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LOCAL LINEAR MORSIFICATIONS
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The number of Morse points in a Morsification determines the topology of the
Milnor fibre of a holomorphic function germ f with isolated singularity. If f has
an arbitrary singular locus, then this nice relation to the Milnor fibre disappears.
We show that despite this loss, the numbers of stratified Morse singularities of
a general linear Morsification are effectively computable in terms of topological
invariants of f .
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1. INTRODUCTION

One may deform a holomorphic function germ f : (Cn+1, 0) → (C, 0) in a
continuous one-parameter family fλ : (Cn+1, 0) → (C, 0) with f0 = f , such that
all the singularities of fλ close to the origin are Morse, for any small enough
λ ̸= 0. Such a deformation is called Morsification of f and a typical question
one may ask is: how many Morse points of fλ converge to the origin 0 ∈ Cn+1

when λ → 0?
In case f has isolated singularity, Brieskorn showed in [1, Appendix] that

this number of Morse points is precisely the Milnor number of f at 0. This
coincidence is based on the constancy of the topology of the general fibre of fλ
inside a fixed ball.

In the case f has nonisolated singularities, while Morsifications still exist,
there is no more conservation of the fibre topology and it was unknown whether
one can still have some topological control over this phenomenon. In particular:
can one count the Morse points of a Morsification of f in terms of topological
invariants of f only?

This type of question occurs in real geometry for the distance function
du in [2], and gives rise to the well-known by now Euclidean distance degree,
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abbreviated ED-degree. In case the centre u of the distance function du cannot
be chosen in a general position, the situation is similar to having an initial
function with nonisolated singularities, and a linear deformation of it.

In the global setting of a complex polynomial P on a complex affine
variety X ⊂ CN , a topological interpretation of the ED-degree in terms of
Euler obstruction has been found by Maxim, Rodriguez and Wang in [8]. For
a linear deformation of a complex polynomial function, they have computed
in [9] the number of Morse points on the regular part Xreg of a singular affine
spaceX, under the condition that no Morse point escapes to infinity, in terms of
finitely many local multiplicities nV at strata V ⊂ SingP . These multiplicities
are not easy to grip; they have been further investigated in [10]. Formulas
rely on relatively heavy computations of vanishing cycles based on the Euler
obstruction. A different way of computing the stratified Morse numbers is
developed in [12] based on polar curve techniques.

We address here the case of a holomorphic function germ f with non-
isolated singularity and remark, first of all, that the number of Morse points
clearly depends on the type of deformation. For example, f(x, y) = x3. The
family fλ = x3−λ(x+by) for b ̸= 0, is a linear Morsification of f , and the num-
ber of Morse points of fλ is equal to zero. If instead of a linear Morsification,
we consider a quadratic Morsification of f , for instance Fλ := f − λ(x2 + y2),
then Fλ has two Morse points, for λ ̸= 0.

If we focus to linear Morsifications, i.e. deformations of the type fλ :=
f − λℓ for some general linear function ℓ, then the number of Morse points
acquires a precise meaning. Moreover, our setting will be fully general: let
(X, 0) ⊂ (CN , 0) be a singular analytic set germ, and let f : (X, 0) → (C, 0) be
a holomorphic function germ. For a generic ℓ, the linear deformation fλ is a
Morsification, and the number of stratified Morse points of fλ which converge
to the origin when λ → 0 is stratwise constant (cf. Section 2 for the definitions).
We address here the above question from a radically different viewpoint within
the class of linear Morsifications. We give a method for computing the Morse
numbers mV (f), i.e. the numbers of Morse points which abut to 0 when λ → 0
on each stratum V of the canonical stratification W of X. Our Theorem 2.5
shows the following formula in terms of polar multiplicities:

(1) mV (f) = mult0
(
ΓV (ℓ, f), {f = 0}

)
−mult0

(
ΓV (ℓ, f), {ℓ = 0}

)
,

where ΓV (ℓ, f) is the generic polar curve of f restricted to the stratum V (cf.
Section 2 for details). Surprisingly, this formula looks exactly as if f were with
isolated singularity. There are two known proofs of (1) in case f has isolated
singularity : Massey’s proof [7] with rather involved vanishing cycles computa-
tions, and a much shorter one in [11], by induction and using the comparison
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between two types of bouquet structure formulas for the Milnor fibre. Both
proofs are based on the constancy of the Milnor fibre, already pointed out
above, which cannot be exploited anymore when f has nonisolated singular-
ities. The same principle has been used recently by Zach [17] for computing
the Morse numbers mV (f) through a cohomological method, still in case of an
isolated singularity. The proof that we propose here is also different from the
proofs developed in [12] for a far more general setting; we hope that it will
interest the reader by its effectivity side.

