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In this work, we examine one two-parameter family of sets consisting of functions
holomorphic in the unit disk, previously investigated by several mathematicians.
We focus on the set-theoretic properties of this family, identify the general form of
filtrations within it, and discover that it is not a lattice. This insight motivates
us to introduce a refined concept of quasi-infima and quasi-suprema, and to
establish their complete description. Unexpectedly, some new properties of the
Gauß hypergeometric function play a crucial role in our investigation.
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1. INTRODUCTION

The paper explores sets Ats of functions that are holomorphic in the open
unit disk D, normalized by f(0) = f ′(0)− 1 = 0 and satisfy the inequality

Re
[
(s− 1)

f(z)

z
+ f ′(z)

]
≥ st, z ∈ D \ {0},

where s > 0 and 0 ≤ t < 1. In addition to intrinsic interest, these sets appeared
in the investigation of extreme points of classes of univalent functions in [8],
in a relation to certain integral transforms, see [11], as well as in the study
of infinitesimal generators of semigroups in [4]. For more results on different
families of holomorphic functions, the reader can consult the book [7]. Here,
we are interested in the set-theoretic structure of the family A := {Ats}.

It appears that to investigate certain set-theoretic properties, a prerequi-
site understanding of Gauß hypergeometric functions is necessary. In this con-
nection, it should be noted that in recent decades many authors have studied
geometric properties of hypergeometric functions (see, for example, [1, 13, 15]).
New results regarding sums of products and ratio of hypergeometric functions
were established in [3, 10]. In paper [12], the zero-balanced hypergeometric
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function 2F1(1, s; s + 1; z) was applied to establishing new conditions for uni-
valence and starlikeness of certain transforms.

In Section 2, a zero-balanced hypergeometric function 2F1(1, s; s + 1; z)
is considered. We discover its subtle characteristics as a function of s. In
the subsequent sections, we elaborate on an approach that capitalizes on the
dependence of the hypergeometric function 2F1(1, s; s+1; z) on its parameter.

In Section 3, we concentrate on the two-parameter family A which is the
main object of the study in this paper. Conditions that entail/exclude the
inclusion of two elements of this family into one another are derived.

The results on the inclusion relation are applied in Section 4 to answer
our main questions. The first one is:

• How to characterize all filtrations included in this family? Recall that
a one-parameter family of sets {Ft} is a filtration (see, for example, [2, 4, 6])
if it is ordered, more precisely, Fs ⊂ Ft whenever s < t.

This problem is partially addressed in [4]. In Theorem 4.2, we give the
complete answer.

Another question is:

• Is the whole family a lattice? Recall that a partially ordered family
G = {Gα} endowed with the relation ⊂ is lattice if each pair of elements has
the unique supremum and the unique infimum.

By definition, the supremum of the pair G1,G2 ∈ G (if it exists) is the
element of G denoted by sup(G1,G2) such that G1 ∪ G2 ⊂ sup(G1,G2) and
if G1 ∪ G2 ⊂ G∗ for some G∗ ∈ G, then sup(G1,G2) ⊂ G∗. Analogously, the
infimum is the element inf(G1,G2) such that inf(G1,G2) ⊂ G1 ∩ G2 and the
inclusion G∗ ⊂ G1 ∩G2 implies G∗ ⊂ inf(G1,G2).

Definition 4.3 introduces refined concepts: sets of quasi-infima and quasi-
suprema. We give the complete description of quasi-extrema for each pair of
elements of A in Theorem 4.4.

Furthermore, the observation below shows that if a pair G1,G2 ∈ G has
a supremum, then the quasi-supremum coincides with the supremum and so it
is unique. Since, according to our results, it is not the case that for every pair
of elements of A there is a unique quasi-supremum, we conclude:

The family A =
{
Ats

}
is not a lattice.

In the last Section 5, we pose several questions for a forthcoming investi-
gation.
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2. SOME NEW PROPERTIES OF THE HYPERGEOMETRIC
FUNCTION

To prove the main result of this section, we need two auxiliary lemmata.

Lemma 2.1. Let ψ1 and ψ2 be continuous functions defined for x > 0 by
the formulas

ψ1(x) :=
2(1 + x)

x2
log

(
1 +

x2

4(1 + x)

)
, ψ2(x) :=

2 + x+ (1 + x) log(1 + x)

(2 + x)2

and ψ1(0) = ψ2(0) =
1
2 . Then the equation ψ1(x) = ψ2(x) has a unique solution

in (0,∞).

The proof of this lemma is very technical and long. For this reason, we
present it in Appendix at the end of the paper.

The next assertion is a simple consequence of the theorem on integral
average.

Lemma 2.2. Let −∞ ≤ a < b ≤ ∞ and functions ϕ, ψ ∈ C(a, b) satisfy

(i) ϕ is bounded, positive and decreasing;

(ii) there is t0 ∈ (a, b) such that ψ(t) < 0 as t ∈ (a, t0) and ψ(t) > 0 as
t ∈ (t0, b);

(iii) the improper integral
∫ b
a ψ(t)dt equals zero.

