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1. INTRODUCTION

Inspired by the work of John Pfaltzgraff [I8] and Tadeusz Poreda [20]
in extending the Loewner theory to higher dimensions, Gabriela Kohr [15]
introduced in 2001 the family S°(B") of mappings with parametric represen-
tation on the Euclidean unit ball as a natural analog of the class S, rather
than the family S(B") of univalent normalized mappings on B™. She proved
properties of S°(B"), which are similar to those of S (by using the Loewner
differential equations and the Loewner chains, see [I5, Theorems 2.3, 2.4, 2.5];
cf. [I9]). Also, she pointed out differences between the dimension one case and
the higher dimensions case, see [15, Examples 2.9, 2.10]. Moreover, she gave
various examples of mappings that have parametric representation and used
their parametric representation to deduce corresponding properties, see [15]
Theorems 2.6, 2.7]. Furthermore, Gabriela Kohr proved, along with Hidetaka
Hamada and Ian Graham [4], the compactness of the Caratheddory family M
(the analog family of normalized holomorphic functions with positive real part)
and, along with Tan Graham and Mirela Kohr [9], the compactness of S°(B").
For a detailed presentation of the Loewner theory in one and higher dimen-
sions and the significance of the above contributions, we strongly recommend
the excellent book of Ian Graham and Gabriela Kohr [§].

Taking into account the spirallike mappings with respect to a linear oper-
ator, Peter Duren, Ian Graham, Hidetaka Hamada, Gabriela Kohr and Mirela
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Kohr [3, [6] introduced and studied the mappings with A-parametric represen-
tation on B”, when A is a linear operator that satisfies a condition involving its
spectrum. Next, lan Graham, Hidetaka Hamada, Gabriela Kohr and Mirela
Kohr [7] considered the generalized parametric representation on B” with re-
spect to a time-dependent linear operator.

Following [13], in this paper, we survey some results for mappings with
generalized parametric representation on B™ with respect to a time-dependent
linear operator. We present certain results obtained in [5, [7, 11, 12} 16l 17, 21].
We discuss both similarities and differences between the time-dependent case
and the time-independent case.

2. PRELIMINARIES

Let C™ be the space of n complex variables z = (z1,...,2,) with the
Euclidean inner product (z,w) = »>"_, 2;w; and the Euclidean norm |[[z|| =
\/ (2, z). The unit ball {z € C" : ||z]| < 1} is denoted by B™. In the case n =1,
the unit disc is denoted by U.

Let

H(B") = {f:B" — C": f is holomorphic}
S(B") = {f € H(B") : f is univalent with f(0) =0 and Df(0) = I},
where D stands for the Fréchet differential and I is the identity operator. We

consider the compact-open topology on these families.

Definition 2.1. Let L(C™) denote the space of linear operators from C"
to C™ with the standard operator norm. For A € L(C"), let

m(A) = min{R(A(z), z) : ||z|| = 1}.
If Ae L(C") with m(A) >0, let
Na(B") ={h € HB") : h(0) = 0, Dh(0) = A and R (h(z),z) >0,z € B"}.
The family N7(B"™) is denoted by M (B™) (see [18]). Graham, Hamada,
Kohr [4, Corollary 1.3] proved that M(B") is a compact family. Moreover,
their arguments imply that N4 (B") is a compact family for every A € L(C")
with m(A) > 0, see [0, Lemma 1.2]. These families play an important role in

geometric function theory in higher dimensions (see []]).
Taking into account [7] (see also [21]), we consider the following definition.

Definition 2.2. Let A :[0,00) — L(C") be a measurable mapping which
is locally integrable on [0,00). For every s > 0, V(s,-) : [s,00) — L(C™) is the
unique locally absolutely continuous solution of the initial value problem ([2])

(1) %‘Z(s,t) = —A(t)V(s,t), for a.e. t € s, 00), V(s,s)=1I.
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Let V(t) = V(0,t), for all ¢t > 0.

Remark 2.3 ([2]). Let A : [0,00) — L(C") be a measurable mapping
which is locally integrable and let V' be given by . The following hold:

(i) V(t)~! exists, for every t > 0, and %V(t)*1 =V (t)"LA(t), for a.e.t > 0.
(ii) V(s,t) =V (t)V(s)"L for 0 < s <t < oo.
(iii) if A(t) and fst A(7)dr commute, for all ¢ > s, then
V(s,t)=e" Iy AMdr gt e [s,00).
Definition 2.4. A family {F;};>0 C H(B") is a subordination chain if:
e F,(B") C Fy(B"),0<s<t,
o F,(0)=0,t>0.
Moreover, {F};}+>0 is called a Loewner chain, if, in addition,
e F} is univalent, t > 0.
Furthermore, {F}}+>¢ is called a normal Loewner chain, if, in addition,
) {DFt(O)’lFt}tZO is a normal family in S(B").

