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1. INTRODUCTION

The concept of Frobenius complexity of a local ring has grown out of
the interest in understanding the generation ring of Frobenius operators over
the injective hull of a local ring of prime characteristic. In a seminar paper
in 2001, Lyubeznik and Smith have asked whether finite generation occurs all
the time, see [11], and this was answered in 2009 by Katzman who provided a
counterexample to the finite generation question in [9]. Subsequently, several
mathematicians have investigated this ring leading to a definition of Frobenius
complexity due to Enescu and Yao in [5]. This definition can be put in a
larger context, that of rational twist for graded rings, see [7]. We discuss these
concepts below by listing many of the contributions that currently exist on this
topic hoping to facilitate further research. We hope that the reader is able to
use our paper as a road map for exploring the presented subject. Due to space
limitations, some results did not make it in this survey and we invite the reader
to check the cited references.

Katzman’s example is a Stanley–Reisner ring and Boix, Álvarez Mon-
taner, and Zarzuela have systematically studied this class of rings in [2]. More
detailed work for the Stanley–Reisner case was done more recently by Boix
and Zarzuela in [4], and Ilioaea in [8]. In 2014, Katzman, Schwede, Singh,
and Zhang [10] have provided a new perspective by introducing the twisted
construction, which led to the definition of Frobenius complexity by Enescu
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and Yao in 2016 [5]. Examples of concrete classes of rings have been studied
by Enescu and Yao, Page, and Miyazaki. In terms of generating functions,
Boix, in his thesis [3], and Álvarez Montaner, in [1], have associated various
generating functions to Cartier algebras or rings of Frobenius operators. In
particular, Álvarez Montaner has defined the generating function associated
to the complexity sequence for a skew algebra and studied it for the ring of
Frobenius operators on the injective hull of the residue field of a local ring
for the examples in the literature where the complexity sequence was under-
stood. Enescu and Yao have taken a slightly different route, by associating
a generating function to the complexity sequence after applying the twisted
construction, leading to a concept called graded rational twist. This concept
provides a clear avenue outside of the world of Frobenius operators on the in-
jective hull of the residue field of a local ring. It leads to an investigation of
the interaction between the grading and the characteristic of the ring, which
we think it is interesting in its own right. The survey provides a description of
some of the existing results in the literature, without any new results.

2. COMPLEXITY OF SKEW ALGEBRAS

Let us review the definition of the complexity of a skew algebra. A de-
tailed introduction, with proofs, can be found in Section 2 from [5] where the
concept in treated in more generality. Here, we restrict ourselves to skew al-
gebras, which cover the case of commutative algebra as well as the twisted
construction which is noncommutative, a concept to be defined later in the
paper.

Definition 2.1. Let R be a commutative ring. Let A = ⊕e≥0Ae be a N-
graded ring, not necessarily commutative such that R = A0. We say that A is
a (left) R-skew algebra if aR ⊆ Ra for all homogeneous elements a ∈ A. A right
R-skew algebra can be defined in similar fashion. In this paper, our R-skew
algebras are left R-skew algebras and therefore, we simply refer to them as
R-skew algebras.

Clearly, if A itself is commutative then it is automatically an R-skew
algebra. Other examples, not commutative, are given later.

Definition 2.2. 1. Let Ge(A) = Ge be the subring of A generated by
the elements of degree less or equal to e. We set G−1 = A0.

2. We use ke = ke(A) to denote the minimal number of homogeneous gen-
erators of Ge as a subring of A over A0. (So k−1 = k0 = 0.) We say that
A is degree-wise finitely generated if ke <∞ for all e ≥ 0.
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3. For a degree-wise finitely generated ring A, we say that a set X of homo-
geneous elements of A minimally generates A if for all e, we have that
X≤e = {a ∈ X : deg(a) ≤ e} is a minimal set of generators for Ge with
ke = ∥X≤e∥ for every e ≥ 0. (Here, ∥·∥ denotes cardinality in the sequel.)
Also, let Xe = {a ∈ X : deg(a) = e}.

Proposition 2.3 ([5], Proposition 2.3). Let R be a commutative ring.
Let A be a degree-wise finitely generated R-skew algebra and X a set of homo-
geneous elements of A. Then

1. The minimal number of generators of Ae
(Ge−1)e

as an R-bimodule is a set
ke − ke−1 for all e ≥ 0.

