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1. INTRODUCTION

The importance of the study of Hopf algebras in braided monoidal cate-
gories was recognized through the investigation of quantum groups and their
applications. For example, Nichols algebras have been actively investigated for
the classification of pointed Hopf algebras [3]–[7, 10, 13], a class of Hopf alge-
bras including quantized enveloping algebras. The category SV of superspaces
over a field k of characteristic ̸= 2 (see Section 2.1) is a simple but significant
example of braided monoidal categories. Hopf algebras in SV are called Hopf
superalgebras. The enveloping algebra of a Lie superalgebra and its quantiza-
tion are important examples of Hopf superalgebras in representation theory,
low-dimensional topology, mathematical physics, etc.

The classification problem of finite-dimensional Hopf algebras of a given
dimension has been actively studied by many researchers after it was pro-
posed by Kaplansky in 1975; see [9] for a survey. The classification problem
of finite-dimensional Hopf superalgebras over an algebraically closed field of
characteristic zero could also be fundamental and crucial. Some families of
finite-dimensional Hopf superalgebras have been studied. For instance, An-
druskiewitsch, Etingof and Gelaki [3] classified a class of triangular Hopf alge-
bras by means of finite supergroups. Andruskiewitsch, Angiono and Yamane [2]
developed basic results on finite-dimensional pointed Hopf superalgebras. Re-
garding the classification problem of finite-dimensional Hopf superalgebras of
a given dimension, Aissaoui and Makhlouf [1] classified those of dimension 2,
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3 and 4. However, unlike the case of ordinary Hopf algebras, the systematic
study of the classification problem seems to be just began.

The goal of this paper is to give a complete list of finite-dimensional
pointed Hopf superalgebras of dimension up to 10 over an algebraically closed
field of characteristic zero as an intermediate step to classify all Hopf superal-
gebras of those dimensions.

Our central method has been introduced in [18]. A Hopf superalgebra H
can be regarded as a Hopf algebra in the braided monoidal category kZ2

kZ2
YD of

Yetter–Drinfeld modules over kZ2, and hence, we obtain a Hopf algebra Ĥ :=
H#kZ2 from the Hopf superalgebra H by the Radford–Majid bosonization
[14, 17]. We note that H and Ĥ share many properties: For example, H is
semisimple if and only if Ĥ is. H is pointed if and only if Ĥ is. In [18], for
a given Hopf algebra A, we have discussed how Hopf superalgebras H such
that H1̄ ̸= 0 and Ĥ ∼= A are obtained, where H1̄ is the odd part of H. As
a consequence, such Hopf superalgebras are parametrized by super-data for A
(see Definition 3.4). This is a pair (g, α) of group-like elements of g ∈ G(A)
and α ∈ G(A∗) such that g2 = 1, α2 = ε, α(g) = −1, α ⇀ a ↼ α = gag for all
a ∈ A and g is not central in A. Furthermore, two Hopf superalgebras arising
from two super-data (g, α) and (g′, α′) are isomorphic if and only if there is
a Hopf algebra automorphism φ of A such that φ(g) = g′ and α′ ◦ φ = α.
Thus, the classification of Hopf superalgebras H such that H1̄ ̸= 0 and Ĥ ∼=
A are completed by the following strategy: First, determine all super-data
for A. Second, determine Hopf algebra automorphisms of A. Finally, give a
presentation of the resulting Hopf superalgebras.

If a classification of, say, pointed Hopf algebras of dimension n has been
known, then the classification of pointed Hopf superalgebras of dimension n/2
are obtained by the above program. From now on, we work over an alge-
braically closed field k of characteristic zero. Let p be an odd prime number.
By exploiting results on Hopf algebras of dimensions 2p and 2p2 [4, 15, 16], we
obtain the following theorem.

Theorem (= Theorems 2.3 and 4.7). Let H be a Hopf superalgebra
over k.

1. If dim(H) = p, then H is purely even, that is, H1̄ = 0.

2. If dim(H) = p2 and H is non-semisimple pointed, H is purely even.

It is easy to see that the exterior superalgebra
∧
k is the only (up to

isomorphism) Hopf superalgebra of dimension 2 whose odd part is non-trivial.
Thanks to the classification of 8-dimensional Hopf algebras by Ştefan [19] and
that of 16-dimensional pointed Hopf algebras by Caenepeel, Dăscălescu and
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Raianu [10], we classify pointed Hopf superalgebras of dimensions 4 and 8.
Hence, we complete the classification of pointed Hopf superalgebras of dimen-
sion up to 10.

Classification lists

To present our classification result uniformly, we introduce the pointed
Hopf superalgebra A(Γ,D) constructed from a finite abelian group Γ and a
compatible datum D ∈ (Γ× Γ̂× {0, 1} × {0, 1})θ as a kind of super-version of
pointed Hopf algebras introduced by Andruskiewitsch and Schneider [5], see
Section 4.1 for the precise definition. Here, Γ̂ is the character group of Γ and
θ is a natural number. Using this notation, we display our classification result
below, where 1 denote the trivial character of Γ.

Dimension 2p. Let p denote an odd prime, and let ζp ∈ k denote a
fixed primitive p-th root of unity. Let Γ be the group Cp = ⟨g | gp = 1⟩ of order
p, and let χ be the character defined by χ(g) = ζp. A complete list of pairwise
non-isomorphic non-semisimple pointed Hopf superalgebras H of dimension 2p
satisfying H1̄ ̸= 0 are given by Table 1 (Theorem 4.8). For explicit relations

between H(i)
2p (i ∈ {1, 2, 3, 4}) and A(Γ,D), see Section 4.2.

Hopf superalgebras H

with H1̄ ̸= 0
Γ D = (gi, χi, µi; ϵi)

θ
i=1 The dual H∗ of H

H(1)
2p = kCp ⊗

∧
k

(
1, 1, 0; 1

)
self-dual

H(2)
2p Cp (g(p+1)/2, 1, 0; 1) H(3)

2p

H(3)
2p (1, χ, 0; 1) H(2)

2p

H(4)
2p (g(p+1)/2, 1, 1; 1)

non-pointed for p = 3, 5

(Theorem 5.4)

Table 1 – Non-semisimple pointed Hopf superalgebras of dimension 2p

Dimension 4. Let Γ be the group C2 = ⟨g | g2 = 1⟩ of order two,
and let χ be the non-trivial character, that is, χ(g) = −1. A complete list
of pairwise non-isomorphic non-semisimple pointed Hopf superalgebras H of
dimension 4 satisfying H1̄ ̸= 0 are given by Table 2 (Theorem 4.10).
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Hopf superalgebras H

with H1̄ ̸= 0
Γ D = (gi, χi, µi; ϵi)

θ
i=1 The dual H∗ of H

H(1)
4 =

∧
k2 {1} ((1, 1, 0; 1), (1, 1, 0; 1)) self-dual

H(2)
4 = kC2 ⊗

∧
k (1, 1, 0; 1) self-dual

H(3)
4 C2 (g, 1, 0; 1) H(4)

4

H(4)
4 (1, χ, 0; 1) H(3)

4

Table 2 – Non-semisimple pointed Hopf superalgebras of dimension 4

Dimension 8. Let ζ4 ∈ k denote a fixed primitive fourth root of unity.
If Γ is C2 = ⟨g | g2 = 1⟩ (respectively, C2 × C2 = ⟨g1, g2 | g21 = g22 = 1, g1g2 =
g2g1⟩, C4 = ⟨g | g4 = 1⟩), then we take χ (respectively, χ1, χ2, χ) so that
χ(g) = −1 (respectively, χi(gj) = −(−1)i+j , χ(g) = ζ4). A complete list
of pairwise non-isomorphic non-semisimple pointed Hopf superalgebras H of
dimension 8 satisfying H1̄ ̸= 0 are given by Table 3 (Theorem 4.14).

Organization of the paper

This paper is organized as follows. In Section 2, we review definitions and
properties of Hopf superalgebras. Fundamental results on the bosonization,
which are useful for the classification of Hopf superalgebras, are recalled from
[18] in Sections 2.2 and 3.1. We say that a Hopf superalgebra H is a super-
form of a Hopf algebra A if A ∼= Ĥ. In Section 3, we discuss super-forms of
finite-dimensional pointed Hopf algebras with abelian coradical and, relying
the classification of such Hopf algebras [6, 7], we show that it is generated by
group-like elements and skew-primitive elements. As an example, we determine
all super-forms of a Taft algebra.

In Sections 4 and 5, we work over an algebraically closed field of char-
acteristic zero. In Section 4, after introducing the pointed Hopf superalgebra
A(Γ,D), we classify super-forms of pointed Hopf algebras of dimension up to
20. Non-semisimple pointed Hopf superalgebras of dimensions p2, 2p, 4 and 8
(where p is an odd prime number) are classified in Theorems 4.7, 4.8, 4.10 and
4.14. As a result, we obtain the classification of non-semisimple pointed Hopf
superalgebra of dimension up to 10, as explained in the above.

In the final Section 5, we determine duals of the Hopf superalgebras ap-
peared in Section 4.
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Hopf superalgebras H

with H1̄ ̸= 0
Γ D = (gi, χi, µi; ϵi)

θ
i=1 The dual H∗ of H

H(1)
8 =

∧
k3 {1} ((1, 1, 0; 1), (1, 1, 0; 1), (1, 1, 0; 1)) self-dual

H(2)
8 = kC2 ⊗

∧
k2 ((1, 1, 0; 1), (1, 1, 0; 1)) self-dual

H(3)
8 ((1, 1, 0; 1), (g, 1, 0; 1)) H(4)

8

H(4)
8 C2 ((1, 1, 0; 1), (1, χ, 0; 1)) H(3)

8

H(5)
8 ((g, 1, 0; 1), (g, 1, 0; 1)) H(6)

8

H(6)
8 ((1, χ, 0; 1), (1, χ, 0; 1)) H(5)

8

H(7)
8 = T4(−1)⊗

∧
k ((g, χ, 0; 0), (1, 1, 0; 1)) self-dual

H(8)
8 = k(C2 × C2)⊗

∧
k (1, 1, 0; 1) self-dual

H(9)
8 C2

2 (g1, 1, 0; 1) H(10)
8

H(10)
8 (1, χ1, 0; 1) H(9)

8

H(11)
8 (g1, χ1, 0; 1) self-dual

H(12)
8 = kC4 ⊗

∧
k (1, 1, 0; 1) self-dual

H(13)
8 (g, 1, 0; 1) H(15)

8

H(14)
8 (g2, 1, 0; 1) H(16)

8

H(15)
8 C4 (1, χ, 0; 1) H(13)

8

H(16)
8 (1, χ2, 0; 1) H(14)

8

H(17)
8 (g2, χ2, 0; 1) self-dual

H(18)
8 (g, 1, 1; 1)

non-pointed

(Theorem 5.4)

Table 3 – Non-semisimple pointed Hopf superalgebras of dimension 8

2. PRELIMINARIES

In this section, we work over a filed k of characteristic not equal to 2.
The unadorned symbol ⊗ means the tensor product over k. We denote by Z2

the additive group of integers of modulo 2. The class of n ∈ Z in Z2 is written
as n̄ or, by abuse of notation, by the same symbol n.

