SPACES OF k-MODIFIED HARMONIC POLYNOMIALS
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The polynomials u on R? (d > 2) that satisfy the equation zq- Au+k - % =

(k € R) are called k-modified harmonic. In this article, we study the dimension
of the space of homogeneous such polynomials of a fixed degree.
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1. INTRODUCTION AND NOTATIONS

In the 1940s and later, Alexander Weinstein studied the partial differential
equation
ou(x)

=0
(%cd

(1) zq- Au(z) + k-

for a function v on a domain in R%, where A = 88—22+‘i)2+- st 8—22 and k € R
] 0x3 Oz
(see [5]). The u solutions that he obtained were called generalized azially
symmetric potentials. This term is justified by the following observations.
If a function f on a domain in R?>*™ is a solution of the Laplace equation

0? 0? 0?
T N
Oxy  Oxs

and if f is axially symmetric about the zi-axis, that is,

=0 >1
ax%—‘rn (n B )

f(xla 2, ... 7x2+n) = ¢($1> \/.%'% +oe x%+n)
with a suitable function ¢, then ¢ satisfies the equation

?p(x,y) | Z¢(x,y) od(z,y)
S 8y? M”'Ty_o

(and vice versa). More generally, if f is defined on a domain in R4 and

fler, o, apn) = (21,22, . -1, \/563 +ag )
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with a suitable function u, then f is a solution of the Laplace equation if and
only if u satisfies (1)) with & = n (see [3], where the reader can also find other
results related to our present study).

In this article, following Heinz Leutwiler (see, e.g., [2]), we call the solu-
tions of k-modified harmonic functions. This term is justified by the fact
that for d > 3 the operator

2%/ (2—d k0

turns out to be the Laplace—Beltrami operator for R41 x (0,00) with the
line-element
di? = xzk/(d_Q) (dx% +dzd 4+ d:):?i) .

Let HF) (R%) be the real vector space of all k-modified harmonic functions
that are homogeneous polynomials of degree n on R?. In what follows, we
assume that d > 2. We denote by N the set of strictly positive integers and
write No for NU {0}. Let P,(R%) be the real vector space of all homogeneous
polynomials of degree n on R?. The monomials

ot ah? e ay
for oy, 9,...,aq € Ng, a1 + ag + --- + ag = n form a basis of P,(R9). Its
elements may be counted as n-combinations with repetitions of x1, ..., x4, so
d -1
2) dim P, (R%) = < o ) .
n
We now fix n and consider the (well-defined) linear map
0
Wk P (RY — Py (RY), W (u)(2) 1= zgAu(z) + k g(x).
Zq

For its kernel, it obviously holds that ker WT(Lk) = ng) (R%).  So, if WT(Lk) is
surjective, then

dim H¥) (RY) = dim P, (R?) — dim P,,_; (R?)

()

In this article, we investigate the issue of surjectivity of Wék) (Section
and find out the dimension of H.¥ (R9) in all but a finite number of cases
(referring to the parameter k). In Section 4, we also present explicit bases in
almost all those cases.
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2. THE OPERATOR W)

Let u € P,(RY), which we write in ascending powers of z4:
n .
w(xy, ..., xq) = Zxﬁlpj(xl, ceyTdo1)
j=0

where p; € Pp_; (R41). Now, we apply the linear map W,E’“) and write the
result in the same order:
0%u ou

ou ~
W () = I e el
N u) = xgAu+ k e rqAu + x4 922 +k o,

n n n
1w . j—2 . J—1
=> 2 Apj+taay -V Cpi+ k> jallp;
=0

=0 §=0
n—1 n
=Y 2 Api+ > j0G - 1+ k)al p
j=0 J=1
n n—1
= ahAp + > _(1+ 1)1+ k)ahpr
=1 1=0
= kp1 + 2y Apn—1+ Zxé JAp—1 + L+ D)+ E)prga ]
~; =1

(A denotes the Laplacian in the first d — 1 coordinates.)

To check if W,S ) is surjective, we consider several special cases.

Case I. W, (u)(z) = q(x1,...,7q_1) € Pn1(RI1), g # 0.

