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Each complex hyperplane arrangement gives rise to a Milnor fibration of its
complement. Although the Betti numbers of the Milnor fiber F can be expressed
in terms of the jump loci for rank 1 local systems on the complement, explicit
formulas are still lacking in full generality, even for b1(F ). We study here the
“generic” case (in which b1(F ) is as small as possible), and look deeper into the
algebraic topology of such Milnor fibrations with trivial algebraic monodromy.
Our main focus is on the cohomology jump loci and the lower central series
quotients of π1(F ). In the process, we produce a pair of arrangements for which
the respective Milnor fibers have the same Betti numbers, yet non-isomorphic
fundamental groups: the difference is picked by the higher-depth characteristic
varieties and by the Schur multipliers of the second nilpotent quotients.
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1. INTRODUCTION

1.1. The Milnor fibration

In a seminal book [43], Milnor introduced a fibration which soon became
the central object of study in singularity theory. In its simplest form, the con-
struction associates to a homogeneous polynomial f ∈ C[z0, . . . , zd] a smooth
fibration over C∗, defined by restricting the map f : Cd+1 → C to the comple-
ment of its zero-set. The Milnor fiber, F = f−1(1), is a smooth complex affine
variety of complex dimension d. The monodromy of the fibration, h : F → F ,
is given by h(z) = e2π i /nz, where n = deg f . A key question is to compute
the characteristic polynomials of the induced homomorphisms in homology,
hq : Hq(F ;C) → Hq(F ;C).

We are mainly interested in the case when f has singularities in codimen-
sion 1. Arguably, the simplest situation in this regard is when the polynomial f
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completely factors into distinct linear forms. This situation is neatly described
by a hyperplane arrangement, that is, a finite collection A of codimension-1
linear subspaces in Cd+1. Choosing a linear form fH with kernel H for each
hyperplane H ∈ A , we obtain a homogeneous polynomial, f =

∏
H∈A fH ,

which in turn defines the Milnor fibration of the complement of the arrange-
ment, M = M(A ), with fiber F = F (A ). More generally, if m : A → N,
H 7→ mH is a choice of multiplicities for the hyperplanes comprising A , we
may consider the polynomial fm =

∏
H∈A fmH

H and the corresponding Milnor
fibration, with fiber Fm.

To analyze these fibrations, it is most natural to use the rich combinato-
rial structure encoded in the intersection lattice of A , that is, the poset of all
intersections of hyperplanes in A , ordered by reverse inclusion and ranked by
codimension. A much-studied question in the subject asks: Is the character-
istic polynomial of the algebraic monodromy of the (usual) Milnor fibration,
∆A ,q(t) = det(tI − hq), determined by the intersection sub-lattice L≤q+1(A )?
Despite much effort—and some progress—over the past 30–40 years, the prob-
lem is still open, even in degree q = 1.

In this paper, we take a different tack, and focus instead on the “generic”
situation, to wit, on those hyperplane arrangements for which the monodromy
of the Milnor fibration acts trivially on the homology of the Milnor fiber, either
with Z or with C coefficients.

1.2. Cohomology jump loci

We start by analyzing the structure of the characteristic varieties (the
jump loci for homology in rank 1 local systems) and the resonance varieties
(the jump loci of the Koszul complex associated to the cohomology algebra)
of the Milnor fiber of a multi-arrangement in the trivial algebraic monodromy
setting.

Let U = P(M) be the projectivization of the complement M = M(A ).
Since U is a smooth, connected, quasi-projective variety, its characteristic va-
rieties, V q

s (U), are finite unions of torsion-translates of algebraic subtori of the
character group, Hom(π1(U),C∗) = H1(U ;C∗), see [2, 6]. Since U is also a
formal space, its resonance varieties, Rq

s (U), coincide with the tangent cone at
the trivial character to V q

s (U), see [15, 22, 21]. As shown in [28], the varieties
R1
s (U) may be described solely in terms of multinets on sub-arrangements of

A . In general, though, the varieties V 1
s (U) may contain components which do

not pass through the origin, see [61, 10, 16]. We explain in detail the relation-
ship between the cohomology jump loci of M and U in Proposition 3.3 and
Corollary 6.13.
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Now let (A ,m) be a multi-arrangement in Cd+1 and let Fm →M → C∗

be the Milnor fibration of the complement, with monodromy h : Fm → Fm. We
then have a regular ZN -cover, σm : Fm → U , where N =

∑
H∈A mH . In The-

orem 5.7, we prove the following result, which relates the degree 1 cohomology
jump loci of Fm to those of U = P(M), under a trivial algebraic monodromy
assumption.

Theorem 1.1. Suppose the map h : Fm → Fm induces the identity on
H1(Fm;Q). Then,

1. The induced homomorphism σ∗m : H1(U ;C) → H1(Fm;C) is an isomor-
phism that identifies R1

s (U) with R1
s (Fm), for all s ≥ 1.

2. The induced homomorphism σ∗m : H1(U ;C∗) → H1(Fm;C∗)0 is a surjec-
tion with kernel isomorphic to ZN . Moreover,

(a) For each s ≥ 1, the map σ∗m establishes a bijection between the sets
of irreducible components of V 1

s (U) and W 1
s (Fm) that pass through

the identity.

(b) The map σ∗m : V 1
1 (U) → W 1

1 (Fm) is a surjection.

In the above, H1(Fm;C∗)0 denotes the identity component of the char-
acter group H1(Fm;C∗), while W 1

s (Fm) denotes its intersection with V 1
s (Fm).

The theorem builds on and sharpens results of Dimca and Papadima from [20].

1.3. Abelian duality and propagation

It has long been recognized that complements of complex hyperplane
arrangements satisfy certain vanishing properties for homology with coefficients
in local systems. In [18, 19], we revisited this subject, in a more general
framework.

Given a connected, finite-type CW-complex X with fundamental group
G, we say that X is an ab-duality space of dimension m if Hq(X;ZGab) =
0 for q ̸= m and Hm(X;ZGab) is non-zero and torsion-free. Replacing the
abelianization of G by the torsion-free abelianization, Gabf = Gab/Tors, we
obtain the analogous notion of abf-duality space (of dimension m).

These properties impose stringent conditions on the cohomological in-
variants of the space X. Most notably, as shown in [19], if X is an ab-duality
space of dimension n, then the characteristic varieties of X propagate, that is,
{1} = V 0

1 (X) ⊆ V 1
1 (X) ⊆ · · · ⊆ V m

1 (X).

It was shown in [18, 19] that complements of hyperplane arrangements are
ab-duality spaces; see also [17, 37] for generalizations of this result. Moreover,
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it was shown in [19] that the ab-duality property behaves well under a certain
type of “ab-exact” fibrations. Making use of these results, together with their
adaptations in the abf-duality/abf-exact context, we establish in Theorem 6.15
and Corollary 6.16 the following:

Theorem 1.2. Let A be a central arrangement of rank r and let fiber
Fm = Fm(A ) be the Milnor fiber associated to a multiplicity vector m : A → N.

1. Suppose the monodromy action on H1(Fm;Z) is trivial. Then,

(a) Fm is an ab-duality space of dimension r − 1.

(b) The characteristic varieties of Fm propagate; that is,

V 1
1 (Fm) ⊆ V 2

1 (Fm) ⊆ · · · ⊆ V r−1
1 (Fm).

2. Suppose the monodromy action on H1(Fm;Q) is trivial. Then.

(a) Fm is an abf-duality space of dimension r − 1.

(b) The restricted characteristic varieties of Fm propagate; that is,

W 1
1 (Fm) ⊆ W 2

1 (Fm) ⊆ · · · ⊆ W r−1
1 (Fm).

This result strengthens [19, Theorem 6.7], where only part (1) is proved
(in the particular case when F = F (A ) is the usual Milnor fiber of an essential
arrangement), but not part (2). We also show: If the monodromy action on
Hi(Fm;Q) is trivial for i ≤ q, then the resonance varieties of Fm propagate in
that range; that is, R1

1(Fm) ⊆ · · · ⊆ Rq
1(Fm).

1.4. Associated graded Lie algebras

The lower central series (LCS) of a group G is defined inductively by
setting γ1(G) = G and γk+1(G) = [G, γk(G)] for k ≥ 1. This series is both nor-
mal and central; therefore, its successive quotients, grk(G) = γk(G)/γk+1(G),
are abelian groups. The first such quotient coincides with the abelianization,
Gab = H1(G;Z). The associated graded Lie algebra of the group, gr(G), is the
direct sum of the groups grk(G), with Lie bracket (compatible with the grad-
ing) induced from the group commutator. Important in this context is also the
Chen Lie algebra of G, that is, the associated graded Lie algebra gr(G/G′′) of
the maximal metabelian quotient of G.

When the group G is finitely generated, the LCS quotients of G are also
finitely generated. We let ϕk(G) := rank(grk(G)) be the ranks of these abelian
groups and we let θk(G) := rank(grk(G/G

′′)) be the Chen ranks of G. Quite a
bit is known about the LCS ranks and the Chen ranks of arrangement groups,
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though almost nothing is known about the corresponding ranks for the Milnor
fiber groups. As a first step in this direction, we show that the former determine
the latter when the algebraic monodromy is trivial. More precisely, we prove
in Theorems 7.1 and 7.2 the following statements.

Theorem 1.3. Let (A ,m) be a multi-arrangement and let Fm be the cor-
responding Milnor fiber, with monodromy h : Fm → Fm. Set G = π1(M(A ))
and K = π1(Fm).

1. If h∗ : H1(Fm;Z) → H1(Fm;Z) is the identity map, then gr≥2(K) ∼=
gr≥2(G) and gr≥2(K/K

′′) ∼= gr≥2(G/G
′′), as graded Lie algebras.

2. If h∗ : H1(Fm;Q) → H1(Fm;Q) is the identity map, then gr≥2(K)⊗Q ∼=
gr≥2(G) ⊗ Q and gr≥2(K/K

′′) ⊗ Q ∼= gr≥2(G/G
′′) ⊗ Q, as graded Lie

algebras.

In either case, ϕk(K) = ϕk(G) and θk(K) = θk(G) for all k ≥ 2.

Consequently, if the algebraic monodromy is trivial, both the LCS ranks
and the Chen ranks of π1(Fm) are combinatorially determined.

1.5. Constructions and examples

In Section 8, we describe several classes of hyperplane arrangements for
which the Milnor fibration has trivial algebraic monodromy. The simplest
are the Boolean arrangements, followed by the generic arrangements. In both
cases, complete answers regarding the homology of the Milnor fiber are known.
We review these classical topics, in the more general context of arrangements
with multiplicities.

Next, we consider the class of decomposable arrangements. Following
[48], we say that an arrangement A is decomposable (over Q) if there are no
elements in gr3(π1(M(A )) ⊗ Q besides those coming from the rank 2 flats;
that is, if ϕ3(π1(M(A )) is equal to

∑
X∈L2(A )

(
µ(X)
2

)
, where µ : L(A ) → Z

is the Möbius function. As shown in [70], for any choice of multiplicities m
on such an arrangement, the algebraic monodromy of the Milnor fibration,
h∗ : H1(Fm;Q) → H1(Fm;Q), is trivial, provided a certain technical condition
is satisfied. Other classes of arrangements for which this conclusion holds are
those for which certain multiplicities conditions are satisfied (see [10, 33, 74,
75, 39]), or the associated double point graph is connected and satisfies some
additional requirements (see [4, 58, 73]).

In [25], Falk constructed a pair of rank-3 arrangements that have non-
isomorphic intersection lattices, yet whose complements are homotopy equiva-
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lent. In Section 9, we analyze in detail the Milnor fibrations of these arrange-
ments. In both cases, the monodromy acts as the identity on first integral
homology of the Milnor fiber. Nevertheless, the respective Milnor fibers are
not homotopy equivalent. The difference is picked by both the degree-1, depth-
2 characteristic varieties, and by the Schur multipliers of the second nilpotent
quotients of their fundamental groups.

As shown in [61], deleting a suitable hyperplane from the B3 reflection
arrangement yields an arrangement A of 8 hyperplanes for which the variety
V 1
1 (M(A )) has an irreducible component (a subtorus translated by a char-

acter of order 2) that does not pass through the identity of the character
torus. As a consequence, there is a choice of multiplicities m on A such that
the monodromy h : Fm → Fm acts trivially on H1(Fm;Q) = Q7 but not on
H1(Fm;Z) = Z7 ⊕ Z2

2, see [9, 16]. We illustrate our techniques in Section 10
with a computation of the degree-1 characteristic varieties of Fm and the low-
degree LCS quotients and Chen groups of π1(Fm). Using a different approach,
Yoshinaga constructed in [76] an arrangement A of 16 hyperplanes such that
the usual Milnor fiber itself, F = F (A ), has non-trivial 2-torsion. We summa-
rize in Section 11 the information our techniques yield in this case regarding
the LCS quotients and the Chen groups of π1(F ).

1.6. Organization of the paper

Roughly speaking, the paper is divided into three parts. The first one
deals with some basic notions regarding hyperplane arrangements. In Section
2, we discuss the combinatorics of an arrangement A , as it relates to the
topology of the complementM(A ), while in Section 3, we review the resonance
and characteristic varieties of A .

The second part covers the Milnor fibration of a multi-arrangement (A ,m).
In Section 4, we discuss the homology of the Milnor fiber Fm and the mon-
odromy action in homology. Under the assumption that this action is trivial,
we investigate several topological invariants of the Milnor fiber: the cohomol-
ogy jump loci in Section 5, abelian duality and propagation of cohomology
jump loci in Section 6, and the lower central series of π1(Fm) in Section 7.

The third part starts with Section 8, where we describe ways to construct
arrangements with trivial algebraic monodromy. The techniques developed in
this work are illustrated with several examples worked out in detail: the pair
of Falk arrangements in Section 9, the deleted B3 arrangement in Section 10,
and Yoshinaga’s icosidodecahedral arrangement in Section 11.
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2. COMPLEMENTS OF HYPERPLANE ARRANGEMENTS

2.1. Hyperplane arrangements

An arrangement of hyperplanes is a finite set A of codimension-1 linear
subspaces in a finite-dimensional complex vector space Cd+1. The combina-
torics of the arrangement is encoded in its intersection lattice, L(A ), that is,
the poset of all intersections of hyperplanes in A (also known as flats), ordered
by reverse inclusion, and ranked by codimension.

Without much loss of generality, we will assume throughout that the ar-
rangement is central, that is, all the hyperplanes pass through the origin. For
each hyperplane H ∈ A , let fH : Cd+1 → C be a linear form with kernel H.
The product f =

∏
H∈A fH , then, is a defining polynomial for the arrange-

ment, unique up to a non-zero constant factor. Notice that f is a homogeneous
polynomial of degree equal to n = |A |, the number of hyperplanes compris-
ing A .

The complement of the arrangement, M(A ) = Cd+1 \
⋃
H∈A H, is a

connected, smooth, complex quasi-projective variety. Moreover, M = M(A )
is a Stein manifold, and thus it has the homotopy type of a CW-complex K
of dimension at most d + 1. In fact, M splits off the complex linear subspace⋂
H∈A H, whose dimension we call the corank of A . Thus, setting rank(A ) :=

d + 1 − corank(A ), we have that dim(K) ≤ rank(A ). If corank(A ) = 0, we
will say that A is essential.

The group C∗ acts freely on Cd+1 \ {0} via ζ ·(z0, . . . , zd) = (ζz0, . . . , ζzd).
The orbit space is the complex projective space of dimension d, while the orbit
map, π : Cd+1 \ {0} → CPd, z 7→ [z], is the Hopf fibration. The set P(A ) =
{π(H) :H ∈ A } is an arrangement of codimension 1 projective subspaces in
CPd. Its complement, U = U(A ), coincides with the quotient P(M) =M/C∗.
The Hopf map restricts to a bundle map, π : M → U , with fiber C∗. Fixing a
hyperplane H0 ∈ A , we see that π is also the restriction to M of the bundle
map Cd+1 \ H0 → CPd \ π(H0) ∼= Cd. This latter bundle is trivial, and so we
have a diffeomorphism M ∼= U × C∗.

2.2. Fundamental group

Fix a basepoint x0 in the complement of A , and consider the fundamental
group G(A ) = π1(M(A ), x0). For each hyperplane H ∈ A , pick a meridian
curve about H, oriented compatibly with the complex orientations on Cd+1

and H, and let γH denote the based homotopy class of this curve, joined to the
basepoint by a path inM . By the van Kampen theorem, then, the arrangement
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group, G = G(A ), is generated by the set {γH : H ∈ A }. Using the braid
monodromy algorithm from [13], one may obtain a finite presentation of the
form G = Fn/R, where Fn is the rank n free group on the set of meridians and
the relators in R belong to the commutator subgroup F ′

n. Consequently, the
abelianization of the arrangement group, Gab = H1(G;Z), is isomorphic to Zn.

Example 2.1. The reflection arrangement of type An−1, also known as the
braid arrangement, consists of the diagonal hyperplanes Hij = {zi − zj = 0}
in Cn. The intersection lattice is the lattice of partitions of the set {1, . . . , n},
ordered by refinement. The complement M is the configuration space of n
ordered points in C, which is a classifying space for the Artin pure braid group
on n strings, Pn. ♢

Under the diffeomorphism M ∼= U ×C∗, the arrangement group splits as
π1(M) ∼= π1(U)× π1(C∗), where the central subgroup π1(C∗) = Z corresponds
to the subgroup of π1(M) generated by the product of the meridional curves
γH (taken in the order given by an ordering of the hyperplanes). We shall
denote by γH = π♯(γH) the image of γH under the induced homomorphism
π♯ : π1(M)↠ π1(U) = π1(M)/Z.