The group algebra of Z2 is denoted by kZ2. When we consider kZ2, we
identify Z2 with the multiplicative group {eee,σσσ} of order two, where eee is the
identity element and σσσ2 = eee, for notational convenience.

Given a vector space X, we denote by X∗ the dual space of X. Let C be
a coalgebra with comultiplication ∆. We use the Heyneman–Sweedler notation
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∆(c) = c(1) ⊗ c(2) to express the comultiplication of c ∈ C. The dual space C∗

is an algebra with respect to the multiplication given by fg(c) = f(c(1))g(c(2))
for f, g ∈ C∗ and c ∈ C. We note that C is a C∗-bimodule by the actions given
by

f ⇀ c := c(1)f(c(2)), c ↼ f := f(c(1))c(2) (f ∈ C∗, c ∈ C).

2.1. Hopf superalgebras

We denote by SV the category of superspaces. Namely, an object of
this category is a vector space V = V0̄ ⊕ V1̄ graded by the group Z2 and
a morphism is a linear map respecting the Z2-grading. For a homogeneous
element 0 ̸= v ∈ V0̄ ∪ V1̄, we denote its degree by |v|. We say that v ∈ V
is an even (respectively, odd) element if |v| = 0 respectively, |v| = 1). For
simplicity, when we write |v|, v is always supposed to be homogeneous. We
say that V ∈ SV is purely even if V1̄ = 0.

The dual space V ∗ of V ∈ SV is a superspace by letting (V ∗)ϵ̄ := (Vϵ̄)
∗

(ϵ ∈ {0, 1}). There is a natural tensor product in the category SV. The
category SV is, in fact, a symmetric tensor category with respect to the natural
isomorphism

V ⊗W −→ W ⊗ V ; v ⊗ w 7−→ (−1)|v||w|w ⊗ v (V,W ∈ SV),

called the supersymmetry.
A superalgebra (respectively, supercoalgebra, Hopf superalgebra) is an al-

gebra (respectively, coalgebra, Hopf algebra) in the symmetric tensor category
SV. A left supermodule over a superalgebra A is a superspace V equipped with
a morphism A⊗V → V in SV satisfying the associativity and the unit axioms.
The definition of a right A-supermodule should be clear. Supercomodules over
a supercoalgebra are defined analogously.

Definition 2.1. Let H be a Hopf superalgebra.

1. H is said to be (co)semisimple if the category of left H-super(co)modules
is semisimple.

2. H is said to be pointed if any simple right H-supercomodule is one-
dimensional.

3. H is said to have the Chevalley property if the tensor product of any two
simple right H-supercomodule is semisimple.

The above definition of the Chevalley property is a super-analogue of
the Chevalley property of ordinary Hopf algebras considered in [9] and [12].
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We warn that this term has been used in a different meaning in literature
including [3].

We are especially interested in finite-dimensional non-semisimple pointed
Hopf superalgebras. In later, we show that a finite-dimensional semisimple
pointed Hopf superalgebra is purely even and is isomorphic to a group algebra
of a finite group (see Proposition 2.5).

Let H be a Hopf superalgebra with comultiplication ∆H and counit εH.
As in the non-super situation, the set

G(H) := {g ∈ H0̄ | εH(g) = 1, ∆H(g) = g ⊗ g}

becomes a group under the multiplication of H. An element of G(H) is called
a group-like element of H. For a fixed g ∈ G(H), an element z ∈ H is said to
be g-skew primitive if it satisfies ∆H(z) = g ⊗ z + z ⊗ 1. A 1-skew primitive
element is simply called a primitive element of H.

If H is a finite-dimensional Hopf superalgebra, then one can make H∗

into a Hopf superalgebra, called the dual Hopf superalgebra of H, in a similar
way as the ungraded context. Let H and A be Hopf superalgebras, and let
⟨ , ⟩ : H × A → k be a bilinear map satisfying ⟨Hϵ̄,Aν̄⟩ = 0 for ϵ, ν ∈ {0, 1}
with ϵ ̸= ν. The map ⟨ , ⟩ is called a Hopf pairing if it satisfies

⟨xy, a⟩ = ⟨x, a(1)⟩⟨y, a(2)⟩, ⟨x, ab⟩ = ⟨x(1), a⟩⟨x(2), b⟩,
⟨x, 1A⟩ = εH(x), ⟨1H, a⟩ = εA(a)

for x, y ∈ H and a, b ∈ A. If ⟨ , ⟩ is a Hopf pairing and A is finite-dimensional,
then one sees that the map H → A∗; x 7→ (a 7→ ⟨x, a⟩) is a Hopf superalgebra
map. Note that there exists another definition of a Hopf pairing taking into
account the supersymmetry. However, one can show that if the base field k is
algebraically closed then these definitions coincide, see [18, Remark 3.10].

Example 2.2. Let V be a vector space. The exterior superalgebra
∧
V

over V has a natural structure of a pointed Hopf superalgebra so that each
z ∈ V is odd primitive. The canonical pairing ⟨ , ⟩ : V × V ∗ → k uniquely
extends to a non-degenerate Hopf pairing ⟨ , ⟩ :

∧
V ×

∧
V ∗ → k given by

⟨v1 ∧ · · · ∧ vn, f1 ∧ · · · ∧ fm⟩ = δn,m det
(
⟨vi, fj⟩

)
i,j

(n,m ∈ N),

where δn,m is the Kronecker symbol. In particular,
∧

V is self-dual if V is
finite-dimensional.

2.2. Bosonization of Hopf superalgebras

Let H be a Hopf algebra, in general. By Radford [17] and Majid [14], up
to isomorphism, there is a one-to-one correspondence between Hopf algebras
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equipped with a split epimorphism onto H and Hopf algebras in the category
H
HYD of Yetter–Drinfeld modules over H. For a Hopf algebra B in H

HYD, we
denote the corresponding Hopf algebra by B#H, called the bosonization of B
by H.

By definition, an object of kZ2
kZ2

YD is an object V ∈ SV equipped with a
left action of kZ2 such that σσσ.Vϵ̄ ⊂ Vϵ̄ for ϵ ∈ {0, 1}. A superspace V becomes
an object of kZ2

kZ2
YD by defining the left action of kZ2 by σσσi.v := (−1)i|v|v for

i ∈ {0, 1} and v ∈ V . In this way, we can regard SV ⊂ kZ2
kZ2

YD as braided
monoidal categories.

Let H be a Hopf superalgebra with comultiplication ∆H, counit εH and
antipode SH. Since SV ⊂ kZ2

kZ2
YD, we can consider the bosonization

Ĥ := H#kZ2

of H by kZ2. More precisely, as a vector space Ĥ is just H ⊗ kZ2 and Ĥ
becomes an ordinary Hopf algebra whose structure is described as follows:

� (multiplication) (h⊗ σσσi)(h′ ⊗ σσσj) = (−1)i|h
′|hh′ ⊗ σσσi+j .

� (unit) 1Ĥ = 1H ⊗ eee.

� (comultiplication) ∆Ĥ(h⊗ σσσi) = h(1) ⊗ σσσi+|h(2)| ⊗ h(2) ⊗ σσσi.

� (counit) εĤ(h⊗ σσσi) = εH(h).

� (antipode) SĤ(h⊗ σσσi) = (−1)i+|h|SH(h)⊗ σσσi+|h|.

Here, h, h′ ∈ H and i, j ∈ {0, 1}. One easily sees G(Ĥ) ∼= G(H) × Z2 as
groups. If H1̄ ̸= 0, then Ĥ is neither commutative nor cocommutative. As an
application of this observation, we obtain.

Theorem 2.3 ([18]). All Hopf superalgebras of odd prime dimensions are
purely even.

Proof. Suppose that there is a Hopf superalgebra H of dimension p for
some odd prime number p such that H1̄ ̸= 0. By the above observation, Ĥ is a
Hopf algebra of dimension 2p that is neither commutative nor cocommutative.
However, according to the classification of Hopf algebras of dimension 2p due
to Masuoka [15] and Ng [16], there is no such Hopf algebra. Thus, we have a
contradiction.

Since the category of left H-super(co)modules and the category of left
Ĥ-(co)modules are equivalent, we get the following.

Proposition 2.4. The following holds:



9 Pointed Hopf superalgebras of dimension up to 10 547

1. H is (co)semisimple if and only if Ĥ is (co)semisimple.

2. H is pointed if and only if Ĥ is pointed.

3. H has the Chevalley property if and only if Ĥ has the Chevalley property.

As another application of the bosonization technique, we prove the fol-
lowing.

Proposition 2.5. A finite-dimensional semisimple pointed Hopf super-
algebra is purely even and isomorphic to the group algebra of a finite group.

Proof. Let H be such a Hopf superalgebra. Then the bosonization Ĥ
is a semisimple Hopf algebra. The Larson–Radford theorem implies that Ĥ
is cosemisimple as a coalgebra. This implies that H is also cosemisimple as
a supercoalgebra. By the assumption that H is pointed, H is spanned by
group-like elements. Hence, H is a group algebra.

Suppose that H is finite-dimensional. For the bosonization Ĥ∗ of H∗, one
easily sees that the bilinear map

Ĥ∗ × Ĥ −→ k; (f ⊗ σσσi, h⊗ σσσj) 7−→ (−1)ijf(h)

is a non-degenerate Hopf pairing. As a consequence, we get the following.

Proposition 2.6. As a Hopf algebra, the bosonization of H∗ is isomor-
phic to the dual of Ĥ.

2.3. Coinvariant subalgebras

We give a summary of the classification method of finite-dimensional Hopf
superalgebras proposed in [18]. Roughly speaking, this is done by enumerating
all Hopf superalgebras H such that Ĥ ∼= A for each finite-dimensional Hopf
algebra A. As an intermediate step for accomplishing this, we first mention
Hopf algebras H in kZ2

kZ2
YD such that Ĥ ∼= A.

Definition 2.7. Let A be a finite-dimensional Hopf algebra with counit εA.
A pair (g, α) ∈ G(A)×G(A∗) is called an admissible datum for A if it satisfies

g2 = 1, α2 = εA and α(g) = −1.

