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In Kozma–Toth (2017), the weak CLT was established for random walks in
doubly stochastic (or, divergence-free) random environments, under the following
conditions:

� Strict ellipticity assumed for the symmetric part of the drift field.

� H−1 assumed for the antisymmetric part of the drift field.

The proof relied on a martingale approximation (a la Kipnis–Varadhan) adapted
to the non-self-adjoint and non-sectorial nature of the problem. The two sub-
stantial technical components of the proof were:

� A functional analytic statement about the unbounded operator formally
written as |L+ L∗|−1/2(L−L∗)|L+ L∗|−1/2, where L is the infinitesimal gener-
ator of the environment process, as seen from the position of the moving random
walker.

� A diagonal heat kernel upper bound which follows directly from Nash’s
inequality, or, alternatively, from the “evolving sets” arguments of Morris–Peres
(2005), valid only under the assumed strict ellipticity.

In this note, we present a partly alternative proof of the same result which relies
only on functional analytic arguments and not on the diagonal heat kernel upper
bound provided by Nash’s inequality. This alternative proof is relevant since it
can be naturally extended to non-elliptic settings pushed to the optimum, which
will be presented in a forthcoming paper. The goal of this note is to present the
argument in its simplest and most transparent form.
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1. INTRODUCTION

1.1. Preliminaries

Let (Ω,F , π, (τz : z ∈ Zd)) be a probability space with an ergodic Zd-
action. Denote by U := {k ∈ Zd : |k| = 1} the set of elements of Zd neigh-
bouring the origin which is the set of possible elementary steps of a continuous
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time nearest neighbour random walk on Zd. Let b : U ×Ω → [−1,+1] be such
that

bk(ω) + b−k(τkω) = 0,
∑
k∈U

bk(ω) = 0,

∫
Ω
bk(ω) dπ(ω) = 0.(1)

Thus, the lifted field b : U × Zd × Ω → [−1,+1],

bk(x, ω) := bk(τxω)

is a (space-wise) stationary and ergodic, zero-mean, divergence-free flow (or,
vector field) on Zd.

We study the long-time behaviour of the continuous-time random walk
in random environment (RWRE), t 7→ X(t) ∈ Zd with jump rates

Pω

(
X(t+ dt) = x+ k

∣∣ X(t) = x
)
=

(
1 + bk(x, ω)

)︸ ︷︷ ︸
pk(x, ω)

dt+ o(dt),(2)

and initial position X(0) = 0. In (2), pk(x) stands for the jump rate from site
x ∈ Zd to the neighbouring site x+ k ∈ Zd.

For detailed physical motivation and a collection of concrete examples of
the problem, we refer to [13], [24]. However, for the reader’s convenience, we
recall concisely some of these in Section 1.4 below.

We use the notation Pω (·), Eω (·) and Varω (·) for quenched probability,
expectation and variance. That is: probability, expectation, and variance with
respect to the distribution of the random walk X(t), conditionally, with given
fixed environment ω ∈ Ω. The notation P

(
·
)
:=

∫
ΩPω (·) dπ(ω), E

(
·
)
:=∫

ΩEω (·) dπ(ω) and Var
(
·
)
:=

∫
ΩVarω (·) dπ(ω) +

∫
ΩEω (·)2 dπ(ω) − E

(
·
)2

is reserved for annealed probability, expectation and variance. That is: prob-
ability, expectation and variance with respect to the random walk trajectory
t 7→ X(t) and the environment ω, sampled according to the distribution π.

The environment process (as seen from the position of the random walker)
is t 7→ ηt ∈ Ω defined as

ηt := τX(t)ω.(3)

This is a pure jump Markov process on the state space Ω. It is well known
(and easy to check, see, e.g., [12]) that due to the conditions imposed in (1)
the a priori distribution π of the environment is (time-wise) stationary and
ergodic for the process t 7→ ηt ∈ Ω. Hence, it follows that the random walk
t 7→ X(t) has zero-mean stationary and ergodic annealed increments. Though,
in the annealed setting the walk is not Markovian. Hence, the strong law

lim
t→∞

X(t)

t
= 0, a.s.
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obviously follows. Our goal is to establish the CLT

t−1/2X(t)
t→∞⇒ N (0, σ2)(4)

with non-degenerate covariance matrix σ2, under suitable assumptions.

1.2. The H−1-condition

Beside (1), we assume the notorious H−1-condition holding for the flow
field b: ∫

[−π,π]d
ĝ(p)

∑
k∈U

Ĉkk(p)dp < ∞(5)

where

ĝ(p) :=

( d∑
j=1

(1− cos pj)

)−1

is the Fourier transform of the Zd-Laplacian’s Green-function, and

Ĉk,l(p) :=
∑
x∈Zd

eix·pCk,l(x)

is the Fourier transform of the correlation of the drift field

Ck,l(x) :=

∫
Ω
bk(ω)bl(τxω) dπ(ω).