For the purpose of computing the group G(A ) = π1(M(A )), it is enough
to assume that the arrangement A lives in C3, in which case Ā = P(A ) is
an arrangement of (projective) lines in CP2. This is clear when the rank of
A is at most 2, and may be achieved otherwise by taking a generic 3-slice, an
operation which does not change either the poset L≤2(A ) or the group G(A ).
For a rank-3 arrangement, the set L1(A ) is in 1-to-1 correspondence with the
lines of Ā , while L2(A ) is in 1-to-1 correspondence with the intersection points
of Ā . Moreover, the poset structure of L≤2(A ) mirrors the incidence structure
of the point-line configuration Ā .

The localization of an arrangement A at a flat X ∈ L(A ) is defined as
the sub-arrangement AX := {H ∈ A | H ⊃ X}. The inclusion AX ⊂ A
gives rise to an inclusion of complements, jX : M(A ) ↪→ M(AX). Choosing a
point x0 sufficiently close to 0 ∈ Cd+1, we can make it a common basepoint for
both M(A ) and all the local complements M(AX). As shown in [18], there
exist basepoint-preserving maps rX : M(AX) →M(A ) such that jX ◦ rX ≃ id
relative to x0; moreover, if H ∈ A and H ̸⊃ X, then the map rX ◦ jX ◦ rH is
null-homotopic. Consequently, the induced homomorphisms (rX)♯ : G(AX) →
G(A ) are all injective.

For an arrangement A in C3, we will say that a rank-2 flat X has
multiplicity q = qX if |AX | = q, or, equivalently, if the point P(X) has
exactly q lines from Ā passing through it. In this case, the localized sub-
arrangement AX is a pencil of q planes. Consequently, M(AX) is homeomor-
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phic to (C \ {q − 1 points})×C∗×C, and thus it is a classifying space for the
group G(AX) ∼= Fq−1 × Z.

2.3. Cohomology ring

The cohomology ring of a hyperplane arrangement complement M =
M(A ) was computed by Brieskorn [5], building on the work of Arnol’d on the
cohomology ring of the pure braid group. In [46], Orlik and Solomon gave a
simple description of this ring, solely in terms of the intersection lattice L(A ),
as follows. Fix a linear order on A , and let E be the exterior algebra over Z
with generators {eH | H ∈ A } in degree 1. Next, define a differential ∂ : E →
E of degree −1, starting from ∂(1) = 0 and ∂(eH) = 1, and extending ∂ to a
linear operator on E, using the graded Leibniz rule. Finally, let I(A ) be the
ideal of E generated by ∂eB, for all B ⊂ A such that codim

⋂
H∈B H < |B|,

where eB :=
∏
H∈B eH . Then

(2.1) H∗(M(A );Z) ∼= E/I(A ).

The inclusions {jX}X∈L(A ) assemble into a map j:M→
∏
X∈L(A )M(AX).

The work of Brieskorn [5] insures that the homomorphism induced by j in co-
homology is an isomorphism in all positive degrees. By the Künneth formula,
then, we have that Hk(M ;Z) ∼=

⊕
X∈Lk(A )H

k(M(AX);Z), for all k ≥ 1. It
follows that the homology groups of the complement of A are torsion-free,
with ranks given by

(2.2) bk(M) =
∑

X∈Lk(A )

(−1)kµ(X),

where µ :L(A )→Z is the Möbius function, defined inductively by µ(Cd+1)=1
and µ(X) = −

∑
Y ⊋X µ(Y ). The homology groups of the projectivized com-

plement, U = P(M), are also torsion free, with ranks computed inductively
from the formulas b0(U) = 1 and bk(U) + bk−1(U) = bk(M) for k ≥ 1.

In particular, we have that H1(M ;Z) ∼= Zn, with basis {xH : H ∈ A },
where xH is the homology class represented by the meridional curve γH . More-
over, H1(U ;Z) = H1(M ;Z)/

(∑
H∈A xH

) ∼= Zn−1. We will denote by xH =
[γH ] the image of xH in H1(U ;Z).

2.4. Formality

A connected, finite-type CW-complex X is said to be formal if its ra-
tional cohomology algebra, H∗(X;Q), can be connected by a zig-zag of quasi-
isomorphisms to A∗

PL(X), the algebra of polynomial differential forms on X
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defined by Sullivan in [72]. The notion of q-formality is defined similarly, with
the cdga morphisms in the zig-zag only being required to induce isomorphisms
in degrees up to q and monomorphisms in degree q + 1. It is known that a q-
formal CW-complex of dimension q+1 is actually formal. Moreover, if Y → X
is a finite, regular cover and Y is q-formal, then X is also q-formal. For more
on this topic, we refer to [71, 67] and references therein.

For an arrangement A in Cd+1, the complement M is formal, in a very
strong sense. Indeed, for each H ∈ A , the 1-form ωH = 1

2π id log fH on Cd+1

restricts to a 1-form on M . As shown by Brieskorn [5], if D denotes the
subalgebra of the de Rham algebra Ω∗

dR(M) generated over R by these 1-
forms, the correspondence ωH 7→ [ωH ] induces an isomorphism D → H∗(M ;R).
Sullivan’s machinery from [72] then implies that M is formal. Alternatively,
it is known that the mixed Hodge structure on H∗(M ;Q) is pure; thus, the
“purity implies formality” results of Dupont [23] and Chataur–Cirici [7] yield
another proof of the formality of M .

3. COHOMOLOGY JUMP LOCI OF ARRANGEMENTS

3.1. Resonance varieties

Let A be a graded, graded-commutative algebra over C. We will assume
that each graded piece Aq is finite-dimensional and A0 = C. For each element
a ∈ A1, we turn the algebra A into a cochain complex, (A, δa), with differentials
δqa : Aq → Aq+1, u 7→ au. The fact that δq+1

a ◦ δqa = 0 follows at once from the
observation that a2 = −a2 (by graded-commutativity of multiplication in A),
which implies a2 = 0. By definition, the (degree q, depth s) resonance varieties
of A are the jump loci for the cohomology of this complex,

(3.1) Rq
s (A) = {a ∈ A1 | dimCH

q(A, δa) ≥ s}.

These sets are Zariski-closed, homogeneous subsets of the affine space
A1; More specifically, they are either empty or they contain the zero-vector
0 ∈ A1. Setting bq(A, a) := dimCH

q(A, δa) for the Betti numbers of the
cochain complex (A, δa), we see that bq(A,0) is equal to the usual Betti number
bq(A) = dimCA

q. Therefore, the point 0 ∈ A1 belongs to Rq
s (A) if and only

if bq(A) ≥ s. In particular, since A0 = C, we have that R0
1(A) = {0} and

R0
s (A) = ∅ if s > 1.

We will mostly consider the degree one resonance varieties. Clearly,
these varieties depend only on the truncated algebra A≤2. More explicitly,
R1
s (A) consists of 0, together with all elements a ∈ A1 for which there exist

u1, . . . , us ∈ A1 such that the span of {a, u1, . . . , us} has dimension s + 1 and
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au1 = · · · = aus = 0 in A2. Finally, if φ : A → B is a morphism of com-
mutative graded algebras, and φ is injective in degree 1, then the linear map
φ1 : A1 → B1 embeds R1

s (A) into R1
s (B), for each s ≥ 1.

Completely analogous definitions work for algebras A over a field k of
characteristic different from 2. When char(k) = 2, special care needs to be
taken, to account for the fact that the square of an element a ∈ A1 may not
vanish in this case; we refer to [66] for details.

Now let X be a connected, finite-type CW-complex. Its cohomology
algebra, A = H∗(X;C), with multiplication given by the cup-product, satisfies
the properties listed at the start of this section. Therefore, we may define the
resonance varieties of the space X to be the sets Rq

s (X) := Rq
s (H∗(X;C)),

viewed as homogeneous subsets of the affine space H1(X;C), and likewise for
Rq
s (X,k) ⊆ H1(X; k). When M =M(A ) is an arrangement complement, the

fact that H1(M ;Z) is torsion-free implies that a2 = 0 for all a ∈ H1(M ; k),
even when char(k) = 2; thus, the usual definition of resonance works for all
fields.

3.2. Multinets and pencils

The resonance varieties of complements of hyperplane arrangements were
introduced in the mid-1990s by Falk [26] and further studied in the ensuing
decade in papers such as [15, 41, 34, 60, 61]. The work of Falk and Yuzvinsky
[28] greatly clarified the nature of the degree 1 resonance varieties of arrange-
ments. Let us briefly review their construction.

A multinet N on an arrangement A consists of a partition A1⊔ · · · ⊔Ak

of A into k ≥ 3 subsets; an assignment of multiplicities m = {mH}H∈A ; and
a subset X ⊆ L2(A ), called the base locus, such that the following conditions
hold:

1. There is an integer ℓ such that
∑

H∈Ai
mH = ℓ, for all i ∈ [k].

2. For any two hyperplanes H and K in different classes, H ∩K ∈ X .

3. For each X ∈ X , the sum nX :=
∑

H∈Ai : H⊃X mH is independent of i.

4. For each 1≤ i≤ k andH,K∈Ai, there is a sequenceH = H0, . . . ,Hr = K
such that Hj−1 ∩Hj ̸∈ X for 1 ≤ j ≤ r.
We say that a multinet N as above is a (k, ℓ)-multinet, or simply a k-

multinet. Without essential loss of generality, we may assume that gcd(m) = 1.
If all the multiplicities are equal to 1, the multinet is said to be reduced. If,
furthermore, every flat in X is contained in precisely one hyperplane from
each class, the multinet is called a (k, ℓ)-net.
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For instance, a 3-net on A is a partition into 3 non-empty subsets with
the property that, for each pair of hyperplanes H,K ∈ A in different classes,
we have H ∩ K = H ∩ K ∩ L, for some hyperplane L in the third class. As
another example, if X ∈ L2(A ) is a 2-flat of multiplicity at least 3, we may
form a net on AX by assigning to each hyperplane H ⊃ X the multiplicity 1,
putting one hyperplane in each class, and setting X = {X}.

Now let f =
∏
H∈A fH be a defining polynomial for A . Given a k-

multinet N on A , with parts Ai and multiplicity vector m, write fi =∏
H∈Ai

fmH
H and define a rational map ψ : C3 → CP1 by ψ(x) = [f1(x) : f2(x)].

There is then a set D = {[a1 : b1], . . . , [ak : bk]} of k distinct points in CP1

such that each of the degree d polynomials f1, . . . , fk can be written as fi =
aif2 − bif1, and, furthermore, the image of ψ : M(A ) → CP1 misses D, see
[28]. The corestriction ψ : M(A ) → CP1 \ D, then, is the pencil associated
to the multinet N . Following [54, 64], we may describe the homomorphism
induced in homology by this pencil, as follows. Let α1, . . . , αk be compati-
bly oriented simple closed curves on S = CP1 \ D, going around the points
of D, so that H1(S;Z) is generated by the homology classes ci = [αi], sub-
ject to the single relation

∑k
i=1 ci = 0. Further, the induced homomorphism

ψ∗ : H1(M ;Z) → H1(S;Z) is given by ψ∗(xH) = mHci for H ∈ Ai, and thus
ψ∗ : H1(S;Z) → H1(M ;Z) is given by ψ∗(c∨i ) = ui, where c

∨
i is the Kronecker

dual of ci and ui =
∑

H∈Ai
mHeH .

It follows that the map ψ∗:H1(S;C)→H1(M ;C) is injective, and thus
sends R1

1(S) to R1
1(M). Let us identify R1

1(S) with H1(S;C) = Ck−1, and
view PN := ψ∗(H1(S;C)) as lying inside R1(A ) := R1

1(M). Then PN is the
(k−1)-dimensional linear subspace spanned by the vectors u2−u1, . . . , uk−u1.
Moreover, as shown in [28, Theorems 2.4–2.5], this subspace is an essential
component of R1(A ); that is, PN is not contained in any proper coordinate
subspace of H1(M ;C). More generally, suppose there is a sub-arrangement
B ⊆ A supporting a multinet N . In this case, the inclusion M(A ) ↪→M(B)
induces a monomorphism H1(M(B);C) ↪→ H1(M(A );C), which restricts to
an embedding R1(B) ↪→ R1(A ). The linear space PN , then, lies inside
R1(B), and thus, inside R1(A ). Conversely, as shown in [28, Theorem 2.5] all
(positive-dimensional) irreducible components of R1(A ) arise in this fashion.

3.3. Characteristic varieties

Let X be a connected, finite-type CW-complex. Fix a basepoint x0 at a 0-
cell; then the fundamental group G = π1(X,x0) is a finitely generated (in fact,
finitely presented) group. Therefore, the group TG = Hom(G,C∗) of C-valued,
multiplicative characters on G is an affine, commutative algebraic group, which
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we will identify with H1(X;C∗). Its identity 1 is the trivial representation
g 7→ 1 ∈ C∗; the connected component of G containing the identity, T0

G, is an
algebraic torus isomorphic to (C∗)n, where n = b1(G). Moreover, TG/T0

G is in
bijection with the finite abelian group Tors(Gab).

The characteristic varieties of X (in degree q and depth s, where q, s ≥ 0)
are the jump loci for homology with coefficients in rank-1 local systems on X:

(3.2) V q
s (X) =

{
ρ ∈ H1(X;C∗) | dimCHq(X;Cρ) ≥ s

}
.

Here, Cρ = C with C[G]-module structure defined by the character
ρ : G → C∗ by setting g · z := ρ(g)c for g ∈ G and z ∈ C, while H∗(X;Cρ)
denotes the homology of the chain complex C∗(X̃;C)⊗C[G]Cρ, where C∗(X̃;C)
is the G-equivariant chain complex of the universal cover of X, with coefficients
in C.

The sets V q
s (X) are Zariski-closed subsets of the character group. We

will denote by W q
s (X) the intersection of V q

s (X) with T0
G. Observe that the

(degree q) depth of a character ρ, defined as depthq(ρ) := dimCHq(X;Cρ), is
equal to max{s | ρ ∈ V q

s (X)}; in particular, depthq(1) = bq(X), the q-th Betti
number of X. Note also that V 0

1 (X) = {1} and V 0
s (X) = ∅ if s > 1, while

V q
0 (X) = H1(X;C∗) for all q ≥ 0.

Completely analogous definitions work for the characteristic varieties as
V q
s (X,k), viewed as subsets of H1(X;k∗), for any field k.

Example 3.1. Let Σg,n be a Riemann surface of genus g with n punctures
(g, n ≥ 0), and let χ := χ(Σg,n) = 2 − 2g − n be its Euler characteristic.
Then V 1

s (Σg,n) is equal to H1(Σg,n;C∗) if s ≤ −χ and it is contained in {1},
otherwise. ♢

The characteristic varieties V 1
s (X) depend only on the fundamental group

G = π1(X); thus, we will often denote them by V 1
s (G). At least away from the

trivial character, V 1
s (G) is the zero set of the ideal ann(

∧sG′/G′′ ⊗C), where
the ZGab-module structure on the group G′/G′′ arises from the short exact
sequence 1 → G′/G′′ → G/G′′ → G′/G′′ → 1; see, e.g., [69] and references
therein. Therefore, the characteristic varieties V 1

s (G) of a finitely generated
group G depend only on its maximal metabelian quotient, G/G′′.

3.4. Homology of finite abelian covers

The characteristic varieties control the Betti numbers of regular, con-
nected, finite abelian covers p : Y → X. For instance, suppose that the deck-
transformation group is cyclic of order N . Then the cover is determined
by an epimorphism χ : G ↠ ZN , so that ker(χ) = im(p♯). Fix an inclusion
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ι : ZN ↪→ C∗, by sending 1 to e2π i /N . With this choice, the map χ yields a tor-
sion character, ρ = ι◦χ : G→ C∗. Since χ is surjective, the induced morphism
between character groups, χ∗ : TZN

→ TG, is injective, and so im(χ∗) ∼= ZN .
Furthermore, if ξ : G→ C∗ is a non-trivial character belonging to im(χ∗), then
ξ = ρN/k for some positive integer k dividing N .

Now view the homology groups Hq(Y ;C) as modules over the group alge-
bra C[ZN ] ∼= C[t]/(tN − 1). By a transfer argument, the invariant submodule,
Hq(Y ;C)ZN , is isomorphic to the trivial module Hq(X;C) ∼= (C[t]/(t−1))bq(X).
In fact, a result proved in various levels of generality in [32, 57, 30, 42, 16] yields
isomorphisms of C[ZN ]-modules,

(3.3)

Hq(Y ;C) ∼=
⊕
s≥1

⊕
ξ∈im(χ∗)∩V q

s (X)

Cξ

∼= Hq(X;C)⊕
⊕

1<k|N

(
C[t]/Φk(t)

)depthq(ρN/k)
,

where Φk(t) is the k-th cyclotomic polynomial. Consequently,

bq(Y ) =
∑
s≥1

|im(χ∗) ∩ V q
s (X)|

= bq(X) +
∑

1<k|N

φ(k) · depthq(ρN/k),
(3.4)

where φ(k) = degΦk(t) is the Euler totient function. Moreover, if h : Y → Y
is the deck transformation corresponding to the generator 1 ∈ ZN , then the
characteristic polynomial ∆q(t) = det(t · id−h∗) of the induced automorphism
h∗ : Hq(Y ;C) → Hq(Y ;C) is given by

(3.5) ∆q(t) = (t− 1)bq(X) ·
∏

1<k|N

Φk(t)
depthq(ρ

N/k).