The set of all admissible data for A is denoted by AD(A). For (g, α), (g′, α′) ∈
AD(A), we write (g, α) ∼ (g′, α′) if there exists φ ∈ AutHopf(A) such that
φ(g) = g′ and α = α′ ◦ φ, where AutHopf(A) is the group of all Hopf algebra
automorphisms on A. It is obvious that the relation ∼ becomes an equivalence
relation on AD(A).
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For (g, α) ∈ AD(A), one easily sees that the map

(2.1) π(g,α) : A −→ kZ2; a 7−→ εA(a)

2
(eee+ σσσ) +

α(a)

2
(eee− σσσ)

is a split epimorphism with section kZ2 → A; σσσi 7→ gi. Moreover, any split
epimorphism A → kZ2 arises from an element of AD(A) in this way [18]. For
the split epimorphism π := π(g,α), the algebra

Acoinv(g,α) := {a ∈ A | a(1) ⊗ π(a(2)) = a⊗ eee}

of π-coinvariants of A is given by the following formula:

(2.2) Acoinv(g,α) = {b ∈ A | b = α ⇀ b}.

By the inverse procedure of the bosonization [14, 17], we see that Acoinv(g,α)

becomes a Hopf algebra in kZ2
kZ2

YD and get the following result.

Proposition 2.8 ([18]). Let X be the class of all Hopf algebras in kZ2
kZ2

YD
whose bosonization is isomorphic to A as a Hopf algebra. The assignment
(g, α) 7→ Acoinv(g,α) gives a bijection from AD(A)/∼ to X /∼=.

3. SUPER-DATA AND SUPER-FORMS OF HOPF ALGEBRAS

In this section, we also work over a field k of characteristic not equal to 2.

3.1. Super-data and super-forms

We summarize results obtained in [18]. Let A be a finite-dimensional
Hopf algebra.

Definition 3.1. We say that a Hopf superalgebra H is a super-form of A if
Ĥ is isomorphic to A. If H is purely even, then H is called a trivial super-form
of A.

By the properties of the bosonization, we obtain the following.

Proposition 3.2. Let H be a super-form of A.

1. The groups G(A) and G(A∗) are decomposed into direct products with
Z2.

2. If the super-form H is non-trivial, then A is neither commutative nor
cocommutative.
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3. If A is pointed (respectively, is (co)semisimple, has the Chevalley prop-
erty), then H is pointed (respectively, is (co)semisimple, has the Cheval-
ley property).

By Proposition 2.8, the isomorphism classes of super-forms of A are in
bijection with the equivalence classes of (g, α) ∈ AD(A) such that Acoinv(g,α) ∈
kZ2
kZ2

YD belongs to SV. We have found the following easy criteria for Acoinv(g,α)

to be a Hopf superalgebra.

Theorem 3.3 ([18]). H := Acoinv(g,α) is a super-form of A if and only if

α ⇀ a ↼ α = gag for all a ∈ A.

If the above equivalent condition is satisfied, then the Z2-grading of H is
given by

Hϵ̄ = {b ∈ A | gbg = (−1)ϵb}
for each ϵ ∈ {0, 1}. In particular, the super-form H of A is non-trivial if and
only if g /∈ Z(A), where Z(A) is the center of the algebra A.

Taking the above into account, we introduce.

Definition 3.4. An admissible datum (g, α) for A is called a super-datum
for A if g /∈ Z(A) and α ⇀ a ↼ α = gag for all a ∈ A. The set of all
super-datum for A is denoted by SD(A).

By the above definition and Proposition 2.8, the map (g, α) 7→ Acoinv(g,α)

gives a one-to-one correspondence between SD(A)/∼ and the isomorphism
classes of Hopf superalgebras H such that H1̄ ̸= 0 and Ĥ ∼= A.

3.2. Super-forms of pointed Hopf algebras with abelian coradical

Let A be a finite-dimensional pointed Hopf algebra such that the group
G(A) is abelian. We note that such Hopf algebras were studied extensively
and the classification of them was finally completed by Angiono and Garćıa
in [6] based on numerous pioneering works on Nichols algebras and arithmetic
root systems; see [7] for a survey. According to the classification results, we
see that there exists a finite number of group-like elements c1, . . . , cθ ∈ G(A)
and the same number of ci-skew primitive elements xi ∈ A (i ∈ {1, . . . , θ})
such that A is generated by G(A) ∪ {xi}θi=1 as an algebra. Moreover, for each
i ∈ {1, . . . , θ}, there exists a non-trivial group homomorphism χi : G(A) → k×
such that

γxiγ
−1 = χi(γ)xi

for all γ ∈ G(A). We give the following technical remark.

Lemma 3.5. For all α ∈ G(A∗) and i ∈ {1, . . . , θ}, we have α(xi) = 0.
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Proof. Let i ∈ {1, . . . , θ}. Since χi is non-trivial, there exists γ ∈ G(A)
such that χi(γ) ̸= 1. We have α(xi) = α(γxiγ

−1) = χi(γ)α(xi), and hence
α(xi) must be zero. Thus, the proof is done.

By Lemma 3.5, the set of all super-data SD(A) for A is explicitly given
by

(3.1) SD(A) =

{
(g, α) ∈ AD(A)

∣∣∣∣ g does not belong to Z(A) and
gxig = α(ci)xi for all i = 1, . . . , θ

}
.

For α ∈ G(A∗), we put

G(A)α := {γ ∈ G(A) | α(γ) = 1}

for simplicity. Note that if α2 = εA, then α(γ) = ±1 for all γ ∈ G(A).

Theorem 3.6. Let (g, α) ∈ SD(A). As an algebra, the coinvariant subal-
gebra H := Acoinv(g,α) of A is generated by G(A)α∪{xi}θi=1. The supercoalgebra
structure of H is described as follows.

1. G(H) = G(A)α.

2. For each i ∈ {1, . . . , θ}, xi is even ci-skew primitive in H if α(ci) = 1.

3. For each i ∈ {1, . . . , θ}, xi is odd cig-skew primitive in H if α(ci) = −1.

Proof. Let H′ be the subalgebra of A generated by G(A)α ∪ {xi}θi=1. We
have α ⇀ γ = α(γ)γ for all γ ∈ G(A) and α ⇀ xi = xi for all i ∈ {1, . . . , θ} by
Lemma 3.5. ThusH′ ⊂ H. Since α(g) = −1, we haveG(A) = G(A)α⊔gG(A)α

and, from this, we deduce A = H′ + gH′. By considering the dimension, we
conclude H = H′.

4. CLASSIFICATION OF POINTED HOPF SUPERALGEBRAS

In this section, the base field k is supposed to be an algebraically closed
field of characteristic zero. The aim of this section is to classify non-semisimple
pointed Hopf superalgebras of dimension up to 10.

4.1. The Hopf superalgebra A(Γ,D)

To present our classification result uniformly, we introduce a family of
pointed Hopf superalgebras A(Γ,D) as in the same fashion as Andruskiewitsch
and Schneider [5].
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Let Γ be a finite abelian group with unit 1, and let Γ̂ be the group of
group homomorphisms from Γ to k×. The trivial character is denoted by 1 ∈ Γ̂.
Let θ be a natural number. We consider a datum

D := (gi, χi, µi; ϵi)
θ
i=1 ∈

(
Γ× Γ̂× {0, 1} × {0, 1}

)θ
satisfying the following three conditions.

1. For each i ∈ {1, . . . , θ}, Ni ∈ 2Z if ϵi = 1.

2. For each i ∈ {1, . . . , θ}, µi = 0 if χNi
i ̸= 1.

3. For each i, j ∈ {1, . . . , θ} with i ̸= j, χi(gj)χj(gi) = 1.

Here, we put Ni := ord((−1)ϵiχi(gi)) for each i ∈ {1, . . . , θ}.
We let A(Γ,D) denote the superalgebra generated by ug with |ug| = 0

(g ∈ Γ) and zi with |zi| = ϵi (i ∈ {1, . . . , θ}) subject to
u1 = 1, uguh = ugh, ugzi = χi(g)ziug,

zNi
i = µi(1− uNi

gi ), zizj = (−1)ϵiϵjχj(gi)zjzi,

where g, h ∈ Γ and i, j ∈ {1, . . . , θ} with i ̸= j.

Theorem 4.1. The superalgebra A(Γ,D) has a unique structure of a
Hopf superalgebra whose comultiplication ∆ is given by

∆(ug) = ug ⊗ ug (g ∈ Γ), ∆(zi) = ugi ⊗ zi + zi ⊗ 1 (i = 1, . . . , θ).

The Hopf superalgebra A(Γ,D) is pointed with G(A(Γ,D)) ∼= Γ.

In the following, we identify g ∈ Γ with ug ∈ A(Γ,D) and regard Γ ⊂
A(Γ,D).

Remark 4.2. For each i ∈ {1, . . . , θ}, we let kχi
gi [ϵi] be a one-dimensional

left Yetter–Drinfeld supermodule over kΓ with basis zi such that

(parity) |zi| = ϵi, (action) g.zi = χi(g)zi (g ∈ Γ), (coaction) zi 7→ gi ⊗ zi.

Then V := kχ1
g1 [ϵ1]⊕ · · · ⊕ kχθ

gθ [ϵθ] becomes a left Yetter–Drinfeld supermodule
over kΓ. The associated braiding is

V ⊗ V → V ⊗ V ; zi ⊗ zj 7→ (−1)ϵiϵjχj(gi)zj ⊗ zi.

By [2, Section 1.7], we obtain the Nichols superalgebra B(V ) of V and we may
consider the bosonization B(V )#kΓ of B(V ) by kΓ. One easily sees that the
graded Hopf superalgebra of A(Γ,D) associated to the coradical filtration is
isomorphic to the Hopf superalgebra B(V )#kΓ.

Example 4.3. The exterior superalgebra (Example 2.2) of the vector space
of dimension θ is isomorphic to A(Γ,D) with Γ = {1} and D = (1, 1, 0; 1)θi=1.
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Example 4.4 (Super-forms of the Taft algebra). We fix a natural number
n ≥ 2 and a primitive n-th root of unity ω ∈ k. We write down all non-trivial
super-forms of the Taft algebra

Tn2(ω) := k⟨c, x | cn = 1, xn = 0, cx = ωxc⟩,

where c is group-like and x is c-skew primitive. Tn2(ω) is a non-semisimple
pointed Hopf algebra of dimension n2 such that G(Tn2(ω)) ∼= Zn. It is easy to
see that

AD(Tn2(ω)) = SD(Tn2(ω)) =

{
{(cn/2, α)} if n is even and n/2 is odd,

∅ otherwise.