Firstly, this equation requires pi(z1,...,2q4-1) = Mk’xd”), which is
only possible if £ # 0. Secondly, it is purposive to take p,, = 0 for even m,

while p; determines the rest of the coefficient polynomials step by step:

—Apl —Ap?) _Apn—2 .
— 2P TP o TP e e aNg 41,
O AR ATy R iy iy S
_Apn—i’) .
= fn e 2N.
Pt = T =24k S
Obviously, this is only possible if & ¢ {—2,—4,..., —QL”T_lj }.

Case IT. W™ (u)(z) = 27",
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a. Let n be even.
Here, it is purposive to take p,, = 0 for odd m, whereas for the rest, for
2
example p, =0, pp_2 = %1, and

n=2)---n—2m+2)-(k+n—-3)---(k+n—-2m+1) ,

Pn—2m(z)= (—1)m=1(2m)! =

m

for2§m§%.

b. Let n be odd.

Since
W,gk)(axg) =xz4-an(n — 1)553*2 + k- anxg“l =an(n—1+ k:)ngl,

we just have to set a = ifk#1—n. If k=1-—mn, it is purposive to

me)
take p,, = 0 for even m, while p; = 0 is obviously necessary (unless n = 1, in
which case, we have k = 0, violating the restriction in Case I). But then, step
by step, we have to take p3 =0,...,p,—2 = 0, and then the coefficient of :ngl

in WM (u) vanishes too. Therefore, this case is only possible if k # 1 — n.

Case III. Wék)(u)(x) = 2hq(z1,...,24-1) # 0, ¢ € Pp_1(R4Y), for
1<i<n-—2.

a. Let [ be odd.

Here, it is purposive to take p,, =0 for odd m as well as for all m > [+1,
pi—1 such that Ap;_; = ¢, and inductively, p;_s;_1 such that
[—1
5

This is possible, because the so-called Poisson equation with a polynomial right
side has a polynomial solution (see [1]).

Appgj1=—(1—2]+ 1)1 =2 +k)pr_gjr1, 1<j<

b. Let [ be even.

Here, it is purposive to take p,, = 0 for even m as well as for all m <[—1,

. q
Py =0+ k)

and the rest of p,, with odd m appropriately. Obviously, this is only possible
if Kk # —m for any even m, [ <m <n — 1.

The investigation of these three special cases has proven the following.
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THEOREM 2.1. The operator W) . Pp(RY) — Pp_1(RY),

W (u)(x) = xq - Au(z) + k- du(z) ,
0xy
is surjective if and only if —k & 2Ny N [0,n — 1]. In this case,
n

3. THE EXCEPTIONAL VALUE k£ =0

If £ =0, Case III in the previous section remains possible, likewise Case
IT unless n = 1 (then it coincides with Case I), but Case I does not. So, the
image of W,§°> is the space of those homogeneous polynomials in P,,_1(R?) that
are multiples of z4. This space is clearly isomorphic to P,_2(R%), so

d -1 d -3 d -2 d -3
dimHO R = (T _(aFn =Sy _ fadn =2y fdan Sy
n n—2 n n—1
4. A BASIS OF #H()(R9)

In this section, we determine a basis of the space ’H%k) (RY), as defined in
the introduction, for all but a finite number of values of k.

If u is a k-modified harmonic function, then the functions (%Ll, el 89?:_1
are obviously k-modified harmonic too. Furthermore, if u is k-modified har-
monic, then so is its k-modified Kelvin transform,

Klul(zy,...,2q) :=r>"F4.qy (ml xd) ,

22

where r := /2?2 + - + xfl. This can be verified by an elementary, but lengthy
computation.
2—k—

Now, since u(z1,...,zq) := r>"*=¢ is k-modified harmonic (being the
k-modified Kelvin transform of 1), so are its partial derivatives
o0"u
Uaiag-1 *= 3 a1 A Gd-1
Ozt -+ Oyt

for aq,...,aq-1 € Ng, a1 + -+ + ag_1 = n, as well as their k-modified Kelvin
transforms

Vayagq (T15 -5 Td) = Kua, oy, (21, ..., Zq)

—k— ! Ld —
— p2-k—d ) — p2ntdik—2

(3)
ual"‘adfl (7“72’ ey 7‘72

Uayag 1 (T15 -5 Td)s
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since uq,...a, ; is homogeneous of degree 2 — k — d — n (in fact, r2=k=d g

homogeneous of degree 2 — k — d, and every partial derivative reduces the
degree of homogeneity by 1). Inductively, it follows that uq,...a, , has the form
r2=k=d=2n . P with a polynomial P, so the functions Vay--ay_, are polynomials,
in fact homogeneous polynomials of degree n: v4;...a, , € ”Hglk) (Rd).

