

TorsRH
i(C)1 embeds into Hi(C)

(t−1)mHi(C)
, so indeed the maps (8) are injective.

2.5. Mixed Hodge complexes

Our constructions of MHS rely on Deligne’s machinery of mixed Hodge
complexes of sheaves from [2]. However, we will not need to work with them
explicitly here, but instead rely on previous work (see Section 3). Therefore,
we will not give the definition, which can be found in [18, Definition 3.13]. The
mixed Hodge complexes of sheaves we use are over Q.

Definition 2.25 ([18, Lemma-Definition 2.35]). Let F• be a mixed Hodge
complex of sheaves, and let m ∈ Z. There is a notion of a Tate twist, F•(m),
extending the Tate twist of pure and mixed Hodge structures, which does not
alter the underlying complex (although we choose to not multiply by (2πi)m as
in [18] and instead follow the convention explained in [7, Section 2.8]). There is
also a notion of shift F•[m], that extends the cohomological shift of complexes.
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Remark 2.26. Our previous work [7, Remark 2.33] uses a definition for
the shift of a mixed Hodge complex of sheaves which is based on the definition
of the shift of a Hodge complex of sheaves found in the book [18, Lemma-
Definition 2.35]. However, this definition differs from the most commonplace
one. In this note, we will stick to the usual convention. For this reason, we will
define it in full detail. Suppose we are given a mixed Hodge complex K• with
data K•Q, K•C, F• and W•; its rational part, complex part, Hodge filtration (on
K•C) and weight filtration (on both complexes), respectively. Note that the full
definition requires more data, but it will be clear how to shift the remaining
data.

The shifted complex is K•[1], given by

(K•[1])Q = K•Q[1], i.e. ((K•[1])Q)i = Ki+1
Q ;

(K•[1])C = K•C[1], i.e. ((K•[1])C)i = Ki+1
C ;

Fp(K•[1])i = FpKi+1; Wj(K•[1])i =Wj−1Ki+1.

If we briefly use [{1}] to denote the differing convention for the shift used in
[7] and [18], then we have that both conventions differ by a Tate twist, namely
F•[{1}] = F•[1](1). Contrary to what is stated in [18, 2.35], the convention
in this paper increases (by 1) the weight of a pure Hodge complex, while the
convention therein decreases the weight.

Definition-Proposition 2.27 (The cone of a morphism). Let ϕ : K•1 → K•2
be a morphism of complexes in an abelian category (e.g. a category of sheaves
of modules over a commutative ring). We can define a new complex Cone•(ϕ).
We consider a double complex K•,•, where, K−1,• = K•1, K0,• = K•2 and the
remaining rows vanish. The horizontal differentials are those in the original
complexes, and the vertical differential is ϕ. Then, we define the cone as
Cone•(ϕ) := Tot•(K•,•). Particularly, as a vector space, Cone•(ϕ) ∼= K•2⊕K•1[1].
The stupid filtration on the rows of K•,• yields a short exact sequence:

0→ K•2 → Cone•(ϕ)→ K•1[1]→ 0.

Theorem 2.28 ([18, Theorem 3.22]). Let ϕ : K•1 → K•2 be a morphism of
mixed Hodge complexes of sheaves. Then Cone•(ϕ) has a canonical structure
of a mixed Hodge complex of sheaves. The mapping cone short exact sequence
becomes a short exact sequence of mixed Hodge complexes of sheaves:

0→ K•2 → Cone•(ϕ)→ K•1[1]→ 0.

Note that from the proof in [18], Theorem 2.28 as stated requires the def-
inition of shift from Remark 2.26, rather than the one implicit in [18, Lemma-
Definition 2.35].
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The main property that mixed Hodge complexes satisfy is that the hy-
percohomology of their rational part carries a canonical MHS, which behaves
as follows after taking Tate twists or shifts.

Theorem 2.29 ([18, Theorem 3.18], [7, Remark 2.33]). If K•Q is the ra-
tional part of a Q-mixed Hodge complex of sheaves on a topological space X,
then for every i ≥ 0, Hi(X,K•Q) carries a MHS. Furthermore, Hi(X,K•Q(1)) ∼=
Hi(X,K•Q)(1), and Hi(X,K•Q[1]) ∼= Hi+1(X,K•Q) as MHS.

3. SUMMARY OF PREVIOUS WORK

3.1. Thickened mixed Hodge complexes

We will use the thickened mixed Hodge complex of sheaves from [7, 9].
We will not make use of its definition, which can be found in [9, Definition
10.5], so we will not recall it here. We will simply summarize the properties
we are concerned with.

Theorem 3.1. Let U, f be as in Definition 2.1, let L,L be as in Defini-
tions 2.11 and 2.14, respectively. Let j : U → X be a smooth compactification
such that X\U is a divisor with simple normal crossings. For everym ∈ Z\{0},
there is a Q-mixed Hodge complex of sheaves, whose rational part we will denote
K •

m, with the following properties.

1. The adjunction map induces a quasi-isomorphism K •
m → Rj∗j

−1K •
m.

2. K •
m is a complex of sheaves of modules over R∞, and an R∞-linear

quasi-isomorphism νm : Rm ⊗R L → j−1K •
m.

3. As vector spaces (ignoring the differential), K •
m
∼= Rm ⊗Q K •

1 .

4. For m1≥m2>0, the projection Rm1 ↠Rm2 and its dual R−m2 ↪→R−m1

induce morphisms K •
m1

↠ K •
m2

and K •
−m2

↪→ K •
−m1

, respectively. These come
from morphisms of mixed Hodge complexes of sheaves.

These agree, via νm1 , νm2 and after applying j−1, with the corresponding
morphisms Rm1 ⊗R L↠ Rm2 ⊗R L and R−m2 ⊗R L ↪→ R−m1 ⊗R L.

5. Multiplication by s, as a map Rm → Rm, induces a morphism K •
m(1)→

K •
m, which is the rational part of a morphism of mixed Hodge complexes of

sheaves. Here, (1) denotes a Tate twist, i.e. K •(1) is the rational part of the
Tate twisted mixed Hodge complex of sheaves. Via νm, this map corresponds
to multiplication on Rm ⊗R L.
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6. If m > 0, there are isomorphisms Dm : K •
m(1−m) ∼= K •

−m, induced by
the isomorphism Rm

∼= R−m in Remark 2.10. These come from morphisms of
mixed Hodge complexes of sheaves (again, the Tate twist (1−m) is applied to
the mixed Hodge complex). They agree with the corresponding isomorphisms
Rm ⊗R L ∼= R−m ⊗R L via ν±m.

Proof. The complex is defined in [9, Definition 10.5]. As for its properties:

1. This can be found in [9, Remark 10.10], which repeats the construction
of [9, Definition 6.1].

2. The quasi-isomorphism is defined in [9, Construction 10.8] and proved
to be a quasi-isomorphism in [9, Remark 10.10].

3. This is part of the definition.

4. This is [9, Proposition 3.13]. The fact that it agrees with ν is a direct
consequence of its definition.

5. By [9, Proposition 3.12], we have that multiplication induces a mor-
phism H1(C∗,Q)⊗Q K •

m → K •
m. Note that H1(C∗,Q) is one-dimensional and

pure of type (−1,−1), so its tensor is a Tate twist by (1). It agrees with νm
because νm is R∞ linear.

