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The polynomials u on Rd (d ≥ 2) that satisfy the equation xd ·∆u+ k · ∂u
∂xd

= 0

(k ∈ R) are called k-modified harmonic. In this article, we study the dimension
of the space of homogeneous such polynomials of a fixed degree.
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1. INTRODUCTION AND NOTATIONS

In the 1940s and later, Alexander Weinstein studied the partial differential
equation

(1) xd ·∆u(x) + k · ∂u(x)
∂xd

= 0

for a function u on a domain in Rd, where ∆ = ∂2

∂x2
1
+ ∂2

∂x2
2
+ · · ·+ ∂2

∂x2
d
and k ∈ R

(see [5]). The u solutions that he obtained were called generalized axially
symmetric potentials. This term is justified by the following observations.

If a function f on a domain in R2+n is a solution of the Laplace equation

∂2f

∂x21
+

∂2f

∂x22
+ · · ·+ ∂2f

∂x22+n

= 0 (n ≥ 1)

and if f is axially symmetric about the x1-axis, that is,

f(x1, x2, . . . , x2+n) = ϕ
(
x1,

√
x22 + · · ·+ x22+n

)
with a suitable function ϕ, then ϕ satisfies the equation

y ·
[∂2ϕ(x, y)

∂x2
+

∂2ϕ(x, y)

∂y2

]
+ n · ∂ϕ(x, y)

∂y
= 0

(and vice versa). More generally, if f is defined on a domain in Rd+n and

f(x1, x2, . . . , xd+n) = u
(
x1, x2, . . . , xd−1,

√
x2d + x2d+1 + · · ·+ x2d+n

)
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with a suitable function u, then f is a solution of the Laplace equation if and
only if u satisfies (1) with k = n (see [3], where the reader can also find other
results related to our present study).

In this article, following Heinz Leutwiler (see, e. g., [2]), we call the solu-
tions of (1) k-modified harmonic functions. This term is justified by the fact
that for d ≥ 3 the operator

x
2k/(2−d)
d

(
∆+

k

xd
· ∂

∂xd

)
turns out to be the Laplace–Beltrami operator for Rd−1 × (0,∞) with the
line-element

dl2 = x
2k/(d−2)
d

(
dx21 + dx22 + · · ·+ dx2d

)
.

Let H(k)
n (Rd) be the real vector space of all k-modified harmonic functions

that are homogeneous polynomials of degree n on Rd. In what follows, we
assume that d ≥ 2. We denote by N the set of strictly positive integers and
write N0 for N ∪ {0}. Let Pn(Rd) be the real vector space of all homogeneous
polynomials of degree n on Rd. The monomials

xα1
1 · xα2

2 · . . . · xαd
d

for α1, α2, . . . , αd ∈ N0, α1 + α2 + · · · + αd = n form a basis of Pn(Rd). Its
elements may be counted as n-combinations with repetitions of x1, . . . , xd, so

(2) dimPn(Rd) =

(
d+ n− 1

n

)
.

We now fix n and consider the (well-defined) linear map

W (k)
n : Pn(Rd) −→ Pn−1(Rd) , W (k)

n (u)(x) := xd∆u(x) + k · ∂u(x)
∂xd

.

For its kernel, it obviously holds that ker W
(k)
n = H(k)

n (Rd). So, if W
(k)
n is

surjective, then

dimH(k)
n (Rd) = dimPn(Rd)− dimPn−1(Rd)

=

(
d+ n− 1

n

)
−
(
d+ n− 2

n− 1

)
=

(
d+ n− 2

n

)
.