If {Fi}+>0 is a Loewner chain, then vy, = Ft_l oF,, 0 < s <t, forms a
family of univalent Schwarz mappings on B" (i.e., self-mappings that fix the
origin), called the family of transition mappings of {F}}¢>o.

If {F;};>0 satisfies DF;(0) = V(¢)7%, t > 0, where V is given by
associated to a measurable and locally integrable A : [0,00) — L(C"), then
{Fi}+>0 is said to be a subordination chain with respect to A. In the case
DF;(0) = €'I, t > 0, the condition regarding the normality in the above
definition was first pointed out in [4, [9] (cf. [I8]) to play an important role in
Loewner Theory on B”. The case DF;(0) = !4, ¢ > 0, when A € L(C"), was
first studied in [6]. The general case of no normalization was first investigated
in [7]. A very general study of non-normalized Loewner chains on complex
manifolds was considered in [I].

Definition 2.5 ([11]). A is the family of mappings A : [0,00) — L(C")
that are measurable and satisfy:

e m(A(1)) >0, for a.e. 7> 0;

o esssup,sol A(s)] < oo
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o sup,>g [.° HV(s,t)_lHeﬁf: m(AM)AT 4t < 0, where V is given by .

The above set of conditions for a time-dependent linear operator A pre-
serves various important results from the Loewner Theory for time-independent
linear operators. We show this in the next sections. Before we move on, let
us mention some special cases. If A is constant and equal to I, then A € A.
If A is constant and equal to a linear operator A, then Graham, Hamada,
Kohr, Kohr [6] proved that the third condition for A € A is equivalent with
the elegant condition ky(A) < 2m(A), where

ki (A) = max{R\ : ) is an eigenvalue of A}.

3. THE LOEWNER DIFFERENTIAL EQUATIONS

Definition 3.1 ([7, Definition 1.5], [I1]). Let A : [0,00) — L(C™) be a
measurable mapping which is locally integrable. So, h : B™ x [0,00) — C™ is a
Herglotz vector field with respect to A, if:

e h(z,-) is measurable and locally integrable on [0, 00), z € B,
e h(-,t) € NA(t)(Bn), for a.e. t > 0.

Next, v(z,T,t; h) is the solution of the Loewner differential equation related
to h:

dv
(2) o= —h(v,t), ae. t €[T,00),
such that v(z,T,T;h) = 2z, z € B",T > 0. By [7] and [21], always has a
solution v(z,T,-;h) on [T, 00), for every z € B™; moreover, {v(-, s,t;h)}o<s<t
is a family of Schwartz mappings on B".

Taking into account [5l [7] (see also [II, 21]) we consider, in this section,
the implications of the conditions for A € A in characterizing certain solutions
of the generalized Loewner differential equation associated to a Herglotz vector
field h with respect to A:

OF;(z)
(3) 5t
In the following, in view of [5], we say that {F}}+>0 C H(B") is a standard
solution of (3)), if ¢ — Fy(z) is locally absolutely continuous, locally uniformly
with respect to z € B™, F;(0) = 0, t > 0, and, of course, satisfies (3)). Note that,
in view of (), any standard solution {F}};>o of (3) satisfies DF;(0) = V/(¢)~*,
t >0, if DFy(0) = I.

= DFy(2)h(z,t), ae t>0, ze€B"
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Remark 3.2. By [21), Proposition 1.3.6] (see also [8], Chapter 8), every
Loewner chain {F}}¢>o with ¢ — DF;(0) of local bounded variation is a solution
of with respect a certain Herglotz vector field. Moreover, we have that
aDaL;O) = DF;(0)A(t), for a.e. t > 0 (compare this with Remark i)), for
some A : [0,00) — L(C"™) measurable with m(A(t)) > 0, ¢t > 0.

The next theorem provides a connection between and , through
normal Loewner chains. It was basically proved in [7] (see also [21] Sections 1.5]
for the same result under more general conditions; cf. [I7]). The case of a time-
independent linear operator was established in [6] (see also [8, Chapter 8]).

THEOREM 3.3. Let A € A and h be a Herglotz vector field with respect
to A. Then the following limit exists for every T > 0, locally uniformly with
respect to z,

lim V(T,t) " 'v(z, T, t; h) = Fr(z)

t—o0
and {Fi}¢>0 is a normal Loewner chain and a standard solution of associ-
ated to h.

Conversely, if {Fi}+>0 is a standard solution of associated to h and
{V(t)"1F,}y>0 is normal, then, for every T >0 and z € B",

Pr(z) = lim V(T, t)"to(z, T, t; h).