This is the most natural infrared bound on the decay of correlations of
the drift-field b. It is well known (see, e.g. [7], [13]) that it implies finiteness of
the asymptotic variance of t−1/2X(t) on the left-hand side of (4), as t → ∞.
It is also known that failure of (5) typically comes with super-diffusive (rather
than diffusive) asymptotics of X(t), see, e.g., [8], [25], [14], [1], [2].

As shown in [13] (see [7] for the continuous space setting), the H−1-
condition (5) is equivalent to the following.

There exists a function h : U × U × Ω → R such that

hk,l(ω) = −h−k,l(τkω) = −hk,−l(τlω) = −hl,k(ω),(6)

hk,l ∈ L2(Ω, π)(7)

and

bk(ω) =
∑
l∈U

hk,l(ω) =
1

2

∑
l∈U

(
hk,l(ω)− hk,l(τ−lω)

)
.(8)

The second equality in (8) obviously follows from the symmetries (6) of the
field h.
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Note that all three conditions in (1) follow from (6), (7) and (8), which,
as shown in [13], are (jointly) equivalent to (5).

The (anti)symmetry conditions from equation (6) mean that the lifted
field h : U × U × Zd × Ω → R

hk,l(x, ω) := hk,l(τxω)

is a translation-wise ergodic random function of the oriented plaquettes of Zd,
also known as, a (square integrable) stream tensor.

Summarizing. We make the structural assumptions (6) and (8) and
the integrability assumption (7).

1.3. The CLT

The standard martingale decomposition of the displacement is

X(t) =
(
X(t)−

∫ t

0
φ(ηs)ds

)
︸ ︷︷ ︸

=: Y (t)

+

∫ t

0
φ(ηs)ds︸ ︷︷ ︸

=: I(t)

=: Y (t) + I(t)(9)

with the drift function φ : Ω → Rd

φ(ω) :=
∑
k∈U

kbk(ω),(10)

lifted to φ : Zd × Ω → Rd as

φ(x, ω) := φ(τxω).

The process t 7→ Y (t) ∈ Rd on the right-hand side of (9) is a quenched mar-
tingale whose increments are stationary, ergodic and square integrable in the
annealed setting.

In [13], the Central Limit Theorem (4) was established, under optimal
(minimal) necessary assumption.

Theorem 1.1 ([13], Theorem 1). Assume (6), (7), and (8). Then the
process t 7→ I(t) ∈ Rd on the right-hand side of (9) is decomposed as

I(t) = Z(t) + E(t)

so that t 7→ Z(t) ∈ Rd is a quenched martingale whose increments are station-
ary, ergodic and square integrable in the annealed setting, and

lim
t→∞

t−1E
(
|E(t)|2

)
= 0.(11)

The martingales t 7→ Y (t) and t 7→ Z(t) do not cancel.
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Corollary 1.2. Assume (6), (7), and (8). Then the displacement of
the random walk t 7→ X(t) ∈ Rd is decomposed as

X(t) = Y (t) + Z(t)︸ ︷︷ ︸
=: X̃(t)

+E(t)

so that for π-almost all ω, under Pω (·),

N−1/2X̃(Nt) ⇒ σWσ(t),

where t 7→ Wσ(t) is a non-degenerate Wiener process on Rd, and the error
term E(t) is subdiffusive as shown in (11).

Corollary 1.2 follows from Theorem 1.1 by direct application of the Martingale
CLT, see, e.g., [15]. The proof of Theorem 1.1 in [13] relied on two main
components:

� A functional analytic statement about the unbounded operator formally
written as

B := |L+ L∗|−1/2(L− L∗)|L+ L∗|−1/2,

where L is the infinitesimal generator of the environment process (3). See (13),
(14), (23) below.

� A (quenched) diagonal heat kernel upper bound which follows from
Nash’s inequality, or, alternatively, from the “evolving sets” arguments of [16],
valid only under the assumed strict ellipticity.

In this note, we present a partly alternative proof of the same result
which relies only on functional analytic arguments and not on the diagonal
heat kernel upper bound provided by Nash’s inequality. This alternative proof
is relevant since it can be naturally extended to non-elliptic settings (barred
by Nash) pushed to the optimum, which will be presented in a forthcoming
paper. The goal of this note is to present the argument in its simplest and
most transparent form. In Section 3.2, we present explicitly those details of
the proof which differ from [13].

1.4. Comments, history, examples

For a comprehensive exposition of the physical motivation, and historic
background of the problem we refer to the monograph [7], and the papers [13],
[24]. Here, we recall very concisely the key facts. Later in this subsection, we
also recall (informally and succinctly) some concrete examples and counter-
examples for the setting (6), (7), (8).
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The continuous space counterpart of the random walk problem considered
in this note is the diffusion in random incompressible (or, divergence-free) drift
field, t 7→ X(t) ∈ Rd, driven by the SDE

dX(t) = b(X(t)) dt+
√
2dW (t),(12)

where t 7→ W (t) is a standard Wiener process in Rd and x 7→ b(x) = b(x, ω) ∈
Rd is a random vector field over Rd assumed to be stationary and ergodic with
respect to spatial shifts, with finite second moments and zero mean, and almost
surely divergence-free:

div · b ≡ 0, a.s.

