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1. INTRODUCTION

Inspired by the work of John Pfaltzgraff [18] and Tadeusz Poreda [20]
in extending the Loewner theory to higher dimensions, Gabriela Kohr [15]
introduced in 2001 the family S0(Bn) of mappings with parametric represen-
tation on the Euclidean unit ball as a natural analog of the class S, rather
than the family S(Bn) of univalent normalized mappings on Bn. She proved
properties of S0(Bn), which are similar to those of S (by using the Loewner
differential equations and the Loewner chains, see [15, Theorems 2.3, 2.4, 2.5];
cf. [19]). Also, she pointed out differences between the dimension one case and
the higher dimensions case, see [15, Examples 2.9, 2.10]. Moreover, she gave
various examples of mappings that have parametric representation and used
their parametric representation to deduce corresponding properties, see [15,
Theorems 2.6, 2.7]. Furthermore, Gabriela Kohr proved, along with Hidetaka
Hamada and Ian Graham [4], the compactness of the Caratheódory family M
(the analog family of normalized holomorphic functions with positive real part)
and, along with Ian Graham and Mirela Kohr [9], the compactness of S0(Bn).
For a detailed presentation of the Loewner theory in one and higher dimen-
sions and the significance of the above contributions, we strongly recommend
the excellent book of Ian Graham and Gabriela Kohr [8].

Taking into account the spirallike mappings with respect to a linear oper-
ator, Peter Duren, Ian Graham, Hidetaka Hamada, Gabriela Kohr and Mirela
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Kohr [3, 6] introduced and studied the mappings with A-parametric represen-
tation on Bn, when A is a linear operator that satisfies a condition involving its
spectrum. Next, Ian Graham, Hidetaka Hamada, Gabriela Kohr and Mirela
Kohr [7] considered the generalized parametric representation on Bn with re-
spect to a time-dependent linear operator.

Following [13], in this paper, we survey some results for mappings with
generalized parametric representation on Bn with respect to a time-dependent
linear operator. We present certain results obtained in [5, 7, 11, 12, 16, 17, 21].
We discuss both similarities and differences between the time-dependent case
and the time-independent case.

2. PRELIMINARIES

Let Cn be the space of n complex variables z = (z1, . . . , zn) with the
Euclidean inner product ⟨z, w⟩ =

∑n
j=1 zjwj and the Euclidean norm ∥z∥ =√

⟨z, z⟩. The unit ball {z ∈ Cn : ∥z∥ < 1} is denoted by Bn. In the case n = 1,
the unit disc is denoted by U.

Let

H(Bn) =
{
f : Bn → Cn : f is holomorphic

}
S(Bn) =

{
f ∈ H(Bn) : f is univalent with f(0) = 0 and Df(0) = I

}
,

where D stands for the Fréchet differential and I is the identity operator. We
consider the compact-open topology on these families.

Definition 2.1. Let L(Cn) denote the space of linear operators from Cn

to Cn with the standard operator norm. For A ∈ L(Cn), let

m(A) = min{ℜ⟨A(z), z⟩ : ∥z∥ = 1}.
If A ∈ L(Cn) with m(A) ≥ 0, let

NA(Bn) = {h ∈ H(Bn) : h(0) = 0, Dh(0) = A and ℜ ⟨h(z), z⟩ ≥ 0, z ∈ Bn}.
The family NI(Bn) is denoted by M(Bn) (see [18]). Graham, Hamada,

Kohr [4, Corollary 1.3] proved that M(Bn) is a compact family. Moreover,
their arguments imply that NA(Bn) is a compact family for every A ∈ L(Cn)
with m(A) ≥ 0, see [6, Lemma 1.2]. These families play an important role in
geometric function theory in higher dimensions (see [8]).

Taking into account [7] (see also [21]), we consider the following definition.

Definition 2.2. Let A : [0,∞) → L(Cn) be a measurable mapping which
is locally integrable on [0,∞). For every s ≥ 0, V (s, ·) : [s,∞) → L(Cn) is the
unique locally absolutely continuous solution of the initial value problem ([2])

(1)
∂V

∂t
(s, t) = −A(t)V (s, t), for a.e. t ∈ [s,∞), V (s, s) = In.
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Let V (t) = V (0, t), for all t ≥ 0.