The normal Loewner chain {F;};>¢ that satisfies (3), given by Theo-
rem is called the canonical solution of (see [B]). In view of the proof of
Theorem {v(-, s,t; h) }o<s<t is the family of transition mappings of {F} }+>0
(see [5, [7, 21]). Hence, the following corollary holds (see [17]).

COROLLARY 3.4. Let A € A. If {F\};>0 is a normal Loewner chain
with respect to A and {vst}to<s<t is its family of transition mappings, then
Fr(z) = limy_yoo V(T t) " tvr4(2), for every T > 0.

Remark 3.5. Muir provided recently an interesting example (see [17, Ex-
ample 6.11]) of two normal Loewner chains {Fi}i>0 and {Gi}i>0, with re-
spect to a time-dependent linear operator A ¢ j, that share the same family
{vs.t}o<s<t of transition mappings, however they are distinct.

Remark 3.6 ([I1]). If A € A and {F;}+>0 is a normal Loewner chain with
respect to A, then Up>oF;(B") = C".

The following theorem is an extension of [5, Theorem 1.1]. One way
to prove it is to use the results in [I] and [21, Section 1.5] (see also [17]).
This characterizes the standard solutions of . For time-independent linear
operators, see [3}, [10].
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THEOREM 3.7. Let A € A and h be a Herglotz vector field with respect
to A. Let {Fi}i>0 be the canonical solution of assoctated to h and let
{Gitti>0 C H(B"). Then {Gt}t>0 is a standard solution of if and only if
there exists ® : C™ — C™ holomorphic with ®(0) = 0 such that Gy = ® o Fy,
for allt > 0.

Note that {G¢}+>0 in the above theorem is a subordination chain and,
moreover, it is a Loewner chain if and only if ® is biholomorphic (see [5] 21]).

4. GENERALIZED SPIRALLIKE MAPPINGS

In this section, we consider some particular normal Loewner chains, given
by spirallike mappings. Also, we take a look at Loewner chains of a certain
order in relationship to spiral-shaped mappings.

Definition 4.1 ([I, 16]). Let A : [0,00) — L(C™) be a measurable and
locally integrable mapping such that m(A(t)) > 0, for a.e. ¢ > 0. A mapping
f € H(B") is said to be generalized spiral-shaped with respect to A, if f is
univalent and V' (s,t)f(z) € f(B"), for all z € B” and 0 < s <t < oc.

If f is a normalized (i.e., f € S(B™)) generalized spiral-shaped mapping,
then f is said to be a generalized spirallike mapping, see [7]. Moreover, if, in
addition, A is constant, then we have the usual definition of an A-spirallike
mapping (et f(z) € f(B"), for all z € B",t > 0), which can be characterized
analytically using A4(B") (see [8, Theorem 6.4.10]). On the other hand, if
f is generalized spiral-shaped with respect to a constant A, then f is called
spiral-shaped, see [1].

The next proposition from [II] (see also [7]) shows a characterization
of generalized spirallike mappings in terms, on one hand, of normal Loewner
chains and, on the other hand, spirallike mappings. A detailed proof of it can
be found in [14].

PROPOSITION 4.2. Let A € A and let f € S(B™). Then the following
statements are equivalent:

(i) f is a generalized spirallike mapping with respect to A.
(ii) f is A(t)-spirallike, for a.e. t > 0.

(iii) F:B" x [0,00) — C" given by F(z,t) = V(t)"1f(2), z€B", t >0, is a
normal Loewner chain with respect to A.

Recently, Muir [I6] obtained a similar characterization for generalized
spiral-shaped mappings, refining the above result. To present it, we need the
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following definition from [I] (see also [16]): {F;}>0 is called a Loewner chain
of order p € [1,00], if Fs(B™) C F;(B"), 0 < s < t, and there t — Fy(z) is
locally LP-continuous on [0, 00), locally uniformly with respect to z € B™. For
various properties of these Loewner chains, see [1].

Remark 4.3. In view of [I7, Theorem 3.3] and |21, Proposition 1.3.4], if
A :[0,00) — L(C") is a measurable mapping such that ||A] is locally LP, for
some p € [1,00], then every Loewner chain with respect to A is a Loewner
chain of order p.

PROPOSITION 4.4. Let A : [0,00) — L(C") be a measurable mapping such
that ||A|| is locally LP, for some p € [1,00], and m(A(t)) > 0, for a.e. t > 0.
Let f € H(B™) be univalent. Then the following statements are equivalent:

(i) f is a generalized spiral-shaped mapping with respect to A.
(ii) f is spiral-shaped with respect to A(t), for a.e. t > 0.

(iii) F:B" x [0,00) — C" given by F(z,t) = V(t)"1f(2), 2€B", t >0, is a
Loewner chain of order p.

5. GENERALIZED PARAMETRIC REPRESENTATION

A natural extension of the generalized spirallike mappings is given by
the mappings with generalized parametric representation, which we consider
in this section.