Then
∫ b
a ϕ(t)ψ(t)dt < 0.

Proof. Conditions (ii) and (iii) imply that
∫ b
t0
ψ(t)dt = −

∫ t0
a ψ(t)dt > 0.

Therefore, for any t1 ∈ (a, t0) there is a unique t2 ∈ (t0, b) such that

0 <

∫ t2

t0

ψ(t)dt = −
∫ t0

t1

ψ(t)dt =: A(t1)

and t2 → b− as t1 → a+. By the integral average theorem, there are points
t∗ ∈ (t1, t0) and t

∗∗ ∈ (t0, t2) such that∫ t0

t1

ϕ(t)ψ(t)dt = ϕ(t∗)

∫ t0

t1

ψ(t)dt = −ϕ(t∗)A(t1),∫ t2

t0

ϕ(t)ψ(t)dt = ϕ(t∗∗)

∫ t2

t0

ψ(t)dt = ϕ(t∗∗)A(t1).

Thus,∫ b

a
ϕ(t)ψ(t)dt = lim

t1→a+

[∫ t0

t1

ϕ(t)ψ(t)dt+

∫ t2

t0

ϕ(t)ψ(t)dt
]
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= lim
t1→a+

[
−ϕ(t∗)A(t1) + ϕ(t∗∗)A(t1)

]
= lim

t1→a+

[
−ϕ(t∗) + ϕ(t∗∗)

]
A(t1) < 0,

because t∗ < t0 < t∗∗ and thanks to condition (i).

Choosing in this lemma ϕ(t) = e−st, we conclude the following.

Corollary 2.3. Let function ψ ∈ C(0,∞), ψ(t) < 0 as t ∈ (0, t0) for
some t0 ∈ (0,∞), ψ(t) > 0 as t ∈ (t0,∞), and

∫∞
0 ψ(t)dt = 0. Then the

Laplace transform L[ψ](s) is negative in s > 0.

We now turn to the Gauß hypergeometric function 2F1(a, b; c; ·). Here,
a, b, c ∈ C are parameters that satisfy 0 < Re b < Re c. Recall that this function
is defined for z ∈ D by
(1)

2F1(a, b; c; z) = 1 +

∞∑
n=1

(a)n(b)n
(c)nn!

zn =
Γ(c)

Γ(b)Γ(c− b)

∫ 1

0

xb−1(1− x)c−b−1

(1− zx)a
dx,

where (α)n = Γ(α+n)
Γ(α) = α · (α + 1) · . . . · (α + n − 1) is the Pochhammer

symbol. For geometric properties of 2F1(a, b; c; z), we refer to the useful papers
[1, 13, 15] and the references therein. If c = a+ b, the hypergeometric function

2F1(a, b; a+ b; z) is called zero-balanced.

We now consider the following functions:

(2) ξ0(s) := 22F1(1, s; s+ 1;−1)− 1 =

∫ 1

0

1− x

1 + x
sxs−1dx

and

(3) ξ1(s) :=
1− ξ0(s)

2s
, ξ2(s) := 2sξ0(s), ξ3(s) :=

1− ξ0(s)

2sξ0(s)
, s > 0.

Theorem 2.4. The functions ξ0, ξ1, ξ2 and ξ3 are continuous on (0,∞).
Moreover,

(i) function ξ0 is decreasing and maps (0,∞) onto (0, 1) and such that the
function s 7→ s2ξ′0(s) is decreasing;

(ii) function ξ1 is decreasing and maps (0,∞) onto (0, ln 2);

(iii) function ξ2 is increasing and maps (0,∞) onto (0, 1);

(iv) function ξ3 is increasing and maps (0,∞) onto (ln 2, 1).
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Thus, since these functions are monotone, they can be extended to [0,∞) and
even be defined by continuity at ∞.

Proof. Since

ξ′0(s) =

∫ 1

0

1− x

1 + x
· ∂
∂x

(xs lnx) dx =

∫ 1

0

2xs lnx

(1 + x)2
dx < 0,

function ξ0 is decreasing. In addition,

(
s2ξ′0(s)

)′
= −2

1∫
0

1− x

(1 + x)3
xs ln2 x dx < 0,

so, statement (i) follows.
Further, note that ξ1(s) =

∫ 1
0

xs

1+x dx, which implies statement (ii).
As for function ξ2, fix arbitrary s2 > s1 > 0. According to Cauchy’s

mean value theorem applied to the functions ξ0(s), 1/s ∈ C[s1, s2], there is
s̃ ∈ (s1, s2) such that

ξ′0(s̃)

−1/s̃2
=
ξ0(s2)− ξ0(s1)

1/s2 − 1/s1
.

Since the function s2ξ′0(s) is decreasing, s21ξ
′
0(s1) > s̃2ξ′0(s̃) = − ξ0(s2)−ξ0(s1)

1/s2−1/s1
.