Remark 2.3 ([2]). Let A : [0,∞) → L(Cn) be a measurable mapping
which is locally integrable and let V be given by (1). The following hold:

(i) V (t)−1 exists, for every t ≥ 0, and ∂
∂tV (t)−1 = V (t)−1A(t), for a.e. t ≥ 0.

(ii) V (s, t) = V (t)V (s)−1 for 0 ≤ s ≤ t < ∞.

(iii) if A(t) and
∫ t
s A(τ)dτ commute, for all t ≥ s, then

V (s, t) = e−
∫ t
s A(τ)dτ , ∀ t ∈ [s,∞).

Definition 2.4. A family {Ft}t≥0 ⊂ H(Bn) is a subordination chain if:

� Fs(Bn) ⊆ Ft(Bn), 0 ≤ s ≤ t,

� Ft(0) = 0, t ≥ 0.

Moreover, {Ft}t≥0 is called a Loewner chain, if, in addition,

� Ft is univalent, t ≥ 0.

Furthermore, {Ft}t≥0 is called a normal Loewner chain, if, in addition,

�

{
DFt(0)

−1Ft

}
t≥0

is a normal family in S(Bn).

If {Ft}t≥0 is a Loewner chain, then vs,t = F−1
t ◦ Fs, 0 ≤ s ≤ t, forms a

family of univalent Schwarz mappings on Bn (i.e., self-mappings that fix the
origin), called the family of transition mappings of {Ft}t≥0.

If {Ft}t≥0 satisfies DFt(0) = V (t)−1, t ≥ 0, where V is given by (1)
associated to a measurable and locally integrable A : [0,∞) → L(Cn), then
{Ft}t≥0 is said to be a subordination chain with respect to A. In the case
DFt(0) = etI, t ≥ 0, the condition regarding the normality in the above
definition was first pointed out in [4, 9] (cf. [18]) to play an important role in
Loewner Theory on Bn. The case DFt(0) = etA, t ≥ 0, when A ∈ L(Cn), was
first studied in [6]. The general case of no normalization was first investigated
in [7]. A very general study of non-normalized Loewner chains on complex
manifolds was considered in [1].

Definition 2.5 ([11]). Ã is the family of mappings A : [0,∞) → L(Cn)
that are measurable and satisfy:

� m(A(τ)) ≥ 0, for a.e. τ ≥ 0;

� ess sups≥0∥A(s)∥ < ∞;
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� sups≥0

∫∞
s ∥V (s, t)−1∥e−2

∫ t
s m(A(τ))dτdt < ∞, where V is given by (1).

The above set of conditions for a time-dependent linear operator A pre-
serves various important results from the Loewner Theory for time-independent
linear operators. We show this in the next sections. Before we move on, let
us mention some special cases. If A is constant and equal to I, then A ∈ Ã.
If A is constant and equal to a linear operator A, then Graham, Hamada,
Kohr, Kohr [6] proved that the third condition for A ∈ Ã is equivalent with
the elegant condition k+(A) < 2m(A), where

k+(A) = max{ℜλ : λ is an eigenvalue of A}.

3. THE LOEWNER DIFFERENTIAL EQUATIONS

Definition 3.1 ([7, Definition 1.5], [11]). Let A : [0,∞) → L(Cn) be a
measurable mapping which is locally integrable. So, h : Bn × [0,∞) → Cn is a
Herglotz vector field with respect to A, if:

� h(z, ·) is measurable and locally integrable on [0,∞), z ∈ Bn,

� h(·, t) ∈ NA(t)(Bn), for a.e. t ≥ 0.

Next, v(z, T, t;h) is the solution of the Loewner differential equation related
to h:

(2)
dv

dt
= −h(v, t), a.e. t ∈ [T,∞),

such that v(z, T, T ;h) = z, z ∈ Bn, T ≥ 0. By [7] and [21], (2) always has a
solution v(z, T, ·;h) on [T,∞), for every z ∈ Bn; moreover, {v(·, s, t;h)}0≤s≤t

is a family of Schwartz mappings on Bn.

Taking into account [5, 7] (see also [1, 21]) we consider, in this section,
the implications of the conditions for A ∈ Ã in characterizing certain solutions
of the generalized Loewner differential equation associated to a Herglotz vector
field h with respect to A:

(3)
∂Ft(z)

∂t
= DFt(z)h(z, t), a.e. t ≥ 0, z ∈ Bn.