2. If X generates A as a ring over R, then ∥Xe∥ ≥ ke − ke−1 for all e ≥ 0.

Let f(n) and g(n) be real-valued functions defined on the set of natural
numbers. We say that f(n) = O(g(n)) if there existsM > 0 and a nonnegative
integer n0 such that |f(n)| ≤M · |g(n)| for all n ≥ n0.

Definition 2.4 ([5], Definition 2.5). Let R be a commutative ring. Let
A be a degree-wise finitely generated R-skew algebra. The sequence {ke}e is
called the growth sequence for A. The complexity sequence is given by the set
{ce(A) = ke − ke−1}e≥0. The complexity of A is

inf{n ∈ R>0 : ce(A) = O(ne)}

and it is denoted by cx(A). Therefore, cx(A) = ∞ if there is no n > 0 such
that ce(A) = O(ne).

Proposition 2.5 ([5], Corollary 2.10). Let A be a degree-wise finitely
generated R-skew algebra. Then ce(A) equals the minimal number of generators
of Ae

(Ge−1)e
as a left R-module for all e.

3. THE TWISTED CONSTRUCTION AND THE RING OF
FROBENIUS OPERATORS ON THE INJECTIVE HULL

3.1. The twisted construction

Let R be a commutative ring of prime characteristic p > 0. Let R be an
N-graded commutative ring with R0 = R.

Definition 3.1 ([10]). Define the twisted construction on R by

T (R) := ⊕e≥0Rpe−1.
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This is an N-graded ring by defining the multiplication by

a ∗ b = abp
e

for all a ∈ Rpe−1, b ∈ Rpe′−1 and then extending it via linearity. The degree e
piece of T (R) is Te(R) = Rpe−1.

We have obtained a noncommutative ring. Note that, since R = R0 and
a ∗ r = arp

e ⊂ Ra for all r ∈ R = R0, a ∈ Re, T (R) is naturally an R-skew
algebra.

3.2. Frobenius operators

Let R be a Noetherian ring of prime characteristic p and R-module M .
By an eth Frobenius action, we mean a map ϕ : M → M . This is an R-
additive map such that ϕ(rm) = rqϕ(m), for all r ∈ R,m ∈ M , where q = pe.
Let F e(M) be the collection of all eth Frobenius operators on M .

Definition 3.2. We define the algebra of Frobenius operators on M by

F (M) = ⊕e≥0F
e(M),

with the multiplication on F (M) determined by composition of functions;
that is, if ϕ ∈ F e(M), ψ ∈ F e′(M) then ϕψ := ϕ ◦ ψ ∈ F e+e′(M). Hence, in
general, ϕψ ̸= ψϕ.

Note that there exists a natural ring homomorphism R → EndR(M) =
F 0(M) given by r → θr, where θr(m) = rm, for all m ∈ M . This way, we
obtain an R-graded module, by defining the multiplication by r to equal the
composition with θr. Specifically, rϕ := θr ◦ ϕ and ϕr := ϕ ◦ θr for all r ∈ R
and ϕ ∈ F (M).

If ϕ ∈ F e(M), then ϕr = rpϕ, because for all m ∈ M , (ϕr)(m) =
ϕ(rm) = rpϕ(m) = (rpϕ)(m). This shows that, when R = EndR(M) =
F 0(M), F (M) is a skew R-algebra.

We are interested in the case of (R,m, k) a local complete ring and M =
ER(k) the injective hull of the residue field of R. By Matlis duality, R =
EndR(ER(k)).

The ring of Frobenius operators on the injective hull ER(k) of the residue
field of a local ring of positive characteristic has been studied by many re-
searchers in commutative algebra. The twisted construction appears naturally
in this context as shown by the theorem stated below.

Let (R,m, k) be a normal complete local ring. Let ω denote the canonical
module of R and ω−1 denote the inverse of the canonical module of R in its
divisor class group. Let ω(−n) denote the nth symbolic power of ω−1 and
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consider the symbolic Rees algebra R(ω−1) = ⊕n≥0ω
(−n) which is called the

anticanonical cover of R.
The following result is very important for what follows.

Theorem 3.3 ([10]). Let (R,m, k) be a normal, complete local ring of
positive characteristic. The,n we have an isomorphism of graded rings

F (E) ≃ T
(
R(ω−1)

)
.