A simple formula like (1) in case of a function germ f with higher di-
mensional singular locus was hardly expected because the fibre topology of f
is destroyed by the Morsification fλ. A change of paradigm was clearly needed
for addressing this setting.

Long time awaited since Brieskorn’s result in 1970 for the case of isolated
singularities, the solution to the aforementioned question of computing the
stratwise Morse numbers of f in case of nonisolated singularities goes back
to the fundamentals and offers a new perspective over the phenomenon of
Morsification in the complex setting, together with a new method with far-
reaching possibilities of applications due to its effectivity.

2. LINEAR MORSIFICATIONS

Let (X, 0) ⊂ (CN , 0) be a singular irreducible space germ of pure dimen-
sion n + 1 ≥ 2, and let f : (X, 0) → (C, 0) be a non-constant holomorphic
function germ.

One may endow some small neighbourhood of X with a Whitney strati-
fication with finitely many strata such that its regular part Xreg is a stratum.
The roughest such stratification (with respect to inclusion of strata) exists, it is
called the canonical Whitney stratification of X, and we will use it here under
the notation W .

Let SingW f :=
⋃

V ∈W Sing f|V denote the stratified singular locus of f
with respect to W . It is a closed set that we view as a set germ at the origin.

Let us define what we mean by general linear Morsification of f .

Definition 2.1 (Stratified Morse function, after Goresky and MacPherson
[3]). We say that a holomorphic function h : X ∩ B → C defined on some
small neighbourhood B of 0 is a stratified Morse function with respect to the
stratification W if h has only stratified Morse singularities on the positive
dimensional strata of W , and h is general at 0.

For some linear function ℓ : CN → C, we consider the map

(ℓ, f) : (X, 0) → (C× C, (0, 0))



298 M. Tibăr 4

and its stratified singular locus SingW (ℓ, f) :=
⋃

V ∈W Sing(ℓ, f)|V , where

Sing(ℓ, f)|V := {x ∈ V | rank Jac(ℓ|V , f|V ) < 2}.

Then SingW (ℓ, f) is a closed set due to the Whitney regularity of the stratifi-
cation W , and we will refer to it as a set germ at the origin.

Definition 2.2 (Polar locus). One says that

Γ(ℓ, f) := SingW (ℓ, f) \ SingW f ⊂ X

is the polar set of f with respect to the function ℓ, and we will refer to it as a
set germ at the origin.

The following fundamental result of Bertini–Sard type goes back to Hamm
and Lê [4] and Kleiman [5], see also e.g. [16]:

Lemma 2.3 (Local Polar Curve Lemma). There is a Zariski open dense
subset Ω′ ⊂ P̌N−1 such that the polar locus Γ(ℓ, f) is either a curve for all
ℓ ∈ Ω′, or is empty for all ℓ ∈ Ω′.

In the non-empty case, there exists moreover a Zariski open subset Ω ⊂ Ω′

such that Γ(ℓ, f) is reduced, and that the restriction (ℓ, f)|Γ(ℓ,f) is one-to-one.

We will say that ℓ ∈ Ω is a “general linear function”. If the polar curve
germ Γ(ℓ, f) is not empty then it decomposes as:

Γ(ℓ, f) =
⋃

V ∈W

ΓV (ℓ, f)

where ΓV (ℓ, f) denotes the union of the irreducible curve components that are
included in V ∪ {0}.

Definition 2.4. Let f : (X, 0) → (C, 0) be a non-constant holomorphic
function germ. We say that the family of holomorphic function germs fλ :=
f −λℓ is a general linear Morsification of f = f0 if ℓ ∈ Ω and λ is close enough
to 0 ∈ C.

From now on, we will consider general linear Morsifications only. By
comparing the definitions of the polar locus ΓV (ℓ, f) with that of the singular
locus Sing(fλ|V ), one concludes that the Morse points of the restriction fλ|V
belong to ΓV (ℓ, f).

We then consider the following numbers:

(2) mV (f) := #

{
Morse points of the restriction (fλ)|V
which converge to 0 as λ → 0

}
.

From the definition, it follows that the numbers mV (f) are independent
of the generic ℓ ∈ Ω. We will call them the stratified Morse numbers of f . They
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have been introduced in [11] in case of isolated singularities. What we prove
here is that, surprisingly, the same polar formula [11, Theorem 3.1] holds for
the stratified Morse numbers in the fully general setting of any singular locus
of f . However, one needs a totally different principle of proof.