6. This is [9, Example 4.13].

3.2. The MHS on the quotients of Alexander modules

Remark 3.2. In [9, Remark 10.12], it is shown that the definitions of K •
m

and νm agree with the analogous notions corresponding to the mixed Hodge
complex of sheaves defined in [7, Theorem 5.24].

The purpose of this paper is to show that the constructions in [9] and
[7] produce the same MHS. In Definitions 3.3, 3.5 and 3.7, we will outline the
construction of [9].

Definition 3.3. With the notations above, for every i ≥ 0 andm ∈ Z\{0},
H i(U,Rm⊗R L) carries a mixed Hodge structure defined in [9, Definition 6.1].

� If m < 0, it is defined by giving Hi(X,K •
m) a MHS via Theorem 2.29,

and translating it via the following isomorphisms:

H i(U,Rm ⊗R L)
νm∼= Hi(U, j−1K •

m) ∼=

Hi(X,Rj∗j
−1K •

m)
Theorem 3.1(1)∼= Hi(X,K •

m).
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� If m > 0, it is defined similarly but with a Tate twist, namely through
the following isomorphisms:

H i(U,Rm ⊗R L)
νm∼= Hi(U, j−1K •

m(1)) ∼=

Hi(X,Rj∗j
−1K •

m(1))
Theorem 3.1(1)∼= Hi(X,K •

m)(1).

Remark 3.4. Applying Theorem 3.1, the following maps are MHS mor-
phisms, for any m′ ≥ m ≥ 1:

� The map H i(U,Rm′⊗RL)→ H i(U,Rm⊗RL) induced by the projection
Rm′ → Rm.

� The mapH i(U,R−m⊗RL)→ H i(U,R−m′⊗RL) induced by the inclusion
R−m → R−m′ .

� Multiplication by s, as a map H i(U,Rm ⊗R L)(1) → H i(U,Rm ⊗R L).
Note that by Theorem 2.29, Tate twists on a mixed Hodge complex induce
Tate twists on its hypercohomology.

Definition 3.5 (MHS on Hi(U,Rm⊗R L)). With the notations above, for
every i ≥ 0 and m ∈ Z \ {0}, Hi(U,Rm⊗R L) carries a mixed Hodge structure
defined in [9, Definition 6.6]. It is defined as follows. Combining Theorem 2.21
(4) and Remark 2.16, we have an isomorphism

Hi(U,Rm ⊗R L)
Θ−→∼= HomQ(H

i(U,R−m ⊗R L),Q).

The codomain of Θ is endowed with the dual MHS of the one in Definition 3.3.
We define the MHS on the domain of Θ as the one induced by the MHS on
HomQ(H

i(U,R−m ⊗R L),Q) through the isomorphism Θ.
Endowing the Q-dual spaces with the corresponding Q-dual MHS, the

dual map Θ∨ is a MHS morphism.

Remark 3.6. The dual maps of those in Remark 3.4 are MHS morphisms.
For every i ≥ 0 and m′ ≥ m ≥ 1:

� The map Hi(U,Rm′⊗RL)→ Hi(U,Rm⊗RL) induced by the projection
Rm′ ↠ Rm (the dual of the map in cohomology induced by the inclusion
R−m ↪→ R−m′).

� The mapHi(U,R−m⊗RL)→ Hi(U,R−m′⊗RL) induced by the inclusion
R−m ↪→ R−m′ (the dual of the map in cohomology induced by the projection
Rm′ ↠ Rm).

� Multiplication by s, as a map Hi(U,Rm ⊗R L)(1)→ Hi(U,Rm ⊗R L).



19 Compatibility of Hodge theory on Alexander modules 169

Definition 3.7. Let all the notations be as above. For every i ≥ 0, both
H i(U,R∞⊗R,L) ∼= R∞ ⊗R H

i(U,L) and Hi(U,R∞ ⊗R L) ∼= R∞ ⊗R Hi(U,L)
carry a pro-MHS, i.e. each is an inverse limit of mixed Hodge structures. They
are defined in [9, Remark 6.5 and Definition 6.6], in the following way: For
every i ≥ 0 and m′ ≥ m > 0, the projection maps induce MHS morphisms
H i(U,Rm′ ⊗RL)→ H i(U,Rm⊗RL) and Hi(U,Rm′ ⊗RL)→ Hi(U,Rm⊗RL).
Therefore, the limits lim←−m

H i(U,Rm⊗RL) and lim←−m
Hi(U,Rm⊗RL) each have

pro-MHS. In [9, Corollary 2.29], it is shown that the natural maps

R∞ ⊗R H
i(U,L)→ lim←−

m

H i(U,Rm ⊗R L)

and R∞ ⊗R Hi(U,L)→ lim←−
m

Hi(U,Rm ⊗R L)

are isomorphisms, so the domain of each map acquires a MHS as well.

Definition-Proposition 3.8. From Proposition 2.13,Hi(U,L) ∼= Hi(U
f ,Q),

so Definition 3.7 also defines a pro-MHS on R∞⊗RHi(U
f ,Q) for every i. From

[9, Corollary 6.16], every vector space quotient of the form Rm ⊗R Hi(U
f ,Q)

for m ≥ 1 has a (necessarily unique) MHS that makes the quotient map
a MHS morphism. In particular, the quotient maps Rm′ ⊗R Hi(U

f ,Q) ↠
Rm ⊗R Hi(U

f ,Q) for m′ ≥ m ≥ 1 are also MHS morphisms.

Definition-Proposition 3.9 ([9, Propositions 8.3, 8.4]). For any m,N ≥ 1,

there is a canonical MHS on Hi(U
f ,Q)

(tN−1)mHi(Uf ,Q)
that agrees with the one on

Definition-Proposition 3.8 for N = 1. For any N ′ which is a multiple of N
and any m′ ≥ m, the quotients maps are MHS morphisms:

Hi(U
f ,Q)

(tN ′ − 1)mHi(Uf ,Q)
↠

Hi(U
f ,Q)

(tN − 1)mHi(Uf ,Q)
;

Hi(U
f ,Q)

(tN − 1)m′Hi(Uf ,Q)
↠

Hi(U
f ,Q)

(tN − 1)mHi(Uf ,Q)
.

3.3. The MHS on the torsion part of Alexander modules

In the remainder of this section, we will outline the construction of the
MHS in [7]. For a survey of the construction and main properties, see [6].

Definition 3.10. For any i ≥ 0, there is a canonical mixed Hodge structure
on TorsRHi(U

f ,Q), that can be found in [7, Corollary 5.26, Remark 5.27]. An
outline of the construction follows.