Here, α : Tn2(ω) → k is defined as α(c) = −1 and α(x) = 0. In the following,
we suppose that n is even and n/2 is odd. Let H be the super-form of Tn2(ω)
associated to the super-datum (cn/2, α). Then there is an isomorphism

Tn(ω2) := A(Cn/2, (g
(n+2)/4, χ, 0; 1)) ∼= H; g 7→ c2, z 7→ x

of Hopf superalgebras, where χ is the character of Cn/2 = ⟨g | gn/2 = 1⟩ defined
by χ(g) = ω2.

By the above discussion, we conclude that Tn(ω2) is a unique super-
form of Tn2(ω) up to isomorphisms. By Proposition 2.6 and the self-duality
of Tn2(ω), the Hopf superalgebra Tn(ω2) is self-dual. As a side note, T2(1) is
isomorphic to the exterior superalgebra

∧
k.

4.2. Dimensions 2p and p2

In this section, we discuss super-forms of the Hopf algebras A (ω, i, µ)
introduced by Andruskiewitsch and Natale [4, Appendix]. As an application,
we classify Hopf superalgebras of dimensions 2p and p2, where p is an odd
prime number.

Let ℓ and q be two distinct prime numbers, let j ∈ {1, ℓr | r = 1, . . . , q−1},
and let ω be a root of unity such that ord(ωj) = q. Let µ ∈ {0, 1} also be a
parameter, which is allowed to be non-zero only if j = 1. Then the algebra

A (ω, j, µ) := k⟨c, x | cℓq = 1, xq = µ(1− cq), cx = ωxc⟩

is a pointed Hopf algebra of dimension ℓq2 such that

∆(c) = c⊗ c, ∆(x) = cj ⊗ x+ x⊗ 1.

Below, we determine the set of admissible data and the set of super-data for
this Hopf algebra. As a preparation, we prove.
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Lemma 4.5. There exists an algebra map A := A (ω, j, µ) → k of order
two if and only if µ = 0 or q = 2. If this equivalent condition is satisfied, then
such an algebra map α : A → k is determined by α(c) = −1 and α(x) = 0.

Proof. Suppose that α : A → k is an algebra map of order two. Then
by Lemma 3.5, we have α(x) = 0. We also have α(c) = +1 or α(c) = −1. If
the former holds, then we have α = ε, a contradiction. Hence α(c) = −1. The
relation xq = µ(1− cq) implies

0 = α(x)q = µ(1− α(c)q) = µ(1− (−1)q),

and therefore µ = 0 or q = 2. Conversely, the algebra map α : A → k
determined by α(c) = −1 and α(x) = 0 is of order two. The proof is done.

In the following, we let α denote the algebra map given in Lemma 4.5.
Since ℓ and q are distinct prime numbers and G(A (ω, j, µ)) ∼= Zℓq

∼= Zℓ × Zq,
we have the following:

1. If ℓ = 2, then µ = 0 and AD(A (ω, j, µ)) = {(cq, α)}.

2. If q = 2, then j ∈ {1, ℓ} and AD(A (ω, j, µ)) = {(cℓ, α)}.

3. If both ℓ and q are odd, AD(A (ω, j, µ)) = ∅.

In particular, we get AD(A (ω, j, µ)) ̸= ∅ if and only if ℓ = 2 or q = 2.

Proposition 4.6. The Hopf algebra A := A (ω, j, µ) admits a super-
form if and only if q = 2. If this equivalent condition is satisfied, then we have
SD(A) = {(cℓ, α)}.

Proof. First, suppose that ℓ = 2. Then Acoinv(cq ,α) is generated by {c2, x}
as an algebra. If j = 1, then by definition ord(ω) = q, and hence, we get

α(cj)x = (−1)jx = −x ̸= x = ωqx = cqxcq.

In this case, SD(A) = ∅. If j = 2r for some r ∈ {1, . . . , q−1}, then by definition
2 divides ord(ω) and q is odd. Thus, in this case, ωq ̸= 1 = (−1)j = α(cj), and
hence, we get SD(A) = ∅.

Next, suppose that q = 2. In this case, we note that j ∈ {1, ℓ} and ℓ is

odd. Then Acoinv(cℓ,α) is generated by {c2, x} as an algebra. Since ωℓ = −1, we
get

cℓxcℓ = ωℓx = −x = (−1)jx = α(cj)x
for each j ∈ {1, ℓ}. Thus, in this case we have SD(A) = {(cℓ, α)}.

Theorem 4.7. Let p be an odd prime number. Any non-semisimple
pointed Hopf superalgebra of dimension p2 is purely even.
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Proof. Let H be a non-semisimple pointed Hopf superalgebra of dimen-
sion p2. Since Ĥ is a non-semisimple pointed Hopf algebra of dimension 2p2,
it is isomorphic to one of the following Hopf algebras (see [4, Lemma A.1]).

A (τ, 1, 0), A (τ, 1, 1), A (ω, 2r, 0) or A (τ, 2, 0),

where r ∈ {1, . . . , p − 1}, τ ∈ k is a primitive p-th root of unity and ω ∈ k is
a fixed primitive 2p-th root of unity. Since none of them admits a super-form
by Proposition 4.6, the claim follows.

Theorem 4.8. Let p be an odd prime number, and let H be a Hopf super-
algebra of dimension 2p satisfying H1̄ ̸= 0. If H is non-semisimple and pointed,
then H is isomorphic to one of the Hopf superalgebras given in Table 1. More-
over, the Hopf superalgebras in Table 1 are pairwise non-isomorphic.

Proof. Since Ĥ is a non-semisimple pointed Hopf algebra of dimension
4p, it is isomorphic to one of the following Hopf algebras ([4, Lemma A.1]).

A (−1, 1, 0), A (−1, 1, 1), A (ω, p, 0) or A (−1, p, 0),

where ω ∈ k is a fixed primitive 2p-th root of unity. In the following, we
describe the structure of the corresponding Hopf superalgebra explicitly. To
do this, we let Γ be the group Cp = ⟨g | gp = 1⟩ of order p, and let χ be the
character defined by χ(g) := ω2.

First, by Theorem 3.6, the Hopf superalgebraH(1)
2p :=A (−1, p, 0)coinv(c

p,α)

is generated by c2 and x. Also, we see that x is odd primitive in H(1)
2p . Thus,

g 7→ c2, z 7→ x gives a Hopf superalgebra isomorphism A(Γ, (1, 1, 0; 1)) ∼= H(1)
2p .

One sees that the Hopf superalgebra structure of H(2)
2p :=A (ω, p, 0)coinv(c

p,α) is

given by the same formula as H(1)
2p above. Thus, g 7→ c2, z 7→ x gives a Hopf

superalgebra isomorphism A(Γ, (1, χ, 0; 1)) ∼= H(2)
2p .

Next, by Theorem 3.6, the Hopf superalgebraH(3)
2p :=A (−1, 1, 0)coinv(c

p,α)

is generated by c2 and x. Also, we see that x is odd cp+1-skew primitive

in H(3)
2p . Therefore, g 7→ c2, z 7→ x gives a Hopf superalgebra isomorphism

A(Γ, (g(p+1)/2, 1, 0; 1)) ∼= H(3)
2p . One sees that the Hopf superalgebra structure

of H(4)
2p := A (−1, 1, 1)coinv(c

p,α) is given by the same formula as H(3)
2p above.

Thus, the assignment g 7→ c2, z 7→ x gives a Hopf superalgebra isomorphism

A(Γ, (g(p+1)/2, 1, 1; 1)) ∼= H(4)
2p .

Remark 4.9. By definition, we have A(Γ, (1, χ, 0; 1)) = ⟨g, z | gp = 1, z2 =
0, gz = ω2zg⟩, where g is group-like and z is odd primitive. Suppose that ζp ∈ k
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is a primitive p-th root of unity. Then one easily sees that

A(Γ, (1, χ, 0; 1)) ∼= k⟨g, z | gp = 1, z2 = 0, gz = ζpzg⟩,
where g is group-like and z is odd primitive.

It is easy to see that the exterior superalgebra
∧
k is the only (up to

isomorphism) Hopf superalgebra of dimension 2 whose odd part is non-zero. By
this observation and Theorems 2.3, 4.7 and 4.8, to complete the classification
of non-semisimple pointed Hopf superalgebras H (with H1̄ ̸= 0) of dimension
up to 10, it remains to address the cases of dim(H) = 4 and dim(H) = 8.

4.3. Dimension 4

In this section, we show the following.

Theorem 4.10. Let H be a Hopf superalgebra of dimension 4 satisfying
H1̄ ̸= 0. If H is non-semisimple and pointed, then H is isomorphic to one of
the Hopf superalgebras given in Table 2. Moreover, the Hopf superalgebras in
Table 2 are pairwise non-isomorphic.

While this has indeed been proven in [18], below we give an alternative
proof of Theorem 4.10 by demonstrating a more conceptual approach using
our Theorem 3.6.

Classification of non-semisimple pointed Hopf algebras of dimension 8
(= 2 × 4) has been done by Ştefan [19]. According to the result, such a Hopf
algebra is isomorphic to one of the following one.

� AC2 := k⟨c, x1, x2 | c2 = 1, cxi = −xic, xixj = −xjxi (i, j ∈ {1, 2})⟩,
where c is group-like and x1, x2 are c-skew primitive.

� AC2×C2 := k⟨c, d, x | c2 = d2 = 1, cd = dc, cx = −xc, dx = −xd, x2 = 0⟩,
where c, d are group-like and x is c-skew primitive.

� A′
C4

:= k⟨c, x | c4 = 1, cx = −xc, x2 = 0⟩, where c is group-like and x is
c-skew primitive.

� A′′
C4

:= k⟨c, x | c4 = 1, cx = ζ4xc, x
2 = 0⟩, where c is group-like and x is

c-skew primitive.

� k⟨x1, x2 | x41 = 1, x2x1 = ζ4x1x2, x
2
2 = 0⟩, where ∆(x1) = x1 ⊗ x1 −

2x1x2⊗x31x2, ε(x1) = 1, S(x1) = x31, ∆(x2) = x2⊗x21−1⊗x2, ε(x2) = 0
and S(x2) = −x2x

2
1.