In the following, in view of [5], we say that {Ft}t≥0 ⊂ H(Bn) is a standard
solution of (3), if t 7→ Ft(z) is locally absolutely continuous, locally uniformly
with respect to z ∈ Bn, Ft(0) = 0, t ≥ 0, and, of course, satisfies (3). Note that,
in view of (1), any standard solution {Ft}t≥0 of (3) satisfies DFt(0) = V (t)−1,
t ≥ 0, if DF0(0) = I.
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Remark 3.2. By [21, Proposition 1.3.6] (see also [8], Chapter 8), every
Loewner chain {Ft}t≥0 with t 7→ DFt(0) of local bounded variation is a solution
of (3) with respect a certain Herglotz vector field. Moreover, we have that
∂DFt(0)

∂t = DFt(0)A(t), for a.e. t ≥ 0 (compare this with Remark 2.3 i)), for
some A : [0,∞) → L(Cn) measurable with m(A(t)) ≥ 0, t ≥ 0.

The next theorem provides a connection between (2) and (3), through
normal Loewner chains. It was basically proved in [7] (see also [21, Sections 1.5]
for the same result under more general conditions; cf. [17]). The case of a time-
independent linear operator was established in [6] (see also [8, Chapter 8]).

Theorem 3.3. Let A ∈ Ã and h be a Herglotz vector field with respect
to A. Then the following limit exists for every T ≥ 0, locally uniformly with
respect to z,

lim
t→∞

V (T, t)−1v(z, T, t;h) = FT (z)

and {Ft}t≥0 is a normal Loewner chain and a standard solution of (3) associ-
ated to h.

Conversely, if {Ft}t≥0 is a standard solution of (3) associated to h and
{V (t)−1Ft}t≥0 is normal, then, for every T ≥ 0 and z ∈ Bn,

FT (z) = lim
t→∞

V (T, t)−1v(z, T, t;h).

The normal Loewner chain {Ft}t≥0 that satisfies (3), given by Theo-
rem 3.3, is called the canonical solution of (3) (see [5]). In view of the proof of
Theorem 3.3, {v(·, s, t;h)}0≤s≤t is the family of transition mappings of {Ft}t≥0

(see [5, 7, 21]). Hence, the following corollary holds (see [17]).

Corollary 3.4. Let A ∈ Ã. If {Ft}t≥0 is a normal Loewner chain
with respect to A and {vs,t}0≤s≤t is its family of transition mappings, then
FT (z) = limt→∞ V (T, t)−1vT,t(z), for every T ≥ 0.

Remark 3.5. Muir provided recently an interesting example (see [17, Ex-
ample 6.11]) of two normal Loewner chains {Ft}t≥0 and {Gt}t≥0, with re-

spect to a time-dependent linear operator A /∈ Ã, that share the same family
{vs,t}0≤s≤t of transition mappings, however they are distinct.

Remark 3.6 ([11]). If A ∈ Ã and {Ft}t≥0 is a normal Loewner chain with
respect to A, then ∪t≥0Ft(Bn) = Cn.

The following theorem is an extension of [5, Theorem 1.1]. One way
to prove it is to use the results in [1] and [21, Section 1.5] (see also [17]).
This characterizes the standard solutions of (3). For time-independent linear
operators, see [3, 10].
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Theorem 3.7. Let A ∈ Ã and h be a Herglotz vector field with respect
to A. Let {Ft}t≥0 be the canonical solution of (3) associated to h and let
{Gt}t≥0 ⊂ H(Bn). Then {Gt}t≥0 is a standard solution of (3) if and only if
there exists Φ : Cn → Cn holomorphic with Φ(0) = 0 such that Gt = Φ ◦ Ft,
for all t ≥ 0.

Note that {Gt}t≥0 in the above theorem is a subordination chain and,
moreover, it is a Loewner chain if and only if Φ is biholomorphic (see [5, 21]).

4. GENERALIZED SPIRALLIKE MAPPINGS

In this section, we consider some particular normal Loewner chains, given
by spirallike mappings. Also, we take a look at Loewner chains of a certain
order in relationship to spiral-shaped mappings.