Letting s2 → ∞, we conclude that s1ξ
′
0(s1) > −ξ0(s1). Because the point s1 is

arbitrary, one has
ξ′0(s)
ξ0(s)

+ 1
s > 0, or, which is the same, (log ξ2(s))

′ > 0. Thus,

statement (iii) is proved.
To prove statement (iv), one has to show that ξ′3(s) > 0. This inequality

is equivalent to

(4) g(s) < 0, where g(s) :=
(
1− ξ0(s)

)
ξ0(s) + sξ′0(s).

Return to the integral in (2) defining the function ξ0 and substitute there
x = e−t:

ξ0(s) =

∫ ∞

0

1− e−t

1 + e−t
se−tsdt = sL

[1− e−t

1 + e−t

]
(s) = L

[ 2e−t

(1 + e−t)2

]
(s),

where L is the Laplace transform. Similarly,

1− ξ0(s) =

∫ ∞

0

2e−t

1 + e−t
se−tsdt = sL

[ 2e−t

1 + e−t

]
(s)

and

ξ′0(s) = −L
[ 2te−t

(1 + e−t)2

]
(s).

Thus, g takes the form

g(s) = L
[ 2e−t

(1 + e−t)2

]
(s) · sL

[ 2e−t

1 + e−t

]
(s)− sL

[ 2te−t

(1 + e−t)2

]
(s)
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= 2sL
[ 2e−t

(1 + e−t)2
∗ e−t

1 + e−t
− te−t

(1 + e−t)2

]
(s).

In order to calculate the convolution, we first find the primitive function:∫
2e−x

(1 + e−x)2
· ex−t

1 + ex−t
dx =

2et log(ex + 1)

(et − 1)2
+

2

(et − 1)(ex + 1)

− 2et log(et + ex)

(et − 1)2
+ C.

Thus,

2e−t

(1 + e−t)2
∗ e−t

1 + e−t
=

4et log(et + 1)

(et − 1)2
− 4et log 2

(et − 1)2
− 2tet

(et − 1)2
− 1

et + 1

and

g(s)

2s
= L

[4et log(et + 1)

(et − 1)2
− 4et log 2

(et − 1)2
− 2tet

(et − 1)2
− 1

et + 1
− te−t

(1 + e−t)2

]
(s)

= L
[ 2et

(et − 1)2

(
2 log

1 + et

2
− t

)
− 1 + et + tet

(et + 1)2

]
(s).

To understand the behavior of this expression, consider functions ψ1 and
ψ2 defined in Lemma 2.1. This leads us to the relation

g(s)

2s
= L

[
ψ1(e

t − 1)− ψ2(e
t − 1)

]
(s).

Lemma 2.1 states that the pre-image L−1[g(s)2s ] has a unique root for t > 0.

Then g(s)
2s < 0 by Corollary 2.3. So, inequality (4) holds, which completes the

proof.

It is worth mentioning that Theorem 2.4, in fact, presents certain prop-
erties of the values of the Gauß hypergeometric function at z = −1 because
functions ξj can be expressed by it.

Corollary 2.5. Denote F (s) = 2F1(1, s; s+1;−1). The functions F (s)

and 1−F (s)
s are decreasing while s

(
F (s) − 1

2

)
and 1−F (s)

s(2F (s)−1) are increasing on

(0,∞). Moreover, the following sharp estimates hold:

1

2
< F (s) < 1, 0 <

1− F (s)

s
< ln 2,

0 < s
(
F (s)− 1

2

)
<

1

4
, ln 2 <

1− F (s)

s (2F (s)− 1)
< 1.
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3. A TWO-PARAMETER FAMILY AND INCLUSION
PROPERTY

Denote by A the set of all holomorphic functions in the open unit disk D
normalized by f(0) = f ′(0) − 1 = 0. Let Ω = {(s, t) : s ∈ [0,∞), t ∈ [0, 1)}.
From now on, we are dealing with the two-parameter family A consisting of
the sets

(1) Ats :=
{
f ∈ A : Re

[
(s− 1)

f(z)

z
+ f ′(z)

]
≥ st, z ∈ D \ {0}

}
, (s, t) ∈ Ω,

and

At∞ :=
{
f ∈ A : Re

[f(z)
z

]
≥ t, z ∈ D \ {0}

}
.

These classes were introduced in [11], where an integral transform between
different sets Ats was established. The sets At1 were studied even earlier in [8].
Subsequently, in [4] we considered these classes with a different parametrization

and found certain functions t = t(s) for which the sets A
t(s)
s form filtrations.

The following facts are evident.

Lemma 3.1. For each (s, t) ∈ Ω, the set Ats is a convex body. Moreover,

(a) At0 = A1
s = {Id};

(b) f ∈ At∞ ⇐⇒ f(z)−tz
(1−t)z ∈ C;

(c) if 0 ≤ t1 < t2 ≤ 1, then At1s ⊃ At2s ;

(d) if f(z) = zp(z), then f ∈ Ats ⇔ Re [sp(z) + zp′(z)] ≥ st, z ∈ D.

An additional useful property of the classes Ats was established in [4]:

inf
f∈At

s

inf
z∈D

Re
f(z)

z
= (1− t)ξ0(s) + t.