Construction 3.11 (Construction of the MHS on the torsion part). By [7,
Proposition 2.24] (based on [1, Proposition 4.1]), there exists some N ∈ N such
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that (tN − 1)m annihilates the TorsRHi(U
f ,Q) for all i and for sufficiently

large m. The index N subgroup ⟨tN ⟩ ⊂ π1(C∗) induces a degree N cover
of U that we denote UN . It has a map fN : UN → C∗ (an N -th root of
f), which induces an infinite cyclic cover (UN )fN → UN . The generator of
its deck transformation group π1(C∗) acts on Hi

(
(UN )fN ,Q

)
as tN , giving

it the structure of a module over Q[t±N ]. In [7, Lemma 2.26], it is proven
that Hi(U

f ,Q) ∼= Hi((UN )fN ,Q) as Q[t±N ]-modules, and this isomorphism is
induced by an isomorphism θN : (UN )fN → Uf of complex analytic varieties.
Therefore, the action of π1(C∗) by deck transformations on the Alexander
module of (UN , fN ) is unipotent. Moreover, θN induces an isomorphism

θN : TorsQ[t±N ]Hi

(
(UN )fN ,Q

)
1

∼=−→ TorsRHi(U
f ,Q),

where the subindex 1 denotes the generalized eigenspace of eigenvalue 1 for
a generator of the deck group of the cover (UN )fN → UN . Hence, it suffices
to endow the domain of this isomorphism with a MHS, and use it to endow
the codomain with a MHS. In other words, it suffices to consider the case
where the t-action on Hi(U

f ,Q) is unipotent, and endow TorsRHi(U
f ,Q)1 =

TorsRHi(U
f ,Q) with a canonical MHS.

The construction begins with the MHS on H i(U,Rm ⊗R L) from Defini-
tion 3.3 in the case when m ≥ 1 (see [9, Remark 10.0], which explains that
the constructions of the MHS on H i(U,Rm ⊗R L) are the same in both [7]
and [9]). For m ≫ 1, it is shown in [7, Corollary 3.9] that the natural map
TorsRH

i(U,L) → H i(U,Rm ⊗R L) is an embedding (provided the torsion is
unipotent). Furthermore, in [7, Corollary 5.19], it is shown that its image is a
sub-MHS, so TorsRH

i(U,L) acquires a MHS.
Finally, one shows that

(9) TorsRHi(U,L) ∼= HomQ(TorsRH
i+1(U,L),Q),

so the left-hand side has a MHS, dual to the one on TorsR(U,L).
We will need to understand the last isomorphism, so we will write the

definition in more detail.

Proposition 3.12 (Duality of the torsion Alexander modules). The map
(9) is defined from the following diagram, taking duals:

(10) HomQ(TorsRHi(U
f ,Q),Q)

Res←−−∼= Ext1R(TorsRHi(U
f ,Q), R)

UCT−−−→∼=
TorsRH

i+1(U,L).
Here, “UCT” denotes the morphism from Theorem 2.22. To define Res, we
use the same injective resolution R → K → K/R as in said theorem, and we
take the following composition:
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HomQ(TorsRHi(U
f ,Q),Q)

res∗←−− HomR(TorsRHi(U
f ,Q),K/R)

K/R→R[1]−−−−−−−→
Ext1R(TorsRHi(U

f ,Q), R).

Here, res∗ is the composition with res : K → Q from Remark 2.8 (or rather, its
induced map res : K/R→ Q), and the second arrow is given by postcomposition
with the map in the derived category (as in Theorem 2.22).

Construction 3.11 is fairly involved. However, using the work in [8], we
can skip the first step and compute part of the MHS without passing to a
degree N cover.

Theorem 3.13 ([8, Corollary 1.2]). Let λ ∈ Q, and let gλ(x) ∈ Q[x]
be its minimal polynomial, i.e. the monic irreducible polynomial that satisfies
gλ(λ) = 0. For any R-module A, we can consider its generalized eigenspace
with eigenvalue λ or, more precisely, the sum of generalized eigenspaces with
eigenvalues that are Galois conjugate to λ:

Aλ := {v ∈ A | ∃m ≥ 0, gλ(t)
m · v = 0}.

The classification of modules over a PID shows that A splits as a direct sum
of submodules of the form Aλ. When this decomposition is applied to the MHS
on TorsRHi(U

f ,Q), one obtains a decomposition as a direct sum of MHS.

Theorem 3.14 ([8, Corollary 4.2]). Consider the eigenspace with eigen-
value 1 of TorsR(H

i(U,L)), with the MHS induced by the inclusion

TorsR(H
i(U,L))1 ↪→ TorsR(H

i(U,L)),
where TorsR(H

i(U,L)) has the MHS from Definition 3.10 (whose construction
involves a finite cover). Then, the inclusion (for m≫ 1)

TorsR(H
i(U,L))1 ↪→ H i(U,Rm ⊗ L)

is a MHS morphism, where H i(U,Rm ⊗ L) has the MHS from Definition 3.3.

The theorem above enables us to construct the MHS on TorsR(H
i(U,L))1

without the use of a finite cover. The theorem below allows translating this
conclusion to homology as well.

Theorem 3.15 ([8, Corollary 3.6]). The isomorphism (10) from Propo-
sition 3.12 restricts to the eigenspace with eigenvalue 1 of each component, to
form the following chain of isomorphisms:

HomQ(TorsRHi(U
f ,Q)1,Q)

Res←−−∼= Ext1R(TorsRHi(U
f ,Q)1, R)

UCT−−−→∼=
TorsRH

i+1(U,L)1.

Also, TorsRHi(U
f ,Q)1 is a sub-MHS of TorsRHi(U

f ,Q), and the map above
is a MHS isomorphism between its dual MHS and the MHS from Theorem 3.14.
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4. AUXILIARY MIXED HODGE COMPLEXES AND
STRUCTURES

This section is devoted to endowing the cohomology of certain complexes
of sheaves with canonical MHS using mixed Hodge complexes of sheaves. These
new MHS will be used in Section 5 to prove the main theorem (Theorem 5.1).

Definition 4.1. Let m ≥ 1, and let F•m be the two-term complex

F•m :=
(
R∞ ⊗R L → s−mR∞ ⊗R L

)
in degrees −1 and 0, where the map between the two terms is the natural

inclusion. For allm′ ≥ 0, consider its subcomplex sm
′
R∞⊗RL

Id−→ sm
′
R∞⊗RL.

We define F̃•m,m′ as the quotient of F•m by this subcomplex, namely

F̃•m,m′ :=

{ (
Rm′ ⊗R L ↪→ s−mR∞

sm′R∞
⊗R L

)
(in degrees −1 and 0) if m′ ≥ 1,

s−mR∞
R∞

⊗R L (in degree 0) if m′ = 0,

Remark 4.2. Note that the quotient maps are an infinite sequence of
quasi-isomorphisms:

F•m → · · · → F̃•m,m′+1 → F̃•m,m′ → · · · → F̃•m,0.

Indeed, the cokernel of Rm′⊗RL ↪→ s−mR∞
sm′R∞

⊗RL is s−mR∞
R∞

⊗RL for all m′ ≥ 1,

the same as the cokernel of R∞ ⊗R L ↪→ s−mR∞ ⊗R L.

Our next goal is to endow the hypercohomology groups of F̃•m,m′ with
canonical MHS for all m′ ≥ 0 that are preserved by the quotient maps from
Remark 4.2, that is, such that those quotient maps induce MHS isomorphisms.
For this, we will have to find a realization of F̃•m,m′ by a mixed Hodge complex
of sheaves.

Lemma 4.3. Let m′,m ≥ 1, and let K •
m′′ be as in Theorem 3.1 for all

m′′ ∈ Z \ {0}. The morphism K •
m′(1)

sm−−→ K •
m+m′(1−m) induced by multipli-

cation by sm from Rm′ → Rm+m′ is a morphism of mixed Hodge complexes of
sheaves, where (1) and (1−m) denote Tate twists.