3.5. Characteristic varieties of arrangements

Let M be a smooth, quasi-projective variety. A general result of Ara-
pura [2] (as refined in [6]), insures that the characteristic varieties V q

s (M) are
finite unions of torsion-translated subtori of the character torus. In degree
q = 1, these varieties can be described more precisely, as follows.

Let S = (Σg,r, µ) be a Riemann surface of genus g ≥ 0, with r ≥ 0 points
removed (so that Σg,0=Σg), and with h≥0 marked points, (p1, µ1), . . . , (ph, µh),
with µi ≥ 2. A surjective, holomorphic map ψ : M → Σg,n is called an orb-
ifold fibration (or, a pencil) if the fiber over any non-marked point is con-
nected, the multiplicity of each fiber ψ−1(pi) is equal to µi, and ψ has an
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extension to the respective compactifications, ψ̄ : M → Σg, which is also a sur-
jective, holomorphic map with connected generic fibers. Then each positive-
dimensional component of V 1

1 (M) is of the form T = ψ∗(H1(S;C∗)), for some
pencil ψ : M → S for which the orbifold Euler characteristic of the surface,
χorb(Σg,r, µ) := χ(Σg,r)−

∑h
i=1(1− 1/µi), is negative.

The following result of Artal, Cogolludo, and Matei ([3, Proposition 6.9])
helps locate characters that lie in the higher-depth characteristic varieties.

Theorem 3.2 ([3]). Let M be a smooth, quasi-projective variety. Sup-
pose T1 and T2 are two distinct, positive-dimensional irreducible components
of V 1

r (M) and V 1
s (M), respectively. If ξ ∈ T1 ∩ T2 is a torsion character, then

ξ ∈ V 1
r+s(M).

Now let A be an arrangement of n hyperplanes in Cd+1, with comple-
ment M = M(A ). The characteristic varieties V q

s (M) are subsets of the
character torus H1(M ;C∗) = (C∗)n. Moreover, the tangent cone at the iden-
tity 1 to V q

s (M) coincides with the resonance variety Rq
s (M), for each q, s ≥ 1.

This “Tangent Cone Theorem” (which does not hold for all quasi-projective
manifolds) relies in an essential way on the formality of the arrangement com-
plement, and was proved in [15, 34, 22, 21] in various levels of generality.
Let exp: H1(M ;C) → H1(M ;C∗) be the coefficient homomorphism induced
by the exponential map C → C∗. Then, if P ⊂ H1(M ;C) is one of the
linear subspaces comprising Rq

s (M), its image under the exponential map,
exp(P ) ⊂ H1(M ;C∗), is one of the subtori comprising V q

s (M). Furthermore,
the correspondence P ⇝ T = exp(P ) gives a bijection between the compo-
nents of Rq

s (M) and the components of V q
s (M) passing through 1, which in

turn yields an identification TC1(V
q
s (M)) = Rq

s (M) for each q, s ≥ 1.
Next, in degree q = 1, each positive-dimensional component of V 1

1 (M)
that passes through 1 is of the form T = ψ∗(H1(S;C∗)), for some pencil
ψ : M → S = CP1 \ {k points} with k ≥ 3. An easy computation shows
that V 1

s (S) = H1(S;C∗) = (C∗)k−1 for all s ≤ k − 2. Hence, the subtorus T
is a (k − 1)-dimensional component of V 1

1 (M) that contains 1 and lies inside
V 1
k−2(M).

3.6. Torsion-translated subtori

Let (Σg,r, µ) be a 2-dimensional orbifold as above. For our purposes
here, we may assume r ≥ 1, in which case the orbifold fundamental group
Γ := πorb1 (Σg,r, µ), is isomorphic to the free product Fn ∗Zµ1 ∗ · · · ∗Zµh , where
n = 2g + r − 1. Note that Γab = Zn ⊕ Λ, where Λ = Zµ1 ⊕ · · · ⊕ Zµℓ is the
torsion subgroup, and each component of the character group TΓ = T0

Γ × TΛ
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is of the form λ · T0
Γ for some λ = (λ1 . . . , λh) ∈ TΛ. Let ℓ(λ) = |{i : λi ̸= 1}|.

A computation detailed in [3, Proposition 2.10] shows that

(3.6) V 1
s (Γ) =


TΓ if s ≤ n− 1,

(TΓ \ T0
Γ) ∪ {1} if s = n,⋃

ℓ(λ)≥n−s+1 λ · T0
Γ if n < s < n+ h,

and is empty if s ≥ n+ h.
Suppose M is a smooth, quasi-projective variety, and ψ : M → (Σg,r, µ)

is an orbifold pencil with either n ≥ 2, or n = 1 and h > 0. Since the generic
fiber of ψ is connected, the induced homomorphism on orbifold fundamental
groups, ψ♯ : G = π1(M) → Γ = πorb1 (Σg,r, µ), is surjective. Therefore, the
induced morphism ψ∗

♯ : TΓ → TG embeds V 1
s (Γ), as computed in (3.6), into

V 1
s (M), for all s ≥ 1. In particular, if ψ : M → (C∗,m) is an orbifold pencil

with a single multiple fiber of multiplicity m ≥ 2, then there is a 1-dimensional
algebraic subtorus T ⊂ H1(M ;C∗) and a torsion character ρ /∈ T such that
V 1
1 (M) contains the translated tori ρT, . . . , ρm−1T .

As shown in [61], the (degree 1, depth 1) characteristic variety of an
arrangement complement may have irreducible components that do not pass
through the origin (see Section 10.2). A combinatorial machine for producing
translated subtori in the characteristic varieties of certain arrangements was
given in [16]. Namely, suppose A admits a pointed multinet, that is, a multinet
N and a hyperplane H ∈ A for which mH > 1, and mH | nX for each flat X
in the base locus such that X ⊂ H. Letting A ′ = A \ {H} be the deletion
of A with respect to H, it turns out that V 1

1 (M(A ′)) has a component which
is a 1-dimensional subtorus of H1(M(A ′);C∗), translated by a character of
order mH . Whether all positive-dimensional translated subtori in the (degree
1, depth 1) characteristic varieties of arrangements occur in this fashion is
an open problem. It is also an open problem whether the isolated (torsion)
points in the characteristic varieties of an arrangement are combinatorially
determined.

3.7. Cohomology jump loci of the projectivized complement

Once again, let A be a (central) hyperplane arrangement in Cd+1. The
next result relates the cohomology jump loci of the complementM =M(A ) to
those of the projectivized complement, U = P(M). A more precise relationship
in degrees q > 1 will be given in Corollary 6.13.

Proposition 3.3. Let π : M → U be the restriction of the Hopf map,
π : Cd+1 \ {0} → CPd, to the complement of A , and set n = |A |. Then,
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1. The induced homomorphism π∗ : H1(U ;C) ↪→ H1(M ;C) restricts to iso-

morphisms R1
s (U)

≃−→ R1
s (M) for all 1 ≤ s < n and Rq

1(U)∪Rq−1
1 (U)

≃−→
Rq

1(M) for all q ≥ 1.

2. The induced morphism π∗ : H1(U ;C∗) ↪→ H1(M ;C∗) restricts to isomor-

phisms V 1
s (U)

≃−→ V 1
s (M) for all 1 ≤ s < n and V q

1 (U) ∪ V q−1
1 (U)

≃−→
V q
1 (M) for all q ≥ 1.

Proof. As noted previously, upon fixing a hyperplaneH0 ∈ A , the restric-
tion to M =M(A ) of the (trivial) bundle map π : Cd+1 \ H0 → CPd \ π(H0)

yields a diffeomorphismM
≃−→ U×C∗ so that the following diagram commutes,

(3.7)

M U × C∗

U.

≃

π pr1

Thus, we may replace in the argument the map π : M ↠ U by the first-
coordinate projection map pr1 : U × C∗ → U . At this stage, the claims in
depth s = 1 follow from the product formulas for cohomology jump loci from
[52, Proposition 13.1]. For completeness, we provide a full argument, which
works in all cases.

For part (3.3), consider the cohomology algebras A = H∗(U × C∗;C),
A1 = H∗(U ;C), and A2 = H∗(C∗;C), and let a = (a1, a2) be an element in
A1 = A1

1 ⊕A1
2. By the Künneth formula, the cochain complex (A, δa) splits as

a tensor product of cochain complexes, (A1, δa1)⊗C (A2, δa2). Therefore,

(3.8) bq(A, a) =
∑
i+j=q

bi(A1, a1)bj(A2, a2).

Clearly, b0(A2, 0) = b1(A2, 0) = 1 and bj(A2, a2) = 0 otherwise. Therefore,

(3.9) bq(A, (a1, a2)) =

{
bq(A1, a1) + bq−1(A1, a1) if a2 = 0,

0 if a2 ̸= 0.

In particular, b1(A, (a1, 0)) = b1(A1, a1) if a1 ̸= 0 and b1(A,0) = b1(A1,0) + 1.
The first claim follows at once from these formulas.

For part (3.3), let us identify G = π1(U × C∗) with π1(U) × Z and the
universal cover of U × C∗ with Ũ × C. We then have a G-equivariant isomor-

phism of chain complexes, C∗(Ũ × C∗) ∼= C∗(Ũ)⊗C C∗(C). Given a character
ρ = (ρ1, ρ2) in Hom(G,C∗) ∼= Hom(π1(U),C∗)×C∗, we obtain an isomorphism
C∗(U × C∗,Cρ) ∼= C∗(U,Cρ1)⊗C C∗(C∗,Cρ2). Therefore,

(3.10) Hq(U × C∗;Cρ) ∼=
⊕
i+j=q

Hi(U ;Cρ1)⊗C Hj(C∗;Cρ2),
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and the second claim follows from the fact that H0(C∗;C) = H1(C∗;C) = C
and Hj(C∗;Cρ2) = 0, otherwise.

Now fix an orderingH1, . . . ,Hn of the hyperplanes in A and setH0 = Hn.
ThenH1(M ;C∗) may be identified with (C∗)n, with coordinates t = (t1, . . . , tn)
and H1(U ;C∗) may be identified with (C∗)n−1, with coordinates (t1, . . . , tn−1).
The characteristic varieties of U are then given by

(3.11) V q
s (U) = {t ∈ (C∗)n | t ∈ V q

s (M) and t1 · · · tn = 1};

that is, V q
s (U) is the subvariety of (C∗)n obtained by intersecting V q

s (M) with
the subtorus (C∗)n−1 = {t : t1 · · · tn = 1}. Furthermore, the induced homo-
morphism π∗ : H1(U ;C∗) ↪→ H1(M ;C∗) may be identified with the monomial
map

(3.12) (C∗)n−1 ↪→ (C∗)n, (t1, . . . , tn−1) 7→
(
t1, . . . , tn−1, t

−1
1 · · · t−1

n−1

)
.

In turn, this map restricts to isomorphisms V 1
s (U)

≃−→ V 1
s (M) for all 1 ≤ s < n

and V q
1 (U) ∪ V q−1

1 (U)
≃−→ V q

1 (M) for all q ≥ 1, where, in fact, V q
1 (U) ∪

V q−1
1 (U) = V q

1 (U), as we shall see in Corollary 6.12.
Similar considerations apply to the resonance varieties of M and U , with

the induced homomorphism π∗ : H1(U ;C) ↪→ H1(M ;C) being identified with
the linear map Cn−1 ↪→ Cn, (x1, . . . , xn−1) 7→ (x1, . . . , xn−1,−(x1+· · ·+xn−1)).

4. MILNOR FIBRATIONS OF ARRANGEMENTS

4.1. The Milnor fibration of a multi-arrangement

Let A be a central arrangement of n hyperplanes in Cd+1, and fix an
ordering on A . To each hyperplane H ∈ A , we may associate a multiplicity
mH ∈ N. This yields a multi-arrangement (A ,m), where m = (mH)H∈A ∈ Nn
is the resulting multiplicity vector, and a homogeneous polynomial,

(4.1) fm =
∏
H∈A

fmH
H

of degree N =
∑

H∈A mH . Note that fm is a proper power if and only if
gcd(m) > 1, where gcd(m) = gcd(mH : H ∈ A ).

The polynomial map fm : Cd+1 → C restricts to a map fm : M(A ) → C∗.
As shown by Milnor [43] in a much more general context, fm is the projection
map of a smooth, locally trivial bundle, known as the (global) Milnor fibration
of the multi-arrangement (A ,m),

(4.2) Fm M C∗.
fm
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The typical fiber of this fibration, f−1
m (1), is a smooth manifold of di-

mension 2d, called the Milnor fiber of the multi-arrangement, denoted by
Fm = Fm(A ). It is readily seen that Fm is a Stein domain of complex dimen-
sion d, and thus has the homotopy type of a finite CW-complex of dimension at
most d, in fact, of dimension at most rank(A )− 1. Moreover, Fm is connected
if and only if gcd(m) = 1, a condition we will assume henceforth. As shown
in [64], the homomorphism (fm)♯ : π1(M) → π1(C∗) induced on fundamental
groups by fm is the map µm : π1(M) → Z given by xH 7→ mH . In the case
when all the multiplicities mH are equal to 1, the polynomial f = fm is the
usual defining polynomial and F = Fm is the usual Milnor fiber of A .

For each θ ∈ [0, 1], let Fθ = f−1
m (e2π i θ) be the fiber over the point

e2π i θ ∈ C∗. For each z ∈ M , the path γθ : [0, 1] → C∗, t 7→ e2π i tθ lifts to
a path γ̃θ,z : [0, 1] → M , t 7→ e2π i tθ/Nz which satisfies γ̃θ,z(0) = z. Notice that
fm(γ̃θ,z(1)) = e2π i θfm(z); thus, if z ∈ F0 = Fm, then γ̃θ,z(1) ∈ Fθ. By defini-
tion, the monodromy of the Milnor fibration is the diffeomorphism h : F0 → F1

given by h(z) = γ̃1,z(1). In view of these observations, we may interpret h as
the self-diffeomorphism h : Fm → Fm of order N given by z 7→ e2π i /Nz, and
identify the complement M with the mapping torus of h.

4.2. The Milnor fiber as a finite cyclic cover

The monodromy diffeomorphism h : Fm → Fm generates a cyclic group of
order N =

∑
H∈A mH which acts freely on Fm. The quotient space, Fm/ZN ,

may be identified with the projective complement, U = P(M), in a manner
such that the projection map, σm : Fm ↠ Fm/ZN , coincides with the restric-
tion of the Hopf fibration map, π : M↠U , to the subspace Fm. Thus, letting
ιm : Fm → M denote the inclusion map, all this information may be summa-
rized in the diagram

(4.3)

C∗

Fm M C∗,

U

υ
z 7→zN

ιm

σm

fm

π

where both the row and the column are fibrations and the diagonal arrows are
N -fold cyclic covers. Consequently, the Euler characteristic of the Milnor fiber
is given by χ(Fm) = N · χ(U). Taking fundamental groups in (4.3), we obtain
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the diagram

(4.4)

Z

1 π1(Fm) π1(M) Z 1,

π1(U)

·Nυ♯

(σm)♯

(ιm)♯

π♯

µm

with exact row and column. By construction, σm = π ◦ ιm, and so the lower
triangle commutes. The upper triangle in (4.4) also commutes, since υ♯(1)
is the product of the meridians γH (taken in the order given by an ordering
of the hyperplanes), and since N =

∑
H∈A mH . Hence, the homomorphism

µm : π1(M)↠ Z descends to an epimorphism,

(4.5) χm : π1(U) ZN ,

given by γH 7→ mH mod N . As shown in [12, 9, 62, 64], the regular, N -fold
cyclic cover σm : Fm → U is classified by this epimorphism. In particular, the
usual Milnor fiber F = F (A ) is classified by the “diagonal” homomorphism,
χ : π1(U)↠ Zn, given by χ(γH) = 1, for all H ∈ A .

4.3. The characteristic polynomial of the algebraic monodromy

We now fix an ordering on the n hyperplanes of A , and identify the char-
acter group H1(U ;C∗) with (C∗)n−1. Recall that we also fixed an embedding
j : ZN ↪→ C∗, 1 7→ e2π i /N . By (4.5), the character ρm = j ◦ χm : π1(U) → C∗

is given by γH 7→ e2π imH/N ; hence, for each divisor k of N , the character ρ
N/k
m

takes γH to e2π i /k. By formula (3.4), the Betti numbers of the Milnor fiber
Fm = Fm(A ) are given by

(4.6) bq(Fm) = bq(U) +
∑

1<k|N

φ(k) depthq(ρ
N/k
m ).

Likewise, formula (3.5) implies that the characteristic polynomial of the alge-
braic monodromy h∗ : Hq(Fm;C) → Hq(Fm;C) is given by

(4.7) ∆q(t) = (t− 1)bq(U) ·
∏

1<k|N

Φk(t)
depthq(ρ

N/k
m ).

In the above expressions, the crucial quantities are the (non-negative)

depths of the characters ρ
N/k
m ∈ H1(U ;C∗), which depend on the position of



21 Milnor fibrations of arrangements with trivial algebraic monodromy 255

• •

•

•

x+ z x− y

y + z

y − z

x− z x+ y

Figure 1 – A (3, 2)-net on the braid arrangement.

these characters with respect to the characteristic varieties V q
s (U). Here are

some basic (well-known) examples of how such a computation goes.

