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One considers a unilamellar liposome filled with an aqueous solution of an os-
motic solute. This liposome is introduced into an aqueous medium. Due to the
osmosis process, the lipid vesicle swells up to a maximum size, when a transbi-
layer pore suddenly appears. Part of the internal solution leaks through this pore.
The liposome deflates and returns to its initial size. The swelling begins again
and the liposome begins a cyclical evolution. All the processes which contribute
to the liposome relaxing and its coming back to the initial size are described by
three differential equations. This system of differential equations used to model
the liposome can be integrated using numerical methods. At the same time, in
order to describe the behavior of the model functions, we propose an analytical
method in which the variable is the radius of the pore. Thus, working under this
hypothesis of the radius of the pore, we propose an analytical solution for this
system of differential equations and give the analytical expressions of the model
functions and their graphs.
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1. INTRODUCTION

We consider a unilamellar liposome filled with an aqueous solution of
an osmotic solute. A liposome is a small artificial spherical vesicle, whose
membrane (lamella) is formed by a double layer of phospholipid molecules (see
Figure 1) [10, 11, 17, 15]. If such a liposome is introduced into water, it has
a cyclical dynamic evolution. The pulsatory liposome works as a three-stroke
biomicroengine. For this reason, it is considered as an object of bionics. The
osmotic solute is a solute for which the liposome membrane is impermeable.
Due to the osmosis process, the liposome swells up to a critical size, when
suddenly a transbilayer pore appears. The appearance of the pore changes the
evolution of the liposome. The swelling of the liposome stops and its deflation
begins. The evolution of the pore has two phases: first, the pore increases
up to a maximum value of radius, then the radius decreases until the pore
disappears, and the liposome reaches its initial size [13, 7, 8]. A new cycle can
start.
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Figure 1 – The structure of a liposome.

The liposome is named in this paper LP-model. All the processes which
contribute to the liposome relaxing and its coming back to the initial size are
described by three differential equations [8, 18, 4, 2, 6]. The functions which are
modeling our biological engine are as follows: R(t) - the liposome radius, r(t)
- the pore radius, C(t) - internal solute concentration. The three differential
equations can be solved using numerical methods. An interesting observation is
that in the system of differential equations that describe the functioning of the
pulsatory liposome, the variable time, does not appear explicitly. In this paper,
we propose an analytical approach working in the hypothesis of the radius of
the pore [3]. In this approach the advantage of the analytical method lies in
obtaining explicit solutions. They are validated by comparing with results from
previous studies [3]. The structure of this paper is: in Section 2, we describe
the LP model specifying the base equations and the material constants. In
Section 3, we detail the LP-analysis method in the working hypothesis for the
pore radius. Then, we obtain the explicit analytical expressions of the LP-
model functions. We conclude by providing the graphical representations for
two functions in the hypothesis for the evolution of the pore.

2. THE BASE EQUATIONS OF THE PULSATORY LIPOSOME

Due to the appearance of the pore, the swelling of the liposome stops, its
evolution changes and the liposome deflates (relaxes) [13, 8, 18, 4, 12]. The
relax stage of the pulsatory liposome is determined by the pore dynamics. The
radius of the pore increases up to a maximum value, rM , then decreases until
the pore disappears (Figure 2).
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Figure 2 – The evolution of a pulsatory liposome during a cycle.

The following differential equation describes the radius of the pore r(t)
evolution:
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(
R2

R2
0

− 1− r2

4R2
0

)
−G,(1)

where γ is the line tension acting for pore closure, ηm is the membrane viscosity,
Ẽ = E

F , G = 2γ
F , F = 4hηm; 2h is the thickness of the lipid bilayer.

The radius of the pulsatory liposome and the concentration of the osmotic
solute decrease. The decrease of the liposome radius R(t) is described by the
following differential equation:
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where R0 is the pulsatory liposome radius in the initial unscretched state and
r(t) is the pore radius; β = 4.00914·10−4mol ·J−1; ηℓ is the viscosity of aqueous
solution; µ = Pw · Vµw = 5.412 · 10−10m4 · mol−1 ·s−1, Vµw – being the water
molar volume and E = 0.2N ·m−1 is the elastic modulus for surface stretching
or compression.