Since our primary focus of investigation is the family A equipped with
inclusion as the inherent partial order, this section is devoted to the subsequent
relevant problem:

• Given two sets At1s1 and At2s2 of the family (1), find conditions that entail
or exclude the inclusion of one of them into the other.

Since the case s1 = s2 is covered by assertion (c) of Lemma 3.1, we
advance, without loss of generality, assuming that s1 < s2.

Theorem 3.2. Let 0 ≤ s1 < s2, t1, t2 ∈ [0, 1). Then At2s2 ̸⊂ At1s1.
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Proof. By Lemma 3.1 (c), At1s1 ⊂ A0
s1 . Hence, to prove our result, it

suffices to find f ∈ At2s2 such that f ̸∈ A0
s1 as s1 < s2.

Let us define the function p as follows

(2) p(z) = 1 + 2(1− t) [2F1(1, s2; s2 + 1; z)− 1] = 1 + 2(1− t)
∑
n≥1

s2
s2 + n

zn.

Formula (2) yields

(3) p(z) +
1

s2
zp′(z) = 1 + 2(1− t)

z

1− z
.

Since the function w = z
1−z maps the open unit disk D onto the half-plane

Rew > −1
2 , we conclude that infz∈DRe

[
p(z)+ 1

s2
zp′(z)

]
= t. Thus, the function

f defined by f(z) = zp(z) belongs to At2s2 by Lemma 3.1 (d).

To show that f ̸∈ A0
s1 , let us consider the expression

p(z) +
1

s1
zp′(z) =

(
p(z) +

1

s2
zp′(z)

)
+

( 1

s1
− 1

s2

)
zp′(z).

We already know that the boundary values of Re
(
p(z) + 1

s2
zp′(z)

)
equals t.

Since s1 less than s2 is arbitrary, it is enough to verify that the following claim
holds.

Claim: infz∈DRe [zp′(z)] = −∞.1

Indeed, function p defined by (2) can be represented by

p(z) = 2t− 1 + 2(1− t)

∫ 1

0

s2x
s2−1dx

1− zx
,

see (1). Combining this with (3), one concludes

s2zp
′(z) =

[
1 + 2(1− t)

z

1− z

]
−
[
2t− 1 + 2(1− t)

∫ 1

0

s2x
s2−1dx

1− zx

]
= 2(1− t)

[
1 +

z

1− z
−

∫ 1

0

s2x
s2−1dx

1− zx

]
= 2(1− t)

∫ 1

0

( 1

1− z
− 1

1− zx

)
s2x

s2−1dx

= 2(1− t)

∫ 1

0

z(1− x)

(1− z)(1− zx)
s2x

s2−1dx.

Because the hypergeometric function 2F1(1, s2; s2 + 1; z), and hence p,
can be analytically extended at any boundary point z ∈ ∂D excepting z = 1,

1It seems that formula (B18) in the book [9] implies limz→1 Re [zp′(z)] = ∞, which con-
tradicts our claim. In this connection, we notice that the last formula is correct in the
non-tangential sense only.
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we can put in the last formula z = eiϕ, ϕ ̸= 0. In this case, we get

− s2
1− t

Re zp′(z)
∣∣
z=eiϕ

= −2Re

∫ 1

0

eiϕ(1− x)

(1− eiϕ)(1− eiϕx)
s2x

s2−1dx

= −2

∫ 1

0
Re

(eiϕ − 1)(1− e−iϕx)(1− x)

|1− eiϕ|2|1− eiϕx|2
s2x

s2−1dx

=

∫ 1

0

1− x2

|1− eiϕx|2
s2x

s2−1dx.

Denote αs := min
{
sxs−1 : x ∈

[
1
2 , 1

]}
. Using this notation, we have

− s2
1− t

Re zp′(z)
∣∣
z=eiϕ

≥
∫ 1

1
2

1− x2

|1− eiϕx|2
s2x

s2−1dx

≥ αs2

∫ 1

1
2

1− x2

1 + x2 − 2x cosϕ
dx.

Using the elementary calculus tools, we get∫ 1

1
2

1− x2

1 + x2 − 2x cosϕ
dx = − cosϕ · ln(1− cosϕ) +A(ϕ),

where A(ϕ) is a bounded function. Therefore, this integral tends to infinity as
ϕ→ 0. So, our claim holds, which completes the proof.

Thus, due to Theorem 3.2, the inclusion At2s2 ⊂ At1s1 is impossible when
s1 < s2. We present conditions ensuring the opposite inclusion that involve
function ξ0 defined by (2).

Theorem 3.3. Let (s1, t1) ∈ Ω and s1 < s2.

(i) If t2 = t1 + (1− t1)
(
1− s1

s2

)
ξ0(s1), then inclusion At1s1 ⊂ At2s2 holds and is

sharp in the sense that At1s1 ̸⊂ Ats2 whenever t > t2.

(ii) If At1s1 ⊂ At2s2, then t2 ≤ t1+(1− t1)
(
1− s1

s2

)
ξ0(s1). Consequently, we have

that (1− t2)s2 ≥ (1− t1)s1.