3.3. Frobenius complexity of a local ring

Let us now define the Frobenius complexity of a local ring of prime char-
acteristic, due to Enescu and Yao, see [5].

Definition 3.4 ([5], Definition 2.13). Let (R,m, k) be a local ring of prime
characteristic p. Denote by E the injective hull of the residue field of R. Denote
ke(R) := ke(F (E)), for all e, and call these numbers the Frobenius growth
sequence of R. Then ce = ce(R) := ke(R) − ke−1(R) defines the Frobenius
complexity sequence of R.

The complexity of F (E) is

inf{n ∈ R>0 : ce = O(ne)}

and it is denoted by cx(F (E)). Therefore, if there is no n > 0 such that
ce(F (E)) = O(ne), then cx(F (E)) = ∞.

We define the Frobenius complexity of the ring R by

cxF (R) = logp
(
cx(F (E))

)
,

if cx(F (E)) is nonzero and finite. If the Frobenius growth sequence of the ring
R is eventually constant (i.e., cx(F (E)) = 0), then the Frobenius complexity
of R is set to be −∞. If cx(F (E)) = ∞, the Frobenius complexity if R is set
to be ∞.

We list the basic results on Frobenius complexity of local rings.

Theorem 3.5 ([5, Corollary 2.12, Theorems 4.7 and 4.9]). Let (R,m, k)
be a local ring.

1. If R is 0-dimensional then cxF (R) = −∞.

2. If R is normal, complete and has dimension at most two, then the com-
plexity cxF (R) ≤ 0.

3. If R is normal, complete and such that the anticanonical cover is finitely
generated over R, then cxF (R) <∞.
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There is a more precise result that bounds the Frobenius complexity of a
local ring when the anticanonical cover is finitely generated, due to Page, see
Proposition 2.6 in [14]. We need the following definition first which is also due
to Page.

Definition 3.6. Let R be a local normal ring that admits a canonical
module ω. Let R(ω−1) = ⊕n≥0ω

(−n) be its anticanonical cover and assume
that R(ω−1) is finitely generated as an R-algebra. The anticanonical spread of
R is the Krull dimension of R(ω−1)⊗ k and is denoted by spR(ω

−1).

Proposition 3.7 ([14]). If (R,m, k) is a local normal ring of prime char-
acteristic such that R(ω−1) if finitely generated, then

cxF (R) ≤ spR(ω
−1)− 1.

Page has asked whether for Hibi rings equality holds (when we let p→ ∞)
and this was answered in the affirmative by Miyazaki in Theorem 8.5 in [12].

Katzman, Schwede, Singh, and Zhang and Enescu and Yao have proved
the following theorem that describes the Q-Gorenstein case.

Theorem 3.8 ([10, Proposition 4.1] and [5, Theorem 4.5]). If (R,m, k) is
normal and Q-Gorenstein, then the order of its canonical module in the divisor
class group is relatively prime to p if and only if cxF (R) = −∞.

4. RATIONAL TWIST

Let R be a commutative ring of prime characteristic p and R be an N-
graded R-skew left algebra. Recall that T (R) is naturally a skew R-algebra. In
this section, we review some recent notions defined by Enescu and Yao, related
to the complexity sequence of the twisted construction. Some of these ideas go
back to Boix, in his thesis [3], and Álvarez Montaner, in [1], who have looked
at the same concepts for the case of rings of Frobenius operators.

Definition 4.1 ([7], Definition 2.1). Let R be a commutative ring of prime
characteristic p and R be an N-graded R-skew left algebra. Let T = T (R) be
its twisted construction.

1. Let {ce}e≥0 be the complexity sequence for T = T (R). The twisted
generating function of R is

CR(z) :=
∞∑
e=0

cez
e ∈ Q[[z]],
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2. We say that R has a grading with rational twist, or simply that the
graded ring R has rational twist, if the twisted generating function is
a rational function in z. More precisely, C(z) = CR(z) = P (z)

Q(z) with

P (z), Q(z) ∈ Q[z]. (One can assume that P (z), Q(z) ∈ Q[z] do not have
common roots in C.)

We remind the reader a standard result on generating functions and re-
currence relations, in a form due to Stanley, see [15], p. 464, Theorem 4.1.1.
We use this result in our definitions later.