Example 4.1. Let A be a pencil of n ≥ 3 lines through the origin of
C2 defined by the polynomial f = xn − yn. Then U is homeomorphic to
Σ0,n = C \ {n− 1 points}, and so its characteristic varieties are V 1

1 (U) =
· · · = V 1

n−2(U) ∼= (C∗)n−1 and V 1
n−1(U) = {1} (see Example 3.1). It follows

that b1(F ) = n−1+(n−2)(n−1) = (n−1)2 and ∆1(t) = (t−1)(tn−1)n−2. In
turn, either this computation or an Euler characteristic argument shows that
F = Σg,n, a Riemann surface of genus g =

(
n−1
2

)
with n punctures. ♢

Example 4.2. Let A be the braid arrangement in C3, defined by the
polynomial f = (x + y)(x − y)(x + z)(x − z)(y + z)(y − z). Its complement
M is, up to a C factor, homeomorphic to the complement of the reflection
arrangement of type A3 in C4; thus, π1(M) = P4. Labeling the hyperplanes
of A as the factors of f , the flats in L2(A ) may be labeled as 136, 145, 235,
and 246. The braid arrangement supports a (3, 2)-net, corresponding to the
partition (12|34|56) depicted in Figure 1. This net defines a rational map,
ψ : CP2 99K CP1, sending [x, y, z] 7→ [x2 − y2, x2 − z2]. In turn, this map
restricts to a pencil, ψ : U → Σ0,3 = CP1 \ {[0, 1], [1, 0], [1, 1]}, which yields by
pullback a 2-dimensional essential component of V 1

1 (U), namely, the subtorus

(4.8) T = {(s, s, t, t, (st)−1) : s, t ∈ C∗}.

Letting ρ : π1(U) → C∗, γH 7→ e2π i /6 be the diagonal character which
defines the Z6-cover σ : F → U , we have that ρ2 ∈ T , yet ρ /∈ T . Since
V 1
2 (U) = {1}, it follows that b1(F ) = 5 + φ(3) · depth1(ρ2) = 5 + 2 · 1 = 7 and

∆1(t) = (t− 1)5(t2 + t+ 1). ♢
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More generally, as shown in [54, Thm. 1.6], if an arrangement of projective
lines in CP2 has only double or triple points, then the characteristic polynomial
of the algebraic monodromy of the Milnor fibration is given by a completely
combinatorial formula.

For an arrangement A and a prime p, define

(4.9) βp(A ) := max{s : ω ∈ R1
s (M(A );Zp)},

where ω =
∑

H∈A eH ∈ H1(M(A );Zp). Clearly, the non-negative integer
βp(A ) depends only on L≤2(A ) and p.

Theorem 4.3 ([54]). Suppose L2(A ) has only flats of multiplicity 2 and
3. Then β3(A ) ∈ {0, 1, 2} and

∆1(t) = (t− 1)|A |−1 · (t2 + t+ 1)β3(A ).

Moreover, β3(A ) ̸= 0 if and only if A supports a 3-net.

4.4. Trivial algebraic monodromy

Henceforth, we will concentrate mainly on the case when the algebraic
monodromy of the Milnor fibration is trivial. More precisely, suppose that
Fm → M → C∗ is the Milnor fibration of a multi-arrangement (A ,m), with
monodromy diffeomorphism h : Fm → Fm. We say that (A ,m) has trivial
algebraic monodromy over k (where k is either Z or a field) if h∗ : H∗(Fm; k) →
H∗(Fm;k) is the identity. Clearly, when k a field, this condition only depends
on the characteristic of k.

The condition that h∗ : Hq(Fm;Q) → Hq(Fm;Q) be the identity is equiva-
lent to ∆q(t) = (t−1)bq(Fm). Thus, in view of formulas (4.6) and (4.7), the con-
dition is equivalent to bq(Fm) = bq(U), where U = P(M). Therefore, (A ,m)
has trivial algebraic monodromy over Q if and only if H∗(Fm;Q) ∼= H∗(U ;Q).
In fact, more is true. As noted previously, the homology groups of both U and
M are torsion-free. Making use of the Künneth formula for M ∼= U × C∗ and
the Wang exact sequence for the fibration Fm → M → C∗, we conclude that
(A ,m) has trivial algebraic monodromy over k (where k = Z or k a field) if
and only if H∗(Fm;k) ∼= H∗(U ; k). Likewise, h∗ : H1(Fm;Z) → H∗(Fm;Z) is
the identity if and only if H1(Fm;Z) = Zn−1, where n = |A |.

Remark 4.4. Triviality of the algebraic monodromy in degree q = 1 does
not imply triviality of the action in higher degrees. For instance, if A is a
graphic arrangement, that is, a sub-arrangement of the braid arrangement of
type An−1 from Example 2.1, then h∗ always acts trivially on H1(F (A );Q),
except when A is a reflection arrangement of type A2 or A3, see [40, Theo-
rem B]. On the other hand, if A is the braid arrangement of type An−1, then
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h∗ always acts non-trivially on the top homology group, Hn−2(F (A );Q), see
[14, §7].

Unlike the homology groups of the complement M , examples from [9, 16,
76] show that the homology groups of the Milnor fiber Fm may have non-trivial
torsion. Therefore, if the monodromy h : Fm → Fm acts as the identity on
Hq(Fm;Q), for some q ≥ 1, we cannot conclude that it also acts as the identity
on Hq(Fm;Z). Indeed, if Hq(Fm;Z) has torsion, then the Wang sequence of
the fibration Fm → M → C∗ shows that h∗ : Hq(Fm;Z) → Hq(Fm;Z) cannot
be equal to the identity. We will illustrate this point in Sections 10–11.

4.5. Triviality tests

Let A be a central arrangement of n hyperplanes in C3. For the usual
Milnor fiber F = F (A ), there are two useful tests informing on whether the
algebraic monodromy h∗ : H1(F ;C) → H1(F ;C) is equal to the identity. Both
of these tests are based on the nature of the multinets supported by L(A ) and
of the characteristic varieties of the complement M =M(A ).

We start with a criterion insuring the triviality of the algebraic mon-
odromy. We will say that a subvariety of the algebraic torus (C∗)n is essential
if it is not contained in any proper coordinate subtorus.

Proposition 4.5. If the characteristic variety V 1
1 (M) has no essen-

tial irreducible components, then the algebraic monodromy h∗ : H1(F ;C) →
H1(F ;C) is trivial.

Proof. Set n = |A |. By formulas (3.4) and (4.5), the first Betti number
of F is given by

(4.10) b1(F ) =
∑
s≥1

∣∣im(χ∗) ∩ V 1
s (U)

∣∣ ,
where U = P(M) and χ : π1(U) → Zn is the homomorphism that sends each
meridian curve γH to 1. The cyclic subgroup im(χ∗) ⊂ H1(U ;C∗) ∼= (C∗)n−1

is generated by the character ρ = (ζ, . . . , ζ), where ζ = e2π i /n.
Recall that the Hopf map π : M → U induces the following morphism

π∗ : H1(U ;C∗) → H1(M ;C∗) which restricts to an isomorphism V 1
1 (U)

≃−→
V 1
1 (M). Recall also that the map π∗ : (C∗)n−1 → (C∗)n is given in coordi-

nates by formula (3.12). Since ζn = 1, it follows that π∗(im(χ∗)) is the cyclic
subgroup of (C∗)n generated by ρ̃ = (ζ, . . . , ζ, ζ). Therefore, π∗(im(χ∗)) is
contained in the diagonal subtorus T∆ = {(z, . . . , z) | z ∈ C∗} ⊂ (C∗)n.

Now let C be an irreducible component of V 1
1 (M). By our assumption, C

lies in a proper coordinate subtorus of H1(M ;C∗) = (C∗)n; hence, C intersects
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intersects T∆ only at the identity. It follows that π∗(im(χ∗)) ∩ V 1
1 (M) = {1},

and therefore, im(χ∗) ∩ V 1
1 (U) = {1}. In view of formula (4.10), this shows

that b1(F ) = n− 1, and the proof is complete.

The following criterion for non-triviality of the algebraic monodromy is
proved in [54, Theorem 8.3], based on results from [20] and [28].

Proposition 4.6 ([54]). Let A be a central arrangement in C3. If A
admits a reduced multinet, then the algebraic monodromy (in degree 1) over C
is non-trivial.

If an arrangement supports essential multinets, but none of those multi-
nets is reduced, then the algebraic monodromy (over C) may still be trivial,
as illustrated by the B3 reflection arrangement from Section 10.1, though it
may also be non-trivial, as illustrated by the complex reflection arrangements
of type G(3d+ 1, 1, 3) with d > 0 from [54, Example 8.11].

5. COHOMOLOGY JUMP LOCI OF MILNOR FIBERS

In this section, we analyze the resonance and characteristic varieties of
the Milnor fibers of a hyperplane arrangement, under the assumption that the
algebraic monodromy of the Milnor fibration is trivial.

5.1. Cohomology jump loci in finite regular covers

We start with some general results regarding the behavior of jump loci in
finite regular covers. These results were proved by Dimca and Papadima in [20,
Proposition 2.1, Corollary 2.2, Theorem 2.8]. In the next two propositions, we
state them in a slightly modified form, that is better adapted to our context.

Proposition 5.1 ([20]). Let p : Y → X be a finite regular cover. Then,

1. The induced homomorphism p∗ : H1(X;C) → H1(Y ;C) is an injection
which restricts to maps p∗ : Rq

s (X) → Rq
s (Y ), for all q ≥ 0 and s ≥ 1.

2. The morphism p∗ : H1(X;C∗) → H1(Y ;C∗) restricts to the maps
p∗ : V q

s (X) → V q
s (Y ), for all q ≥ 0 and s ≥ 1.

When the action of the group of deck transformations of the cover is
homologically trivial (in degree 1), more can be said.

Proposition 5.2 ([20]). Let p : Y → X be a finite regular cover. Suppose
the group of deck transformations acts trivially on H1(Y ;Q). Then,
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1. The map p∗ : H1(X;C) → H1(Y ;C) is an isomorphism that identifies
R1
s (X) with R1

s (Y ), for all s ≥ 1.

2. The map p∗ : H1(X;C∗)0 → H1(Y ;C∗)0 is a surjection with finite kernel.
Moreover, if X is 1-formal, this map establishes a bijection between the
sets of irreducible components of W 1

s (X) and W 1
s (Y ) that pass through

the identity, for all s ≥ 1.

Let us note that the homological triviality hypothesis of this proposition
is definitely needed. For instance, if X is a wedge of n circles (n ≥ 2), and
p : Y → X is a k-fold cover (k ≥ 2), then R1

1(X) = Cn, whereas R1
1(Y ) =

Ck(n−1)+1, and so the map p∗ : R1
1(X) → R1

1(Y ) is not surjective.

5.2. Cohomology jump loci in extensions

Next, we recall some general results relating cohomology jump loci in
group extensions. In [69], we made a detailed analysis of how the character-
istic and resonance varieties behave under certain split extensions with trivial
monodromy action in homology. We summarize those results in the form that
is needed here.

Theorem 5.3 ([69]). Let 1 K G Q 1ι be a split exact

sequence of finitely generated groups. Assume Q is abelian. Then,

1. If Q acts trivially on H1(K;Z), then the induced homomorphism
ι∗ : H1(G;C∗) → H1(K;C∗) restricts to maps ι∗ : V 1

s (G) → V 1
s (K) for

all s ≥ 1; furthermore, ι∗ : V 1
1 (G) → V 1

1 (K) is a surjection.

2. If Q is torsion-free and acts trivially on H1(K;Q), then the map
ι∗ : H1(G;C∗)0 → H1(K;C∗)0 restricts to maps ι∗ : W 1

s (G) → W 1
s (K)

for all s ≥ 1; furthermore, ι∗ : W 1
1 (G) → W 1

1 (K) is a surjection.

3. If Q acts trivially on H1(K;Q) and G is 1-formal, then the map
ι∗ : H1(G;C) → H1(K;C) restricts to maps ι∗ : R1

s (G) → R1
s (K) for

all s ≥ 1; furthermore, ι∗ : R1
1(G) → R1

1(K) is a surjection.

All these results are sharp. For instance, regarding part (3), we make
the following observation: In depth s > 1, the map ι∗ : R1

s (G) → R1
s (K)

is not necessarily a surjection, while in depth s = 1 it is not necessarily an
isomorphism. We illustrate both assertions with an example (see [50, 51] for
the necessary background).



260 A. I. Suciu 26

Example 5.4. Let G = ⟨a1, . . . , a4 | [a1, a2] = [a2, a3] = [a3, a4] = 1⟩
be the right-angled Artin group associated to a path Γ on 4 vertices, and
let K be the corresponding Bestvina–Brady group. We then have an exact
sequence 1 → K

ι−→ G
ν−→ Z → 1, where ν is the homomorphism sending each

generator ai to 1. Since Γ is a tree, the group K is free (of rank 3), and so
R1

1(K) = R1
2(K) = C3. On the other hand, R1

1(G) = {x2 = 0} ∪ {x3 = 0}
and R1

2(G) = {x2 = x3 = x4 = 0} ∪ {x1 = x2 = x3 = 0}. Thus, the map
ι∗ : R1

s (G) → R1
s (K) is not a surjection for s = 2 and is not an isomorphism

for s = 1. ♢

5.3. Cohomology jump loci of Milnor fibers

As before, let (A ,m) be a multi-arrangement. Denote by ιm : Fm ↪→M
the inclusion map of the Milnor fiber Fm = Fm(A ) into the complement
M = M(A ) and by σm = π ◦ ιm : Fm → U the restriction of the Hopf map
π : M → U = P(M) to Fm. Applying Proposition 5.1 to the finite, regular
cover σm : Fm → U , we obtain the following immediate corollary.

Corollary 5.5. For all q, s ≥ 1, the following hold.

1. The induced homomorphism σ∗m : H1(U ;C) ↪→ H1(Fm;C) restricts to
maps Rq

s (U) ↪→ Rq
s (Fm).

2. The morphism σ∗m : H1(U ;C∗) → H1(Fm;C∗) restricts to maps V q
s (U) →

V q
s (Fm).

Consider now the usual Milnor fiber, F = F (A ), and the finite cyclic
cover σ : F → U . In general, the morphism σ∗ : V 1

1 (U) → V 1
1 (F ) from Corol-

lary 5.5, part (2) is not surjective. For instance, suppose A admits a non-
trivial, reduced multinet, and let T be the corresponding component of V 1

1 (U).
It is then shown in [20, Corollary 3.3] that V 1

1 (F ) has a component W passing
through the identity and containing σ∗(T ) as a proper subset. We illustrate
this phenomenon with a concrete example.

Example 5.6. Let A be the braid arrangement from Example 4.2. Recall
that V 1

1 (U) ⊂ (C∗)5 has four local components, T1, . . . , T4, corresponding to
the four triple points of Ā , and an essential, 2-dimensional component T ,
corresponding to the (3, 2)-net depicted in Figure 1. Let ψ : U → S = Σ0,3

be the pencil defined by this net, so that T = ψ∗(H1(S;C∗)). Note that
S = U(B), where B is the arrangement in C2 defined by the polynomial
xy(x− y); therefore, the Milnor fiber of this arrangement, Ŝ = F (B), may be
identified with Σ1,3 = S1 × S1 \ {3 points} (see Example 4.1). Let ν : Ŝ → S
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be the corresponding Z3-cover, and consider the pull-back diagram,

(5.1)

Û Ŝ

U S.

τ

ψ̂

ν

ψ

In the above, τ : Û → U is the pull-back along ψ of the cover ν : Ŝ → S.
By construction, τ is the Z3-cover defined by the diagonal homomorphism
π1(U) → Z3. It is readily seen that H1(Û ;Z) = Z7. By [77, Proposition 2], the
map ψ̂ is an (irrational) pencil on Û ; therefore, the 4-dimensional torus W0 =
ψ̂∗(H1(Ŝ;C∗)) is a component of the characteristic variety V 1

1 (Û) ⊂ (C∗)7.

Finally, let F = F (A ) be the Milnor fiber of A . Note that the Z6-cover
σ : F → U factors as the composite F

κ−→ Û
τ−→ U , where κ is a 2-fold cover.

Therefore, the characteristic variety V 1
1 (F ) has four 2-dimensional components,

σ∗(T1), . . . , σ
∗(T4), as well as a 4-dimensional component, W = κ∗(W0), which

strictly contains σ∗(T ). Direct computation shows that V 1
1 (F ) has no other

irreducible components. ♢

5.4. Arrangements with trivial algebraic monodromy

We return now to the general case of a multi-arrangement (A ,m). As
usual, let Fm be the Milnor fiber of the multi-arrangement, and let σm : F → U
be the corresponding ZN -cover, where N =

∑
H∈A mH . Using the machinery

developed above, we obtain the following theorem, which sharpens results from
[20] in a way that is needed later on.

Theorem 5.7. Suppose the monodromy map h : Fm → Fm induces the
identity on H1(Fm;Q). Then,

1. The induced homomorphism σ∗m : H1(U ;C) → H1(Fm;C) is an isomor-
phism that identifies R1

s (U) with R1
s (Fm), for all s ≥ 1.

2. The induced homomorphism σ∗m : H1(U ;C∗) → H1(Fm;C∗)0 is a surjec-
tion with kernel isomorphic to ZN . Moreover,

(a) For each s ≥ 1, the map σ∗m establishes a bijection between the sets
of irreducible components of V 1

s (U) and W 1
s (Fm) that pass through

the identity.