Definition 5.1 ([11]). For T'> 0 and A : [0,00) — L(C") measurable and
locally integrable, let

SA (B") = {f € S(B") :3h Herglotz vector field with respect to A
such that f = tlgglo V(T,t)~? (-,T,t,h)},
where V (s, 1) is the unique solution on [s,00) of the initial value problem ().

The mappings in SE(IBB”) are said to have generalized parametric representa-
tion.

The results presented in Section [3| imply the following theorem. For a
detailed proof, see [11, Theorem 3.3] (cf. [7, 21]).

THEOREM 5.2. Let A€ A. Then, for every T >0,

ST(B") = {f € S(B") :3{Fi}4>0 normal Loewner chain such that
DE,(0)=V(t)"',t >0, and f = V(T)Fr}.
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If A is constant and equal to I, then the above theorem was proved in
[4, ©]. In this case, we have the well-known family S°(B"), introduced by
Kohr [I5]. If A is constant and equal to a linear operator A, then we have the
family SQ (B"), introduced by Graham, Hamada, Kohr, Kohr [6], who proved
the above theorem with the condition ki (A) < 2m(A). We see in the next
section that the choice of T is irrelevant in the case of time-independent linear
operators.

COROLLARY 5.3. Any mapping that is generalized spirallike with respect
to an A € A has generalized parametric representation.

COROLLARY 5.4. Let A € A. If {F;}>0 is a normal Loewner chain with
respect to A, then V (t)F, € S4(B™), for every t > 0.

Remark 5.5. Recently, Muir (see [17, Example 6.11]) gave an example
of a normal Loewner chain {F;};>o with respect to a time-dependent linear
operator A ¢ A for which the above corollary fails to hold.

Remark 5.6. The set of conditions for A € A imply that §£(B") is com-
pact, which is another similarity between S% (B") and S°(B"). This was proved
in [6] for A time-independent, and in [I1] for A time-dependent.

Remark 5.7. The set of conditions for A € A provide various extremal
properties and convergence results for S% (B"), see [13].

6. GENERALIZED PARAMETRIC REPRESENTATION
INDEPENDENT OF TIME

In view of the examples given in [L1], there exist time-dependent linear
operators A € A such that S%(B") # S%(B"), for some ¢ > s > 0. In this
section, we discuss the case §f4(IB%”) = 52(18”), for all t > s > 0. In fact, we
focus on the special situation 52(13”) = SQ(B"), for all t > 0, when A is a
time-dependent operator and A is a time-independent operator.

ProposITION 6.1 ([I7, Theorem 4.1]). Let a : [0,00) — (0,00) be a
measurable and locally integrable function such that fooo a(t)dt = oo. Also, let
A € L(C") be such that m(A) > 0 and let A : [0,00) — L(C") be given by

A(t) = a(t)A, t > 0. Then SE(B") = SQ (B"), for all T > 0.
The above result significantly improves [11, Proposition 3.7].
PROPOSITION 6.2 ([12, Proposition 4.3]). Let a : [0,00) — [a, 8], where
0 < a < f < oo, be a measurable function. Also, let A : [0,00) — L(C") be
such that A(t) + A(t)* = a(t)I, t > 0. Then A € A and ST (B") = S°(B"), for
allT > 0.
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PROPOSITION 6.3 ([I7, Theorem 4.4]). Leta : [0,00) — C be a measurable
and locally integrable function such that Rea(t) > 0, for a.e. t > 0, and
Jo° Rea(t)dt = co. Also, let A € L(C™) be Hermitian positive definite and let
A :[0,00) = L(C") be given by A(t) = a(t)A, t > 0. Then ST (B") = SO(B"),
for all T > 0.

Even though Propositions [6.2] and [6.3] have the same conclusion, they are
quite different in view of [I2] Example 4.2]. On the other hand, Proposition
implies the following result of Muir, which improves [11, Corollary 3.8].

COROLLARY 6.4 ([I7, Corollary 4.6]). Let a : [0,00) — C be a measurable
and locally integrable function such that Rea(t) > 0, for a.e. t > 0, and
Jo° Rea(t)dt = co. Then ST (U) = S5°(U) =S, for all T > 0.

According to [17, Corollary 4.11], if, in the above corollary, we consider
the opposite condition: [;° Rea(t)dt < oo, then we have that S5(U) # SL(U),
forallt >s>0.

We finish with some questions. Some partial answers have been presented
above (cf. [13]).

_ Question 6.5. Under which necessary conditions for A € A do we have
ST(B™) = SY(B"), for all T > 07

Question 6.6. Let A € A and T > 0. Does there exist A € L(C") such
that ki (A) < 2m(A) and S (B") = S (B")?
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