The number of the tuples (aq,...,aq-1) € Ng such that a1+ - -+ag_1=n
is (d+z_2) (cf. ) Considering the last equation in the introduction, the
question arises whether the (d+z_2) polynomials vg;...ay , € ”H%k) (RY) form a
basis of H (RY). According to Theorem a necessary condition for this is
—k ¢ 2NgN[0,n—1].

Before we take a closer look at the polynomials vq,...q, ,, We give a list
of them for a1 + -+ + ag—1 < 3, from which it already can be seen that by no
means they form a basis in every case.

vo..0 =1

v0...010..0 = (2 — k — d)x; (the index 1 is at the i-th position)

v0..020..0 = (2—k — d)[r? — (k+ d)z?] (the index 2 is at the i-th position)

00...010...010..0 = (k +d — 2)(k 4+ d)x;z; (the indices 1 are at the positions
i and 7)

v0..030..0 = (k+d—2)(k+d)x;[3r* — (k + d + 2)z7] (the index 3 is at the
i-th position)

0...020...010...0 = (k +d— 2)(k + d)xj [7“2 — (k +d+ 2)1‘?] (2 is at the i-th,
1 at the j-th position)

00...010...010...010...0 = (2 —k— d)(k + d)(k + d + Q)Jfﬂ,’jxl (the indices 1 are
at the positions i, j,1).

At this point, we introduce a notation, which facilitates the further study
of the polynomials vg,...a, ,- We set Xy := x% yeeey Xg 1= x?l and relate every
function f(Xi,...,Xy) to the function

glxy, ... xq) = f(z?,...,22) = f(Xq,... ’Xd)‘X1:z%,---7Xd:xfl‘

Here and in the sequel, we assume that xq,...,x4y > 0. This correspondence
leads to relations between the partial derivatives of f and g:
g of
Tlyeoo,Xg) = Xi,...,X ‘ 2x;
8.%,( ! d) aX,( ! d) X1=z1, .,Xd—xg !
of
- X Xy) -2 X}
|:6XIL ( ! ’ d) ! X1:$%,...,Xd:$3

for 1 <i < d, which we express in the shorter form

dg ./~ Of
6xi_2 Xl (9)(Z
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Under this convention, it further holds for i,5 € {1,...,d}:

P9 _,. 0 ,x 9 Py wx. 1
Ox? 0X; tox?’ O, 0r; 7 0X,0X;
83
87 — 12\/ 7 8X2 +8X \/ ’i X3 B
a4g a2f a3f 9 84]0
Bt = 12 e + 48X, - e +16X2 - X1
a5g 1 83 84f 5 85f

The next three lemmas are crucial.

LEMMA 4.1. 1. For a € 2Ny and i € {1,...,d} it holds:

9% 2 ; %-i-jf

g9 _ CoxT

oz ,Z%CW’J ¢ g+i
J:

0X;?
with certain ¢; o € N (not null).

2. Fora€2Ng+1 andi € {1,...,d} it holds:

a+1

i Lo
o — i ,]+2 8Xi”‘§1+y
with certain Ciajtrl € N (not null).
For a proof, the reader is referred to [4].
LEMMA 4.2. The functions Xfl - .-X;d_’f, where i1, . ..,14_1 Tun through
INU{0}, are linearly independent.
Proof. After the substitution Xy = z%, o, Xg1 = x?l—l’ these functions
become the monomials 3 - ... 3”1 !, which are linearly independent. [
LEMMA 4.3. For a function of the form f(Xi,...,Xq) = m it
holds:
of — _df (=) ()
(’*)X{_ _aXé_(X1+--~+Xd)T+l’

where (7); :==7(T+ 1)+ (1 +1—1) is the Pochhammer symbol.