Definition 4.1 ([1, 16]). Let A : [0,∞) → L(Cn) be a measurable and
locally integrable mapping such that m(A(t)) ≥ 0, for a.e. t ≥ 0. A mapping
f ∈ H(Bn) is said to be generalized spiral-shaped with respect to A, if f is
univalent and V (s, t)f(z) ∈ f(Bn), for all z ∈ Bn and 0 ≤ s ≤ t < ∞.

If f is a normalized (i.e., f ∈ S(Bn)) generalized spiral-shaped mapping,
then f is said to be a generalized spirallike mapping, see [7]. Moreover, if, in
addition, A is constant, then we have the usual definition of an A-spirallike
mapping (e−tAf(z) ∈ f(Bn), for all z ∈ Bn, t ≥ 0), which can be characterized
analytically using NA(Bn) (see [8, Theorem 6.4.10]). On the other hand, if
f is generalized spiral-shaped with respect to a constant A, then f is called
spiral-shaped, see [1].

The next proposition from [11] (see also [7]) shows a characterization
of generalized spirallike mappings in terms, on one hand, of normal Loewner
chains and, on the other hand, spirallike mappings. A detailed proof of it can
be found in [14].

Proposition 4.2. Let A ∈ Ã and let f ∈ S(Bn). Then the following
statements are equivalent:

(i) f is a generalized spirallike mapping with respect to A.

(ii) f is A(t)-spirallike, for a.e. t ≥ 0.

(iii) F : Bn × [0,∞) → Cn given by F (z, t) = V (t)−1f(z), z ∈ Bn, t ≥ 0, is a
normal Loewner chain with respect to A.

Recently, Muir [16] obtained a similar characterization for generalized
spiral-shaped mappings, refining the above result. To present it, we need the
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following definition from [1] (see also [16]): {Ft}t≥0 is called a Loewner chain
of order p ∈ [1,∞], if Fs(Bn) ⊆ Ft(Bn), 0 ≤ s ≤ t, and there t 7→ Ft(z) is
locally Lp-continuous on [0,∞), locally uniformly with respect to z ∈ Bn. For
various properties of these Loewner chains, see [1].

Remark 4.3. In view of [17, Theorem 3.3] and [21, Proposition 1.3.4], if
A : [0,∞) → L(Cn) is a measurable mapping such that ∥A∥ is locally Lp, for
some p ∈ [1,∞], then every Loewner chain with respect to A is a Loewner
chain of order p.

Proposition 4.4. Let A : [0,∞) → L(Cn) be a measurable mapping such
that ∥A∥ is locally Lp, for some p ∈ [1,∞], and m(A(t)) > 0, for a.e. t ≥ 0.
Let f ∈ H(Bn) be univalent. Then the following statements are equivalent:

(i) f is a generalized spiral-shaped mapping with respect to A.

(ii) f is spiral-shaped with respect to A(t), for a.e. t ≥ 0.

(iii) F : Bn × [0,∞) → Cn given by F (z, t) = V (t)−1f(z), z ∈ Bn, t ≥ 0, is a
Loewner chain of order p.

5. GENERALIZED PARAMETRIC REPRESENTATION

A natural extension of the generalized spirallike mappings is given by
the mappings with generalized parametric representation, which we consider
in this section.

Definition 5.1 ([11]). For T ≥ 0 and A : [0,∞) → L(Cn) measurable and
locally integrable, let

S̃T
A(Bn) =

{
f ∈ S(Bn) :∃h Herglotz vector field with respect to A

such that f = lim
t→∞

V (T, t)−1v(·, T, t;h)
}
,

where V (s, t) is the unique solution on [s,∞) of the initial value problem (1).
The mappings in S̃T

A(Bn) are said to have generalized parametric representa-
tion.

The results presented in Section 3 imply the following theorem. For a
detailed proof, see [11, Theorem 3.3] (cf. [7, 21]).

Theorem 5.2. Let A ∈ Ã. Then, for every T ≥ 0,

S̃T
A(Bn) =

{
f ∈ S(Bn) :∃ {Ft}t≥0 normal Loewner chain such that

DFt(0) = V (t)−1, t ≥ 0, and f = V (T )FT

}
.
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If A is constant and equal to I, then the above theorem was proved in
[4, 9]. In this case, we have the well-known family S0(Bn), introduced by
Kohr [15]. If A is constant and equal to a linear operator A, then we have the
family S0

A(Bn), introduced by Graham, Hamada, Kohr, Kohr [6], who proved
the above theorem with the condition k+(A) < 2m(A). We see in the next
section that the choice of T is irrelevant in the case of time-independent linear
operators.