Theorem 4.2. Let α1, . . . , αd be complex numbers, d ≥ 1 and αd ̸= 0.
Let f : N → C be a function. The following assertions are equivalent:

1. The generating function of the sequence f satisfies∑
n≥0

f(n)xn =
P (x)

Q(x)
,

where Q(x) = 1 + α1x + · · · + αdx
d and P (x) is a polynomial of degree

less than d.

2. For all n ≥ 0,

f(n+ d) + α1f(n+ d− 1) + · · ·+ αdf(n) = 0.

3. For all n ≥ 0,

f(n) =

k∑
i=1

Pi(n)γ
n
i ,

where 1 + α1x + · · · + αdx
d =

∏k
i=1(1 − γix)

di, the γi’s are distinct and
nonzero and Pi(n) is a polynomial of degree less than di.

Definition 4.3 ([7], Definition 3.4). We say that R has rational twist

with dominant eigenvalue if C(z) is a rational function of the form C(z) = P (z)
Q(z) ,

where P (z) ∈ Q[z] and Q(z) ∈ Q[z] do not have common roots in C, such
that either Q(z) is constant or Q(z) has a unique simple root 1/γ of minimal
absolute value.

In the case where Q(z) has a unique simple root 1/γ of minimal absolute
value, Theorem 4.2 gives, for e≫ 0,

ce = ργe + lower order terms o(γe).

We call the number ρ is the twisted complexity multiplicity of R, or simply
t-multiplicity, and we call γ the dominant eigenvalue of R.
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The reader should note that in Miyazaki’s terminology logp(γ) is called
the T-complexity of R, see [12], Definition 7.2. Specifically, the T-complexity
of R is Tcx(R) = logp(cx(T (R)).

Corollary 4.4. Let (R,m, k) be a normal, complete local ring of prime
characteristic p. If the graded ring R(ω−1) has rational twist with dominant
eigenvalue γ, then

cxF (R) = logp(γ) = Tcx(R(ω−1).

Theorem 4.5 ([5, 7]). Let K be a field of characteristic p and m ≥ 3
be an integer. Consider the determinantal ring of 2× 2 minors in a matrix of
indeterminates of size m× (m− 1) over K, and denote by Sm the completion
of the ring at its maximal homogenous ideal. Let γ be the dominant eigenvalue
of K[x1, . . . , xm] considered with standard grading. Then

1. cxF (Sm) = logp(γ),

2. pm−2 < γ < pm−1,

3. limp→∞(cxF (Sm)) = m− 1,

4. limp→∞
γ

pm−1 = 1− 1
(m−1)! .

In our previous papers [5, 6], we examined the dominant eigenvalue of the
polynomial ring with standard grading and the Veronese ring of a polynomial
ring with standard grading.

Theorem 4.6 ([6, Corollary 3.13, Subsection 3.2]). Let R be a Noetherian
ring, r ≥ 1 and m ≥ r + 2 be integers, and R = Vr(R[x1, . . . , xm]) be the r-th
Veronese ring of R[x1, . . . , xm] with standard grading. Then R has rational
twist with dominant eigenvalue for p large enough. If γp denotes the dominant
eigenvalue of R in characteristic p, then limp→∞ logp(γp) = m− 1.

We have obtained more general results for affine semigroups rings in [7].
Specifically, let R be a commutative ring of prime characteristic p, and let m,
d1, . . . , dm be positive integers. Let A be a finitely generated semigroup of
(Nm,+), with the assumption (0, . . . , 0) ∈ A. Consider the polynomial ring
R[x1, . . . , xm], with general grading deg(xi) = di for all i = 1, . . . ,m. Let
R[A] denote the semigroup ring of A over R, so R[A] is a graded subring of
R[x1, . . . , xm].

Let α1, . . . , αh be a minimal generating set for A, with total degrees
f1, . . . , fh. That is, |αi| = fi, where we find that for α = (a1, . . . , am) ∈ Nm,
|α| := |α|d := a1d1+· · ·+amdm. For every i ∈ N, denoteAi = {α ∈ A : |α| = i}.
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Definition 4.7 ([7], Definition 2.4). Let A ⊆ Nm, for some m ∈ N be an
affine semigroup.