(iii) In addition, if s0 ∈ [0, s1), t0, t2 ∈ [0, 1) and inclusions At0s0 ⊂ At1s1 ⊂ At2s2
hold, then the inclusion At0s0 ⊂ At2s2 is not sharp.

Proof. By the set (1), the identity mapping belongs to all classes Ats. Let
f ∈ At1s1 , f ̸= Id. (So, s1 ̸= 0 by Lemma 3.1 (a).) This function can be
represented in the form f(z) = zp(z). It follows from Lemma 3.1 (d) that
function p satisfies the inequality

(4) Re
(
s1p(z) + zp′(z)

)
≥ s1t1.
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Therefore, the function q defined by q(z) := s1p(z)+zp′(z)−s1t1
s1(1−t1) satisfies the in-

equality Re q(z) ≥ 0 for all z ∈ D and q(0) = 1. Then

s1p(z) + zp′(z) = s1 (t1 + (1− t1)q(z)) =: q1(z).

Function p being the solution of this differential equation is

p(z) =

1∫
0

q1 (xz)x
s1−1dx = t1 + (1− t1)

1∫
0

q (xz) s1x
s1−1dx.(5)

By Harnack’s inequality,

Re p(z) ≥ t1 + (1− t1)

1∫
0

1− x|z|
1 + x|z|

s1x
s1−1dx.

This inequality and (4) imply

Re
(
s2p(z) + zp′(z)

)
= Re

[
(s2 − s1) p(z) +

(
s1p(z) + zp′(z)

)]
≥ s2

[
t1 + (1− t1)

(
1− s1

s2

) 1∫
0

1− x|z|
1 + x|z|

s1x
s1−1dx

]
≥ s2

[
t1 + (1− t1)

(
1− s1

s2

)
ξ0(s1)

]
,

see (2). Thus f ∈ At2s2 . To show that this estimate is sharp, let us choose
function q in (5) to be q(z) = 1−z

1+z and, consequently,

s2p(z) + zp′(z) = s2t1 + (1− t1)
[
s1

1− z

1 + z
+ (s2 − s1)

∫ 1

0

1− xz

1 + xz
s1x

s1−1dx
]
.

Setting in this equality z → 1−, we obtain statement (i).

Statement (ii) follows from (i) by direct calculations.

To prove (iii), we note that by statement (ii) the given inclusions imply

(6)
t1 ≤ t0 + (1− t0)

(
1− s0

s1

)
ξ0(s0),

t2 ≤ t1 + (1− t1)
(
1− s1

s2

)
ξ0(s1).

Assume by contradiction that the inclusion At0s0 ⊂ At2s2 is sharp. Then t2
is equal to t0 + (1 − t0)

(
1 − s0

s2

)
ξ0(s0) by statement (i). Comparing this fact

with the second inequality in (6), gives us

t0 + (1− t0)
(
1− s0

s2

)
ξ0(s0) ≤ t1 + (1− t1)

(
1− s1

s2

)
ξ0(s1).

Note that the coefficient of t1 in the right-hand side is positive. Therefore, one
can replace t1 by a larger expression. Taking in mind the first inequality in (6)
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and reducing (1− t0), we get

s2 − s0
s2

ξ0(s0) ≤
s1 − s0
s1

ξ0(s0) +
[
1− s1 − s0

s1
ξ0(s0)

]
· s2 − s1

s2
ξ0(s1).

This inequality is equivalent to

(s2 − s1)s0
s1s2

ξ0(s0) ≤
[
1− s1 − s0

s1
ξ0(s0)

]
· s2 − s1

s2
ξ0(s1),

s0
s1
ξ0(s0) ≤

[
1− ξ0(s0) +

s0
s1
ξ0(s0)

]
· ξ0(s1),

1

s1ξ0(s1)
≤ 1

s0ξ0(s0)
− 1

s0
+

1

s1
,

which coincides with 1−ξ0(s1)
s1ξ0(s1)

≤ 1−ξ0(s0)
s0ξ0(s0)

. This contradicts statement (iv) of
Theorem 2.4. The proof is complete.

4. FILTRATIONS AND QUASI-EXTREMA

In this section, we explore the set-theoretic structures within the family
of sets Ats defined by equation (1). To do so, we introduce certain geometric
objects tied to the outcomes of the preceding section.

Initially, let us recognize that the first statement (i) in Theorem 3.3 can
be interpreted as follows. Given P0 = (s0, t0) ∈ Ω, consider the function t↑,P0

defined by

(1) t↑,P0(s) := t0 + (1− t0)
(
1− s0

s

)
ξ0(s0), s ≥ s0.

We designate its graph Γ↑,P0 as the forward extremal curve for the point P0.
Every point P = (s, t) ∈ Ω lying on or below this graph corresponds to the set
Ats including At0s0 , while all other points correspond to sets that do not include
At0s0 . In addition, if P1 ∈ Γ↑,P0 , then Γ↑,P1 lies below Γ↑,P0 by Theorem 3.3 (iii).