By Proposition 3.2, we see that the Hopf algebras AC2 and AC2×C2 are
the only ones which might have super-forms. Note that G(AC2)

∼= Z2 and
G(AC2×C2)

∼= Z2 × Z2 are both abelian.
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4.3.1 The AC2 case

First, we treat A(1) := AC2 . By definition, the group-like element c ∈ A(1)

is of order two. One sees that α ∈ G((A(1))∗) defined by α(c) = −1, α(x1) =
α(x2) = 0 is the only algebra map of order two. Thus, we have AD(A(1)) =
{(c, α)}. Moreover, we see that SD(A(1)) = {(c, α)}. By Theorem 3.6, the

coinvariant subalgebra H(1)
4 := (A(1))coinv(c,α) is generated by x1 and x2. Also,

x1 and x2 are odd primitive. Thus, we get the following result.

Proposition 4.11. The exterior superalgebra
∧
k2 is the only Hopf su-

peralgebra whose bosonization is isomorphic to A(1)(= AC2).

4.3.2 The AC2×C2 case

Next, we treat A(2) := AC2×C2 . Both G(A(2)) and G((A(2))∗) are iso-
morphic to Z2 × Z2 and are given by

G(A(2)) = {1, c, d, cd} and G((A(2))∗) = {ε, α1, α2, α3 := α1α2},

where α1 and α2 are algebra maps A(2) → k determined by α1(c) = −1,
α1(d) = 1, α2(c) = 1, α2(d) = −1 and α1(x) = α2(x) = 0. Thus, the set of all
admissible data for A(2) is

AD(A(2)) = {(c, α1), (cd, α1), (d, α2), (cd, α2), (c, α3), (d, α3)}.

By (3.1), we get SD(A(2)) = {(c, α1), (c, α3), (d, α3)}. The following is easy to
see.

Lemma 4.12. We have AutHopf(A
(2)) = {φu}u∈k×, where φu is deter-

mined by φu|G(A(2)) = id and φu(x) = ux.

By Lemma 4.12, a complete set of representatives of SD(A(2))/∼ is given
by {(c, α1), (c, α3), (d, α3)}. In the following, we determine structure of each
coinvariant subalgebras of A(2) using Theorem 3.6. To do this, we let Γ be the
group C2 = ⟨g | g2 = 1⟩ of order two, and let χ be the non-trivial character of
C2.

� Set H(2)
4 := (A(2))coinv(c,α1). As an algebra, H(2)

4 is generated by {d, x}
and x is odd primitive. Thus, the assignment g 7→ d, z 7→ x gives a Hopf

superalgebra isomorphism A(Γ, (1, 1, 0; 1)) ∼= H(2)
4 .

� Set H(3)
4 := (A(2))coinv(c,α3). As an algebra, H(3)

4 is generated by {cd, x}
and x is odd primitive. Thus, the assignment g 7→ cd, z 7→ x gives a Hopf

superalgebra isomorphism A(Γ, (1, χ, 0; 1)) ∼= H(3)
4 .
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� Set H(4)
4 := (A(2))coinv(d,α3). As an algebra, H(4)

4 is generated by {cd, x}
and x is odd cd-skew primitive. Thus, the assignment g 7→ cd, z 7→ x

gives a Hopf superalgebra isomorphism A(Γ, (g, 1, 0; 1)) ∼= H(4)
4 .

One sees H(2)
4

∼= kC2 ⊗
∧
k.

Therefore, we get the following result.

Proposition 4.13. The Hopf superalgebras A(Γ,D) with D ∈{(1, 1, 0; 1),
(1, χ, 0; 1), (g, 1, 0; 1)} are the only ones whose bosonization is isomorphic to
A(2)(= AC2×C2). Moreover, these are pairwise non-isomorphic.

By Propositions 4.11 and 4.13, the proof of Theorem 4.10 is done.

4.4. Dimension 8

In this section, we show the following.

Theorem 4.14. Let H be a Hopf superalgebra of dimension 8 satisfying
H1̄ ̸= 0. If H is non-semisimple and pointed, then H is isomorphic to one of
the Hopf superalgebras given in Table 3. Moreover, the Hopf superalgebras in
Table 3 are pairwise non-isomorphic.

Classification of non-semisimple pointed Hopf algebras of dimension 16
(= 2× 8) has been done by Caenepeel, Dăscălescu and Raianu [10]. According
to their result, there are 29 such Hopf algebras. By Proposition 3.2, we see
that among those 29 Hopf algebras, the ones listed in Table 4 are candidates
for those having super-forms. In the following, we classify Hopf superalgebras
H such that H1̄ ̸= 0 and Ĥ ∼= A(j) for each j = 1, . . . , 14.

4.4.1 The A(1) case

The Hopf algebra A(1) is given by

A(1) = k⟨c, x1, x2, x3 | c2 = 1, xixj = −xjxi, cxi = −xic (i, j ∈ {1, 2, 3})⟩,

where c is group-like, x1, x2 and x3 are c-skew primitive.

One easily sees that AD(A(1)) = SD(A(1)) = {(c, α)}, where α(c) = −1
and α(xi) = 0 (i ∈ {1, 2, 3}). By Theorem 3.6, the coinvariant subalgebra

H(1)
8 := (A(1))coinv(c,α) is generated by {x1, x2, x3}. Also, x1, x2 and x3 are odd

primitive. The above argument shows the following result.

Proposition 4.15. The exterior superalgebra
∧

k3 is the only Hopf su-
peralgebra whose bosonization is isomorphic to A(1).
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Hopf algebras Notation in [10]

A(1) H(C2, (2, 2, 2), (c
∗, c∗, c∗), (c, c, c), (0, 0, 0))

A(2) H(C2 × C2, (2, 2), (c
∗, c∗), (c, c), (0, 0))

A(3) H(C2 × C2, (2, 2), (c
∗, c∗d∗), (c, c), (0, 0))

A(4) H(C2 × C2, (2, 2), (c
∗, d∗), (c, d), (0, 0))

A(5) H(C2 × C2, (2, 2), (c
∗d∗, c∗d∗), (c, d), (0, 0))

A(6) H(C2 × C2, (2, 2), (c
∗d∗, c∗d∗), (c, d), (0, 0), ( 0 1

1 0 ))

A(7) H(C2 × C2 × C2, 2, c
∗, c, 0)

A(8) H(C4 × C2, (c
∗)2, c, 0)

A(9) H(C4 × C2, d
∗, cd, 0)

A(10) H(C4 × C2, c
∗, c2, 0)

A(11) H(C4 × C2, d
∗, d, 0)

A(12) H(C4 × C2, c
∗, c2d, 0)

A(13) H(C4 × C2, (c
∗)2, c, 1)

A(14) H(C4 × C2, d
∗, cd, 1)

Table 4 – Hopf algebras that may have super-forms

4.4.2 The A(2) case

The Hopf algebra A(2) is given by

A(2) = k
〈
c, d, x1, x2

∣∣∣∣ c2 = d2 = 1, cd = dc, xixj = −xjxi,
cxi = −xic, dxi = xid (i, j ∈ {1, 2})

〉
,

where c and d are group-like, x1 and x2 are c-skew primitive.

First, note that both G(A(2)) and G((A(2))∗) are isomorphic to Z2 × Z2

and are given by

G(A(2)) = {1, c, d, cd} and G((A(2))∗) = {ε, α1, α2, α3 := α1α2},

where α1 and α2 are algebra maps A(2) → k determined by α1(c) = −1,
α1(d) = 1, α2(c) = 1, α2(d) = −1 and α1(xi) = α2(xi) = 0 for i ∈ {1, 2}.
Thus, we get

AD(A(2)) = {(c, α1), (cd, α1), (d, α2), (cd, α2), (c, α3), (d, α3)}.

By (3.1), we have SD(A(2)) = {(c, α1), (cd, α1), (c, α3)}. Let GL2(k) denote the
general linear group of degree two over k. The following is easy to see.

Lemma 4.16. We have AutHopf(A
(2)) = {φP }P∈GL2(k), where φP is de-

termined by φP |G(A(2)) = id and φP (xi) = pi,1x1+pi,2x2 for i ∈ {1, 2} with pi,j
the (i, j)-entry of the matrix P .
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Hence, we get #(SD(A(2))) = #(SD(A(2))/∼). Let Γ be the group C2 =
⟨g | g2 = 1⟩ of order two, and let χ be the non-trivial character.

Proposition 4.17. The Hopf superalgebras A(Γ,D) with

D ∈ {((1, 1, 0; 1), (1, 1, 0; 1)), ((g, 1, 0; 1), (g, 1, 0; 1)), ((1, χ, 0; 1), (1, χ, 0; 1))}

are the only ones whose bosonization is isomorphic to A(2). Moreover, these
are pairwise non-isomorphic.

Proof. In the following, determine structure of each coinvariant subalge-
bras of A(2) using Theorem 3.6 one by one.

� The Hopf superalgebra H(2)
8 := (A(2))coinv(c,α1) is generated by d, x1, x2.

As an element in H(2)
8 , xi is odd primitive (i ∈ {1, 2}). Thus, g 7→ d, zi 7→

xi gives a Hopf superalgebra isomorphism A(Γ, ((1, 1, 0; 1), (1, 1, 0; 1))) ∼=
H(2)

8 .

� The Hopf superalgebra H(5)
8 := (A(2))coinv(cd,α1) is generated by d, x1, x2.

As an element in H(5)
8 , xi is odd d-skew primitive (i ∈ {1, 2}). Thus,

the assignment g 7→ d, zi 7→ xi gives a Hopf superalgebra isomorphism

A(Γ, ((g, 1, 0; 1), (g, 1, 0; 1))) ∼= H(5)
8 .

� The case H(6)
8 := (A(2))coinv(c,α3). As an element in H(6)

8 , xi is odd prim-
itive (i ∈ {1, 2}). Thus, the assignment g 7→ cd, zi 7→ xi gives a Hopf

superalgebra isomorphism A(Γ, ((1, χ, 0; 1), (1, χ, 0; 1))) ∼= H(6)
8 .

This completes the proof.

One easily sees H(2)
8

∼= kC2 ⊗
∧
k2.

4.4.3 The A(3) case

The Hopf algebra A(3) is given by

A(3) = k
〈
c, d, x1, x2

∣∣∣∣ c2 = d2 = 1, cd = dc, xixj = −xjxi,
cxi = −xic, dxi = −(−1)ixid (i, j ∈ {1, 2})

〉
,

where c and d are group-like, x1 and x2 are c-skew primitive.

First, note that both G(A(3)) and G((A(3))∗) are isomorphic to Z2 × Z2

and are given by

G(A(3)) = {1, c, d, cd} and G((A(3))∗) = {ε, α1, α2, α3 := α1α2},
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where α1 and α2 are algebra maps A(3) → k determined by α1(c) = −1,
α1(d) = 1, α2(c) = 1, α2(d) = −1 and α1(xi) = α2(xi) = 0 for i ∈ {1, 2}.
Thus, we get

AD(A(3)) = {(c, α1), (cd, α1), (d, α2), (cd, α2), (c, α3), (d, α3)}.