(b) The map σ∗m : V 1
1 (U) → W 1

1 (Fm) is a surjection.
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Proof. We start with some preliminary observations. From the discussion
in Section 4.2, we know that the map σm : Fm → U is a regular ZN -cover,
corresponding to the exact sequence

(5.2) 1 π1(Fm) π1(U) ZN 1.
(σm)♯ χm

As noted in Section 4.4, the assumption that h : Fm → Fm induces the identity
on H1(Fm;Q) is equivalent to H1(Fm;Q) ∼= H1(U ;Q). It follows that we have
an exact sequence,

(5.3) 0 H1(Fm;Z)/Tors H1(U ;Z) ZN 0.
(σm)∗ (χm)∗

We now proceed with the proof. Claim (1) follows directly from Proposi-
tion 5.2, part (1). To prove the first assertion of Claim (2), we apply the functor
H1(−;C∗) = Hom(−,C∗) to the exact sequence (5.3). Since the abelian group
C∗ is divisible, and thus an injective Z-module, we obtain an exact sequence,

(5.4) 0 H1(Fm;C∗)0 H1(U ;C∗) H1(ZN ;C∗) 0.
σ∗
m χ∗

m

Identifying the group H1(ZN ;C∗) with its Pontryagin dual, ZN , completes the
proof of the first part of Claim (2).

Since the space U is formal, Claim (2a) follows from Proposition 5.2,
part (2).

Finally, recall from diagram (4.4) that we have a (split) exact sequence,

(5.5) 1 π1(Fm) π1(M) Z 1.
(ιm)♯ µm

Our hypothesis on the monodromy h says that Z acts trivially on H1(Fm;Q).
Thus, we may apply Theorem 5.3 and conclude that the morphism

ι∗m : H1(M ;C∗) → H1(Fm;C∗)0

restricts to a surjection, ι∗m : V 1
1 (M)↠ W 1

1 (Fm). On the other hand, as shown
in Proposition 3.3, part (3.3), the map π∗ : H1(U ;C∗) → H1(M ;C∗) restricts

to an isomorphism, π∗ : V 1
1 (U)

≃−→ V 1
1 (M). Since σm = π ◦ ιm, Claim (2b)

follows, and the proof is complete.

6. ABELIAN DUALITY AND PROPAGATION OF
COHOMOLOGY JUMP LOCI

6.1. Abelian duality spaces

Let X be a space having the homotopy type of a connected, finite CW-
complex of dimension m. Without loss of generality, we may assume X has a
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single 0-cell, say, x0. Letting G = π1(X,x0) be the fundamental group of X,
the group ring of its abelianization, R = Z[Gab], may be viewed as a module
over ZG via extension of scalars. Inspired by the classical notion of “duality
group” due to Bieri and Eckmann [19], the following concept was introduced.

We say that X is an abelian duality space (for short, ab-duality space)
of dimension m if Hq(X;R) = 0 for q ̸= m and Hm(X,R) is non-zero and
torsion-free. In that case, for all (left) R-modules A and all q ≥ 0, we have
isomorphisms

(6.1) Hq(X;A) ∼= TorRm−q(D;A) ∼= Hm−q(Gab;D ⊗Z A),

whereD = Hm(X;R), viewed as an R-module. Thus, if Y → X is a connected,

regular abelian cover, classified by an epimorphism G
ab−→ Gab

χ−→ H, where H
is a (finitely generated) abelian group, then Hq(Y ;Z) ∼= Extm−q

R (D,H), for all
q ≥ 0.

Motivated by our work in [69], we adapt this definition to a related con-
text. Let Gabf = Gab/Tors be the maximal torsion-free abelian quotient of
G. We say that X is a torsion-free abelian duality space (for short, abf-duality
space) of dimension m if the above conditions are satisfied with R = Z[Gab] re-
placed by Z[Gabf ]. Clearly, ifX is an abelian duality space andGab = H1(X;Z)
is torsion-free, then X is a torsion-free abelian duality space.

6.2. Formality

Recall that both an arrangement complement, M =M(A ), and its pro-
jectivization, U = P(M), are (rationally) formal spaces. Moreover, for every
choice of multiplicities m on A , the Milnor fiber Fm is a cyclic, regular cover
of U . This raises the question of whether these Milnor fibers are also formal
spaces or, at least q-formal, for some q ≥ 1. The following lemma gives a
sufficient condition for this to happen.

Lemma 6.1 ([20]). Let Y → X be a finite, regular cover, and suppose the
group of deck-transformations acts trivially on Hi(Y ;Q), for all i ≤ q. Then
Y is q-formal if and only if X is q-formal.

Corollary 6.2. Let (A ,m) be a multi-arrangement of rank r, with Mil-
nor fiber Fm and monodromy h : Fm → Fm.

1. If the algebraic monodromy h∗ : Hi(Fm;Q) → Hi(Fm;Q) is the identity
for all i ≤ q, for some q ≥ 1, then Fm is q-formal.

2. If h∗ : Hi(Fm;Q) → Hi(Fm;Q) is the identity for all i ≤ r − 2, then Fm

is formal.
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Proof. Part (1) follows directly from the above lemma. For part (2), first
recall that Fm has the homotopy type of a finite CW-complex of dimension
at most r − 1. Thus, the claim follows from part (1) and the discussion in
Section 2.4.

In general, though, Milnor fibers may be non-formal, as illustrated by the
following example of Zuber [77].

Example 6.3. Let A = A (3, 3, 3) be the monomial arrangement in C3

defined by the polynomial f = (x3 − y3)(y3 − z3)(x3 − z3). There are four
(3, 3)-nets on A , associated with the partitions (123|456|789), (147|258|369),
(159|267|348), and (168|249|357) in a suitable ordering of the hyperplanes.
The first of these nets defines a rational map, ψ : CP2 99K CP1, [x : y : z] 7→
[x3−y3 :x3−z3], which in turn restricts to a pencil ψ : U → S from U = U(A )
to S = CP1 \ {[1 : 0], [0 : 1], [1 : 1]}. Let T = ψ∗(H1(S;C∗)) be the essential 2-
dimensional component of V 1

1 (U) obtained by pullback along this pencil. The
subgroup generated by the diagonal character ρ : π1(U) → C∗ intersects V 1

2 (U)
at the identity 1 and two other points, both lying on T , and both of order 3.
Hence, ∆1(t) = (t− 1)8(1 + t+ t2)2.

Next, let B be the arrangement in C2 defined by the polynomial xy(x−y),
and let ν : Ŝ = F (B) → S = U(B) be the corresponding 3-fold cover. As
shown in [77, Proposition 2], the rational pencil ψ : U → S = Σ0,3 lifts to an

irrational pencil, ψ̂ : Û → Ŝ = Σ1,3, as in diagram (5.1). Here, τ : Û → U is
the pull-back of ν along ψ, that is, the Z3-cover defined by the diagonal homo-
morphism π1(U) ↠ Z3. It is readily seen that H1(Û ;Z) = Z12; therefore, the
4-dimensional torus W0 = ψ̂∗(H1(Ŝ;C∗)) is a component of the characteristic
variety V 1

1 (Û) ⊂ (C∗)12.

Finally, let F = F (A ) be the Milnor fiber of A . Then the Z9-cover
σ : F → U factors as the composite F

κ−→ Û
τ−→ U , where κ is a 3-fold cover.

Therefore, the characteristic variety V 1
1 (F ) has a 4-dimensional component,

W = κ∗(W0), which strictly contains the 2-dimensional subtorus σ∗(T ). Write
W = exp(L), for some linear subspace L ⊂ H1(F ;C). Using the mixed Hodge
structure on H∗(F ;C), Zuber showed in [77] that L cannot be a component
of the resonance variety R1

1(F ). Therefore, TC1(V 1
1 (F )) ⫋ R1

1(F ), and so, by
the Tangent Cone theorem of [22], F is not 1-formal. ♢

6.3. Ab- and abf-exactness

Let F E Bι π be a fibration sequence of connected CW-complexes.
Setting K = π1(F ), G = π1(E), and Q = π1(B), we have an exact sequence
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K
ι♯−→ G

π♯−→ Q → 1. Moreover, the exact sequence of low-degree terms in the
Serre spectral sequence of the fibration takes the form
(6.2)

H2(E;Z) H2(B;Z) H1(F ;Z)Q H1(E;Z) H1(B;Z) 0 ,
π∗ δ ι∗ π∗

where H1(F ;Z)Q denotes the coinvariants of Kab = H1(F ;Z) under the action
of Q.

Following [19], we say that the fibration is ab-exact if (1) Q acts trivially
on Kab; and (2) the homomorphism δ is zero. In the presence of the first
condition, the second condition is equivalent to the exactness of the sequence
0 → Kab → Gab → Qab → 0. Finally, as shown in [69, Proposition 8.4], if
K ◁G and the sequence 1 → K → G→ Q→ 1 is exact and admits a splitting,
then the fibration is ab-exact if and only if Q acts trivially on Kab.

As shown in [19, Proposition 4.13], the notion of ab-duality behaves well
with respect to ab-exact fibrations: if any two of the spaces have the abelian
duality property, then the third one does, too. In particular, the product of
two ab-exact exact spaces is again ab-exact. We record here the part of this
result that will be needed later on.

Proposition 6.4 ([19]). Suppose F → E → B is an ab-exact fibration
of connected, finite-type CW-complexes. If E and B are ab-duality spaces of
dimensions m and n, respectively, and if dimF = m − n, then F is an ab-
duality space of dimension m− n.

By analogy with the above, we say that a fibration F → E → B is abf-

exact if Q acts trivially on Kabf and the composite H2(B;Z) δ−→ H1(F ;Z)Q ↠
Kabf is zero. In the presence of the first condition, the second condition is
equivalent to the exactness of the sequence 0 → Kabf → Gabf → Qabf → 0.
Alternatively, let δQ : H2(B;Q) → H1(K;Q) be the analog of the map δ in the
exact sequence (6.2) with Q-coefficients. Since Kabf is finitely generated, an
argument similar to the one used in [69, Lemma 9.2] shows that the fibration
is abf-exact if and only if Q acts trivially on H1(F ;Q) and δQ is the zero
map. Finally, as shown in [69, Proposition 9.4], if K ◁ G and the sequence
1 → K → G→ Q→ 1 is split exact, then the fibration is abf-exact if and only
if Q acts trivially on H1(F ;Q).

The same argument as in [19], using now the Serre spectral sequence of
the fibration F → E → B with coefficients in Z[Gabf ] instead of Z[Gab], shows
the following: if any two of the spaces have the torsion-free abelian duality
property, then the third one does, too. In particular, the product of two abf-
exact exact spaces is again abf-exact. We record here only the result that we
need later in this section.
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Proposition 6.5. Suppose F → E → B is an abf-exact fibration of
connected, finite-type CW-complexes. If E and B are abf-duality spaces of
dimensions m and n, respectively, and if dimF = m − n, then F is an abf-
duality space of dimension m− n.

6.4. Propagation of jump loci

One of the main motivations for the study of the abelian duality prop-
erties of spaces is the implications these properties have on the nature of the
cohomology jump loci and the Betti numbers of those spaces. We start with a
result relating ab-duality to propagation of characteristic varieties.

Theorem 6.6 ([19]). Let X be an abelian duality space of dimension m.
Then the characteristic varieties of X propagate; that is, for any character
ρ ∈ H1(X;C∗) such that Hp(X;Cρ) ̸= 0, it follows that Hq(X;Cρ) ̸= 0 for all
p ≤ q ≤ m. Equivalently,

(6.3) {1} = V 0
1 (X) ⊆ V 1

1 (X) ⊆ V 2
1 (X) ⊆ · · · ⊆ V m

1 (X).

Applying this theorem to the trivial character ρ = 1, it follows at once
that bq(X) > 0 for 0 ≤ q ≤ m. Moreover, as shown in [19, Proposition 5.9],
we also have b1(X) ≥ m. Finally, as noted in [37, Theorem 1.8], the above
result implies that the “signed Euler characteristic” of an m-dimensional ab-
duality space, (−1)mχ(X), is non-negative. A similar argument, using [19,
Proposition 2.8], applied to the C[Gabf ]-chain complex C∗(X;C[Gabf ]), yields
the following result.

Theorem 6.7. Let X be an abf-duality space of dimension m. Then

(6.4) {1} = W 0
1 (X) ⊆ W 1

1 (X) ⊆ W 2
1 (X) ⊆ · · · ⊆ W m

1 (X).

Now suppose X is formal. Then, the Tangent Cone theorem of [22, 21],
allows us to identify the tangent cone at 1 to V q

1 (X) with Rq
1(X) for all q ≤ m.

Applying Theorem 6.6 , we obtain the following immediate corollary.

Corollary 6.8. Let X is an abelian duality space of dimension m. If
X is q-formal, for some q ≤ m, then R1

1(X) ⊆ · · · ⊆ Rq
1(X). In particular,

if X is formal, then the resonance varieties of X propagate; that is, R1
1(X) ⊆

· · · ⊆ Rm
1 (X).

Remark 6.9 ([19]). IfX is a connected, finite, 2-dimensional CW-complex
with χ(X) ≥ 0 and b1(X) > 0, then both the characteristic and the resonance
varieties ofX propagate (that is, V 1

1 (X) ⊆ V 2
1 (X) and R1

1(X) ⊆ R2
1(X)), even

though X may be neither an abelian duality space nor a formal space. On the
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other hand, if X is a closed, orientable 3-manifold with b1(X) even and non-
zero, then the resonance varieties do not propagate, since R1

1(X) = H1(X;C),
whereas R3

1(X) = {0}.

6.5. Abelian duality and propagation for arrangements

A basic topological property of arrangement complements is provided
by the following result, which is proved in [18, Theorem 5.6] (see also [19,
Theorem 6.1]).

Theorem 6.10 ([18, 19]). Let A be a central arrangement of rank r.
Then the complement M = M(A ) is an abelian duality space of dimension
r and the projectivized complement U = P(M) is an abelian duality space of
dimension r − 1.

In particular, if A is a central, essential arrangement of hyperplanes in
Cd+1, then M(A ) is an abelian duality space of dimension d+ 1 and U(A ) is
an abelian duality space of dimension d.

Remark 6.11. More generally, let M be a connected, smooth, complex
quasi-projective variety of dimension m. Suppose M has a smooth compactifi-
cation M for which the components of M \ M form a non-empty arrangement
of hypersurfaces, A , such that, for each submanifold X in the intersection
poset L(A ), the complement of the restriction of A to X is either empty or
a Stein manifold. Then, by [17, Theorem 1.1], M is an abelian duality space
of dimension m. Another generalization of Theorem 6.10 is given in [37, The-
orem 1.10]: If M has a smooth compactification M with b1(M) = 0 and M
admits a proper, semi-small map to a complex algebraic torus, then the same
conclusion holds.

Recall now that arrangement complements are also formal. It follows from
Theorem 6.10 and Corollary 6.8 that both their characteristic and resonance
varieties propagate. More precisely, we have the following corollary.

Corollary 6.12. Let A be a central arrangement of rank r, with com-
plement M =M(A ) and projectivized complement U = P(M). Then

1. V 1
1 (M) ⊆ · · · ⊆ V r

1 (M) and R1
1(M) ⊆ · · · ⊆ Rr

1(M).

2. V 1
1 (U) ⊆ · · · ⊆ V r−1

1 (U) and R1
1(U) ⊆ · · · ⊆ Rr−1

1 (U).

In view of part (2) of this result, Proposition 3.3 yields the following
immediate corollary.

Corollary 6.13. Let π : M → U be the restriction of the Hopf map.
Then,
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1. The induced homomorphism π∗ : H1(U ;C) ↪→ H1(M ;C) restricts to iso-

morphisms Rq
1(U)

≃−→ Rq
1(M) for all q ≥ 1.

2. The induced morphism π∗ : H1(U ;C∗) ↪→ H1(M ;C∗) restricts to isomor-

phisms V q
1 (U)

≃−→ V q
1 (M) for all q ≥ 1.

6.6. Abelian duality and propagation for Milnor fibers

We now turn to the Milnor fibration Fm →M → C∗ of a multi-arrangement
(A ,m). To start with, let us note that Corollary 5.5, when used in conjunction
with Proposition 3.3 and Corollary 6.13, has the following consequence.

Corollary 6.14. Let ιm : Fm ↪→M be the inclusion map of the Milnor
fiber into the complement of A .

1. The epimorphism ι∗m : H1(M ;C) ↠ H1(Fm;C) restricts to the maps
R1
s (M) → R1

s (Fm), for all s ≥ 1, and Rq
1(M) → Rq

1(Fm), for all q ≥ 1.

2. The epimorphism ι∗m : H1(M ;C∗) ↠ H1(Fm;C∗) restricts to the maps
V 1
s (M) → V 1

s (Fm), for all s ≥ 1, and V q
1 (M) → V q

1 (Fm), for all q ≥ 1.

The next result strengthens [19, Theorem 6.7], where only part (1) is
proved (in the particular case when F = F (A ) is the usual Milnor fiber of an
essential arrangement), but not part (2).

Theorem 6.15. Let A be a central arrangement of rank r and let Fm =
Fm(A ) be the Milnor fiber associated to a multiplicity vector m : A → N.

1. If the monodromy action on H1(Fm;Z) is trivial, then Fm is an ab-duality
space of dimension r − 1.

2. If the monodromy action on H1(Fm;Q) is trivial, then Fm is an abf-
duality space of dimension r − 1.

Proof. From Theorem 6.10, we know that the total space of the Milnor
fibration, M = M(A ), is an ab-duality space of dimension r. Thus, M is
also and abf-duality space of the same dimension, since H1(M ;Z) = Z|A | is
torsion-free. Clearly, the base of the fibration, B = C∗, is both an ab- and
abf-duality space of dimension 1. In view of our hypothesis on the monodromy
of the fibration, the two claims regarding the fiber Fm now follow directly from
Propositions 6.4 and 6.5, respectively.