Proof. Let us use the isomorphisms (resp., morphism) of mixed Hodge
complexes of sheaves from Theorem 3.1 (6) (resp. Part (4), with a Tate twist
by (−m)). The rational part of these isomorphisms (resp. morphism) are
the vertical (resp. top horizontal) arrows in Diagram (11) below. Note that
the vertical arrows agree with multiplication by sm, by Remark 2.10. The
dashed arrow below is the only morphism K •

m(1)→ K •
m+m′(1−m) that makes

the diagram commute, and, since the vertical arrows are the rational part of
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isomorphisms of mixed Hodge complexes of sheaves, the dashed arrow is the
rational part of a morphism of mixed Hodge complexes of sheaves. We want
to see that the multiplication by sm morphism in the statement of this lemma
coincides with the dashed arrow below. This can be checked on the following
bases: If we consider the bases {1, s, s2, . . .} of Rm′ and Rm+m′ , and their
corresponding dual bases {1∨, s∨, . . . , }, the diagram above maps the elements
as pictured on the right side of the diagram:
(11)

K •
−m′(m′) K •

−m−m′(m′) (si)∨ (si)∨

K •
m′(1) K •

m+m′(1−m) sm
′−1−i sm+m′−1−i.

∼= D−1
m′ (m

′) ∼= D−1
m+m′ (m

′)

Definition 4.4 (The mixed cone). Let m ≥ 1 and let m′ ≥ 0. If m′ ≥ 1,

let C •m,m′ be the cone of K •
m′(1)

sm−−→ K •
m+m′(1−m), as in Definition 2.27. In

particular, as a sheaf, and not taking into account filtrations or the differential,

C p
m,m′ = K p+1

m′ ⊕K p
m+m′ for all p.

Since, by Lemma 4.3, K •
m′(1)

sm−−→ K •
m+m′(1 − m) is the rational part of a

morphism of mixed Hodge complexes of sheaves given by multiplication by sm,
C •m,m′ is also the rational part of a mixed Hodge complex of sheaves, namely
of the mixed cone of multiplication by sm, by Theorem 2.28.

If m′ = 0, we let C •m,0 := K •
m(1 − m), which is the rational part of a

mixed Hodge complex of sheaves (and can also be interpreted as the cone of
0→ K •

m(1−m) following the definition of C •m,m′ for m′ ≥ 1).

Remark 4.5. By Theorem 2.28, the short exact sequence of complexes of
sheaves

0→ K •
m+m′(1−m)→ C •m,m′

c−→ K •
m′ [1](1)→ 0

(where the connecting morphism c is given by the projection onto the first
summand, as in Definition 2.27) induces a long exact sequence of morphisms
of MHS

· · · → Hi(U,K •
m+m′)(1−m)→ Hi(U,C •m,m′)→ Hi+1(U,K •

m′)(1)→ · · ·

Definition-Proposition 4.6 (The MHS on Hi(U, F̃•m,m′) and Hi(U,F•m)).

Let m ≥ 1 and m′ ≥ 0. Let F̃•m,m′ be the complex of sheaves from Defini-
tion 4.1. Let C •m,m′ be the complex of sheaves from Definition 4.4, which is the
rational part of a mixed Hodge complex of sheaves. Let νm′′ be the morphism
from Theorem 3.1 (2) for all m′′ ∈ Z\{0}, and let ⟨·,·⟩m be the morphism from
Remark 2.7. Then, the following hold:
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1. Suppose that m′ ≥ 1. Then, the following diagram commutes.

(12)

Rm′ ⊗R L Rm′ ⊗R L j−1K •
m′(1)

s−mR∞
sm′R∞

⊗R L Rm+m′ ⊗R L j−1K •
m+m′(1−m).

sm

νm′

sm

∼=
sm

νm+m′

2. The horizontal arrows in diagram (12) are all quasi-isomorphisms. The
same holds for the second row of (12) if m′ = 0.

3. Suppose that m′ ≥ 1. If we interpret the first column of diagram (12) as
a morphism of complexes of sheaves concentrated at degree 0, the cone of this
morphism coincides with F̃•m,m′ . The cone of the last column of diagram (12)

is j−1C •m,m′ .

4. Suppose that m′ ≥ 1. Diagram (12) induces a quasi-isomorphism be-
tween the cones of the first and last columns, which we denote by

Vm,m′ : F̃•m,m′ → j−1C •m,m′ .

In degree −1 it coincides with the map νm′ , and in degree 0 it corresponds to
0 in the first summand of j−1C 0

m,m′ = j−1K 1
m ⊕ j−1K 0

m+m′ and νm+m′ ◦ sm in
the second summand.

5. If m′ = 0, the quasi-isomorphism Vm,0 : F̃•m,0 → j−1C •m,0, is defined as
νm◦sm. This agrees with the interpretation form′ ≥ 1 if we switch diagram (12)
for a diagram in which the first row is equal to 0 and the second row remains
the same (making m′ = 0).

6. The sequence of quasi-isomorphisms

Rj∗F̃•m,m′
Rj∗Vm,0−−−−−→∼= j−1Rj∗j

−1C •m,m′
adjunction Id→Rj∗j−1

←−−−−−−−−−−−−−−∼=
C •m,m′

endows Hi(U, F̃•m,m′) with canonical MHS for all i.

7. The quotient maps from (4.2) induce isomorphisms of MHS in coho-
mology

· · ·
∼=−→ Hi(U, F̃•m,3)

∼=−→ Hi(U, F̃•m,2)
∼=−→ Hi(U, F̃•m,1)

∼=−→ Hi(U, F̃•m,0).

This sequence endows Hi(U,F•m) with a canonical MHS.
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Proof. 1. The left-hand square clearly commutes. The second square
commutes because it fits into the following diagram, by Theorem 3.1 (3):

Rm+m′ ⊗R L Rm′ ⊗R L Rm+m′ ⊗R L

Rm+m′ ⊗R K •
1 Rm′ ⊗R K •

1 Rm+m′ ⊗R K •
1 .

Id⊗νm+m′

sm

Id⊗νm+m′ Id⊗νm+m′

sm

Note that both horizontal compositions are multiplication by sm, so the outer
rectangle commutes by Theorem 3.1 (5). The left-hand square commutes by
Theorem 3.1 (4), so the right-hand square must commute, taking into account
that the left horizontal arrows are surjective and the right horizontal arrows
are injective.

2. The arrow sm is induced by an R∞-module isomorphism on the first
factors of the tensor products, so it is an isomorphism of sheaves. For the
remaining arrows, this is the content of Theorem 3.1 (2).

3. This is immediate from the definitions.

4. The precise description of Vm,m′ follows from the definition. Since both
rows are quasi-isomorphisms, the five lemma implies that the map induced
between the cones of both rows is also a quasi-isomorphism.

5. Vm,0 is a quasi-isomorphism by part (2).

6. We need to show that the adjunction Id → Rj∗j
−1 applied to the

complex of sheaves C •m,m′ yields a quasi-isomorphism. By Theorem 3.1 (1),

the adjunction induces quasi-isomorphisms K •
m′
∼= Rj∗j

−1K •
m′ and K •

m+m′
∼=

Rj∗j
−1K •

m+m′ , so the five lemma implies that C •m,m′
∼= Rj∗j

−1C •m,m′ . There-

fore, C •m,m′ endows the hypercohomology of F̃•m,m′ with a MHS, via the iso-
morphisms:

Hi(U, F̃•m,m′)
Vm,m′
∼= Hi(U, j−1C •m,m′) ∼= Hi(X,Rj∗j

−1C •m,m′) ∼= Hi(X,C •m,m′).