Corollary 5.3. Any mapping that is generalized spirallike with respect
to an A ∈ Ã has generalized parametric representation.

Corollary 5.4. Let A ∈ Ã. If {Ft}t≥0 is a normal Loewner chain with

respect to A, then V (t)Ft ∈ S̃t
A(Bn), for every t ≥ 0.

Remark 5.5. Recently, Muir (see [17, Example 6.11]) gave an example
of a normal Loewner chain {Ft}t≥0 with respect to a time-dependent linear

operator A /∈ Ã for which the above corollary fails to hold.

Remark 5.6. The set of conditions for A ∈ Ã imply that S̃T
A(Bn) is com-

pact, which is another similarity between S̃T
A(Bn) and S0(Bn). This was proved

in [6] for A time-independent, and in [11] for A time-dependent.

Remark 5.7. The set of conditions for A ∈ Ã provide various extremal
properties and convergence results for S̃T

A(Bn), see [13].

6. GENERALIZED PARAMETRIC REPRESENTATION
INDEPENDENT OF TIME

In view of the examples given in [11], there exist time-dependent linear
operators A ∈ Ã such that S̃s

A(Bn) ̸= S̃t
A(Bn), for some t > s ≥ 0. In this

section, we discuss the case S̃s
A(Bn) = S̃t

A(Bn), for all t > s ≥ 0. In fact, we

focus on the special situation S̃t
A(Bn) = S0

A(Bn), for all t ≥ 0, when A is a
time-dependent operator and A is a time-independent operator.

Proposition 6.1 ([17, Theorem 4.1]). Let a : [0,∞) → (0,∞) be a
measurable and locally integrable function such that

∫∞
0 a(t)dt = ∞. Also, let

A ∈ L(Cn) be such that m(A) > 0 and let A : [0,∞) → L(Cn) be given by
A(t) = a(t)A, t ≥ 0. Then S̃T

A(Bn) = S0
A(Bn), for all T ≥ 0.

The above result significantly improves [11, Proposition 3.7].

Proposition 6.2 ([12, Proposition 4.3]). Let a : [0,∞) → [α, β], where
0 < α < β < ∞, be a measurable function. Also, let A : [0,∞) → L(Cn) be
such that A(t) +A(t)∗ = a(t)I, t ≥ 0. Then A ∈ Ã and S̃T

A(Bn) = S0(Bn), for
all T ≥ 0.
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Proposition 6.3 ([17, Theorem 4.4]). Let a : [0,∞) → C be a measurable
and locally integrable function such that Re a(t) > 0, for a.e. t ≥ 0, and∫∞
0 Re a(t)dt = ∞. Also, let A ∈ L(Cn) be Hermitian positive definite and let

A : [0,∞) → L(Cn) be given by A(t) = a(t)A, t ≥ 0. Then S̃T
A(Bn) = S0(Bn),

for all T ≥ 0.

Even though Propositions 6.2 and 6.3 have the same conclusion, they are
quite different in view of [12, Example 4.2]. On the other hand, Proposition 6.3
implies the following result of Muir, which improves [11, Corollary 3.8].

Corollary 6.4 ([17, Corollary 4.6]). Let a : [0,∞) → C be a measurable
and locally integrable function such that Re a(t) > 0, for a.e. t ≥ 0, and∫∞
0 Re a(t)dt = ∞. Then S̃T

a (U) = S0(U) = S, for all T ≥ 0.

According to [17, Corollary 4.11], if, in the above corollary, we consider
the opposite condition:

∫∞
0 Re a(t)dt < ∞, then we have that S̃s

a(U) ̸= S̃t
a(U),

for all t > s ≥ 0.

We finish with some questions. Some partial answers have been presented
above (cf. [13]).

Question 6.5. Under which necessary conditions for A ∈ Ã do we have
S̃T
A(Bn) = S̃0

A(Bn), for all T ≥ 0?

Question 6.6. Let A ∈ Ã and T ≥ 0. Does there exist A ∈ L(Cn) such
that k+(A) < 2m(A) and S̃T

A(Bn) = S0
A(Bn)?
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