Applying this theorem, we obtain the following corollary regarding prop-
agation of cohomology jump loci of Milnor fibers of arrangements with trivial
algebraic monodromy.
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Corollary 6.16. Let A be a central arrangement of rank r, and let
m : A → N be a choice of multiplicities.

1. If the monodromy action on H1(Fm;Z) is trivial, then the character-
istic varieties of Fm propagate; that is, V 1

1 (Fm) ⊆ V 2
1 (Fm) ⊆ · · · ⊆

V r−1
1 (Fm).

2. If the monodromy action on H1(Fm;Q) is trivial, then the restricted char-
acteristic varieties of Fm propagate; that is, W 1

1 (Fm) ⊆ W 2
1 (Fm) ⊆ · · · ⊆

W r−1
1 (Fm).

3. If the monodromy action on Hi(Fm;Q) is trivial for i ≤ q, then the
resonance varieties of Fm propagate in that range; that is, R1

1(Fm) ⊆
· · · ⊆ Rq

1(Fm).

4. If the monodromy action on Hi(Fm;Q) is trivial for i ≤ r − 2, then the
resonance varieties of Fm propagate; that is, R1

1(Fm) ⊆ · · · ⊆ Rr−1
1 (Fm).

Proof. Claim (1) follows from Theorem 6.6 and Theorem 6.15, part (1),
while Claim (2) follows from Theorem 6.7 and Theorem 6.15, part (2).

Claims (3) and (4) follow from claim (2) and the Tangent Cone theorem,
using Corollary 6.2, parts (1) and (2), respectively.

In particular, if A is a central, essential arrangement in C3 and the
monodromy action on H1(Fm;Q) is trivial, then W 1

1 (Fm) ⊆ W 2
1 (Fm) and

R1
1(Fm) ⊆ R2

1(Fm).

Remark 6.17. More generally, let f ∈ C[z0, . . . , zd] be a homogeneous
polynomial of degree n, and set M = Cd+1 \ {f = 0}. We then have a (global)
Milnor fibration, f : M → C∗, with fiber F = f−1(1) and monodromy h : F →
F given by h(z) = e2π i /nz. Now suppose M satisfies one of the conditions
laid out in Remark 6.11, so that M is an abelian duality space of dimension
d + 1, and suppose further that h∗ : H1(F ;Q) → H1(F ;Q) is the identity.
Then similar proofs show that F is an abf-duality space of dimension d and
the restricted characteristic varieties of F propagate, that is, W 1

1 (F ) ⊆ · · · ⊆
W d

1 (F ).

7. TRIVIAL ALGEBRAIC MONODROMY AND LOWER
CENTRAL SERIES

In this section, we investigate the lower central series ranks and the Chen
ranks of the fundamental groups of Milnor fibers of arrangements for which
the algebraic monodromy is trivial.
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7.1. Lower central series and nilpotent quotients

The lower central series (LCS) of a group G is defined inductively by
setting γ1(G) = G and γk+1(G) = [G, γk(G)] for all k ≥ 1. This is a central
series (i.e., [G, γk(G)] ⊆ γk+1(G) for all k ≥ 1), and thus, a normal series (i.e.,
γk(G) ◁ G for all k ≥ 1). Consequently, each LCS quotient,

(7.1) grk(G) := γk(G)/γk+1(G),

lies in the center of G/γk+1(G), and thus is an abelian group. The first
such quotient, gr1(G) = G/γ2(G), coincides with the abelianization Gab =
H1(G;Z). The associated graded Lie algebra of G is the direct sum gr(G) =⊕

k≥1 grk(G); the addition in gr(G) is induced from the group multiplication,
while the Lie bracket (which is compatible with the grading) is induced from
the group commutator. By construction, the Lie algebra gr(G) is generated
by its degree 1 piece. Thus, if Gab is finitely generated, then so are the LCS
quotients of G; we let ϕk(G) := rank grk(G) be ranks of those quotients.

Replacing in this construction the group G by its maximal metabelian
quotient, G/G′′, leads to the Chen Lie algebra gr(G/G′′), and, in the case
when Gab is finitely generated, the Chen ranks θk(G) := rank grk(G/G

′′). It is
readily seen that θk(G) ≤ ϕk(G) for all k ≥ 1, with equality for k ≤ 3.

For each k ≥ 1, the group G/γk+1(G) is nilpotent, and in fact, the
maximal k-step nilpotent quotient of G. Letting qk : G/γk+1(G) → G/γk(G)
be the projection maps, we obtain a tower of nilpotent groups, starting at
G/γ2(G) = Gab. Moreover, at each stage in the tower, there is a central
extension,

(7.2) 0 grk(G) G/γk+1(G) G/γk(G) 0 ,
qk

which is classified by an extension class (or, k-invariant), χk : H2(G/γk(G);Z) →
grk(G).

7.2. Lower central series of arrangement groups

The LCS ranks, the Chen ranks, and the nilpotent quotients of arrange-
ment groups have been much studied. The most basic example is that of the
free group, Fn = π1(C \ {n points}), of rank n ≥ 2. Work of P. Hall, W. Mag-
nus, and E. Witt from the 1930s shows that, for each k ≥ 1, the abelian group
grk(Fn) is torsion-free, of rank equal to

(7.3) ϕk(Fn) =
1
k

∑
d|k

µ(d)nk/d,
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where µ : N → {0,±1} denotes the Möbius function. Furthermore, work of K.
T. Chen from 1951 shows that the group grk(Fn/F

′′
n ) are also torsion-free, of

rank equal to

(7.4) θk(Fn) = (k − 1)

(
n+ k − 2

k

)
for k ≥ 2.

Now letM =M(A ) be any arrangement complement, and letG = π1(M)
be its fundamental group. As mentioned previously, M is formal, and hence
the group is G is 1-formal. Classical results of Quillen and Sullivan in rational
homotopy theory insure that the LCS ranks ϕk(G) are determined by the
(truncated) cohomology algebra H≤2(M ;Q). Since this algebra is determined
by the (truncated) intersection lattice L≤2(A ), it follows that the LCS ranks
of G are combinatorially determined. Explicit combinatorial formulas for these
ranks are known in a few cases, e.g., when A is either supersolvable [27] or
decomposable [49], but no such formula is known in general, even for ϕ3(G). As
shown in [48], the Chen ranks θk(G) are also combinatorially determined. An
explicit combinatorial formula was conjectured in [60], expressing those ranks
in terms of the dimensions of the irreducible components of R1

1(M), at least
for k large enough. This formula has been verified by Cohen and Schenck in
[11] (see also [1] for a more general setting).

Turning to the nilpotent quotients of an arrangement group G = G(A ),
it was shown in [55] that all the quotients G/γk(G) are combinatorially de-
termined when A is decomposable (see Section 8.3 below for more on this).
On the other hand, Rybnikov [56] showed that the third nilpotent quotient,
G/γ4(G), is not combinatorially determined, in general. Nevertheless, the sec-
ond nilpotent quotient, G/γ3(G), is always determined by L≤2(A ). To see
why, recall from Section 2.3 that H∗(M ;Z) = E/I, where E =

∧
Gab and

I = I(A ) is the Orlik–Solomon ideal associated to L(A ). As shown in [41,
Proposition 1.14], the abelian group gr2(G) is the Z-dual of I2 (and thus, it is
torsion-free), and the exact sequence (7.2) with k = 2 is classified by the homo-
morphism χ2 : H2(Gab;Z) → gr2(G) dual to the inclusion map I2 ↪→ E2. Set
n = |A | and let Fn be the free group on generators {xH : H ∈ A }. It follows
that G/γ3(G) is the quotient of the free, 2-step nilpotent group Fn/γ3(Fn) by
the normal subgroup generated by all commutation relations of the form

(7.5)
[
xH ,

∏
K∈A
K⊃X

xK

]
,

indexed by all pairs of hyperplanes H ∈ A and flats X ∈ L2(A ) such that
H ⊃ X. From this description, it is apparent that the second nilpotent quotient
of an arrangement group is combinatorially determined; that is, if L2(A ) ∼=
L2(B), then G(A )/γ3(G(A )) ∼= G(B)/γ3(G(B)).
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7.3. LCS and Chen ranks of Milnor fibers

Let (A ,m) be a multi-arrangement, with complement M = M(A ). Let
Fm = Fm(A ) be the Milnor fiber and let h : Fm → Fm be the monodromy of
the corresponding Milnor fibration.

Denoting by G = π1(M) and K = π1(Fm) the fundamental groups of the
respective spaces, we have a (split) exact sequence, 1 → K → G → Z → 1,
so that the arrangement group splits as the semidirect product G = K ⋊φ Z,
where φ = h♯ ∈ Aut(K) is the automorphism of K = π1(Fm) induced by
h. Note that φab : Kab → Kab may be identified with the (integral) algebraic
monodromy, h∗ : H1(Fm;Z) → H1(Fm;Z).

Theorem 7.1. Suppose h∗ : H1(Fm;Z) → H1(Fm;Z) is the identity map.
We then have the following isomorphisms of graded Lie algebras.

1. gr(G) ∼= gr(K) ⋊φ̄ Z, where φ̄ : Z → Der(gr(K)) is the morphism of Lie
algebras induced by the homomorphism φ : Z → Aut(K) sending 1 to h♯.

2. gr≥2(K) ∼= gr≥2(G).

3. gr≥2(K/K
′′) ∼= gr≥2(G/G

′′).

Proof. Part (1) follows from a well-known result of Falk and Randell [27,
Theorem 3.1], as refined in [68, Corollary 6.7]. Part (2) is a direct consequence
of part (1). Finally, part (3) follows from [69, Corollary 8.10].

Theorem 7.2. Suppose h∗ : H1(Fm;Q) → H1(Fm;Q) is the identity map.
We then have the following isomorphisms of graded Lie algebras.

1. gr(G)⊗Q ∼= (gr(K)⋊φ̄ Z)⊗Q.

2. gr≥2(K)⊗Q ∼= gr≥2(G)⊗Q.

3. gr≥2(K/K
′′)⊗Q ∼= gr≥2(G/G

′′)⊗Q.

Consequently, ϕk(π1(Fm)) = ϕk(π1(M)) and θk(π1(Fm)) = θk(π1(M)) for all
k ≥ 2.

Proof. Parts (1) and (2) follow from Proposition 7.5 and Theorem 9.5
from [68], while part (3) follows from [69, Corollary 8.10]. The equality between
the respective LCS and Chen ranks follows at once from parts (2) and (3).

Consequently, if the algebraic monodromy h∗ : H1(Fm;Q) → H1(Fm;Q)
is trivial, then both the LCS ranks and the Chen ranks of π1(Fm) are deter-
mined by L≤2(A ). Moreover, letting U = P(M), we have that ϕk(π1(Fm)) =
ϕk(π1(U)) and θk(π1(Fm)) = θk(π1(U)) for all k ≥ 1.
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8. CONSTRUCTIONS OF ARRANGEMENTS WITH TRIVIAL
ALGEBRAIC MONODROMY

In this section, we describe several classes of hyperplane arrangements for
which the Milnor fibration has trivial algebraic monodromy (in some range).

8.1. Boolean arrangements

Arguably the simplest kind of arrangements are the Boolean arrange-
ments, Bn, consisting of the coordinate hyperplanes {zi = 0} in Cn. The
intersection lattice L(Bn) is the Boolean lattice of subsets of {0, 1}n, while the
complement M(Bn) is the complex algebraic torus (C∗)n.

Given a multiplicity function m : Bn → N, the map fm : (C∗)n → C∗,
z 7→ zm1

1 · · · zmn
n is a morphism of complex algebraic groups. Hence, the Milnor

fiber Fm = ker(fm) is an algebraic subgroup, realized as the disjoint union of
gcd(m) copies of (C∗)n−1, with the monodromy automorphism, h : Fm → Fm,
permuting those copies in a circular fashion.

Now suppose gcd(m) = 1. Then Fm is an algebraic (n − 1)-torus and
h is isotopic to the identity, through the isotopy ht(z) = e2π i t/Nz. Thus,
the bundle Fm → M(Bn) → C∗ is trivial, and the algebraic monodromy,
h∗ : H∗(Fm;Z) → H∗(Fm;Z), is equal to the identity map. Consequently, the
characteristic polynomial of the algebraic monodromy is given by ∆q(t) =

(t− 1)(
n−1
q ) for 0 < q < n.

8.2. Generic arrangements

Let A be a central arrangement of n hyperplanes in Cd+1, where n >
d + 1 > 2. We say A is generic if the intersection of every subset of d + 1
distinct hyperplanes is the origin, in which case, A is the cone over an affine,
general position arrangement A ′ of n− 1 hyperplanes in Cd, see [45, 47].

By a classical result of Hattori ([29, Theorem 1]), the complement of
A ′ is homotopy equivalent to the d-skeleton of the real, (n − 1)-dimensional
torus Tn−1. Since U(A ) ∼= M(A′), it follows that π1(U(A )) = Zn−1 and
bq(U(A )) =

(
n−1
q

)
for q ≤ d. Moreover, if ρ : π1(U(A )) → C∗ is a non-trivial

character, then [29, Theorem 4] insures that Hq(U(A );Cρ) = 0 for q ̸= d
and dimCHd(U(A );Cρ) =

(
n−2
d

)
. It follows that the characteristic varieties of

U(A ) are given by

(8.1) V q
s (U(A )) =

{
{1} for q < d and 1 ≤ s ≤

(
n−1
q

)
,

Cn−1 for q = d and 1 ≤ s ≤
(
n−2
d

)
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and are empty otherwise.

Now let m : A → N be a choice of multiplicities, and let Fm be the
corresponding Milnor fiber. Applying formula (3.4), we find that bq(Fm) =(
n−1
q

)
for q ≤ d − 1 and bd(Fm) =

(
n−1
d

)
+ (n − 1)

(
n−2
d

)
. Consequently, the

algebraic monodromy hq : Hq(Fm;Q) → Hq(Fm;Q) is equal to the identity if
q < d, and the characteristic polynomial of hq takes the form

(8.2) ∆q(t) =

(t− 1)(
n−1
q ) if q ≤ d− 1,

(t− 1)(
n−2
d−1)(tn − 1)(

n−2
d ) if q = d.

In the case when Fm = F (A ) is the usual Milnor fiber, this recovers a result
of Orlik and Randell [45] (see also [47, 12]).

8.3. Decomposable arrangements

Recall from Section 2.2 that every flat X ∈ L2(A ) gives rise to a “lo-
calized” sub-arrangement, AX , which consists of all hyperplanes H ∈ A that
contain X. Furthermore, the inclusions AX ⊂ A yield inclusions of comple-
ments, jX : M(A ) ↪→M(AX), which assemble into a map

(8.3) j = (jX) : M
∏
X∈L2(A )M(AX).

Let j♯ : G(A ) →
∏
X∈L2(A )G(AX) be the induced homomorphism on

fundamental groups. It was shown in [24, 49] that the morphism

(8.4) gr(j♯) : gr(G(A ))
∏
X∈L2(A ) gr(G(AX))

between the respective associated graded Lie algebras is an isomorphism in
degree 2 and, after tensoring with Q, becomes surjective in all degrees greater
than 2. Since each of the groups G(AX) is isomorphic to Fµ(X) × Z, it follows
that the LCS ranks of G(A ) admit the lower bounds

(8.5) ϕk(G(A )) ≥
∑

X∈L2(A )

ϕk(Fµ(X))

for all k ≥ 2, with equality for k = 2.

Following [49], we say that a hyperplane arrangement A is decomposable
(over Q) if the third LCS rank of the group G(A ) attains the lower bound
from (8.5); that is,

(8.6) ϕ3(G(A )) =
∑

X∈L2(A )

(
µ(X)

2

)
.
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It is shown in [49] that once this condition is satisfied, equality is at-
tained in (8.5) for all k ≥ 2; in fact, the morphism gr(j♯) ⊗ Q restricts to an
isomorphism of graded Lie algebras in degrees ≥ 2.

More generally, let h(A ) be the holonomy Lie algebra of A , that is, the
quotient of the free Lie algebra on generators {xH : H ∈ A } by the ideal
generated by the Lie brackets of the form

(8.7)
[
xH ,

∑
K∈A
K⊃X

xK

]
,

for all hyperplanes H ∈ A and 2-flats X ∈ L2(A ) such that H ⊃ X. There is
then an epimorphism h(A ) ↠ gr(G(A )) that becomes an isomorphism upon
tensoring with Q (due to the 1-formality of the arrangement group). The
arrangement A is said to be decomposable over k (where k is either Z or a
field) if h3(A )⊗ k decomposes as the direct sum

⊕
X∈L2(A ) h3(AX)⊗ k. It is

shown in [49] that once this condition is satisfied, a similar decomposition holds
in all degrees k ≥ 2. Furthermore, the following is shown in [55, Theorem 8.8]:
If A is decomposable over Z, then all the nilpotent quotients G(A )/γk(G(A ))
are determined by L≤2(A ). The same proof works if A is decomposable over
Q, with the nilpotent quotients replaced by their rationalizations.

Let B(A ) = G(A )′/G(A )′′ be the Alexander invariant of an arrange-
ment A , viewed as module over the group ring Z[G(A )ab], and endowed with
the filtration by the powers of the augmentation ideal. An in-depth study of
the Alexander invariant and of the Milnor fibrations of a decomposable ar-
rangement is done in [70]. We record in the next theorem one of the main
results of this study.

Theorem 8.1 ([70]). Let A be an arrangement of rank 3 or higher. Sup-
pose A is decomposable over Q and B(A ) ⊗ Q is separated in the I-adic
topology. Then, for any choice of multiplicities m : A → N, the algebraic
monodromy of the Milnor fibration, h∗ : H1(Fm;Q) → H1(Fm;Q), is trivial.