7. Let us show that for different m′ the quasi-isomorphisms Vm,m′ are

compatible, in the sense that if m′′ ≥ m′, the quotient map F̃•m,m′′ → F̃•m,m′

induces the obvious quotient map j−1C •m,m′′ → j−1C •m,m′ . We first do this for
the rows of (12) separately. For the second row of (12), we must check that
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the following commutes:

s−mR∞
sm′′R∞

⊗R L Rm+m′′ ⊗R L j−1K •
m+m′′(1−m)

s−mR∞
sm′R∞

⊗R L Rm+m′ ⊗R L j−1K •
m+m′(1−m).

projection

∼=
sm νm+m′′

projection projection

∼=
sm νm+m′

It is clear for the left hand square, and the right-hand square is again Theorem
3.1 (4). Moreover, note that the projection K •

m+m′′(1−m)→ K •
m+m′(1−m)

is the rational part of a morphism of mixed Hodge complexes of sheaves by
Theorem 3.1 (4). The proof for the first row of (12) is the same, as it is the
particular case of m = 0, and also note that the projection K •

m′′(1)→ K •
m′(1)

is the rational part of a morphism of mixed Hodge complexes of sheaves by
Theorem 3.1 (4). Since both rows commute with the quotient maps, the corre-
sponding map of cones commutes as well, and the corresponding map between
j−1C •m,m′′ and j−1C •m,m′ is j−1 applied to the natural projection between C •m,m′′

and C •m,m′ , which is the rational part of a morphism of mixed Hodge complexes

of sheaves. We have shown that the sequence F̃•m,m′ corresponds through the

quasi-isomorphisms Vm,m′ to j−1 applied to the following chain of natural pro-
jections,

· · ·↠ C •m,2 ↠ C •m,1 ↠ C •m,0

and all of these projections are the rational part of a morphism of mixed Hodge
complexes of sheaves, so they induce MHS morphisms in cohomology. In fact,
these MHS morphisms will be isomorphisms by Remark 4.2.

5. PROOF OF THE MAIN THEOREM

Theorem 5.1. Let U , f and Uf be as in Definition 2.1. Let m ≥ 1.
Let R = Q[π1(C∗)] ∼= Q[t±1]. Consider the MHS on TorsRHi(U

f ,Q) from

Definition 3.10, and the MHS on Hi(U
f ,Q)

(t−1)mHi(Uf ,Q)
from Definition 3.7. Since

they are a submodule and a quotient of the Alexander module, respectively,
there is a natural composition map:

(13) TorsRHi(U
f ,Q) ↪→ Hi(U

f ,Q) ↠
Hi(U

f ,Q)

(t− 1)mHi(Uf ,Q)
.

This composition map is a MHS morphism for all m ≥ 1.

In order to prove Theorem 5.1, it will be necessary to understand the
following morphism.
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Definition 5.2 (Definition of Ξ). The morphism

Ξ: HomQ

(
Hi(U

f ,Q)

(t− 1)mHi(Uf ,Q)
,Q

)
→ HomQ

(
TorsRHi(U

f ,Q)1,Q
)
.

is defined as theQ-dual of the restriction of the map in (13) to TorsRHi(U
f ,Q)1

for all i.

Specifically, we will need to show that Ξ is a MHS morphism. We will
not do this directly, instead we will relate Ξ to other morphisms that will be
easier to understand. We start by defining these auxiliary morphisms.

Definition 5.3 (Definition of Ξ̃). Let m ≥ 1 and let

F•m :=
(
R∞ ⊗R L ↪→ s−mR∞ ⊗R L

)
be a two-term complex in degrees −1 and 0 (as in Definition 4.1). We define
the morphism

Ξ̃: F•m → R∞ ⊗R L[1]
as − IdR∞⊗RL in degree −1 and vanishing in degree 0.

Definition 5.4 (Definition of p). Let m ≥ 0. We define the epimorphism

p : HomQ(Hi(U,Rm ⊗R L),Q) ↠ HomQ

(
Hi(U

f ,Q)

(t− 1)mHi(Uf ,Q)
,Q

)
as the Q-dual of the map

(14)
Hi(U,L)

(t− 1)mHi(U,L)
→ Hi(U,Rm ⊗R L)

induced in homology by the projection L↠ Rm⊗R L, under the identification
Hi(U

f ,Q) ∼= Hi(U,L) from Proposition 2.13. Next, we consider the map
induced by the projection L↠ Rm ⊗R L, which, in homology, factors through

Hi(U,L)→
Hi(U,L)

(t− 1)mHi(U,L)
→ Hi(U,Rm ⊗R L).

Indeed, p is surjective because the morphism in (14) is injective by Propo-
sition 2.24.

Definition 5.5 (Definition of ⟨·,·⟩m). Let m ≥ 1 and let F•m denote the
same complex as in Definition 5.3. Let ⟨·,·⟩m be as in Remark 2.7. With a
slight abuse of notation, we define the quasi-isomorphism

⟨·,·⟩m : F•m → R−m ⊗ L

as vanishing in degree −1 and induced by the map

s−mR∞ −→ R−m
g(s) 7−→ ⟨g(s), ·⟩m
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in degree 0, where g(s) denotes the image of g(s) through the projection

s−mR∞ → s−mR∞
R∞

.

In this section, we will prove Theorem 5.1 in a series of lemmas, the first
of which specifies the precise relation between Ξ and the other morphisms that
we have just defined. Note that the statement of the following result is not
related to Hodge theory.

Lemma 5.6. Let F•m be as in Definitions 4.1 and 5.3. Consider the maps
Θ∨, Ξ, Ξ̃, p, ⟨·,·⟩m and UCT ◦Res−1 from Definitions 3.5, 5.2, 5.3, 5.4 and 5.5
and Theorem 3.15, respectively. Then, the following diagram commutes:

(15)

H i(U,R−m ⊗R L) Hi(U,F•m)

HomQ

(
Hi(U

f ,Q)

(t− 1)mHi(Uf ,Q)
,Q

)
R∞ ⊗R H

i+1(U,L)

HomQ(TorsRHi(U
f ,Q)1,Q) TorsRH

i+1(U,L)1.

p◦Θ∨
⟨·,·⟩m

∼=

Ξ̃

Ξ

UCT◦Res−1

∼=

Proof. Let us compute the composition of the left-hand column of (15):
it is given by composing Θ∨ with Ξ ◦ p. The composition Ξ ◦ p is the dual of
the map induced in homology by the projection L → Rm ⊗R L, restricted to
TorsRHi(U

f ,Q)1. Applying Theorem 2.21 (2), the left-hand column of (15) is
given by applying Theorem 2.21, Parts (2) and (3) to the pairing(

R−m ⊗R L
)
× L Q

(ϕ⊗ a , b) ϕ
(
a(b)

)
.