Theorem 2.5. Let f : (X, 0) → (C, 0) be some singular non-constant
holomorphic function germ, let ℓ ∈ Ω be a general linear function, and let
V ∈ W be a positive dimensional stratum. Then:

(3) mV (f) = mult0
(
ΓV (ℓ, f), {f = 0}

)
−mult0

(
ΓV (ℓ, f), {ℓ = 0}

)
.

We tacitly use the convention that the multiplicity mult0 (ΓV (ℓ, f), ∗) is
zero if ΓV (ℓ, f) = ∅. In particular, if Γ0,V (ℓ, f) is empty then mV (f) = 0.

3. PROOF OF THEOREM 2.5

Let fλ(x) = f(x)−λℓ(x) be a general linear Morsification of f , for ℓ ∈ Ω.
Our method for computing the numbers mV (f) uses the following conve-

nient identification of the sets of stratified Morse points.

Lemma 3.1. Let ℓ ∈ Ω, and let V ∈ W be a positive dimensional stratum
of X. The set of Morse singularities of fλ on V is:{

p ∈ V ∩ ΓV (ℓ, f) | multp(ΓV (ℓ, f), {fλ|V = fλ(p)}) = 2
}
.

Proof. The Morse points of the restriction of fλ = f−λℓ to some stratum
V satisfy the equations of the polar curve ΓV (ℓ, f), thus a Morse point p =
p(λ) ∈ V has a trajectory inside ΓV (ℓ, f) which abuts to the origin as λ → 0.

We consider now the restrictions of all functions to the smooth stratum
V . The branches of the polar curve inside V ∪ {0}, that we have denoted
by ΓV (ℓ, f), are non-singular outside 0, in particular non-singular at p(λ) for
λ ̸= 0 close enough to 0. Since ℓ|V is general with respect to fλ|V at p, we may
apply the classical results [6], [16] to the singular fibration defined by the map
germ (ℓ, fλ)|V at p. More precisely, the restriction fλ|V has a Morse singularity
at p, thus the function germ fλ|V at p has Milnor number equal to 1. As the
function germ ℓ|V is non-singular and transversal to the polar curve ΓV (ℓ, f) at
p, we have multp

(
ΓV (ℓ, f), {ℓ = ℓ(p)}

)
= 1. The polar formula for the number

of vanishing cycles1 applied at the Morse point p of f takes thus the form:

1 = multp
(
ΓV (ℓ, fλ), {fλ|V = f(p)}

)
−multp

(
ΓV (ℓ, fλ), {ℓ|V = ℓ(p)}

)
.

It then follows that multp
(
ΓV (ℓ, fλ), f

−1
λ|V (f(p)

)
= 2. We have the equality

of set germs at p: ΓV,p(ℓ, fλ) = ΓV,p(ℓ, f). Indeed, the Morse point p of

1See also [15], [7], or the “comparison theorem” in [10], [11].
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fλ is not on Sing f (by the genericity of ℓ) and the two sets are defined by
the same equations in the neighbourhood of p. We therefore, have shown:
multp

(
ΓV (ℓ, f), f

−1
λ|V (f(p)

)
= 2.

Reciprocally, if fλ|V has no (Morse) singularity at p(λ) ∈ ΓV (ℓ, f) then,
since its Milnor number at p is 0, we have, as above, the equality:

0 = multp
(
ΓV (ℓ, fλ), {fλ|V = f(p)}

)
−multp

(
ΓV (ℓ, fλ), {ℓ|V = ℓ(p)}

)
,

which implies multp
(
ΓV (ℓ, f),

{
fλ|V = f(p)

})
= 1 after replacing ΓV (ℓ, fλ) by

ΓV (ℓ, f) as explained above. The proof is complete.

In view of the above proof, the Morse points of fλ on V are precisely the
tangency points between the polar curve ΓV (ℓ, f) and the fibres of fλ.

3.1. Reduction to C2C2C2

We consider the map germ (ℓ, f) : (X, 0) → (C2, 0). The image by (ℓ, f)
of the fibre {fλ = α} is then the line v − λu = α, for any λ ∈ C, where (u, v)
denote the coordinates in the target C2. For some positive dimensional stratum
V ∈ W , we have the images:

∆V := (ℓ, f)(ΓV (ℓ, f)) and ∆ := (ℓ, f)(Γ(ℓ, f)).

Let also γ ⊂ ΓV (ℓ, f) denote some polar branch, and let

δγ := (ℓ, f)(γ) ⊂ ∆V

be its image. Since ℓ ∈ Ω, the restriction (ℓ, f)| : Γ(ℓ, f) → ∆ is one-to-one (cf.
Lemma 2.3), which induces the equalities of intersection multiplicities:

(4)
mult0

(
ΓV (ℓ, f), f

−1
λ (0)

)
= mult0

(
∆V , {v − λu = 0}

)
,

mult0
(
ΓV (ℓ, f), ℓ

−1(0)
)
= mult0

(
∆V , {u = 0}

)
Moreover, the map (ℓ, f) establishes the following one-to-one correspon-

dence of finite sets in some small enough fixed pointed ball B∗ ⊂ X at the
origin, and for λ close enough to 0:{

tangency point between
ΓV (ℓ, f) and the fibres of fλ

}
∼7−→


tangency point between ∆V

and the fibres of the linear
function g(u, v) := v − λu

 .