A large supply of decomposable arrangements may be constructed by tak-
ing suitable sections of products of (central) arrangements in C2. For such an
arrangement A , the group G(A ) is a finite direct product of finitely gener-
ated free groups (see [8] for a detailed study of such arrangements). We shall
encounter two concrete examples of arrangements from this class in Section 9.

In general, though, there are decomposable arrangements for which the
arrangement group is much more complicated. For instance, let A be the
arrangement in C3 defined by the polynomial f = xyz(x + y)(x − z)(2z + y).
It is readily checked that A is decomposable (over Z). Nevertheless, the group
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G(A ) does not even have a finite-dimensional classifying space K(G(A ), 1),
see [63, Remark 12.4].

8.4. Multiplicity conditions

If F = F (A ) is the Milnor fiber of a central arrangement A in Cd+1,
d > 1, there are various combinatorial conditions insuring that the algebraic
monodromy h∗ : H1(F ;k) → H1(F ;k) over k = Z or k a field is the identity,
such as the ones given in [10, 33, 74, 75, 39].

In [74], Williams gave a very nice combinatorial upper bound on the first
Betti number of F and a criterion for triviality of the algebraic monodromy over
Z, stated in the case when A is the complexification of a real arrangement. A
partial generalization was obtained in [75], and the result was recently proved
by Liu and Xie [39] in full generality. We summarize these results, as follows.

Theorem 8.2 ([74, 75, 39]). Let A be a central arrangement of n hyper-
planes. For each hyperplane H ∈ A , set

sH =
∑

X∈L2(A )
X⊂H

(qX − 2)(gcd(qX , n)− 1),

where qX = |AX |. Then,

1. dimkH1(F ; k) ≤ n− 1 + min
{
sH : H ∈ A

}
, for all fields k.

2. ∆1(t) = (t− 1)n−1p(t), for some p(t) ∈ C[t] dividing the polynomials(
tgcd(qX ,n) − 1

t− 1

)qX−2

for all X ∈ L2(A ).

3. If there is a hyperplane H ∈ A such that gcd(qX , n) = 1 for all 2-flats
X with qX > 2 (for instance, if n is a prime), then H1(F ;Z) = Zn−1.

8.5. The double point graph

Let A be a central arrangement of planes in C3, and let Ā = P(A ) be
the corresponding arrangement of projective lines in CP2. The double point
graph associated to A is the graph Γ with vertex set A and with an edge
joining two hyperplanes H,K ∈ A if H̄∩K̄ is a double point (see [4, 58]). The
components of Γ define a partition of A which is a refinement of all partitions
induced by multinets on A .
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ℓ0

ℓ1

ℓ2

ℓ3

ℓ4ℓ5

ℓ̂0

ℓ̂4

ℓ̂5
ℓ̂3

ℓ̂2ℓ̂1

Figure 2 – The Falk arrangements A and Â .

Now suppose Γ is connected. Using results from [54], Bailet showed in
[4] that the algebraic monodromy of the Milnor fibration, h∗ : H1(F ;C) →
H1(F ;C), is the identity map, provided |AX | ≤ 9 for all X ∈ L2(A ) and either
6 ∤ |A |, or there exists a hyperplane H ∈ A such that |AX | ≠ 6, for all X ⊂ H.
Under the same connectivity assumption on Γ, Salvetti and Serventi [58] show
that A admits no multinet. Furthermore, they show that h∗ = id if Γ admits
a “good” spanning tree, and conjecture that this holds for arbitrary connected
graphs. In [73], Venturelli establishes this conjecture under the assumption
that Ā has two multiple points, P1 and P2, such that every line in Ā passes
through either P1 or P2; in [70], we give another proof of this result, in a more
general setting.

9. THE FALK ARRANGEMENTS

9.1. A pair of arrangements and their complements

In this section, we analyze in detail a pair of hyperplane arrangements
introduced by Falk in [25] and further studied in [65]. The two arrangements, A
and Â , are central arrangements of 6 planes in C3, defined by the polynomials

f = z(x− y)y(x+ y)(x− z)(x+ z),

f̂ = z(x+ z)(x− z)(y + z)(y − z)(x− y + z).
(9.1)

The projectivizations of A and Â are depicted in Figure 2; the numbering
of the lines corresponds to the ordering of the linear factors in the respective
defining polynomials. Both P(A ) and P(Â ) have 2 triple points and 9 double
points, yet the two intersection lattices are non-isomorphic: the two triple
points of P(A ) do not lie on a common line, whereas the triple points of P(Â )



278 A. I. Suciu 44

lie on a common line (namely, ℓ̂0). Nevertheless, as shown by Falk in [25],
the two projective complements, U = P(M) and Û = P(M̂), are homotopy
equivalent. Let us note that P(Â ) has a line (namely, ℓ̂5) in general position
with the others. A well-known result of Oka and Sakamoto [44] then implies
that π1(Û) splits off a Z factor; it easily follows that both groups are isomorphic
to F2 × F2 × Z.

The cohomology rings A = H∗(U ;Z) and Â = H∗(Û ;Z) are the quotients
of the exterior algebra E =

∧
(e1, . . . , e5) by the ideals I = (∂e123, e45) and

Î = (e12, e34), respectively. The automorphism E
≃−→ E given by e1 7→ e1− e3,

e2 7→ e2 − e3, e3 7→ e4, e3 7→ e5, and e5 7→ e1 + e2 + e3 induces an isomorphism
Â

≃−→ A. It is readily verified that the only multinets supported on sub-
arrangements of either A or Â are those coming from the triple points, and
that the respective characteristic varieties are given by

V 1
1 (U) = {t1t2t3 = t4 = t5 = 1} ∪ {t1 = t2 = t3 = 1},

V 1
1 (Û) = {t3 = t4 = t5 = 1} ∪ {t1 = t2 = t5 = 1}.

(9.2)

9.2. The Milnor fibers of the Falk arrangements

Let F = F (A ) and F̂ = F (Â ) be the fibers of the Milnor fibrations
f : M → C∗ and f̂ : M̂ → C∗. Since both P(A ) and P(Â ) have only double
and triple points, and since neither of the two arrangements supports a 3-
net, Theorem 4.3 shows that the characteristic polynomial of the algebraic
monodromy acting on either H1(F ;Q) or H1(F̂ ;Q) is (t−1)5. Alternatively, it
is easily verified that both arrangements are decomposable (over Z); therefore,
Theorem 8.1 shows once again that their algebraic monodromy is trivial in
degree 1. It now follows from Corollary 6.2 that both F and F̂ are formal
spaces.

Since Â contains a line meeting the other ones only in double points,
Theorem 8.2, part (3) implies that H1(F̂ ;Z) = Z5. Direct computation shows
that H1(F ;Z) = Z5, too, and so the monodromy action on both these groups
is trivial. Moreover, both Milnor fibers have Euler characteristic 6 · 4 = 24,
and thus H2(F ;Z) = H2(F̂ ;Z) = Z28. Let ζ be a primitive 6th root of unity,
and let Hk be the ζk-eigenspace of the monodromy action on H2(F ;C). Then,
by [12], we have that dimC Hk = 4 for 1 ≤ k ≤ 5 and dimC H0 = 8.

Let K = π1(F ) and K̂ = π1(F̂ ) be the fundamental groups of the two
Milnor fibers and let G = π1(M) ∼= π1(M̂). Applying Theorem 7.1, we find
that the associated graded Lie algebras, respectively, the Chen Lie algebras of
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all these groups are isomorphic in degrees 2 and more:

gr≥2(K) ∼= gr≥2(K̂) ∼= gr≥2(G),

gr≥2(K/K
′′) ∼= gr≥2(K̂/K̂

′′) ∼= gr≥2(G/G
′′).

(9.3)

From the discussion in Section 9.1, we have that G ∼= F 2
2 × Z2. Therefore, all

the LCS quotients and Chen groups of K and K̂ are torsion-free, with ranks
in degrees k ≥ 2 given by

ϕk(K) = ϕk(K̂) = 2
k

∑
d|k

µ(d)2k/d,

θk(K) = θk(K̂) = 2(k − 1).

(9.4)

Although all these homological and group-theoretic invariants of F and
F̂ agree, the two Milnor fibers are not homotopy equivalent, as the next result
shows.

Proposition 9.1. Let F and F̂ be the Milnor fibers of the two Falk ar-
rangements, and let K and K̂ be their fundamental groups. Then,

1. K/K ′′ ̸∼= K̂/K̂ ′′.

2. K/γ3(K) ̸∼= K̂/γ3(K̂).
Consequently, π1(F ) ̸∼= π1(F̂ ).

A proof of this proposition will be given in the next two subsections.

9.3. The characteristic varieties of FFF and F̂̂F̂F

The (degree 1) characteristic varieties of the Milnor fibers of the two Falk
arrangements were first computed in [65]. Since that computation was based
on a machine calculation, we redo it here by hand, using a method which works
for any arrangement with trivial algebraic monodromy in degree 1.

We start with the Milnor fiber F = F (A ). As remarked above,H1(F ;Z) =
Z5. The inclusion map ι : F → M induces a morphism ι∗ : H1(M ;C∗) →
H1(F ;C∗) on character tori, given in coordinates by

(9.5) ι∗(z1, . . . , z6) = (z1/z2, z2/z3, z3/z4, z4/z5, z5/z6).

It follows from Theorem 5.7, part (2b), that the first characteristic variety
V 1
1 (F ) ⊂ H1(F ;C∗) is the image under the map ι∗ of V 1

1 (M) ⊂ H1(M ;C∗).
Therefore,

V 1
1 (F ) = ι∗

({(
z1, z2,

1
z1z2

, 1, 1, 1
)
| z1, z2 ∈ C∗})∪

ι∗
({

(1, 1, 1, z4, z5,
1

z4z5
) | z4, z5 ∈ C∗})
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=
{(

z1
z2
, z1z

2
2 ,

1
z1z2

, 1, 1
)
| z1, z2 ∈ C∗}∪{(

1, 1, 1
z4
, z4z5 , z4z

2
5

)
| z4, z5 ∈ C∗},

and so V 1
1 (F ) ⊂ (C∗)5 is the union of two 2-dimensional subtori, T1 = {u ∈

(C∗)5 | u1u22u33 = u4 = u5 = 1} and T2 = {u ∈ (C∗)5 | u1 = u2 = u33u
2
4u5 = 1}.

Notice that

(9.6) T1 ∩ T2 = {1, (1, 1, ω, 1, 1), (1, 1, ω2, 1, 1)},

where ω = exp(2π i /3). By Theorem 3.2, the torsion characters comprising
T1∩T2 lie in V 1

2 (F ). In fact, direct computation reveals that V 1
2 (F ) = T1∩T2.

Proceeding in the same manner with the Milnor fiber of the second Falk
arrangement, F̂ = F (Â ), we obtain:

V 1
1 (F̂ ) = ι∗

({(
z1, z2, 1, 1, 1,

1
z1z2

)
| z1, z2 ∈ C∗})∪

ι∗
({

(1, 1, z3, z4, 1,
1

z3z4
) | z3, z4 ∈ C∗})

=
{(

z1
z2
, z2, 1, 1, z1z2

)
| z1, z2 ∈ C∗} ∪

{(
1, 1

z3
, z3z4 , z4, z3z4

)
| z3, z4 ∈ C∗},

and so V 1
1 (F̂ ) = T̂1 ∪ T̂2, where T̂1 = {u ∈ (C∗)5 | u1u22u

−1
5 = u3 = u4 = 1}

and T̂2 = {u ∈ (C∗)5 | u1 = u2u3u4 = u2u
−1
4 u5 = 1}. Notice that these two

subtori intersect only at the origin; in fact, direct computation shows that

(9.7) V 1
2 (F̂ ) = T̂1 ∩ T̂2 = {1}.

The above computations show that V 1
2 (F ) ̸∼= V 1

2 (F̂ ): the first variety
consists of 3 points, while the second consists of a single point. Finally, recall
from Section 3.3 that the characteristic varieties V 1

s (G) of a (finitely generated)
group G depend only on its maximal metabelian quotient, G/G′′. Therefore,
we have shown that K/K ′′ ̸∼= K̂/K̂ ′′, thereby completing the proof of part (1)
of Proposition 9.1.

Remark 9.2. Since both Milnor fibers are formal, the tangent cones to
their first characteristic varieties coincide with the first resonance varieties.
Using either this observation, together with the computations from above, or
Theorem 5.7, part (1), we find that

R1
1(F ) = {x1 + 2x2 + 3x3 = x4 = x5 = 0} ∪ {x1 = x2 = 3x3 + 2x4 + x5 = 0},

R1
1(F̂ ) = {x1 + 2x2 − x5 = x3 = x4 = 0}∪

{x1 = x2 + x3 + x4 = x2 − x4 + x5 = 0},

while R1
2(F ) = R1

2(F̂ ) = {0}. Thus, the resonance varieties do not distinguish
between π1(F ) and π1(F̂ ).
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9.4. The second nilpotent quotients of KKK and K̂̂K̂K

We now give a proof of Proposition 9.1, part (2). First consider the
projectivized complement U = U(A ) and its fundamental group, G = π1(U).
Recall that H∗(U ;Z) = E∗/I∗, where E =

∧
(e1, . . . , e5) and I = (∂e123, e45).

Writing Er = (Er)∨ and Ir = (Ir)∨ for the Z-dual groups, the second nilpotent
quotient G/γ3(G) is the central extension of gr1(G) = E1

∼= Z5 by gr2(G) =
I2 ∼= Z2 classified by the cocycle χ2 : E2 ↠ I2 given by the matrix

(9.8) χ⊺2 =

( 12 13 23 14 24 34 15 25 35 45

1 −1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1

)
.

To compute the Schur multiplier H2(G/γ3(G);Z), we use an approach
similar to the one used in the proof of [55, Theorem 4.1]. Consider the homology

spectral sequence of the central extension 0 → I2 → G/γ3(G)
ab−→ E1 → 0,

(9.9) E2
p,q = Hp(E1;Hq(I2;Z)) ⇒ Hp+q(G/γ3(G);Z).

Since the (E2, d
2) page of the cohomology spectral sequence is a CDGA, and

since its Z-dual is (E2, d2), due to lack of torsion on either of these two pages,
the differentials d2 : E

2
p,q → E2

p−2,q+1 in diagram (9.10) are determined by the

map d22,0 = χ2.

(9.10)

0 1 2 3

0

1

2

Z

Z2

Z

Z5 Z10 Z10

Z10 Z20

d 2
2,0d 2
2,0

d 2
3,0d 2
3,0

d 2
2,1d 2
2,1

Clearly, E3
2,0 = ker(d22,0) = Z8. The differential d23,0 is dual to the com-

posite E1 ⊗ I2 ↪→ E1 ⊗ E2 ↠ E3, whose kernel is generated by the elements
u1 = (e1− e2)⊗ ∂e123, u2 = (e2− e3)⊗ ∂e123, u3 = e4⊗ e45, and u4 = e5⊗ e45.
Taking transposes, we see that E3

1,1 = coker(d23,0) is equal to Z4, generated by
the duals u∨i of those elements (written in terms of the duals εi = e∨i ). Finally,
note that the map d22,1 : E2⊗I2 → I2∧I2 is surjective, since it sends ∂ε123⊗ε45
to the generator ∂ε123 ∧ ε45 of I2 ∧ I2 = Z; hence, E3

0,2 = 0. Looking at the
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domains and ranges of the higher-order differentials in the spectral sequence,
we see that E3

p,q = E∞
p,q for p+ q ≤ 2. Therefore,

(9.11) H2(G/γ3(G);Z) = E3
2,0 ⊕ E3

1,1 = Z8 ⊕ Z4 = Z12.

Consider next the Milnor fiber F = F (A ). The inclusion map ι : F (A ) ↪→
M(A ) induces a monomorphism ι∗ : H1(F ;Z) ↪→ H1(M ;Z) given in suit-
able bases by αi 7→ xi − xi+1 for 1 ≤ i ≤ 5. Letting αi = a∨i , the ring
morphism σ∗ : H∗(U ;Z) → H∗(F ;Z) is given in degree 1 by e1 7→ a1 + a5,
e2 7→ −a1 + a2 + a5, e3 7→ −a2 + a3 + a5, e4 7→ −a3 + a4 + a5, e5 7→ −a4 +2a5.
It follows that the group J2 := σ∗(I2) is free abelian, with basis σ∗(∂e123) =
3a12 − 2a13 + a23 and σ∗(e45) = a34 − 2a35 + 3a45.

The second nilpotent quotient of the group K = π1(F ) fits into the cen-

tral extension 0 → J2 → K/γ3(K)
ab−→ H → 0, where H = Kab

∼= Z5 and
J2 = (J2)∨ ∼= Z2. Furthermore, the extension is classified by the cocycle
χ2 :

∧2H ↠ J2 given by the matrix

(9.12) χ⊺2 =

( 12 13 23 14 24 34 15 25 35 45

3 −2 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 −2 3

)
.

The spectral sequence of the extension has the same entries in the E2 page
as in display (9.10). The differentials d22,0 and d22,1 are still surjective, giving

E3
2,0 = Z8 and E3

0,2 = 0. The difference, though, lies with the differential d23,0:

the elements σ∗(ui)
∨ are still in coker(d23,0), generating a Z4-summand, but

now there is an extra element of order 3 in that cokernel, namely, the element
a4 ⊗ (3a12 − 2a13 + a23). Therefore, E

3
1,1 = Z4 ⊕ Z3. Proceeding as before, we

find that H2(K/γ3(K);Z) = Z12 ⊕ Z3.