Similarly, one can define Γ↓,P0 , the backward extremal curve for the point
P0. This is the curve such that every point P = (s, t) ∈ Ω lying on or above
it corresponds to the set Ats included in At0s0 , while all other points correspond
to sets not included in At0s0 . Γ↓,P0 is the graph of the implicit function t↓,P0

defined by

(2) t0 = t↓,P0(s) +
(
1− t↓,P0(s)

)(
1− s

s0

)
ξ0(s),

which is obviously well-defined and non-negative for all s ∈ [s∗, s0], where s∗
is the unique solution to the equation

(
1− s

s0

)
ξ0(s) = t0.

In this connection, the following construction is natural and quite inter-
esting. Start from a point P0 = (s0, t0) ∈ Ω and let s1 = s0 +∆s. If ∆s > 0,
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calculate t1 = t↑,P0(s1) (otherwise, we are dealing with t↓,P0). Continue by
setting s2 = s1 + ∆s and t2 = t↑,P1(s2). At the next step, let s3 = s2 + ∆s,
calculate t3 by (1), and so on. Letting ∆s → 0, we obtain the differential

equation dt
1−t =

ξ0(s)ds
s with initial point (s0, t0). Its solution is

(3) tP0(s) = 1− (1− t0) exp
[
−
∫ s

s0

ξ0(σ)dσ

σ

]
.

By construction, the graph ΓP0 of the last function has the peculiarity: if
P1 ∈ ΓP0 , then ΓP1 = ΓP0 . We say that this graph is the curve of infinitesimally
sharp inclusions. The following result describes the relationship between the
extremal curves and the curve of infinitesimally sharp inclusions.

Theorem 4.1. Let P0 ∈ Ω. Then, the curve of infinitesimally sharp in-
clusions ΓP0 lies below the forward extremal curve Γ↑,P0 and above the backward
extremal curve Γ↓,P0.

Proof. To prove the first statement, compare the formulas (1) and (3).
We need to show that the inequality

1− exp
[
−
∫ s

s0

ξ0(σ)dσ

σ

]
<

(
1− s0

s

)
ξ0(s0)

holds for all s > s0. This is equivalent to F (s) < 0, where

F (s) :=

∫ s

s0

ξ0(σ)dσ

σ
+ log

(
1− ξ0(s0) +

1

s
s0ξ0(s0)

)
.

Assertion (iv) of Theorem 2.4 implies

F ′(s) =
(
ξ3(s0)− ξ3(s)

)
·
(
s0ξ0(s0)sξ0(s)

)
< 0.

Since F (s0) = 0, this proves the desired.

Regarding the second assertion, we have t↓,P0(s) =
t0−

(
1− s

s0

)
ξ0(s)

1−
(
1− s

s0

)
ξ0(s)

by (2).

So, the inequality t↓,P0(s) < tP0(s) for s < s0 means that

exp
[
−
∫ s

s0

ξ0(σ)dσ

σ

]
<

1

1−
(
1− s

s0

)
ξ0(s)

which is equivalent to G(s) < 0, where

G(s) := −
∫ s

s0

ξ0(σ)dσ

σ
+ log

(
1−

(
1− s

s0

)
ξ0(s)

)
.

Since after the permutation s0 ↔ s, this function coincides with the function F
applied above, the proof is complete.
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We are at the point where we can address the main problems outlined in
this paper.

Let T : [s∗,∞) → [0, 1) be a differentiable function. The first inquiry is:

• What conditions on function T provide that the one-parameter family

AT :=
{
A
T (s)
s , s ≥ s∗

}
forms a filtration?

We answer it as follows.

Theorem 4.2. Let function T be differentiable on (s∗,∞). Then AT is
a filtration if and only if

(4) T ′(s) ≤
(
1− T (s)

)ξ0(s)
s

, s > s∗.

Proof. Let s0 > s∗ and analyze the function F (s) := log(1 − T (s)) −
log(1 − tP0(s)) with P0 = (s0, T (s0)). It follows from (3) that inequality (4)
means that F ′(s) ≥ 0. Consequently, no part of the graph of T can lie above
the curve of infinitesimally sharp inclusions ΓP0 .

Take any s1, s2 such that s∗ < s1 < s2. First, assume that inequality (4)

holds. Then T (s2) ≤ tP1(s2), P1 = (s1, T (s1)). Therefore, A
T (s1)
s1 ⊂ A

T (s2)
s2 by

Theorems 3.3 and 4.1. Thus, since s1, s2 are arbitrary, we conclude that A is
a filtration.

Otherwise, assume that T ′(s1) > (1 − T (s1))
ξ0(s1)
s1

for some s1 > s∗.
Hence, there is s2 > s1 such that for all s ∈ [s1, s2] the inequality T ′(s) >

(1− T (s1))
ξ0(s1)
s2

holds. This implies

T (s2)− T (s1)

s2 − s1
> (1− T (s1))

ξ0(s1)

s2
,

or, which is the same, T (s2) > T (s1) + (1 − T (s1))
(
1 − s1

s2

)
ξ0(s1) = t↑,P1(s2).

Hence, A
T (s1)
s1 ̸⊂ A

T (s2)
s2 by Theorem 3.3, that is, A is not a filtration.