Here, a(b) denotes the image of a(b) ∈ R inside Rm (see Definition 2.6).
Next, let us consider the map ⟨·, ·⟩m. If g ∈ s−mR∞, its image in R−m

is the element ⟨g, ·⟩m ∈ R−m, by Remark 2.10. Applying Theorem 2.21 (2)
again, the composition Ξ ◦ p ◦Θ∨ ◦ ⟨·, ·⟩m is given by the pairing that vanishes
on F−1, and equals the following on F0:

(16)

(
s−mR∞ ⊗R L

)
× L Q

(g ⊗ a , b) ⟨g, a(b)⟩m = res0(a(b) · g).

Now that we have understood the composition Ξ ◦ p ◦ Θ∨ ◦ ⟨·, ·⟩m as a map
induced by Theorem 2.21 (2) from a pairing, let us focus on the rest of the
maps in the diagram (15). We will start by trying to understand the map
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Res ◦UCT−1, more specifically, the map Res, as defined in Theorem 3.15. Re-
call that Res is defined as the composition (from left to right)

(17) HomQ(A,Q)
res∗←−−∼= HomR(A,K/R)

K/R→R[1]−−−−−−−→∼=
Ext1R(A,R)

applied to A = TorsRHi(U
f ,Q)1.

With this description, diagram (15) becomes:

(18)

HomQ(TorsRHi(U
f ,Q)1,Q) Hi(U,F•m)

HomR(TorsRHi(U
f ,Q)1,K/R) R∞ ⊗R H

i+1(U,L)

Ext1R(TorsRHi(U
f ,Q), R)1 TorsRH

i+1(U,L)1.

Ξ◦p◦Θ∨◦⟨·,·⟩m
Ξ̃res∗∼=

K/R→R[1] ∼=
UCT

By Proposition 2.24, the natural projection L↠ Rm⊗RL induces mono-
morphisms

TorsRHi(U,L)1 ↪→ Hi(U,Rm ⊗R L)
for all m ≫ 1. Also, note that all three functors Ext1R(·, R), HomR(·,K/R)
and HomQ(·,Q) are right-exact, so the injection will turn into a dual surjection.
The map (17) above is induced, via this surjection for m≫ 1, by the analogous
maps applied to A = Hi(U,Rm ⊗ L):

HomQ(Hi(U,Rm ⊗R L),Q)
∼=←− HomR(Hi(U,Rm ⊗R L),K/R)

∼=−→
Ext1R(Hi(U,Rm ⊗R L), R).

Let us start by focusing on the left-hand map. Applying Theorem 2.21 (4), we
obtain the following commutative diagram (note that K/R is injective):

HomQ(Hi(U,Rm ⊗R L),Q) HomR(Hi(U,Rm ⊗R L),K/R)

H i(U,HomQ(Rm ⊗R L,Q)) H i(U,HomR(Rm ⊗R L,K/R)).

∼=
res∗

Theorem 2.21(4) ∼=

∼=
res∗

Theorem 2.21(4) ∼=

The bottom row map is induced in cohomology by the sheaf morphism res∗ (as
a map of constant sheaves). We include this map into the following diagram,
and claim that it commutes,
(19)

F•m s−mR∞
R∞

⊗R L HomR(Rm ⊗R L,K/R) HomR(L,K/R)

F•m R−m ⊗R L HomQ(Rm ⊗R L,Q) HomQ(L,Q).

⟨·,·⟩m⊗IdL

mult

res∗∼= res∗∼=
⟨·,·⟩m

In this diagram:
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� The top left horizontal arrow is given by the projection F0
m = s−mR∞⊗R

L↠ s−mR∞
R∞

⊗R L.

� ⟨·,·⟩m in the arrow labeled by ⟨·,·⟩m ⊗ IdL denotes the isomorphism
s−mR∞

R∞
→ R−m from Remark 2.7.

� The second horizontal arrow from the left in the bottom row is the one
induced by the pairing in (3).

� The arrow labeled as mult is induced from the pairing

mult :
(
s−mR∞

R∞
⊗R L

)
× (Rm ⊗R L) −→ K/R

(g(s)⊗ a, α(s)⊗ b) 7−→ g(s) · (α(s) · a(b)) .

Let us break down this definition: α(s) · a(b) is an element in Rm (recall
that Rm has an R-module structure by Definition 2.6). Hence, we also have

g(s) · (α(s) · a(b)) ∈ s−mR∞
R∞

. Identifying s−mR∞
R∞

with (t−1)−mR
R through the

isomorphism induced by the monomorphism R ↪→ R∞ from Definition 2.6,

g(s) · (α(s) · a(b)) ∈ (t−1)−mR
R ⊂ K/R.

The first square commutes by definition. It is straightforward to check that
the second square commutes using Remark 2.8. The commutativity of the
third square is clear, since both vertical arrows are induced by the same map
res : K/R → Q. Note that the composition of the bottom row of (19) is the
pairing (16). The composition of the top row of (19) is induced by the R-
bilinear pairing (

s−mR∞ ⊗R L
)
× L −→ K/R

(g(s)⊗ a , b) 7−→ a(b) · g(s),

where a(b) · g ∈ s−mR∞ is seen in the quotient s−mR∞
R∞

, which, as in the

definition of mult, is identified with (t−1)−mR
R ⊂ K/R.

Note that the bottom row of (19) (which is induced by the same pairing
as Ξ ◦ p ◦ Θ∨ ◦ ⟨·,·⟩m) composed with res−1∗ equals the top row of (19), and
compare that to (18). To prove the lemma, it remains to show that the following
diagram commutes, where the vertical arrow on the left is given by the pairing
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corresponding to the top row of (19):

R∞ ⊗R H
i+1(U,L)

Hi(U,F•m) TorsRH
i+1(U,L)1

HomR(TorsRHi(U,L)1,K/R) Ext1R(TorsRHi(U,L)1, R).

Ξ̃

(g⊗a,b)7→a(b)·g UCT∼=
K/R→R[1]

Note that all objects here are R∞ modules (since the ones on the bottom of
the diagram are torsion and supported at t = 1). Therefore, the diagram does
not change it we tensor by R∞. Let us denote by K∞ the field of fractions of
R∞. We obtain the following diagram:

Hi(U,F•m) H i+1(U,R∞ ⊗R L)

HomR∞(TorsR∞ Hi(U,R∞ ⊗R L),K∞/R∞)

Ext1R∞(TorsR∞ Hi(U,R∞ ⊗R L), R∞)

Ξ̃

K∞/R∞→R∞[1]

∗
(g⊗a,b)7→a(b)·g

UCT

Here, the arrow “∗” is defined as the composition of K∞/R∞ → R∞[1]
and UCT. Now, if we apply Corollary 2.23, we have a description of the
arrow ∗, namely, it is the map HomR∞(TorsR∞ Hi(U,R∞ ⊗R L),K∞/R∞) →
H i+1(U,HomR∞(R∞ ⊗R L,R∞)) in the statement of said theorem applied to
L = L. Using the maps defined in the statement of Theorem 2.22, we see that
the previous diagram commutes if and only if the following diagram commutes:

Hi(U,F•m) H i+1(U,R∞ ⊗R L)

HomR∞(TorsR∞ Hi(U,R∞ ⊗R L),K∞/R∞)

H i(Hom•R∞(C•(U,R∞ ⊗R L), R∞[1])).