1. We say that A is closed under differences or simply CD if:

α, β ∈ A and α− β ∈ Nm =⇒ α− β ∈ A.

2. We say that A is closed under left twisted differences or simply CLTD if:

α′ ∈ Ape′−1, α
′′ ∈ Nm and α′ + pe

′
α′′ ∈ Ape′+e′′−1 =⇒ α′′ ∈ A

for all e′ > 0, e′′ > 0.

3. We say that A is closed under right twisted differences or simply CRTD
if:

α′ ∈ Nm, α′′ ∈ Ape
′′−1 and α′ + pe

′
α′′ ∈ Ape

′+e′′−1 =⇒ α′ ∈ A

for all e′ > 0, e′′ > 0.

Recall that the twisted construction for our graded ring R = R[A] is
T (R) = T (R[A]) = ⊕eTe(R[A]), where Te(R[A]) = (R[A])pe−1 for every integer
e ≥ 0. When we mention the degree of a monomial, we agree that it refers
to its (total) degree in R = R[A]. Thus, a monomial in Te is a monomial of
(total) degree pe − 1. In particular, T0 = R.

4.1. Concatenation

We give a concrete interpretation of the operation T in terms of writing
integers in p-basis.

Let α = (αi : i = 1, . . . ,m), β = (βi : i = 1, . . . ,m). Note that in base p

pe − 1 = p− 1p− 1 · · · p− 1e,

where the index indicates how many digits we use in base p.
Write αi = u1,iu2,i · · ·ue′,i and βi = v1,iv2,i · · · ve′′,i in base p, that is, all

integers uj,i, vj,i are between 0 and p− 1. Note that, in base p,

αi + pe
′
βi = v1,iv2,i · · · ve′′,iu1,iu2,i · · ·ue′,i.

In conclusion, if α ∈ Te′ , β ∈ Te′′ , then the semigroup operation ∗ becomes,
when written in base p,

α ∗ β = (v1,iv2,i · · · ve′′,iu1,iu2,i · · ·ue′,i : i = 1, . . . ,m).

The reader should note that the condition α ∈ Te′ is translated as the sum
of all αi, i = 1, . . . ,m equals to pe

′ − 1 = p− 1p− 1 · · · p− 1e′ when written in
base p. Similarly, for β ∈ Te′′ .
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Theorem 4.8 ([7], Theorem 2.10). Let R[A] and T = T (R[A]) be as
above.

1. For every nonnegative integer e ≥ 0, let te denote the rank of Te(R[A])
as an R-module. Then the generating function T (z) =

∑
e≥0 tez

e is a
rational function in z over Q.

2. Let ce denote the complexity sequence of T (R[A]). If A satisfies CLTD or
CRTD, then the twisted generating function of R[A], C(z) =

∑
e≥0 cez

e, is
a rational function in z over Q. In conclusion, the graded ring R = R[A]
has rational twist.

Example 4.9. 1. Nm is CD, CRTD, and CLTD.

2. Let Vr = {α ∈ Nm : r | |α|}, the r-Veronese sub-semigroup of Nm. Then
Vr satisfies CD, CRTD, and CLTD.

3. In general, if A is CD, then A is CRTD.

As an immediate consequence, we have the following result, per [7].

Corollary 4.10. Let R be a commutative ring of prime characteristic p.

1. Let R = R[x1, . . . , xm] graded with deg(xi) = di, i = 1, . . . ,m. Then the
graded ring R has rational twist.

2. Let R = Vr(R[x1, . . . , xm]), where r ≥ 1, be the rth Veronese subring of
the graded polynomial ring R[x1, . . . , xm] with deg(xi) = di, i = 1, . . . ,m.
Then the graded ring R has rational twist.

4.2. Applications

Definition 4.11. Let K be a field and m > n ≥ 2. Let Sm,n denote the
completion of K[x1, . . . , xm] ♯K[y1, . . . , yn] with respect to the ideal generated
by all homogeneous elements of positive degree. Let Rm,n be the anticanonical
cover of Sm,n.