Now, we shift our attention to the whole family A. As this family equipped
with the relation ⊂ constitutes a partially ordered family, our second inquiry
is:

• Does (A,⊂) indeed form a lattice?

As we strive to comprehend this question, we uncover that the answer
is negative, showing that the sets of so-called quasi-suprema and quasi-infima
are not singletons.

Definition 4.3. Given a pair A1,A2 ∈ A, we say that

� A0 ∈ A is a quasi-supremum of this pair and write A0 ∈ qsup(A1,A2) if
A1 ∪ A2 ⊂ A0 and there is no A∗ ∈ A such that A1 ∪ A2 ⊂ A∗ ⊊ A0.
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� A0 ∈ A is a quasi-infimum of this pair and write A0 ∈ qinf(A1,A2) if
A0 ⊂ A1 ∩ A2 and there is no A∗ ∈ A such that A0 ⊊ A∗ ⊂ A1 ∩ A2.

We are now going to describe all quasi-suprema and quasi-infima of pairs
of sets Ats defined by (1).

Let s1 ≤ s2 and the point (s2, t2) lies on or below the forward extremal
curve Γ↑,P1 . Then At1s1 ⊂ At2s2 , and so At1s1 is the infimum as well as At2s2 is the
supremum of this pair. Therefore, we need to focus on the case s1 < s2 and
t2 > t1 + (1− t1)

(
1− s1

s2

)
ξ0(s1).

Theorem 4.4. Let P1 = (s1, t1) ∈ Ω and P2 = (s2, t2) lie above Γ↑,P1.
Then the following assertions hold:

(a) the set qsup(At1s1 ,A
t2
s2) consists of A

τ1(s)
s such that s ≥ s2 and τ1(s) =

min{t↑,P1(s), t↑,P2(s)};

(b) the set qinf(At1s1 ,A
t2
s2) consists of A

τ2(s)
s such that s ≤ s1 and τ2(s) =

max{t↓,P1(s), t↓,P2(s)}.

Proof. We prove each one of the assertions by examining all points of Ω.
We commence with (a). If s < s2 then At2s2 ̸⊂ Ats according to Theo-

rem 3.2. If s ≥ s2 and t > τ1(s), then by Theorem 3.3 either At1s1 ̸⊂ Ats or
At2s2 ̸⊂ Ats. So, A

t
s ̸∈ qsup(At1s1 ,A

t2
s2).

If s ≥ s2 and t = τ1(s), then At1s1 ∪ At2s2 ⊂ A
τ1(s)
s by Lemma 3.1 and

Theorem 3.3. On the other hand, it follows from the above explanation that
there is no A∗ ∈ A such that At1s1 ∪ At2s2 ⊂ A∗ ⊊ Ats. Thus, Ats is a quasi-
supremum.

If s ≥ s2 and t < τ1(s), then At1s1 ∪ At2s2 ⊂ A
τ1(s)
s ⊊ Ats by Lemma 3.1 and

Theorem 3.3. Hence, Ats ̸∈ qsup(At1s1 ,A
t2
s2). Assertion (a) is proven.

Similarly to the above, if s > s1 then Ats ̸⊂ At1s1 according to Theorem 3.2.
If s ≤ s1 and t < τ2(s), then either Ats ̸⊂ At1s1 or Ats ̸⊂ At2s2 by Theorem 3.3. So,
Ats ̸∈ qinf(At1s1 ,A

t2
s2).

If s ≤ s1 and t = τ2(s), then A
τ2(s)
s ⊂ At1s1 ∩ At2s2 by Lemma 3.1 and

Theorem 3.3. In addition, there is no A∗ ∈ A such that Ats ⊊ A∗ ⊂ At1s1 ∩ At2s2 .
Thus, Ats is a quasi-infimum.

If s ≤ s1 and t > τ2(s), then Ats ⊊ A
τ2(s)
s ⊂ At1s1 ∩ At2s2 by Lemma 3.1 and

Theorem 3.3. Hence, Ats ̸∈ qinf(At1s1 ,A
t2
s2)

Observe that if a pair A1,A2 has the supremum, then by definition we
have sup(A1,A2) ⊂ qsup(A1,A2). On the other hand, Definition 4.3 implies
that the relation sup(A1,A2) ⊊ qsup(A1,A2) is impossible. So, the quasi-
supremum coincides with the supremum, in particular, it is unique. Since not
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for all pairs At1s1 ,A
t2
s2 the sets qsup(At1s1 ,A

t2
s2) and qinf(At1s1 ,A

t2
s2) are singletons,

we have.

Corollary 4.5. The family A := {Ats : (s, t) ∈ Ω} is not a lattice.

5. UPCOMING QUESTIONS

In the preceding sections, we introduced an approach for establishing set-
theoretic properties of a family of sets consisting of holomorphic functions.
We demonstrated the effectiveness of this method with a significant example
involving sets defined by (1). Furthermore, it turns out that this approach
relies on previously established characteristics of the hypergeometric function.
For this reason, it appears imperative that prior to effectively disseminating
this approach, one should address the following question.