This implies that the tangency points of Γ(ℓ, f) to fibres of fλ which
converge to the origin as λ → 0 are in one-to-one correspondence with the
tangency points of ∆ to lines v − λu = α which converge to 0 as λ → 0.
Moreover, this bijective correspondence falls into one-to-one correspondences
for each branch γ ∈ Γ(ℓ, f) and its image δγ .
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For any branch δ of ∆ ⊂ C2, let us then define the number:

mδ := #

{
points of tangency of δ with the fibres of
g(u, v) = v − λu which converge to 0 as λ → 0

}
.

As we have remarked before, in the definition of mδ, we understand by
“point of tangency” a point q ∈ ∆\{0} such that multq(∆, {v−λu = α}) = 2,
where α = v(q)− λu(q).

By using (4) and Lemma 3.1, we then deduce the following equality:

(5) mV (f) =
∑
δ∈∆V

mδ.

3.2. Computation of mδmδmδ

After (5), computing mV (f) relies on that of each mδ. So let δ be a
branch of ∆ ⊂ C2, and let δ(s) : u = si, v = asj + h.o.t. be a local Puiseux
parametrisation of it. We have here j ≥ i due to the fact that ℓ is a general
function with respect to f , in the sense of the Polar Curve Lemma 2.3.

A side comment is due here: the strict inequality j > i holds in case
f ∈ m2

X , where mX denotes the maximal ideal of germs of functions on (X, 0),
and is a consequence of the tangency of ∆ to the axis {v = 0}. This fact has
been proved in full generality in [14], and it allows to show the existence of
a geometric monodromy of f without fixed points, cf. [14]. This had been
previously proved by D. T. Lê in [6] in the smooth case X = Cn.

The tangency condition occurring in the definition of mδ, between the
parametrised arc δ(s) and the fibres of the function g(u, v) = v − λu, reads:〈

(−λ, 1),
(du
ds

,
dv

ds

)〉
= 0,

where λ denotes the complex conjugate of δ, and ⟨·, ·⟩ is the Hermitian inner
product. This amounts to:

(6) −λisi−1 + ajsj−1 + h.o.t. = 0.

By its definition, the value mδ equals the number of non-zero solutions
of (6) which converge to 0 when λ → 0. Thus, after dividing out in (6) by the
factor si−1, we obtain the equation:

−λi+ ajsj−i + h.o.t. = 0

which has precisely j − i solutions that converge to 0 when λ → 0.
On the other hand, by the definition of δ(s), we have

mult0
(
δ, {v = 0}

)
= j, and mult0

(
δ, {u = 0}

)
= i.
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We obtain the equality:

mδ = mult0(δ, {v = 0})−mult0(δ, {u = 0}).

By summing up these equalities over all δ ∈ ∆V as in (5), we get:

(7) mV (f) = mult0 (∆V , {v = 0})−mult0 (∆V , {u = 0}) .

Using (4), the equality (7) lifts by the map (ℓ, f) to the equality (3). This
finishes our proof of Theorem 2.5.

Example 3.2. Let X = C2, and f(x, y) = xky, for some integer k ≥ 2.
The singular locus is Sing f = {x = 0}. This is a D∞-singularity in Siersma’s
list [13] of line singularities. For ℓ = x+y, the deformation fλ := f−λ(x+y) is a
general linear Morsification. The polar curve Γ(ℓ, f) is the line {x = ky} ⊂ C2,
and by computing the intersection multiplicities of formula (3) we easily find
that the Morse number of f is mC2(f) = k+1−1 = k, which may be confirmed
by a direct computation of the Morse singularities of the function fλ.

Another example, still from Siersma’s list of line singularities [13], is
J∞: f(x, y) = x2y2 + x3, with the same singular locus Sing f = {x = 0}.
Again, fλ := f − λ(x + y) is a general linear Morsification. Here, the polar
curve Γ(ℓ, f) has equation 2xy − 2y2 − 3x = 0. Applying Theorem 2.5, we get
that the Morse number of f is mC2(f) = 6− 1 = 5.
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[11] L. Maxim and M. Tibăr, Morse numbers of function germs with isolated singularities.
Q. J. Math. 74 (2023), 4, 1535–1544.
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