Ξ̃

K∞/R∞→R∞[1]

(g⊗a,b)7→a(b)·g

Theorem 2.21(4)∼=

Note that the left most vertical arrow factors through the whole module, not
just the torsion quotient. Let us denote I•∞ = R∞ ⊗R I•, and let us also
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compose with the isomorphism induced by R∞ ∼= I•∞. We obtain the following
diagram.
(20)

Hi(U,F•m)

H i+1(U,R∞ ⊗R L)

HomR∞(Hi(U,R∞ ⊗R L),K∞/R∞)

H i(Hom•R∞(C•(U,R∞ ⊗R L), R∞[1]))

H i(Hom•R∞(C•(U,R∞ ⊗R L), I•∞[1]))

H i(Hom•R∞(C•(U,R∞ ⊗R L), I•∞[1]))

Ξ̃

Theorem 2.21(4)

∼=

(g⊗a,b)7→a(b)·g

K∞/R∞=I1∞

Applying Theorem 2.21 (4) (i.e. tensor-hom adjunction), we can now replace
the complexes in the right-hand column the form Hom•R∞(C•(U,R∞⊗RL),M),
by

Hom•R∞[π1]
(C•(Ũ),HomR∞(R∞ ⊗R Lx,M))

∼= Hom•R∞[π1]
(C•(Ũ),M ⊗R∞ (R∞ ⊗R L)) (R∞ ⊗R Lx is free)

= C•(U,M ⊗R∞ (R∞ ⊗R L)) (Proposition 2.19)

∼= C•(U,M ⊗R L).

We apply this to the right-hand column of diagram (20), with M = R∞[1] and
M = I•∞[1]. Note that we can apply the isomorphism to I•∞ even though it is
a complex, since we just apply Theorem 2.21 (4) for I0∞ and I1∞. We obtain
the following diagram.

Hi(U,F•m) H i+1(U,R∞ ⊗R L)

HomR∞(Hi(U,R∞ ⊗R L),K∞/R∞) H i(C•(U,R∞[1]⊗R L))

H i(Hom•R∞(C•(U,R∞ ⊗R L), I•∞[1])) H i(C•(U, I•∞[1]⊗R L)).

Ξ̃

(g⊗a,b)7→a(b)·g Theorem 2.21 (4)

K∞/R∞=I1∞
∼=

∼=

Next, we apply Proposition 2.19 to conclude that the cohomology of the
complexes on the bottom right is the sheaf cohomology. Note that we can apply
it to I•∞ ⊗R L, even though it is a complex. Indeed, the quasi-isomorphism
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I•∞
∼= R∞ induces a quasi-isomorphism C•(U, I•∞⊗R L) ∼= C•(U,R∞⊗R L), so

we have:

H i(C•(U, I•∞ ⊗R L))
K∞←↩R∞←−−−−−−∼=

H i(C•(U,R∞ ⊗R L)) ∼=

H i(U,M ⊗R L)
R∞↪→K∞−−−−−−→∼=

Hi(U, I•∞ ⊗R L).

We obtain the following diagram:
(21)

Hi(U,F•m) H i+1(U,R∞ ⊗R L)

HomR∞(Hi(U,R∞ ⊗R L),K∞/R∞)

H i(Hom•R∞(C•(U,R∞ ⊗R L), I•∞[1])) Hi(U, I•∞[1]⊗R L).

Ξ̃
(g⊗a,b)7→a(b)·g

∼= R∞→I•∞

K∞/R∞=I1∞
Theorem 2.21 (4)

∼=

We can explicitly write both compositions in this diagram, at the level of chain
complexes. The right-hand path is simply induced by the map of sheaves that
vanishes in degree 0 and in degree −1 it is the map R∞ ⊗R L → K∞ ⊗R L
induced by − IdR∞ .

The left-hand path factors through the map F•m → F0
m induced by the

identity of F0. Let us write the corresponding map of (co)chain complexes on
any degree i

Homi
R∞(C•(U,R∞ ⊗R L), I•∞[1]) C•(U, I•∞[1]⊗R L)

Ci(U,F0
m) HomR∞(Ci(U,R∞ ⊗R L), I0∞[1]) Ci(U, I0∞[1]⊗R L)

(γ 7→ g ⊗ a) (γ ⊗ (h⊗ b) 7→ a(b) · h · g) (γ 7→ g ⊗ a).

⊂ ⊂

It is the map in cohomology induced by the map of complexes of sheaves
F•m → I•∞[1] ⊗R L that vanishes in degree −1 and is induced by the map
s−mR∞ → K∞/R∞ in degree 0.

Finally, note that both paths in diagram (21) we have computed are
homotopic, so they induce the same map in cohomology. The homotopy is the
inclusion of s−mR∞ ⊗R L → K∞ ⊗R L:

R∞ ⊗R L s−mR∞ ⊗R L

K∞ ⊗R L K∞/R∞ ⊗R L.

− IdK∞0 0IdK∞
IdK∞
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Our goal now is to show that all the morphisms from diagram (15) in
Lemma 5.6 except for Ξ are MHS morphisms. We do this in a series of lemmas.

Lemma 5.7. Let m ≥ 1. Let Θ∨ be as in Definition 3.5 and let p be as in
Definition 5.4. The map

p ◦Θ∨ : H i(U,R−m ⊗R L)→ HomQ

(
Hi(U

f ,Q)

(t− 1)mHi(Uf ,Q)
,Q

)
is a MHS morphism for all i, where the MHS on H i(U,R−m⊗R L) is given by
Definition 3.3, and the (dual) MHS on the target is the one given by Definition-
Proposition 3.9.

Proof. Note that Θ∨ is a MHS morphism by Definition 3.5. Therefore, it

suffices to show that the dual map Hi(U
f ,Q)

(t−1)mHi(Uf ,Q)
→ Hi(U,Rm ⊗R L) to p is a

MHS morphism. Note that, by definition of p, this dual map is induced by the
projection L↠ Rm ⊗R L.

The canonical isomorphism Hi(U,L)
(t−1)mHi(U,L)

∼= Hi(U,R∞⊗RL)
(t−1)mHi(U,R∞⊗RL) is a MHS

isomorphism, by construction ([9, Corollary 6.16]). Now, the morphism in-
duced by the projection R∞ ⊗R L↠ Rm ⊗R L in homology factors as:

Hi(U,R∞ ⊗ L) ↠
Hi(U,R∞ ⊗R L)

(t− 1)mHi(U,R∞ ⊗R L)
→ Hi(U,Rm ⊗ L),

where the second map is the one that we need to show is a MHS morphism.
The composition is a MHS morphism by the definition of the pro-MHS

on its domain, in Definition 3.7. The first arrow is a quotient MHS by the
construction in [9, Corollary 6.15]. Therefore, the map we are interested in
must also be a MHS morphism, since the Hodge and weight filtrations are
strict ([18, Corollary 3.6]).

Lemma 5.8. For all i, the map

⟨·,·⟩m : Hi(U,F•m)→ H i(U,R−m ⊗R L)

defined in Lemma 5.6 is a MHS morphism, where the MHS on H i(U,R−m⊗RL)
is given by Definition 3.3, and the MHS on Hi(U,F•m) is defined in Definition-
Proposition 4.6.