In this article, we investigate the issue of surjectivity of W
(k)
n (Section 2)

and find out the dimension of H(k)
n (Rd) in all but a finite number of cases

(referring to the parameter k). In Section 4, we also present explicit bases in
almost all those cases.
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2. THE OPERATOR W (k)
n

Let u ∈ Pn(Rd), which we write in ascending powers of xd:

u(x1, . . . , xd) =

n∑
j=0

xjdpj(x1, . . . , xd−1) ,

where pj ∈ Pn−j(Rd−1). Now, we apply the linear map W
(k)
n and write the

result in the same order:

W (k)
n (u) = xd∆u+ k · ∂u

∂xd
= xd∆̃u+ xd ·

∂2u

∂x2d
+ k · ∂u

∂xd

=

n∑
j=0

xj+1
d ∆̃pj + xd

n∑
j=0

j(j − 1)xj−2
d pj + k

n∑
j=0

jxj−1
d pj

=
n−1∑
j=0

xj+1
d ∆̃pj +

n∑
j=1

j(j − 1 + k)xj−1
d pj

=

n∑
l=1

xld∆̃pl−1 +

n−1∑
l=0

(l + 1)(l + k)xldpl+1

= kp1 + xnd∆̃pn−1︸ ︷︷ ︸
=0

+
n−1∑
l=1

xld ·
[
∆̃pl−1 + (l + 1)(l + k)pl+1

]
.

(∆̃ denotes the Laplacian in the first d− 1 coordinates.)

To check if W
(k)
n is surjective, we consider several special cases.

Case I. W
(k)
n (u)(x) = q(x1, . . . , xd−1) ∈ Pn−1(Rd−1), q ̸= 0.

Firstly, this equation requires p1(x1, . . . , xd−1) =
q(x1,...,xd−1)

k , which is
only possible if k ̸= 0. Secondly, it is purposive to take pm = 0 for even m,
while p1 determines the rest of the coefficient polynomials step by step:

p3 =
−∆̃p1

3(2 + k)
, p5 =

−∆̃p3
5(4 + k)

, . . . , pn =
−∆̃pn−2

n(n− 1 + k)
if n ∈ 2N0 + 1,

pn−1 =
−∆̃pn−3

(n− 1)(n− 2 + k)
if n ∈ 2N.

Obviously, this is only possible if k ̸∈ {−2,−4, . . . ,−2⌊n−1
2 ⌋}.

Case II. W
(k)
n (u)(x) = xn−1

d .
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a. Let n be even.

Here, it is purposive to take pm = 0 for odd m, whereas for the rest, for

example pn = 0, pn−2 =
x2
1
2 , and

pn−2m(x)=
(n− 2) · · · (n− 2m+ 2) · (k + n− 3) · · · (k + n− 2m+ 1)

(−1)m−1(2m)!
x2m1

for 2 ≤ m ≤ n
2 .

b. Let n be odd.

Since

W (k)
n (axnd ) = xd · an(n− 1)xn−2

d + k · anxn−1
d = an(n− 1 + k)xn−1

d ,

we just have to set a = 1
n(n−1+k) if k ̸= 1− n. If k = 1− n, it is purposive to

take pm = 0 for even m, while p1 = 0 is obviously necessary (unless n = 1, in
which case, we have k = 0, violating the restriction in Case I). But then, step
by step, we have to take p3 = 0, . . . , pn−2 = 0, and then the coefficient of xn−1

d

in W
(k)
n (u) vanishes too. Therefore, this case is only possible if k ̸= 1− n.

Case III. W
(k)
n (u)(x) = xldq(x1, . . . , xd−1) ̸= 0, q ∈ Pn−1−l(Rd−1), for

1 ≤ l ≤ n− 2.

a. Let l be odd.

Here, it is purposive to take pm = 0 for odd m as well as for all m ≥ l+1,
pl−1 such that ∆̃pl−1 = q, and inductively, pl−2j−1 such that

∆̃pl−2j−1 = −(l − 2j + 1)(l − 2j + k)pl−2j+1 , 1 ≤ j ≤ l − 1

2
.

This is possible, because the so-called Poisson equation with a polynomial right
side has a polynomial solution (see [1]).

b. Let l be even.

Here, it is purposive to take pm = 0 for even m as well as for all m ≤ l−1,

pl+1 =
q

(l + 1)(l + k)
,

and the rest of pm with odd m appropriately. Obviously, this is only possible
if k ̸= −m for any even m, l ≤ m ≤ n− 1.