For the group K̂ = π1(F̂ ), an entirely similar computation shows that
the cokernel of d23,0 is equal to Z4, and hence H2(K̂/γ3(K̂);Z) = Z12. There-

fore, K/γ3(K) ̸∼= K̂/γ3(K̂), thereby completing the proof of Proposition 9.1,
part (2).

10. THE B3 ARRANGEMENT AND ITS DELETION

10.1. The B3B3B3 arrangement

Let A be the rank-3 reflection arrangement of type B3, defined by the
polynomial

(10.1) f = xyz(x− y)(x+ y)(x− z)(x+ z)(y − z)(y + z).
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z2
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y + z

y − z

x− y x+ y

x− z x+ z

Figure 3 – The B3

reflection arrangement,
with (3, 4)-multinet.

2

1

1

1

2 2

3 3

Figure 4 – The deleted
B3 arrangement, with

multiplicities.

Figure 3 shows a plane section of A . The B3 arrangement is of fiber-type,
with exponents {1, 3, 5}. Thus, the complement M =M(A ) is aspherical and
its projectivization, U = P(M), has fundamental group which decomposes as
a semidirect product of free groups, π1(U) = F5⋊α F3. The braid monodromy
algorithm from [13] shows that the monodromy map α : F3 → Aut(F5) takes
values in the pure braid group P5, viewed as a subgroup of Aut(F5) via the
Artin representation. Denoting by ui the generators of F3 and by Aij the
standard generators of the pure braid group (corresponding to the meridians
around the hyperplanes Hij of the braid arrangement), the monodromy map
is given by

(10.2) α(u1) = A23A24A34, α(u2) = AA24A34
14 A25, α(u3) = AA23A25

35 ,

where ab = b−1ab, see [61, Example 10.8]. Since pure braid automorphisms act
trivially in homology, the extension 1 → F5 → π1(U) → F3 → 1 is ab-exact.
Thus, by the aforementioned result of Falk and Randell [27], the LCS quotients
grk(π1(U)) are isomorphic to grk(F5) ⊕ grk(F3), for all k ≥ 1. Moreover, the
Chen ranks are given by θk(π1(U)) = (k − 1)(3k + 19) for k ≥ 4, see [60, 11],

We now turn to the cohomology jump loci of the B3 arrangement (see
[15, Remark 6.4] and [28, Example 3.6]). Notably, A supports a (non-reduced)
multinet N , depicted in Figure 3; ordering the hyperplanes as the factors of the
defining polynomial (10.1), this multinet has associated partition (189|267|345).
The resonance variety R1

1(M) ⊂ H1(M ;C) = C9 has 7 local components, cor-
responding to the 4 triple points and 3 quadruple points, 11 components cor-
responding to braid sub-arrangements, and one essential, 2-dimensional com-
ponent, P = PN . All the components of the characteristic variety V 1

1 (M) ⊂
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H1(M ;C∗) = (C∗)9 pass through the origin, and thus are obtained by exponen-
tiating the linear subspaces comprising R1

1(M). In particular, there is a single
essential component, T = exp(P ). More explicitly, the multinet N determines
a pencil,

(10.3) ψ : M S = CP1 \ {[0 : 1], [1 : 0], [1 : 1]},

which is given by ψ(x, y, z) = [x2(y2 − z2) : y2(x2 − z2)]. In turn, the induced
homomorphism ψ∗ : H1(S;Z) → H1(M ;Z) is given by c∨1 7→ 2e1 + e8 + e9,
c∨2 7→ 2e2+e6+e7, c

∨
3 7→ 2e3+e4+e5, where ci = [γi] are the homology classes

of standard loops around the punctures of S (see Section 3.2). Hence,
(10.4)

T = ψ∗(H1(S;C∗)) = {(t2, s2, (st)−2, s, s, (st)−1, (st)−1, t, t) : s, t ∈ C∗}.

Finally, let F = F (A ) be the Milnor fiber of the B3 arrangement; then
none of the aforementioned components of V 1

1 (M) contributes to a jump in
b1(F ). In fact, as first shown in [12], the monodromy h : F → F acts trivially
on H1(F ;Q); analyzing more carefully that computation shows that h acts
trivially on H1(F ;Z). Applying Theorem 7.1, we conclude that grk(π1(F ))

∼=
grk(F5)⊕ grk(F3), and θk(π1(F )) = θk(π1(U)) for all k ≥ 1.

10.2. The deleted B3B3B3 arrangement

Consider now the arrangement A ′ obtained from A by deleting the hy-
perplane {z = 0}, as shown in Figure 4. This is the deleted B3 arrangement,
defined by the polynomial

(10.5) f ′ = xy(x− y)(x+ y)(x− z)(x+ z)(y − z)(y + z).

This is again a fiber-type arrangement, with exponents {1, 3, 4}. Thus, the
complement M ′ = M(A ) is aspherical and its projectivization, U ′ = P(M ′),
has fundamental group π1(U

′) = F4 ⋊α′ F3, where, as noted in [60, Exam-
ple 10.6], the monodromy automorphism α′ is given by the pure braids A23,
AA23

13 A24, and A
A24
14 .

The cohomology jump loci of M ′ were computed in [61]. Briefly, the
resonance variety R1

1(M
′) ⊂ H1(M ′;C) = C8 contains 7 local components,

corresponding to the 6 triple points and 1 quadruple point, and 5 non-local
components, corresponding to braid sub-arrangements. In addition to the 12
subtori obtained by exponentiating these linear subspaces, the characteristic
variety V 1

1 (M
′) ⊂ H1(M ′;C∗) = (C∗)8 also contains a component of the form

ρ · T ′, where T ′ is a 1-dimensional algebraic subtorus and ρ is a root of unity
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of order 2, given by

T ′ = {(t2, t−2, t−1, t−1, 1, 1, t, t) : t ∈ C∗},
ρ = (1, 1,−1,−1,−1,−1, 1, 1).

(10.6)

As explained in [16, Example 5.7], this translated subtorus arises from
the pencil ψ from (10.3), as follows. The point [0 : 1] is not in the image of ψ;
however, extending the domain of ψ to M ′ =M ∪ {z = 0} defines a map

(10.7) ψ′ : M ′ C∗ = CP1 \ {[0 : 1], [1 : 0]}.

Note that ψ′(x, y, 0) = [x2y2 :x2y2], so the fiber over [1:1] has multiplicity
2. Therefore, we may view the map ψ′ : M ′ → (C∗, (2)) as an orbifold pencil,
with one multiple fiber of multiplicity 2. The orbifold fundamental group Γ =
πorb1 (C∗, (2)) may be identified with the free product Z∗Z2, while the character
group H1(Γ;C∗) may be identified with C∗ × {±1}. It follows from (3.6) that
V 1
1 (Γ) = C∗ × {−1}. The map ψ′ induces an epimorphism ψ′

♯ : π1(M
′) ↠ Γ,

which in turn induces a monomorphism (ψ′
♯)

∗ : H1(Γ;C∗) ↪→ H1(π1(M
′);C∗).

The image of V 1
1 (Γ) under this morphism is precisely the translated torus ρT ′ ⊂

V 1
1 (M

′). Moreover, if we let j : M ↪→ M ′ be the inclusion map between the
respective complements, then the induced homomorphism, j∗ : H1(M ′;C∗) ↪→
H1(M ;C∗), embeds ρT ′ into the torus T from (10.4). In fact, T ∩ {t ∈ (C∗)9 :
t3 = 1} = T ′ ∪ ρT ′.

10.3. Milnor fibrations of the deleted B3B3B3 arrangement

It follows from the above discussion that the deleted B3 arrangement A ′

supports no essential, reduced multinet. It is readily verified that none of
aforementioned components of V 1

1 (M
′) contributes to a jump in the first Betti

number of F ′ = F (A ′). Direct computation shows that, in fact, H1(F
′;Z) =

Z8, and so the monodromy acts trivially on H1(F
′;Z). For suitable choices

of multiplicities, though, the Milnor fiber of the multi-arrangement acquires
non-trivial 2-torsion. We treat in detail one such choice.

Let F ′
m = Fm(A ′) be the Milnor fiber of the multi-arrangement (A ′,m)

with multiplicity vector m = (2, 1, 2, 2, 3, 3, 1, 1). As noted in [9, 16], the
monodromy of the Milnor fibration acts trivially on H1(F

′
m;Q), but not on

H1(F
′
m;Z), which has torsion subgroup Z2⊕Z2 on which the monodromy acts

as
(
0 1
1 1

)
.

Let U ′ = U(A ′), and consider the pullback square on the right side of
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the following diagram

(10.8)

F ′
m

Û ′ Ŝ = (C∗, (2, 2, 2))

U ′ S = (C∗, (2)).

κ

σm
τ

ψ̂′

ν

ψ′

where ψ′ is the (projectivized) orbifold pencil from Section 10.2 and ν is the
orbifold 3-fold cover corresponding to the epimorphism πorb1 (S) = Z ∗Z2 ↠ Z3

that sends the (meridional) generator of π1(C∗) = Z to 1 and the generator
of Z2 to 0. The orbifold fundamental group Γ = πorb1 (Ŝ) is isomorphic to
Z ∗ Z2 ∗ Z2 ∗ Z2, and so TΓ = T0

Γ × {(±1,±1,±1)}, where T0
Γ = C∗. It follows

from (3.6) that

V 1
1 (Γ) = {1} ∪ (TΓ \ T0

Γ),

V 1
2 (Γ) = (1,−1,−1)T0

Γ ∪ (−1, 1,−1)T0
Γ ∪ (−1,−1, 1)T0

Γ∪
(−1,−1,−1)T0

Γ,

V 1
3 (Γ) = (−1,−1,−1)T0

Γ.

(10.9)

Moreover, the lift ψ̂′ : Û ′ → Ŝ is again an orbifold pencil.
The Z15-cover σm : F ′

m → U ′ factors as the composite F ′
m

κ−→ Û ′ τ−→ U ′,
where κ is a 5-fold cover. By Theorem 5.7, part (2a), the subvariety W 1

1 (F
′
m)

has 12 components passing through the identity of H1(F ′
m;C∗)0 = (C∗)7:

eleven subtori of dimension 2 and one subtorus of dimension 3 (which in fact
is a component of W 1

2 (F
′
m)), all obtained by pullback along σm. By Theo-

rem 5.7, part (2b), there is also a 1-dimensional component of W 1
1 (F

′
m) of the

form σ∗m(ρT ′), where ρT ′ is the translated subtorus in V 1
1 (U

′) from (10.6).
Pulling back along the map (ψ̂′ ◦κ)∗ : H1(Ŝ;C∗) → H1(F ′

m;C∗) the translated
tori comprising V 1

1 (Γ) yields seven 1-dimensional components of V 1
1 (F

′
m), of

the form ρ′σ∗m(T ′), for certain order 2 characters ρ′. Of those, 4 are also com-
ponents of V 1

2 (F
′
m), while one of those, namely,

(ψ̂′ ◦ κ)∗
(
(−1,−1,−1)T0

Γ

)
= σ∗m(ρT ′),

is the unique component of V 1
3 (F

′
m).

Finally, since A ′ is fiber-type with exponents {1, 3, 4}, the lower central
series quotients grk(π1(U

′)) are isomorphic to grk(F4) ⊕ grk(F3) for k ≥ 2,
while, by [60, 11], the Chen ranks θk(π1(U

′)) are equal to (k − 1)(k + 12) for
k ≥ 4. By Theorem 7.2, the group K = π1(F

′
m) has the same LCS and Chen

ranks as π1(U
′). In fact, it can be shown that grk(K)⊗Zp ∼= grk(π1(U

′))⊗Zp
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for all primes p ̸= 2, and likewise for the Chen groups ofK. Direct computation
shows that the first few lower central series quotients of K and K/K ′′ are as
in the following table.

k 1 2 3 4 5

grk(K) Z7 ⊕ Z2
2 Z9 ⊕ Z5

2 Z28 ⊕ Z15
2 Z78 ⊕ Z41

2 Z252 ⊕ Z117
2

grk(K/K
′′) Z7 ⊕ Z2

2 Z9 ⊕ Z5
2 Z28 ⊕ Z15

2 Z48 ⊕ Z?
2 Z68 ⊕ Z?

2

11. YOSHINAGA’S ICOSIDODECAHEDRAL ARRANGEMENT

In this final section, we describe an arrangement, introduced by Yoshinaga
in [76], which exhibits 2-torsion in the first homology of its (usual) Milnor fiber.

11.1. Mod-222 Betti numbers of 222-fold covers

Before proceeding with the example, we return to the general setup for
computing the homology of finite abelian covers treated in Section 3.4, ap-
proached this time from a different angle.

Let p : Y → X be a regular ZN -cover, classified by a homomorphism
α : π1(X) → ZN . Alternatively, we may view α as a cohomology class in
H1(X;ZN ), called the characteristic class of the cover. The covering space
Y = Xα is connected if and only if the homomorphism α is surjective, in
which case π1(Y ) = ker(α). In the case when N = 2, more can be said. The
next two results were first proved in [76] and then strengthened in [66].

Lemma 11.1 ([76, 66]). Let p : Y → X be a connected Z2-cover, with
characteristic class α ∈ H1(X;Z2). Then p lifts to a connected, regular Z4-
cover p̄ : Y → X if and only if α2 = 0.

Proposition 11.2 ([76, 66]). Let p : Y → X be a 2-fold cover, classified
by a non-zero class α ∈ H1(X;Z2). Suppose that α2 = 0. Then, for all q ≥ 1,

(11.1) bq(Y,Z2) = bq(X,Z2) + dimZ2 H
q(H∗(X;Z2), δα),

where the differential δα : H
∗(X;Z2) → H∗+1(X;Z2) is given by δα(u) = αu.

In particular, bq(Y,Z2) ≥ bq(X,Z2).

Further work on the integral homology groups of double covers, and how
this homology relates to the homology with coefficients in rank 1 integral local
systems on the base of the cover can be found in [59, 36, 38].
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Figure 5 – The icosidodecahedral arrangement.

11.2. Modular inequalities

Once again, let Y → X be a connected Z2-cover with characteristic class
α ∈ H1(X;Z2). Assuming H∗(X;Z) is torsion-free, it follows from [53, Theo-
rem C] that

(11.2) bq(Y ) ≤ bq(X) + dimZ2 H
q(H∗(X;Z2), δα).

When U = U(A ) is the projectivized complement of a hyperplane ar-
rangement A , an explicit formula was proposed in [54, Conjecture 1.9], ex-
pressing the first Betti number b1(F ) of the Milnor fiber of the arrangement in
terms of the resonance varieties R1

s (U,Zp), for p = 2 and 3, generalizing the
formula from Theorem 4.3. At the prime p = 2, the conjecture is equivalent
to the inequality (11.2) holding as equality in degree q = 1 for the 2-fold cover
Uα → U corresponding to the class α ∈ H1(U ;Z2) which evaluates to 1 on
each meridional generator of H1(U ;Z2).

In recent work [31], Ishibashi, Sugawara, and Yoshinaga revisit this topic.
In [31, Corollary 2.5], they prove that equality holds in (11.2) if and only if
H1(Y ;Z) has no non-trivial 2-torsion. Therefore, the formula conjectured in
[54] fails at the prime p = 2 precisely when H1(U

α;Z) has non-trivial 2-torsion.
An explicit example where this happens is given next.

11.3. The icosidodecahesdral arrangement

In [76], Yoshinaga constructed an arrangement of 16 hyperplanes in C3

with some remarkable properties. The construction is based on the symmetries
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of a polyhedron in R3, called the icosidodecahedron. This is a quasiregular
polyhedron with 20 triangular and 12 pentagonal faces that has 30 vertices
(each one at the intersection of 2 triangles and 2 pentagons), and 60 edges
(each one separating a triangle from a pentagon). Letting ϕ = (1 +

√
5)/2

denote the golden ratio, the vertices of an icosidodecahedron with edges of unit
length are given by the even permutations of (0, 0,±1) and 1

2(±1,±ϕ,±ϕ2).
One can choose 10 edges to form a decagon, corresponding to great cir-

cles in the spherical tiling; there are 6 ways to choose these decagons, thereby
giving 6 planes. Each pentagonal face has five diagonals, and there are 60 such
diagonals in all, which partition in 10 disjoint sets of coplanar ones, thereby
giving 10 planes, each containing 6 diagonals. These 16 planes form an arrange-
ment AR in R3, whose complexification is the icosidodecahedral arrangement
A depicted in Figure 5.

The projective line arrangement P(A ) has 15 quadruple points and 30
double points. The projective complement U = U(A ) is aspherical [35], and
has Poincaré polynomial P (t) = 1 + 15t+ 60t2. Let F = F (A ) be the Milnor
fiber of is arrangement. As shown in [76], we have that H1(F ;Z) = Z15 ⊕ Z2.
Thus, the algebraic monodromy of the Milnor fibration is trivial over Q, but
not over Z.

Since the monodromy of the Milnor fibration acts trivially on H1(F ; k)
for every field k of characteristic different from 2, the results of [68] show that
gr(π1(F ))⊗k ∼= gr(π1(U))⊗k for such fields k. Direct computation shows that
the first few lower central series quotients of the group K = π1(F ) and of its
maximal metabelian quotient are given by

k 1 2 3 4

grk(K) Z15 ⊕ Z2 Z45 ⊕ Z7
2 Z250 ⊕ Z43

2 Z1,405 ⊕ T

grk(K/K
′′) Z15 ⊕ Z2 Z45 ⊕ Z7

2 Z250 ⊕ Z43
2 Z530 ⊕ T

where T is a finite abelian 2-group and T is a quotient of T .
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