Proof. Note that the map ⟨·,·⟩m : F•m → R−m⊗RL factors as composition

of the quotient F•m → F̃•m,0 and the map ⟨·,·⟩m : F̃•m,0 =
s−mR∞

R∞
⊗RL → R−m⊗R

L induced by the pairing ⟨·,·⟩m from Remark 2.7. The quotient map induces an
isomorphism of MHS in cohomology by Definition-Proposition 4.6 (7). Hence,

it suffices to show that the morphism induced by ⟨·,·⟩m : F̃•m,0 =
s−mR∞

R∞
⊗RL →

R−m⊗RL in cohomology is a MHS morphism. We will do this by showing that
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⟨·,·⟩m is induced by the rational part of a morphism of mixed Hodge complexes,

namely by Dm : C •m,0 = K •
m(1−m)

∼=−→ K •
−m as defined in Theorem 3.1 (6). In

other words, we need to see that the following diagram commutes:

F̃•m,0
s−mR∞

R∞
⊗R L R−m ⊗R L

j−1C •m,0 j−1K •
m(1−m) j−1K •

−m

∼= Vm,0 ∼= νm

⟨·,·⟩m
∼=

ν−m∼=

∼=
Dm

where Vm,0 is defined in Definition-Proposition 4.6 (5). Indeed, the diagram
commutes, by Theorem 3.1 (6).

Lemma 5.9. Let m ≥ 1. The map

Ξ̃ : F•m → R∞ ⊗R L[1]
from Definition 5.3 induces (pro)-MHS morphisms in cohomology

Ξ̃ : Hi(U,F•m)→ R∞ ⊗R H
i+1(U,L)

for all i, where the MHS on Hi(U,F•m) is defined in Definition-Proposition 4.6
and the pro-MHS on R∞ ⊗R H

i+1(U,L) is defined in Definition 3.7.

Proof. MHSmorphisms between two givenQ-MHS form aQ-vector space,
so we can equivalently show that −Ξ̃ induces a pro-MHS morphism. Let
c : C •m,m′ → K •

m′ [1] be the morphism of mixed Hodge complexes from Re-
mark 4.5 for all m′ ≥ 0.

Let us define the morphism

Ξ̃m′ : F̃•m,m′ → Rm′ ⊗R L[1]
as the identity in degree −1 and vanishing in degree 0. Since the diagram

F•m R∞ ⊗R L[1]

F̃•m,m′ Rm′ ⊗R L[1]

−Ξ̃

projection projection

Ξ̃m′

commutes, it suffices to show that Ξ̃m′ is a MHS morphism for all m′ ≥ 1,
where the MHS on the cohomology of Rm′ ⊗RL is the one from Definition 3.3.
Indeed, Hi(U,F•m) is finite dimensional, so its image through Ξ̃ is also finite
dimensional. This amounts to showing that the diagram

F̃•m,m′ Rm′ ⊗R L[1]

C •m,m′ Km′ [1]

Ξ̃m′

Vm,m′ νm′

c
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commutes, which is a straightforward verification in degrees −1 and 0 which
follows immediately from applying the definition of Vm,m′ found in Definition-
Proposition 4.6 (4), the definition of c from Remark 4.5 and the definition of
Ξ̃m′ .

Lemma 5.10. The inclusion

TorsRH
i+1(U,L)1 → R∞ ⊗R H

i+1(U,L)

is a pro-MHS morphism for all i, where the MHS on the domain (resp. the
pro-MHS on the target) is given in Theorem 3.14 (resp. Definition 3.7).

Proof. By Definition 3.7 of the pro-MHS on R∞ ⊗RH
i+1(U,L) as an in-

verse limit, it suffices to show that for any large enoughm′, TorsRH
i+1(U,L)1 →

H i+1(U,Rm′ ⊗R L) is a MHS morphism. This is the content of Theorem 3.14.

We are now ready to prove the main theorem of this paper.

Proof of Theorem 5.1. First, by Proposition-Definition 3.8 , all the quo-
tient maps of the form

Hi(U
f ,Q)

(t− 1)m′Hi(Uf ,Q)
→ Hi(U

f ,Q)

(t− 1)mHi(Uf ,Q)

are MHS morphisms. Therefore, we may assume that m≫ 1.

By Theorem 3.13, TorsRHi(U
f ,Q) is a direct sum of MHS:

TorsRHi(U
f ,Q) = TorsRHi(U

f ,Q)1 ⊕
(⊕

λ ̸=1

TorsRHi(U
f ,Q)λ

)
.

Note that the restriction of the composition (13) to the second summand van-
ishes. Therefore, it suffices to show that the restriction to TorsRHi(U

f ,Q)1 →
Hi(U

f ,Q)
(t−1)mHi(Uf ,Q)

is a MHS morphism. Equivalently, it suffices to show that its

dual Ξ is a MHS morphism. By Lemma 5.6, it suffices to show that every
other map except for Ξ in the commutative diagram (15) is a MHS morphism,
which follows from Definition 3.5, Lemmas 5.7, 5.8, 5.9, and 5.10 and Theo-
rem 3.15.

Corollary 5.11. Let U , f and Uf be as in Definition 2.1. Let m,N ≥ 1.
Let R = Q[π1(C∗)] ∼= Q[t±1]. Consider the MHS on TorsRHi(U

f ,Q) from Def-

inition 3.10, and the MHS on Hi(U
f ,Q)

(tN−1)mHi(Uf ,Q)
from Definition-Proposition 3.9.
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Since they are a submodule and a quotient of the Alexander module, respec-
tively, there is a natural composition map:

TorsRHi(U
f ,Q) ↪→ Hi(U

f ,Q) ↠
Hi(U

f ,Q)

(tN − 1)mHi(Uf ,Q)
.

This composition map is a MHS morphism for all m,N ≥ 1. Moreover, there
exists N ∈ Z≥1 such that this composition map is injective for m≫ 1.

Proof. The “moreover” part of the statement is a consequence of the first
sentence in Construction 3.11.

Now, let N ≥ 1, and notice that the previous sentence implies that there
exists k ≥ 1 such that TorsRHi(U

f ,Q) is annihilated by a big enough power
of tkN − 1 for all i ≥ 0. Let M = kN . Consider the degree M covering space
UM of U , the map fM : UM → C∗ and the isomorphism of complex analytic
varieties θM : (UM )fM → Uf as in Construction 3.11. We have the following
commutative diagram:

TorsQ[t±M ]Hi

(
(UM )fM ,Q

)
1

Hi

(
(UM )fM ,Q

) Hi((UM )fM ,Q)
(tM−1)mHi((UM )fM ,Q)

Hi(U
f ,Q)

(tM−1)mHi(Uf ,Q)

TorsRHi(U
f ,Q) Hi(U

f ,Q) Hi(U
f ,Q)

(tN−1)mHi(Uf ,Q)

∼=θM ∼=θM

θM

projection

The composition of the maps in the top row is a MHS morphism by Theo-
rem 5.1. The vertical arrow on the left is a MHS isomorphism by the definition
of the MHS on TorsRHi(U

f ,Q) in [7] (see Construction 3.11). Similarly, the
vertical arrow induced by θM on the right is a MHS morphism by definition

of the MHS on Hi(U
f ,Q)

(tM−1)mHi(Uf ,Q)
from Definition-Proposition 3.9 (made explicit

in [9, Proposition 8.3]). The arrow labeled by “projection” is a MHS mor-
phism by Definition-Proposition 3.9 as well. The result now follows from the
commutativity of the diagram.
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