For any positive integers p and m (with p prime), let us further de-
note by Mp,m(i) (or simply M(i) if p and m are understood) the rank of
(R[x1, . . . , xm]/(xp1, . . . , x

p
m))i over R, for all i ∈ Z. Note that Mp,m = 0 ex-

actly when i > m(p− 1) or i < 0. In fact, we have the following identity that
can be used to define Mp,m(i) in the terms of the Poincaré series (which is a
polynomial):

∞∑
i=−∞

Mp,m(i)ti =

m(p−1)∑
i=0

Mp,m(i)ti =
(1− tp

1− t

)m
=

(
1 + · · ·+ tp−1

)m
.
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Following [6], we have the following definition.

Definition 4.12. In what follows, we call

U(p, r,m) = U :=
[
uij

]
(m−r−1)×(m−r−1)

with uij :=Mp,m(r(p−1)+ ip− j)

as the determining matrix for p, r,m.

Theorem 4.13 ([6], Theorem 3.4). Consider T = T (Vr(R[x1, . . . , xm]))
as above with m = r + 2. Then

ce(T ) =

(
rp

m− 1

)(
p+m− 2

m− 1

)e−2(p+m− 3

m− 1

)
for all e ≥ 2 and cx(T ) =

(
p+m−2
m−1

)
.

Theorem 4.14 ([6], Corollary 3.13). Let R = R[x1, . . . , xm]. If p ≫ 0,
then

(m− r − 1)

(
m− 1 + p− (m− r − 1)

m− 1

)
≤ cx(T (Vr(R))

≤ (m− r − 1)

(
m− 1 + ⌈m(p−1)

2 ⌉
m− 1

)
and therefore, limp→∞ logp cx(T (Vr(R)) = m− 1.

Theorem 4.15 ([6], Theorem 4.1). Let K be a field of characteristic p,
Sm,n and Rm,n be as in Definition 4.11 with m > n ≥ 2. Let Em,n denote the
injective hull of the residue field of Sm,n.

1. The ring of Frobenius operators of Sm,n (i.e., F (Em,n)) is never finitely
generated over F0(Em,n).

2. When n = 2, we have cxF (Sm,2) = logp
(
p+m−2
m−1

)
.

3. We have limp→∞ cxF (Sm,n) = m− 1.

4. For p ≫ 0 or whenever the determining matrix U = U(p,m,m − n)
has all positive entries, we have cxF (Sm,n) = logp(λ), in which λ is the
Perron root for U .

The study of the generation of the Frobenius ring of operators on the in-
jective hull of the residue field for a completion of a Stanley–Reisner originates
with Katzman. Later, Álvarez Montaner, Boix and Zarzuela have investigated
this problem in detail in [2] and later in [4]. Álvarez Montaner, Boix and
Zarzuela fully described, for this class of rings, when the Frobenius ring of
operators F (ER) is finitely generated, see Theorem 3.5 in [2]. Based on their
work, Ilioaea has computed the complexity sequence.
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Theorem 4.16 ([8]). Let K be a field of prime characteristic p and ring
R = K[[X1, . . . , Xn]]/I, where I is a square free monomial ideal. Let {ce}
be the complexity sequence for the ring of Frobenius operators on the injective
hull of R. Then {ce}e≥0 has the form 0, µ+1, µ, µ, µ, . . ., for a certain positive
integer µ.

Another class of rings which was investigated in detail by Page and, in-
dependently, Miyazaki in terms of Frobenius complexity is that of Hibi rings.
The reader is referred to [14] and [12], for their work.

4.3. Cases with dominant eigenvalue for the polynomial ring

Let R = R[x1, . . . , xm] with deg(x1) = d1, . . . , deg(xm) = dm, which
means that we take A = Nm. As before, let D = lcm(d1, . . . , dm). We assume
that p ≡ 1 mod D.

For every n ∈ N, let h(n) := rankR(Rn). There exist hi(x) ∈ Q[x],
i = 0, . . . , D − 1, such that

h(n) = rankR(Rn) = hi(n) if n ≡ i mod D.

for all n ≥ 0. Let η0(x) = h0(x− 1).

The following are the assumptions we make in this subsection (see Sec-
tion 3 in [7]).

Assumption 4.17. This is essential in our next theorem:

1. m = 2 and D > 1, or m ≥ 3.

2. p ≡ 1 mod D.

3. The positive integers d1, . . . , dm are pairwise relatively prime.

4. The coefficients of η0(x) = h0(x− 1) =
∑m−1

j=0 a0,jx
j are nonnegative.