By (3.1), we have SD(A(3)) = {(c, α1), (c, α3)}. The following is easy to see.

Lemma 4.18. We have AutHopf(A
(3)) = ⟨τ, φa1,a2 | a1, a2 ∈ k×⟩, where

τ(c) = d, τ(d) = cd, τ(x1) = x2, τ(x2) = x1,

φa1,a2(c) = c, φa1,a2(d) = d, φa1,a2(xi) = aixi (i ∈ {1, 2}).

So, we get SD(A(3))/∼= {[(c, α1)]}. Let Γ be the group C2 = ⟨g | g2 = 1⟩
of order two, and let χ be the non-trivial character.

Proposition 4.19. The Hopf superalgebra A(Γ, ((1, 1, 0; 1), (1, χ, 0; 1)))
is the only one whose bosonization is isomorphic to A(3).

Proof. The coinvariant subalgebra H(4)
8 := (A(3))coinv(c,α1) is generated by

d, x1, x2. By Theorem 3.6, as elements in H(4)
8 , one sees that x1, x2 are odd

primitive. Thus, the assignment g 7→ d, zi 7→ xi gives a Hopf superalgebra

isomorphism A(Γ, ((1, 1, 0; 1), (1, χ, 0; 1))) ∼= H(4)
8 .

4.4.4 The A(4) case

The Hopf algebra A(4) is given by

A(4) = k
〈
c, d, x1, x2

∣∣∣∣ c2 = d2 = 1, cd = dc, xixj = xjxi, x
2
i = 0,

cxi = (−1)ixic, dxi = −(−1)ixid (i, j ∈ {1, 2})

〉
,

where c and d are group-like, x1 (respectively, x2) is c-skew (respectively, d-
skew) primitive.

First, note that both G(A(4)) and G((A(4))∗) are isomorphic to Z2 × Z2

and are given by

G(A(4)) = {1, c, d, cd} and G((A(4))∗) = {ε, α1, α2, α3 := α1α2},

where α1 and α2 are algebra maps A(4) → k determined by α1(c) = −1,
α1(d) = 1, α2(c) = 1, α2(d) = −1 and α1(xi) = α2(xi) = 0 for i ∈ {1, 2}.
Thus, we get

AD(A(4)) = {(c, α1), (cd, α1), (d, α2), (cd, α2), (c, α3), (d, α3)}.

By (3.1), we have SD(A(4)) = {(c, α1), (c, α3)}. The following is easy to see.
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Lemma 4.20. We have AutHopf(A
(4)) = ⟨τ, φa1,a2 | a1, a2 ∈ k×⟩, where

τ(c) = d, τ(d) = c, τ(x1) = x2, τ(x2) = x1,

φa1,a2(c) = c, φa1,a2(d) = d, φa1,a2(xi) = aixi (i ∈ {1, 2}).

Thus, we get (c, α1) ∼ (d, α2) and SD(A(4))/∼= {[(c, α1)]}. Let Γ be the
group C2 = ⟨g | g2 = 1⟩ of order two, and let χ be the non-trivial character.

Proposition 4.21. The Hopf superalgebra A(Γ, ((g, χ, 0; 0), (1, 1, 0; 1)))
is the only one whose bosonization is isomorphic to A(4).

Proof. The coinvariant subalgebra H(7)
8 := (A(4))coinv(c,α1) is generated by

d, x1, x2. By Theorem 3.6, as elements in H(7)
8 , one sees that x1 is odd primitive

and x2 is even d-skew primitive. Thus, the assignment g 7→ d, z1 7→ x2, z2 7→ x1
gives a Hopf superalgebra isomorphism A(Γ, ((g, χ, 0; 0), (1, 1, 0; 1))) ∼= H(7)

8 .

One sees H(7)
8

∼= T4(−1)⊗
∧
k.

4.4.5 The A(5) case

The Hopf algebra A(5) is given by

A(5) = k
〈
c, d, x1, x2

∣∣∣∣ c2 = d2 = 1, cd = dc, xixj = −xjxi,
cxi = −xic, dxi = −xid (i, j ∈ {1, 2})

〉
,

where c and d are group-like, x1 (respectively, x2) is c-skew (respectively, d-
skew) primitive.

First, note that both G(A(5)) and G((A(5))∗) are isomorphic to Z2 × Z2

and are given by

G(A(5)) = {1, c, d, cd} and G((A(5))∗) = {ε, α1, α2, α3 := α1α2},

where α1 and α2 are algebra maps A(5) → k determined by α1(c) = −1,
α1(d) = 1, α2(c) = 1, α2(d) = −1 and α1(xi) = α2(xi) = 0 for i ∈ {1, 2}.
Thus, we get

AD(A(5)) = {(c, α1), (cd, α1), (d, α2), (cd, α2), (c, α3), (d, α3)}.

By (3.1), we have SD(A(5)) = {(c, α1), (c, α3)}. The following is easy to see.

Lemma 4.22. We have AutHopf(A
(5)) = ⟨τ, φa1,a2 | a1, a2 ∈ k×⟩, where

τ(c) = d, τ(d) = c, τ(x1) = x2, τ(x2) = x1,

φa1,a2(c) = c, φa1,a2(d) = d, φa1,a2(xi) = aixi (i ∈ {1, 2}).

Thus, we get (c, α3) ∼ (d, α3). Hence, we get SD(A(5))/∼= {[(c, α3)]}.
Let Γ be the group C2 = ⟨g | g2 = 1⟩ of order two.
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Proposition 4.23. The Hopf superalgebra A(Γ, ((1, 1, 0; 1), (g, 1, 0; 1)))
is the only one whose bosonization is isomorphic to A(5).

Proof. The coinvariant subalgebra H(3)
8 := (A(5))coinv(c,α3) is generated

by cd, x1, x2. By Theorem 3.6, as elements in H(3)
8 , one sees that x1 is odd

primitive and x2 is odd cd-skew primitive. Thus, the assignment g 7→ cd, zi 7→
xi gives a Hopf superalgebra isomorphism A(Γ, ((1, 1, 0; 1), (g, 1, 0; 1))) ∼= H(3)

8 .

4.4.6 The A(6) case

The Hopf algebra A(6) is given by

A(6) = k
〈
c, d, x1, x2

∣∣∣∣ c2 = d2 = 1, cd = dc, x2x1 = −x1x2 + c− 1, x2i = 0,
cxi = −xic, dxi = −xid (i ∈ {1, 2})

〉
,

where c and d are group-like, x1 (respectively, x2) is c-skew (respectively, d-
skew) primitive.

First, note that G(A(6)) ∼= Z2 × Z2 and G((A(6))∗) ∼= Z2 and are given
by

G(A(6)) = {1, c, d, cd} and G((A(6))∗) = {ε, α},
where α is an algebra map A(6) → k determined by the set α(c) = 1, α(d) =
−1, α(xi) = 0 (i ∈ {1, 2}). Thus, we get

AD(A(6)) = {(d, α), (cd, α)}.

By (3.1), one easily sees that SD(A(6) = ∅. Thus, we have the following result.

Proposition 4.24. There is no Hopf superalgebra whose bosonization is
isomorphic to A(6).

4.4.7 The A(7) case

The Hopf algebra A(7) is given by

A(7) = k
〈
c, d, e, x

∣∣∣∣ c2 = d2 = e2 = 1, cd = dc, ce = ec, de = ed, x2 = 0,
cx = −xc, dx = xd, ex = xe

〉
,

where c, d and e are group-like, x is c-skew primitive.
First, note that both G(A(7)) and G((A(7))∗) are isomorphic to Z2×Z2×

Z2 and are given by

G(A(7)) = ⟨c, d, e⟩ and G((A(7))∗) = ⟨α1, α2, α3⟩,

where α1, α2 and α3 are algebra maps A(7) → k determined by α1(c) = −1,
α1(d) = 1, α1(e) = 1, α2(c) = 1, α2(d) = −1, α2(e) = 1, α3(c) = 1, α3(d) = 1,
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α3(e) = −1 and α1(x) = α2(x) = α3(x) = 0, respectively. Set α4 := α1α2,
α5 := α1α3, α6 := α2α3 and α7 := α1α2α3. By (3.1), one sees that the set
SD(A(7)) is given as follows.

{(c, α1), (c, α4), (c, α5), (c, α7), (cd, α1), (cd, α5),

(ce, α1), (ce, α4), (cde, α1), (cde, α7)}.

The following is easy to see.

Lemma 4.25. We have AutHopf(A
(7)) = ⟨σ, τ, φu | u ∈ k×⟩, where

σ(c) = c, σ(d) = de, σ(e) = e, σ(x) = x,

τ(c) = c, τ(d) = e, τ(e) = d, τ(x) = x,

φu|G(A(7)) = id, φu(x) = ux.

We get the following.

Lemma 4.26. The set {(c, α1), (c, α4), (cd, α1), (cd, α5)} is a complete set
of representatives of SD(A(7))/∼.

Let Γ be the group C2 × C2 = ⟨g1, g2 | g21 = g22 = 1, g1g2 = g2g1⟩, and let
χi be the character defined by χi(gj) = −(−1)i+j (i, j ∈ {1, 2}).

Proposition 4.27. The Hopf superalgebras A(Γ,D) with D ∈ {(1, 1, 0; 1),
(g1, 1, 0; 1), (1, χ1, 0; 1), (g1, χ1, 0; 1)} are the only ones whose bosonization is
isomorphic to A(7). Moreover, these are pairwise non-isomorphic.

Proof. In the following, determine structure of each coinvariant subalge-
bras of A(7) using Theorem 3.6 one by one.

� The Hopf superalgebra H(8)
8 := (A(7))coinv(c,α1) is generated by d, e, x. As

an element inH(8)
8 , x is odd primitive. Thus, the assignment g1 7→ d, g2 7→

e, z 7→ x gives a Hopf superalgebra isomorphism A(Γ, (1, 1, 0; 1)) ∼= H(8)
8 .

� The Hopf superalgebra H(10)
8 := (A(7))coinv(c,α4) is generated by cd, e, x.

As an element in H(10)
8 , x is odd primitive. Thus, g1 7→ cd, g2 7→ e, z 7→ x

gives a Hopf superalgebra isomorphism A(Γ, (1, χ1, 0; 1)) ∼= H(10)
8 .

� The Hopf superalgebra H(9)
8 := (A(7))coinv(cd,α1) is generated by d, e, x.