The investigation of these three special cases has proven the following.
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Theorem 2.1. The operator W
(k)
n : Pn(Rd) −→ Pn−1(Rd),

W (k)
n (u)(x) = xd ·∆u(x) + k · ∂u(x)

∂xd
,

is surjective if and only if −k ̸∈ 2N0 ∩ [0, n− 1]. In this case,

dimH(k)
n (Rd) =

(
d+ n− 2

n

)
.

3. THE EXCEPTIONAL VALUE k = 0

If k = 0, Case III in the previous section remains possible, likewise Case
II unless n = 1 (then it coincides with Case I), but Case I does not. So, the

image of W
(0)
n is the space of those homogeneous polynomials in Pn−1(Rd) that

are multiples of xd. This space is clearly isomorphic to Pn−2(Rd), so

dimH(0)
n (Rd) =

(
d+ n− 1

n

)
−
(
d+ n− 3

n− 2

)
=

(
d+ n− 2

n

)
+

(
d+ n− 3

n− 1

)
.

4. A BASIS OF H(k)
n (Rd)

In this section, we determine a basis of the space H(k)
n (Rd), as defined in

the introduction, for all but a finite number of values of k.
If u is a k-modified harmonic function, then the functions ∂u

∂x1
, . . . , ∂u

∂xd−1

are obviously k-modified harmonic too. Furthermore, if u is k-modified har-
monic, then so is its k-modified Kelvin transform,

K[u](x1, . . . , xd) := r2−k−d · u
(x1
r2

, . . . ,
xd
r2

)
,

where r :=
√

x21 + · · ·+ x2d. This can be verified by an elementary, but lengthy

computation.
Now, since u(x1, . . . , xd) := r2−k−d is k-modified harmonic (being the

k-modified Kelvin transform of 1), so are its partial derivatives

uα1···αd−1
:=

∂nu

∂xα1
1 · · · ∂xαd−1

d−1

for α1, . . . , αd−1 ∈ N0, α1 + · · ·+ αd−1 = n, as well as their k-modified Kelvin
transforms

(3)
vα1···αd−1

(x1, . . . , xd) := K[uα1···αd−1
](x1, . . . , xd)

= r2−k−duα1···αd−1

(x1
r2

, . . . ,
xd
r2

)
= r2n+d+k−2uα1···αd−1

(x1, . . . , xd),
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since uα1···αd−1
is homogeneous of degree 2 − k − d − n (in fact, r2−k−d is

homogeneous of degree 2 − k − d, and every partial derivative reduces the
degree of homogeneity by 1). Inductively, it follows that uα1···αd−1

has the form
r2−k−d−2n ·P with a polynomial P , so the functions vα1···αd−1

are polynomials,

in fact homogeneous polynomials of degree n: vα1···αd−1
∈ H(k)

n (Rd).

The number of the tuples (α1, . . . , αd−1) ∈ N0 such that α1+· · ·+αd−1=n
is

(
d+n−2

n

)
(cf. (2)). Considering the last equation in the introduction, the

question arises whether the
(
d+n−2

n

)
polynomials vα1···αd−1

∈ H(k)
n (Rd) form a

basis of H(k)
n (Rd). According to Theorem 2.1, a necessary condition for this is

−k ̸∈ 2N0 ∩ [0, n− 1].

Before we take a closer look at the polynomials vα1···αd−1
, we give a list

of them for α1 + · · ·+ αd−1 ≤ 3, from which it already can be seen that by no
means they form a basis in every case.

v0...0 = 1

v0...010...0 = (2− k − d)xi (the index 1 is at the i-th position)

v0...020...0 = (2− k− d)[r2− (k+ d)x2i ] (the index 2 is at the i-th position)

v0...010...010...0 = (k + d− 2)(k + d)xixj (the indices 1 are at the positions
i and j)

v0...030...0 = (k+ d− 2)(k+ d)xi[3r
2 − (k+ d+2)x2i ] (the index 3 is at the

i-th position)

v0...020...010...0 = (k + d− 2)(k + d)xj [r
2 − (k + d+ 2)x2i ] (2 is at the i-th,

1 at the j-th position)

v0...010...010...010...0 = (2− k− d)(k+ d)(k+ d+ 2)xixjxl (the indices 1 are
at the positions i, j, l).