Proof. The claim follows easily by induction. [
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For the function in the last lemma, it follows that
gutrtea-i f(Xy, L Xg) (1)) gay

4 _ .
( ) 8X1041 Ce 8X§‘j;1 (Xl + .+ Xd)TJralJr...Jrad,l

To resume the study of the polynomials v4,..q, , We set 7 = k%d — 1.
Since f(X1,..., Xd)|X1::c§,...,Xd:a:{21 = 27 = p27k—d for = /g;% NI x?p
the question is whether the functions

on Vay-ag 1 (T15 -+ Td)
025t - 925 [f(Xl’ o ’Xd)|X1=$?v--~7Xd=x3] - F2ntdh—2

for aq,...,aq-1 €Ny, a1 + -+ a1 =n (see ), are linearly independent.

The following reasoning is similar with that in the last part of [4], there
formulated for the case k = d — 2.

By reductio ad absurdum, we assume that there exists a linear combina-
tion
(5) N
a1+--';&:d1=n Cahm,ad?l ' W f(Xl’ o ,Xd)’Xlzx%""’Xd:xﬂ - O,

af,...,aqg—1>0
where not all Cy, .., , vanish.

Let a7 be the highest value of o such that Cq,, . o, , # 0 for certain
@2,...,0q-1. Let a3 be the highest value of g such that Cgy 0,040y, 7 0
for certain as,...,aq—1. Continuing inductively, let eventually ay_s be the
highest value of ag_o for which C—~ ~ — # 0 for a certain ag_1.

R . a1,002,...,0d—3,0d—2,00d—1
Obviously, there is only one such value of a1, namely

—_— —~ —~
g1 ::n—al—ag—'--—m

According to Lemma the term of the highest order monomial

Ji . yJdd-1 s " ;
X X in g S F X X))
o ag- +odag
6 e e o XE x0T (X Xa)
gt C, _ a — .
La1,73 d—l,ag-1,—5 1 d—1 OXPh - adell
ai g1
Therefore, after setting Xy =1— X7 —---— Xy, the product X;* --- X, %
appears only once in , and its coefficient is, according to (4]),
—  —c & ... e (=D)"(7
ALyeQd—1 - 1,47, d—1,a3-7, d2—1 ( ) ( )nv

In fact, Csi,....ag7— is the last non-null coefficient with respect to the following lex-
icographic ordering of (d — 1)-tuples (considered in ascending order): (ai,...,aq—1) <
(al,...,ah_1) if and only if there exists | € {1,...,d — 1} such that a; = aj for i < [,
and o; < of.
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which does not vanish unless —7 € NoN [0,n — 1], a fact that would contradict
Lemma
At this point, we have established the following fact.

THEOREM 4.4. If —k ¢ d—2+2(NoN[0,n—1]), the polynomials va,...ay
a1+ +ag_1 = n are linearly independent. If additionally —k ¢ 2NoN[0, n—1],
they form a basis of P (R9).

The treatment in the case of the exceptional values of k seems to be a
difficult issue.

REFERENCES

[1] O. Algazin, Polynomial solutions of the boundary value problems for the Poisson equation
in a layer. Preprint, 2017, arXiv:1710.05716v1.

[2] H. Leutwiler, More on modified spherical harmonics. Adv. Appl. Clifford Algebr. 29
(2019), 4, article no. 70.

[3] H. Leutwiler, Contributions to modified spherical harmonics in four dimensions. Com-
plex Anal. Oper. Theory 14 (2020), 7, article no. 67.

[4] E. Symeonidis, On the space of homogeneous modified harmonic polynomsals in higher
dimensions. Math. Rep. (Bucur.) 26(76) (2024), 2, 115-120.

[6] A. Weinstein, Generalized azially symmetric potential theory. Bull. Amer. Math. Soc.
59 (1953), 20-38.

Katholische Universitat Eichstatt-Ingolstadt,
Mathematisch-Geographische Fakultdt,
85071 Eichstdtt, Germany
e.symeonidis@ku. de



	Introduction and Notations
	The Operator Wn(k)
	The exceptional value k=0
	A Basis of Hn(k)(Rd)