As an element in H(9)
8 , x is odd d-skew primitive. Thus, the assign-

ment g1 7→ d, g2 7→ e, z 7→ x gives a Hopf superalgebra isomorphism

A(Γ, (g, 1, 0; 1)) ∼= H(9)
8 .
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� The Hopf superalgebra H(11)
8 := (A(7))coinv(cd,α5) is generated by d, ce, x.

As an element in H(11)
8 , x is odd d-skew primitive. Thus, the assign-

ment g1 7→ d, g2 7→ ce, z 7→ x gives a Hopf superalgebra isomorphism

A(Γ, (g1, χ1, 0; 1)) ∼= H(11)
8 .

This completes the proof.

4.4.8 The A(8) case

Let ζ4 ∈ k be a primitive fourth root of unity. The Hopf algebra A(8) is
given by

A(8) = k⟨c, d, x | c4 = d2 = 1, cd = dc, x2 = 0, cx = −xc, dx = xd⟩,
where c and d are group-like, x is c-skew primitive.

First, note that both G(A(8)) and G((A(8))∗) are isomorphic to Z4 × Z2

and are given by

G(A(8)) = ⟨c, d⟩ and G((A(8))∗) = ⟨α, β⟩,
where α and β are algebra maps A(8) → k determined by α(c) = ζ4, α(d) =
1, α(x) = 0 and β(c) = 1, β(d) = −1, β(x) = 0, respectively. Set α1 :=
α2, α2 := β, α3 := α2β. We get

AD(A(8)) = {(d, α2), (c
2d, α2), (d, α3), (c

2d, α3)}.
By (3.1), one easily sees that SD(A(8)) = ∅. Thus, we have the following result.

Proposition 4.28. There is no Hopf superalgebra whose bosonization is
isomorphic to A(8).

4.4.9 The A(9) case

Let ζ4 ∈ k be a primitive fourth root of unity. The Hopf algebra A(9) is
given by

A(9) = k⟨c, d, x | c4 = d2 = 1, cd = dc, x2 = 0, cx = xc, dx = −xd⟩,
where c and d are group-like, x is cd-skew primitive.

First, note that both G(A(9)) and G((A(9))∗) are isomorphic to Z4 × Z2

and are given by

G(A(9)) = ⟨c, d⟩ and G((A(9))∗) = ⟨α, β⟩,
where α and β are algebra maps A(9) → k determined by α(c) = ζ4, α(d) =
1, α(x) = 0 and β(c) = 1, β(d) = −1, β(x) = 0, respectively. Set α1 :=
α2, α2 := β, α3 := α2β. We get

AD(A(9)) = {(d, α2), (c
2d, α2), (d, α3), (c

2d, α3)}.
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By (3.1), we have SD(A(9)) = {(d, α2), (c
2d, α2)}. The following is easy to see.

Lemma 4.29. We have AutHopf(A
(9)) = ⟨σ, φu | u ∈ k×⟩, where σ(c) =

c, σ(d) = c2d, σ(x) = x, φu|G(A(9)) = id and φu(x) = ux.

Hence, we get SD(A(9))/∼= {[(d, α2)]}. Let Γ be the group C4 = ⟨g |
g4 = 1⟩ of order four.

Proposition 4.30. The Hopf superalgebra A(Γ, (g, 1, 0, 1)) is the only
one whose bosonization is isomorphic to A(9).

Proof. The Hopf superalgebra H(13)
8 := (A(9))coinv(d,α2) is generated by

c, x. As an element in H(13)
8 , x is odd c-skew primitive. Thus, the assignment

g 7→ c, z 7→ x gives a Hopf superalgebra isomorphism A(Γ, (g, 1, 0; 1)) ∼= H(13)
8 .

4.4.10 The A(10) case

Let ζ4 ∈ k be a primitive fourth root of unity. The Hopf algebra A(10) is
given by

A(10) = k⟨c, d, x | c4 = d2 = 1, cd = dc, x2 = 0, cx = ζ4xc, dx = −xd⟩,

where c and d are group-like, x is c2-skew primitive.
First, note that both G(A(10)) and G((A(10))∗) are isomorphic to Z4×Z2

and are given by

G(A(10)) = ⟨c, d⟩ and G((A(10))∗) = ⟨α, β⟩,

where α and β are algebra maps A(10) → k determined by α(c) = ζ4, α(d) =
1, α(x) = 0 and β(c) = 1, β(d) = −1, β(x) = 0, respectively. Set α1 :=
α2, α2 := β, α3 := α2β. We get

AD(A(10)) = {(d, α2), (c
2d, α2), (d, α3), (c

2d, α3)}.

Since c2d ∈ Z(A(10)), we have SD(A(10)) = ∅ by (3.1). Thus, we get the
following result.

Proposition 4.31. There is no Hopf superalgebra whose bosonization is
isomorphic to A(10).

4.4.11 The A(11) case

Let ζ4 ∈ k be a primitive fourth root of unity. The Hopf algebra A(11) is
given by

A(11) = k⟨c, d, x | c4 = d2 = 1, cd = dc, x2 = 0, cx = xc, dx = −xd⟩,
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where c and d are group-like, x is d-skew primitive.

First, note that both G(A(11)) and G((A(11))∗) are isomorphic to Z4×Z2

and are given by

G(A(11)) = ⟨c, d⟩ and G((A(11))∗) = ⟨α, β⟩,

where α and β are algebra maps A(11) → k determined by α(c) = ζ4, α(d) =
1, α(x) = 0 and β(c) = 1, β(d) = −1, β(x) = 0, respectively. Set α1 :=
α2, α2 := β, α3 := α2β. We get

AD(A(11)) = {(d, α2), (c
2d, α2), (d, α3), (c

2d, α3)}.

By (3.1), we see that AD(A(11)) coincides with SD(A(11)). The following is easy
to see.

Lemma 4.32. We have AutHopf(A
(11)) = ⟨τ, φu | u ∈ k×⟩, where τ(c) =

c3, τ(d) = d, τ(x) = x, φu|G(A(11)) = id and φu(x) = ux.

Hence, we get #(SD(A(11))) = #(SD(A(11))/ ∼). Let Γ be the group
C4 = ⟨g | g4 = 1⟩ of order four, and let χ be the character defined by χ(g) = ζ4,
where ζ4 ∈ k is a primitive fourth rot of unity.

Proposition 4.33. The Hopf superalgebras A(Γ,D) with D ∈{(1, 1, 0; 1),
(g2, 1, 0; 1), (1, χ2, 0; 1), (g2, χ2, 0; 1)} are the only ones whose bosonization is
isomorphic to A(11). Moreover, these are pairwise non-isomorphic.

Proof. In the following, determine structure of each coinvariant subalge-
bras of A(11) using Theorem 3.6 one by one.

� The Hopf superalgebra H(12)
8 := (A(11))coinv(d,α2) is generated by c, x. As

an element in H(12)
8 , x is odd primitive. Thus, the assignment g 7→ c, z 7→

x gives a Hopf superalgebra isomorphism A(Γ, (1, 1, 0; 1)) ∼= H(12)
8 . Note

that H(12)
8

∼= kC4 ⊗
∧
k.

� The Hopf superalgebra H(14)
8 := (A(11))coinv(c

2d,α2) is generated by c, x.

As an element in H(14)
8 , x is odd c2-skew primitive. Thus, the assignment

g 7→ c, z 7→ x gives a Hopf superalgebra isomorphism A(Γ, (g2, 1, 0; 1)) ∼=
H(14)

8 .

� The Hopf superalgebraH(16)
8 := (A(11))coinv(d,α3) is generated by cd, x. As

an element inH(16)
8 , x is odd primitive. Thus, the assignment g 7→ cd, z 7→

x gives a Hopf superalgebra isomorphism A(Γ, (1, χ2, 0; 1)) ∼= H(16)
8 .
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� The Hopf superalgebra H(17)
8 := (A(11))coinv(c

2d,α2) is generated by cd, x.

As an element in H(17)
8 , x is odd c2-skew primitive. Thus, the assign-

ment g 7→ cd, z 7→ x gives a Hopf superalgebra isomorphism of type

A(Γ, (g2, χ2, 0; 1)) ∼= H(17)
8 .

This completes the proof.

4.4.12 The A(12) case

Let ζ4 ∈ k be a primitive fourth root of unity. The Hopf algebra A(12) is
given by

A(12) = k⟨c, d, x | c4 = d2 = 1, cd = dc, x2 = 0, cx = ζ4xc, dx = xd⟩,

where c and d are group-like, x is c2d-skew primitive.

First, note that both G(A(12)) and G((A(12))∗) are isomorphic to Z4×Z2

and are given by

G(A(12)) = ⟨c, d⟩ and G((A(12))∗) = ⟨α, β⟩,

where α and β are algebra maps A(12) → k determined by α(c) = ζ4, α(d) =
1, α(x) = 0 and β(c) = 1, β(d) = −1, β(x) = 0, respectively. Set α1 :=
α2, α2 := β, α3 := α2β. We get

AD(A(12)) = {(d, α2), (c
2d, α2), (d, α3), (c

2d, α3)}.

By (3.1), we have SD(A(12)) = {(c2d, α2), (c
2d, α3)}. The following is easy to

see.

Lemma 4.34. We have AutHopf(A
(12)) = ⟨τ, φu | u ∈ k×⟩, where τ(c) =

cd, τ(d) = d, τ(x) = x, φu|G(A(12)) = id and φu(x) = ux.

Hence, we get SD(A(12))/∼= {[(c2d, α2)]}. Let Γ be the group C4 = ⟨g |
g4 = 1⟩ of order four, and let χ be the character defined by χ(g) = ζ4.

Proposition 4.35. The Hopf superalgebra A(Γ, (1, χ, 0; 1)) is the only
ones whose bosonization is isomorphic to A(12).

Proof. The Hopf superalgebra H(15)
8 := (A(12))coinv(c

2d,α2) is generated by

c, x. As an element in H(15)
8 , x is odd primitive. Thus, the assignment g 7→

c, z 7→ x gives a Hopf superalgebra isomorphism A(Γ, (1, χ, 0; 1)) ∼= H(15)
8 .
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4.4.13 The A(13) case

The Hopf algebra A(13) is given by

A(13) = k⟨c, d, x | c4 = d2 = 1, cd = dc, x2 = c2 − 1, cx = −xc, dx = xd⟩,

where c and d are group-like, x is c-skew primitive.

First, note that G(A(13)) ∼= Z4 × Z2 and G((A(13))∗) ∼= Z2 × Z2 and are
given by

G(A(13)) = ⟨c, d⟩ and G((A(13))∗) = {ε, α1, α2, α3 := α1α2},

where α1 and α2 are algebra maps A(13) → k determined by the equalities
α1(c) = −1, α1(d) = 1, α1(x) = 0 and α2(c) = 1, α2(d) = −1, α2(x) = 0,
respectively. Thus, we get

AD(A(13)) = {(d, α2), (c
2d, α2), (d, α3), (c

2d, α3)}.