At this point, we introduce a notation, which facilitates the further study
of the polynomials vα1···αd−1

. We set X1 := x21 , . . . , Xd := x2d and relate every
function f(X1, . . . , Xd) to the function

g(x1, . . . , xd) := f(x21, . . . , x
2
d) = f(X1, . . . , Xd)

∣∣
X1=x2

1,...,Xd=x2
d
.

Here and in the sequel, we assume that x1, . . . , xd ≥ 0. This correspondence
leads to relations between the partial derivatives of f and g:

∂g

∂xi
(x1, . . . , xd) =

∂f

∂Xi
(X1, . . . , Xd)

∣∣∣
X1=x2

1,...,Xd=x2
d

·2xi

=
[ ∂f

∂Xi
(X1, . . . , Xd) · 2

√
Xi

]∣∣∣
X1=x2

1,...,Xd=x2
d

for 1 ≤ i ≤ d, which we express in the shorter form

∂g

∂xi
= 2

√
Xi ·

∂f

∂Xi
.
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Under this convention, it further holds for i, j ∈ {1, . . . , d}:

∂2g

∂x2i
= 2 · ∂f

∂Xi
+ 4Xi ·

∂2f

∂X2
i

,
∂2g

∂xi∂xj
= 4

√
XiXj ·

∂2f

∂Xi∂Xj
,

∂3g

∂x3i
= 12

√
Xi ·

∂2f

∂X2
i

+ 8Xi

√
Xi ·

∂3f

∂X3
i

,

∂4g

∂x4i
= 12 · ∂2f

∂X2
i

+ 48Xi ·
∂3f

∂X3
i

+ 16X2
i · ∂4f

∂X4
i

,

∂5g

∂x5i
= 120X

1
2
i · ∂3f

∂X3
i

+ 160X
3
2
i · ∂4f

∂X4
i

+ 32X
5
2
i · ∂5f

∂X5
i

, etc.

The next three lemmas are crucial.

Lemma 4.1. 1. For α ∈ 2N0 and i ∈ {1, . . . , d} it holds:

∂αg

∂xαi
=

α
2∑

j=0

ci,α,jX
j
i ·

∂
α
2
+jf

∂X
α
2
+j

i

with certain ci,α,j ∈ N (not null).

2. For α ∈ 2N0 + 1 and i ∈ {1, . . . , d} it holds:

∂αg

∂xαi
=

α−1
2∑

j=0

ci,α,j+ 1
2
X

j+ 1
2

i · ∂
α+1
2

+jf

∂X
α+1
2

+j

i

with certain ci,α,j+ 1
2
∈ N (not null).

For a proof, the reader is referred to [4].

Lemma 4.2. The functions Xi1
1 · . . . ·Xid−1

d−1 , where i1, . . . , id−1 run through
1
2N ∪ {0}, are linearly independent.

Proof. After the substitution X1 = x21, . . . , Xd−1 = x2d−1, these functions

become the monomials x2i11 · . . . · x2id−1

d−1 , which are linearly independent.

Lemma 4.3. For a function of the form f(X1, . . . , Xd) =
1

(X1+···+Xd)τ
it

holds:
∂lf

∂X l
1

= · · · = ∂lf

∂X l
d

=
(−1)l · (τ)l

(X1 + · · ·+Xd)τ+l
,

where (τ)l := τ(τ + 1) · · · (τ + l − 1) is the Pochhammer symbol.

Proof. The claim follows easily by induction.