Theorem 4.18 ([7], Theorem 3.16). Recall that R = R[x1, . . . , xm] with
grading given by deg(xi) = di, for i = 1, . . . ,m. Under the conditions stated in
Assumption 4.17 the following assertions hold.

1. The complexity sequence is given by

ce = ρ1γ
e
1 + · · ·+ ρlγ

e
l ,

with pjh < γl−h < pjh+1, for all h = 0, . . . , l − 1, for all e ≥ 1.

2. R has rational twist of dominant eigenvalue.
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3. The dominant eigenvalue is γ1 with γ1 < pm−1 and limp→∞
γ1
pm−1

= 1−
1

(m−1)D! . In general, for p≫ 0, we have that pm−2 < γ1. Additionally, if

a0,m−2 ̸= 0, then pm−2 < γ1, for all p. Here, all considerations regarding
p are for values of p such that p ≡ 1 mod D.

Example 4.19. We discuss now an example to illustrate some of the fea-
tures of the theory presented here. Let r be a fixed positive integer. Let p a
prime number. we have that

Ar = ⟨(1, 1), (r, r − 1)⟩
an affine semigroup in N2. We denote by T the twisted construction of Ar. The
elements of Te have the form m(1, 1) + n(r, r − 1) such that 2m+ (2r − 1)n =
pe − 1, with m,n nonnegative integers. Recall that the operation ∗ on T
correspond to the aforementioned concatenation.

The complexity sequence ce corresponds the number of vectors from Te
that are not in the union of all Te′ ∗Te′′ where e′+ e′′ = e, 0 < e′, e′′ < e. Or in
the language of concatenation, the vectors in Te that cannot be obtained via
the concatenation of elements from Te′ , Te′′ where e

′ + e′′ = e, 0 < e′, e′′ < e.
Let now r = p and e ≥ 2. Let us notice that (pe−1, pe−1 − 1) is in Te

because
(pe−1 − p)(1, 1) + (p, p− 1) = (pe−1, pe−1 − 1).

Note that in base p,

pe−1 = (p− 1)0 · · · 0e and pe−1 = 0(p− 1) · · · (p− 1)e.

So (
(p− 1)0 · · · 0e, 0(p− 1) · · · (p− 1)e

)
∈ Te.

It is now clear that this element cannot be obtained by concatenation because
no vector in T can have a zero in the first coordinate. This shows concretely
that ce ̸= 0 for all e ≥ 2 in T = T (Ap). Of course, counting all vectors that
give ce is a much harder task.

Now let us consider r = 2, p = 3. A similar argument as above shows
that ce ̸= 0 for e ≥ 2 in T for A2 and p = 3. Fix e ≥ 2. The elements
of Te are vectors (m + 2n,m + n) such that 2m + 3n = 3e − 1. Note that
(1, 1) + (3e−1 − 1)(2, 1) = (2 · 3e−1 − 1, 3e−1) is also in Te.

As before, 3e−1 = 20 · · · 0e and 2 · 3e−1 − 1 = 02 · · · 2e it is now clear that
(02 · · · 2e, 20 · · · 0e) cannot be obtained via concatenation. So ce ̸= 0 for all
e ≥ 2.

The example Ar with r = 2 was first considered in [13], where the author
has also observed that the twisted construction for an affine semigroup in N is
always finitely generated.
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Fix again r positive integer and p prime. Note that Ar can be identified to
the semigroup generated by two vectors x = (1, 0), y = (0, 1) where deg(x) =
2, deg(y) = 2r− 1. Then lcm(2, 2r− 1) = 4r− 2. The case p ≡ 1 mod (4r− 2)
was treated in [7] where the authors showed that there exists a constant ρ

such that the complexity sequence {ce}e is given by ce = ρ · (p(4r−2)−p+1
4r−2 ))e for

e ≥ 2. In fact, based on the work in [7], one can compute ce for all prime p
with gcd(p, 4r − 2) = 1, a tedious computation. This puts in perspective the
discussion above.

We end with a question that we find of interest.

Question 4.20. What affine semigroup rings have graded rational twist?
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of Romanian Mathematicians in Piteşti, Romania, 2023, for the opportunity to present his

joint work with Y. Yao there, leading to the writing of this survey. The author gratefully

acknowledges his collaboration with Yongwei Yao on this subject over the years.

REFERENCES
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