By (3.1), we have SD(A(13)) = ∅. Thus, we have the following result.

Proposition 4.36. There is no Hopf superalgebra whose bosonization is
isomorphic to A(13).

4.4.14 The A(14) case

The Hopf algebra A(14) is given by

A(14) = k⟨c, d, x | c4 = d2 = 1, cd = dc, x2 = c2 − 1, cx = xc, dx = −xd⟩,

where c and d are group-like, x is cd-skew primitive.

First, note that G(A(14)) ∼= Z4 × Z2 and G((A(14))∗) ∼= Z2 × Z2 and are
given by

G(A(14)) = ⟨c, d⟩ and G((A(14))∗) = {ε, α1, α2, α3 := α1α2},

where α1 and α2 are algebra maps A(14) → k determined by the equalities
α1(c) = −1, α1(d) = 1, α1(x) = 0 and α2(c) = 1, α2(d) = −1, α2(x) = 0,
respectively. Thus, we get

AD(A(14)) = {(d, α2), (c
2d, α2), (d, α3), (c

2d, α3)}.

By (3.1), we have SD(A(14)) = {(d, α2), (c
2d, α2)}. The following is easy to see.

Lemma 4.37. We have AutHopf(A
(14)) = ⟨τ, φu | u ∈ k×⟩, where τ(c) =

c3, τ(d) = c2d, τ(x) = x, φu|G(A(14)) = id and φu(x) = ux.

Hence, we get SD(A(14))/∼= {[(d, α2)]}. Let Γ be the group G4 = ⟨g |
g4 = 1⟩ of order four.
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Proposition 4.38. The Hopf superalgebra A(Γ, (g, 1, 1; 1)) is the only
ones whose bosonization is isomorphic to A(14).

Proof. The Hopf superalgebra H(18)
8 := (A(14))coinv(d,α2) is generated by

c, x. As an element in H(18)
8 , x is odd c-skew primitive. Thus, the assignment

g 7→ c, z 7→ x gives a Hopf superalgebra isomorphism A(Γ, (g, 1, 1; 1)) ∼= H(18)
8 .

The proof of Theorem 4.14 is done.

5. DUALS OF POINTED HOPF SUPERALGEBRAS

In this section, we also work over an algebraically closed field k of charac-
teristic zero. We have classified pointed Hopf superalgebras of dimension up to
10. The aim of this section is to determine duals of these Hopf superalgebras.

5.1. Duals of H(i)
2p

Let p be an odd prime number, and let ζp ∈ k be a fixed primitive p-th root

of unity. We identify duals of pointed Hopf superalgebras H(i)
2p (i ∈ {1, 2, 3, 4})

introduced in Section 4.2.

Theorem 5.1. There are isomorphisms

(H(1)
2p )

∗ ∼= H(1)
2p and (H(2)

2p )
∗ ∼= H(3)

2p

of Hopf superalgebras. Moreover, the dual of H(4)
2p is non-pointed.

Proof. By our construction, there are Hopf algebra isomorphisms

Ĥ(1)
2p

∼= A (−1, p, 0), Ĥ(2)
2p

∼= A (−1, 1, 0), Ĥ(3)
2p

∼= A (−ζp, p, 0).

By Proposition 2.6, A (−1, p, 0)∗ is isomorphic to the bosonization of (H(1)
2p )

∗.
Since A (−1, p, 0) is isomorphic to T4(−1) ⊗ kZp, we see that A (−1, p, 0)∗ is

isomorphic to A (−1, p, 0). Since H(1)
2p is a unique non-trivial super-form of

A (−1, p, 0) up to isomorphisms, we conclude that (H(1)
2p )

∗ is isomorphic to

H(1)
2p .

The second isomorphism in the statement of this theorem is obtained in
a similar manner: By Remark (b) mentioned after [4, Lemma A.1], we see that

A (−1, 1, 0) and A (−ζp, p, 0) are dual to each other. Since H(2)
2p and H(3)

2p are
a unique non-trivial super-form of A (−1, 1, 0) and A (−ζp, p, 0), respectively,

we conclude that H(2)
2p and H(3)

2p .
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Finally, we mention the dual of H(4)
2p . By Remark (c) mentioned after [4,

Lemma A.1], the dual of A (−1, 1, 0) is not pointed. Hence, by Proposition 2.4,

(H(4)
2p )

∗ is not pointed.

5.2. Duals of H(i)
4

We identify duals of pointed Hopf superalgebras H(i)
4 (i ∈ {1, 2, 3, 4})

introduced in Section 4.3.

Theorem 5.2. There are isomorphisms of Hopf superalgebras

(H(1)
4 )∗ ∼= H(1)

4 , (H(2)
4 )∗ ∼= H(2)

4 and (H(3)
4 )∗ ∼= H(4)

4 .

Proof. The first isomorphism follows from Example 2.2. For (i, j) =

(2, 2), (3, 4), one can check that there is a non-degenerate Hopf pairing H(i)
4 ×

H(j)
4 → k given by ⟨g, g⟩ = −1, ⟨z, z⟩ = 1, and ⟨g, z⟩ = ⟨z, g⟩ = 0.

5.3. Duals of H(i)
8

We identify duals of pointed Hopf superalgebras H(i)
8 (i ∈ {1, 2, . . . , 18})

introduced in Section 4.4.

Theorem 5.3. There is an isomorphism (H(i)
8 )∗ ∼= H(j)

8 of Hopf super-
algebras for each pair (i, j) = (1, 1), (2, 2), (3, 4), (5, 6), (7, 7), (8, 8), (9, 10),

(11, 11), (12, 12), (13, 15), (14, 16), (17, 17). Moreover, the dual of H(18)
8 is

non-pointed.

Proof. For (i, j) = (3, 4), (7, 7), (13, 15), the proof goes along the same
line as that of Theorem 5.1. More precisely, for these pairs (i, j), the bosoniza-

tion of H(i)
8 and that of H(j)

8 are dual to each other by Proposition 2.6 and [8].

According to our classification result, H(ℓ)
8 (ℓ ∈ {i, j}) is a unique non-trivial

super-form of its bosonization. Thus, by Proposition 2.6, we conclude that

H(i)
8 and that of H(j)

8 are dual to each other.

The above argument cannot be applied to other cases. By direct computa-

tion, there is the following non-degenerate Hopf pairing ⟨ , ⟩ : H(i)
8 ×H(j)

8 → k.

� For (i, j) = (2, 2), (5, 6), define

⟨g, g⟩ = −1, ⟨zs, zt⟩ = δs,t and ⟨g, zs⟩ = ⟨zs, g⟩ = 0 (s, t ∈ {1, 2}).



33 Pointed Hopf superalgebras of dimension up to 10 571

� For (i, j) = (8, 8), (9, 10), (11, 11), define

⟨gs, gt⟩ = (−1)δs,t , ⟨z, z⟩ = 1 and ⟨gs, z⟩ = ⟨z, gs⟩ = 0 (s, t ∈ {1, 2}).

� For (i, j) = (12, 12), (14, 16), (17, 17), define

⟨g, g⟩ = ζ4, ⟨z, z⟩ = 1 and ⟨g, z⟩ = ⟨z, g⟩ = 0,

where ζ4 is a primitive fourth root of unity.

The Hopf superalgebra H(18)
8 is the only one whose bosonization is isomorphic

to A(14). By [8], we know that the dual of A(14) is not pointed. Thus, the claim
follows.

5.4. Concluding remarks

In this paper, we have classified non-semisimple pointed Hopf superalge-
bras of dimensions 4, 8, 2p and obtained Tables 1, 2 and 3. The dual of some
of them are not pointed. By the classification result of low-dimensional Hopf
algebras, we prove the following.

Theorem 5.4. Suppose that H is non-semisimple non-pointed Hopf su-
peralgebra such that H1̄ ̸= 0.

1. If dim(H) = 6, then H is isomorphic to (H(4)
6 )∗.

2. If dim(H) = 8 and H does not have the Chevalley property, then H is

isomorphic to (H(18)
8 )∗.

3. If dim(H) = 10, then H is isomorphic to (H(4)
10 )

∗.

Proof. We consider the case where dim(H) is either 6 or 10. According to
Cheng and Ng [11, Theorem II], a non-semisimple Hopf algebra of dimension
4p with p ∈ {3, 5, 7, 11} is pointed or dual-pointed (meaning that the dual is
pointed). By Proposition 2.4 and the assumption that H is non-semisimple
non-pointed, H∗ must be pointed. Thus, H∗ is isomorphic to the Hopf super-

algebra H(4)
2p , where p = dim(H)/2. Thus H ∼= (H(4)

2p )
∗.

To complete the proof, we assume that dim(H) = 8 and H does not have
the Chevalley property. According to Garćıa and Vay [13, Theorem 1.3], a
non-semisimple non-pointed Hopf algebra without the Chevalley property is
isomorphic to the dual of A(14) of Table 4. Thus, Ĥ is isomorphic to (A(14))∗.

Since (H(18)
8 )∗ is a unique super-form of (A(14))∗, we conclude that H is iso-

morphic to (H(18)
8 )∗. The proof is done.
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According to the classification result of Hopf algebras of low-dimensions
(see the survey [9]), non-semisimple Hopf algebras of dimension ≤ 20, except
dimension 16, are pointed or dual-pointed. This implies that non-semisimple
Hopf superalgebras of dimension ≤ 10, except dimension 8, are pointed or
dual-pointed.

Given a primitive fourth root ζ4 of unity, we denote by H16(ζ4) the Hopf
algebra of dimension 16 with the Chevalley property introduced in [12]. By [13],
every Hopf algebra of dimension 16 that is neither pointed nor dual-pointed
has the Chevalley property and isomorphic to either of H16(ζ4) or H16(−ζ4). In
[18], we have determined all super-forms of H16(±ζ4) and obtained 8 new Hopf
superalgebras of dimension 8. Thus, combining [18] with Theorems 2.3 and
5.4, we have completed the classification of non-semisimple Hopf superalgebras
of dimension ≤ 10. The remaining case, semisimple Hopf superalgebras of
dimension ≤ 10, are discussed in our forthcoming paper.
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[9] M. Beattie and G. A. Garćıa, Classifying Hopf algebras of a given dimension. In: Hopf
algebras and tensor categories. Contemp. Math. 585, pp. 125–152. Amer. Math. Soc.,
Providence, RI, 2013.
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