582 E. Symeonidis 8

For the function in the last lemma, it follows that

(4)
∂α1+···+αd−1f(X1, . . . , Xd)

∂Xα1
1 · · · ∂Xαd−1

d−1

=
(−1)α1+···+αd−1(τ)α1+···+αd−1

(X1 + · · ·+Xd)τ+α1+···+αd−1
.

To resume the study of the polynomials vα1···αd−1
we set τ = k+d

2 − 1.

Since f(X1, . . . , Xd)|X1=x2
1,...,Xd=x2

d
= r−2τ = r2−k−d for r =

√
x21 + · · ·+ x2d,

the question is whether the functions

∂n

∂xα1
1 · · · ∂xαd−1

d−1

[
f(X1, . . . , Xd)|X1=x2

1,...,Xd=x2
d

]
=

vα1···αd−1
(x1, . . . , xd)

r2n+d+k−2

for α1, . . . , αd−1 ∈ N0, α1 + · · ·+ αd−1 = n (see (3)), are linearly independent.
The following reasoning is similar with that in the last part of [4], there

formulated for the case k = d− 2.
By reductio ad absurdum, we assume that there exists a linear combina-

tion
(5) ∑
α1+···+αd−1=n
α1,...,αd−1≥0

Cα1,...,αd−1
· ∂n

∂xα1
1 · · · ∂xαd−1

d−1

[
f(X1, . . . , Xd)|X1=x2

1,...,Xd=x2
d

]
= 0,

where not all Cα1,...,αd−1
vanish.

Let α̂1 be the highest value of α1 such that Cα1,...,αd−1
̸= 0 for certain

α2, . . . , αd−1. Let α̂2 be the highest value of α2 such that Cα̂1,α2,α3,...,αd−1
̸= 0

for certain α3, . . . , αd−1. Continuing inductively, let eventually α̂d−2 be the
highest value of αd−2 for which Cα̂1,α̂2,...,α̂d−3,αd−2,αd−1

̸= 0 for a certain αd−1.
Obviously, there is only one such value of αd−1, namely

α̂d−1 := n− α̂1 − α̂2 − · · · − α̂d−2
1.

According to Lemma 4.1, the term of the highest order monomial
Xj1

1 · · ·Xjd−1

d−1 in ∂n

∂x
α1
1 ···∂x

αd−1
d−1

[f(X1, . . . , Xd)|X1=x2
1,...,Xd=x2

d
] is

c1,α1,
α1
2
· . . . · c

d−1,αd−1,
αd−1

2
·X

α1
2

1 · · ·X
αd−1

2
d−1 · ∂

α1+···+αd−1f(X1, . . . , Xd)

∂Xα1
1 · · · ∂Xαd−1

d−1

.

Therefore, after setting Xd = 1−X1 − · · · −Xd−1, the product X
α̂1
2

1 · · ·X
α̂d−1

2
d−1

appears only once in (5), and its coefficient is, according to (4),

Cα̂1,...,α̂d−1
· c

1,α̂1,
α̂1
2

· . . . · c
d−1,α̂d−1,

α̂d−1
2

· (−1)n(τ)n ,

1In fact, Cα̂1,...,α̂d−1
is the last non-null coefficient with respect to the following lex-

icographic ordering of (d − 1)-tuples (considered in ascending order): (α1, . . . , αd−1) <
(α′

1, . . . , α
′
d−1) if and only if there exists l ∈ {1, . . . , d − 1} such that αi = α′

i for i < l,
and αl < α′

l.
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which does not vanish unless −τ ∈ N0 ∩ [0, n− 1], a fact that would contradict
Lemma 4.2.

At this point, we have established the following fact.

Theorem 4.4. If −k ̸∈ d−2+2(N0∩[0, n−1]), the polynomials vα1···αd−1
,

α1+· · ·+αd−1 = n are linearly independent. If additionally −k ̸∈ 2N0∩[0, n−1],

they form a basis of H(k)
n (Rd).

The treatment in the case of the exceptional values of k seems to be a
difficult issue.
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