The change of the internal concentration of the osmotic solute C(t) is
given by the equation:
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where C(t) is the solute concentration inside the liposome, Vlip(t) is the volume
of the liposome and C ·Vlip = Q is the quantity of osmotic solute from internal
solution.

The internal solute quantity is Q(t) = C(t)Vlip = C(t) ·R(t)3 · 4π
3 .
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3. THE PORE RADIUS HYPOTHESIS METHOD AND ITS
RESULTS

As a method to analyze the pore dynamics in the phase-fa (growth of
pores) and phase-fb (reduction of pores) of the LP-model, we present in the
following the working hypothesis derived from the search for solutions of the
model in a predefined form, as follows. In r-hypothesis, we consider the func-
tion of pore radius with its derivatives relative to time having the below forms
where T1 is the duration of the pore growth phase, T2 is the duration of the pore
decrease phase. Stating that r(t) is continuous for its value rM , we determine
below T1 and T2 in formulae (9).

We recall that due to the osmosis process the liposome swells up to a
critical size, when suddenly a pore appears of r0 radius. In fa-phase (see
Figure 2), the porus radius is increasing from r0 to rM , where r0 is an input
parameter for the model which indicates the start of the porus growth phase:

ṙ =
π

2T1

√
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( π

2T1

)2
r < 0.(4)

In fb-phase (Figure 2), the pore radius is decreasing from rM to 0 which
closes the liposome cycle:
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Using the r-hypothesis in equation (1) and understanding that T denotes
a parameter which means the time period of the proper phase, we obtain:
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where Ẽ,G are defined in equation (1) with γ, ηm as constants of material.

Also, as a consequence of r-hypothesis, we calculate the derivative of
function R relative to time in phases fa and fb:
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Then, from equation (2), we calculate the solute concentration in phases
fa and fb:
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Working in r-hypothesis, we ask that the conditions of continuity be met
for the functions R(r;T ) and C(r;T ) in r0 in the start of fa-phase and also in
r = 0 at the end of fb-phase.

So, we obtain the parameters of LP-model such as T1 – the duration of
the pore growth phase and T2 – the duration of the pore decrease phase:
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Applying formulae (9) in equation (6), we obtain the radius of the pul-
sating liposome both in phases fa and fb:
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Because the function r(t) is continuous for the value rM , we derive that
R(r;T ) is also continuous in rM and obtain:

R(rM ;T1) = R(rM ;T2) = RM = R0

√
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r2M
4R0

+
G

ẼrM
.(12)

Figure 3 – The evolution of the liposome radius during the relax stage.

The second important function of the dynamics of a pulsatory liposome
during its evolution is the concentration of the osmotic solute.
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Using formulae (9) in equation (8), we obtain the concentration of the
solute in phases fa and fb:
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where Cc = C(r0;T1) and CM = C(rM ;T1).

Figure 4 – The evolution of the liposome solute-concentration during the relax
stage.

In Figures 3 and 4, via equations (10)–(14), we represent the liposome
radius R(r;T ) and the solute concentration C(r;T ) as the functions of the
pore radius for both phases increase, respectively decrease. The graphs of
these functions are continuous in rM due to the condition imposed for the
function r(t) to be continuous for the value rM . These aspects are in harmony
with the previous studies [3].

4. CONCLUSIONS

Starting from the hypothesis that the radius of the pore determines the
evolution of the pulsatory liposome in its relaxation phase, we obtained the
functions of liposome radius and also the ones of the concentration of the
osmotic solute during both pore evolution phases. It is very interesting and
useful that we were able to calculate important parameters of the evolution of
the pulsatory liposome: the duration of the pore growth phase, the duration of



7 The pulsatory liposome in the pore radius hypothesis 537

the pore decrease phase, the radius of the liposome when the pore is maxim and
finally the concentration of the solute at the end of the cycle. From plots of LP-
model functions, we can conclude that their analytical expressions obtained in
this article are in harmony with the previous studies. Since the osmotic solute
can be a substance with pharmacological properties, the pulsating liposome
can be used in medical applications [19, 16, 14, 20] and as a bionic object [9].
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