Question 5.1. Expand Theorem 2.4 to the case of 2F1(1, s; s+ 1;x), x ∈
[−1, 1], or a more general hypergeometric function 2F1(m, s; s + n;x) instead
of 2F1(1, s; s+ 1;−1).

An additional family that can be explored using the presented approach
consists of the sets

Bt
s :=

{
f ∈ A :

∣∣∣(s− 1)
f(z)

z
+ f ′(z)− s

∣∣∣ ≤ t

1− t
, z ∈ D \ {0}

}
, (s, t) ∈ Ω.

These sets were studied in [14] within the context of geometric function theory.
A recent investigation delved into the specific case where t

1−t = 1+s, addressing
problems in filtration theory in [4] and [5]. We now pose the following questions.

Question 5.2. What conditions on a function T provide that the one-

parameter family {BT (s)
s } forms a filtration?

Question 5.3. Is the family B := {Bt
s, (s, t) ∈ Ω} a lattice?

In the case of an affirmative answer, the method of finding of the unique
supremum and infimum for each pair of sets should be established. Otherwise,
one asks about the sets of quasi-suprema and quasi-infima.

As for a general situation, we have already shown at the end of the previ-
ous section that if each pairs of elements of a family has the unique supremum
(infimum), then the set of all quasi-suprema (quasi-infima) is a singleton. We
do not know whether the converse statement is valid in general. At the same
time, known examples lead us to the following.

Conjecture 5.4. A partially ordered family is a lattice if and only if
each pair of its elements has a unique quasi-supremum and a unique quasi-
minimum.
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APPENDIX

Here, we prove Lemma 2.1 that states that the equation ψ1(x) = ψ2(x),
where

ψ1(x) :=
2(1 + x)

x2
log

(
1 +

x2

4(1 + x)

)
, ψ2(x) :=

2 + x+ (1 + x) log(1 + x)

(2 + x)2
,

has a unique solution in (0,∞).

Proof. Our plan is the following: first we show that this equation has
no solution for “small” x. Then, we show that there is a unique solution for
“large” x. In the last step, we complete the proof.

Step 1. The inequality

ζ − ζ2

2
+
ζ3

3
− ζ4

4
< log(1 + ζ) < ζ − ζ2

2
+
ζ3

3
, ζ > 0,

implies

ψ1(x) <
1

2
− x2

16(1 + x)
+

x6

6 · 16(1 + x)2

=
1

2
+
x2

16

(
− 1

1 + x
+

x4

6(1 + x)2

)
,

ψ2(x) >
1

2 + x
+

1 + x

(2 + x)2

(
x− x2

2
+
x3

3
− x4

4

)
=

1

2
+
x2

16
· 1

(2 + x)2

(
−8x

3
+

4x2

3
− 4x3

)
.

Thus,

ψ2(x)− ψ1(x) >
x2

96(1 + x)2
· ϕ(x),

where ϕ(x) := 6 + 2x2 − x4 − 10x − 24x3. It can be easily seen that ϕ is
a decreasing function that is positive at x = 0.4. Hence, ψ2(x) > ψ1(x) in
(0, 0.4].

Step 2. Approximate computation gives us ψ1(10) < 0.261 < 0.266 <

ψ2(10). On the other hand, limx→∞
ψ1(x)
ψ2(x)

= 2. Therefore, the equation has at

least one solution in [10,∞).
Consider the equation 2+x

log(1+x)ψ1(x) =
2+x

log(1+x)ψ2(x), which is equivalent
to the given one. We state that the function in the left-hand side is increas-
ing, while one in the right-hand side is decreasing. Indeed, it can be easily
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checked that
(

2+x
log(1+x)ψ2(x)

)′
< 0. The differentiation shows that the inequal-

ity
(

2+x
log(1+x)ψ1(x)

)′
> 0 is equivalent to[

2x2+2x+(3x+4) log(1+x)
]
log

1 + x

1 + x
2

>
[
2x+(3x+4) log(1+x)

]
log

(
1+

x

2

)
.

If x > 10, then log 1+x
1+x

2
> 0.606. So, in this case it is enough to show that

1.212x2 >
[
2x2 + 2x+ (3x+ 4) log(1 + x)

]
log

6 + 3x

11
.

The last inequality follows from elementary calculus. Consequently, equation
ψ1(x) = ψ2(x) has exactly one root in x > 10.

Step 3. To complete the proof, we have to show that there is no solution
in [0.4, 10]. Note that both ψ1 and ψ2 can be analytically extended to the right
half-plane. Hence, one can find the number of solutions using the logarithmic
residue of the function ψ1(z) − ψ2(z) on the boundary of, for instance, the
rectangle Ω = {z = x+ iy : 0.4 ≤ x ≤ 10, |y| ≤ 2}.

The approximate computation using Maple gives

1

2πi

∮
∂D

ψ′
1(z)− ψ′

2(z)

ψ1(z)− ψ2(z)
dz ≈ −1 · 10−10 + 0i.

Since the logarithmic residue should be an integer, we conclude that it is zero,
that is, there is no solution in [0.4, 10]. The proof is complete.
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