The question is formally the same: What are the optimal (minimal) assump-
tions for the central limit theorem (4) to hold?

Motivated by a genuine physical question, namely diffusion of passive
tracer particles in steady state, incompressible turbulent flow, the random
walk and diffusion problems (2) and (12) have an over forty years long his-
tory (spanning from the late 1970s to the late 2010s) with considerable effort
invested in their satisfactory mathematical understanding. Some of the main
stations on this road are (in chronological order) [11], [19], [18], [12], [17], [5],
[4], [9], [10], [3], [7], [13], [23]. For more details on historic aspects and the
results obtained on the way, in the works cited above, see the historic notes in
Chapters 3 and 11 in the monograph [7] and Section 1.6 of [24].

Here, follow three examples (partly, counterexamples) where conditions
(6), (7), (8) may or may not hold, depending on dimension. We present the
examples in Z2, leaving the (more-or-less obvious) extensions to higher di-
mensions to the reader. The presentation is verbal and informal. For precise
formalisations, we refer the reader to Section 7 in [13] and Section 1.4 of [24].

Example 1.3. Local rules. This is the baby-version of the basic example
from [12] where a much more general setting (with finitely dependent drift
((bk(x)k∈U )x∈Zd) was exhaustively treated. The faces of the square grid Z2

are oriented clock-wise or counter-clock-wise independently, with probabilities
1
2 -

1
2 . If two neighbouring faces are oriented in opposite sense, then their shared

edge gets the orientation dictated by the “consensus” of the two adjacent faces.
Otherwise, the edge remains unoriented. The random walker is driven by the
oriented edges as follows: From any site of Z2 it jumps to a neighbouring
site, Rd

– with probability 1
2 in the direction of an oriented edge,

– with probability 0 opposite to the direction of an oriented edge,
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– and with probability 1
4 along an unoriented edge in either direction.

The reader can easily check that due to the construction, these probabilities
always add up to 1, and the drift is divergence-free in the sense of (1), with
the value of b being +1,−1 and 0, respectively, in the three cases listed above.
It is easily seen that conditions (6), (7), (8) hold for this example, and also for
its higher dimensional generalizations. Actually, the CLT for a more general
class of examples (with finitely dependent drift ((bk(x)k∈U )x∈Zd) was already
established in [12].

Example 1.4. Randomly oriented Manhattan lattice, and higher dimen-
sional analogues. Orient the horizontal and vertical lines of the square grid Z2

(“streets”, respectively, “avenues”) independently of one-another, with proba-
bility 1

2 -
1
2 , in either one of their two possible directions. All edges on the same

(horizontal or vertical) line are oriented in the same direction. The random
walker is driven by the oriented edges as follows: From any site of Z2 it jumps
to a neighbouring site

– with probability 1
2 in the direction of an oriented edge,

– and with probability 0 opposite to the direction of an oriented edge.

The reader can easily check that due to the construction, these probabilities
always add up to 1, and the drift is divergence-free in the sense of (1), with
the value of b being +1 and −1, respectively, in the two cases listed above.
Extension to higher dimensions is straightforward. It turns out (see the proof
in Section 7 of [13]) that the H−1-condition (5) fails (and thus, there is no
representation (8) of the drift field) in 2 and 3 dimensions, while in dimensions
greater than 3 it holds. Accordingly, in d ≥ 4 the CLT for the displacement
of the random walker also holds. In [14], the superdiffusive bounds t5/4 ≪
E
(
|X(t)|2

)
≪ t3/2 for d = 2, and t log log t ≪ E

(
|X(t)|2

)
≪ t log t for d = 3, are

established (in the sense of Laplace transform, modulo Tauberian inversion),
and it is conjectured that E

(
|X(t)|2

)
≍ t4/3 in d = 2, and E

(
|X(t)|2

)
≍ t

√
log t

in d = 3.

Example 1.5. The six-vertex (or, square ice) model, and higher dimen-
sional analogues. Sample uniformly from all possible configurations of those
orientations of all edges of the finite discrete torus (Z/LZ)2, where at each
single vertex there are exactly two inward and two outward pointing adjacent
oriented edges. It is a far from trivial fact that the weak local limit, as L → ∞,
exists. This is a “uniformly sampled” random orientation of all edges of the
square grid Z2 with the constraint that at each single vertex there are ex-
actly two inward and two outward pointing adjacent oriented edges. This is



592 B. Tóth 8

the famous and celebrated six-vertex model of lattice statistical physics. In
d-dimensions, the analogous construction yields the

(
2d
d

)
-vertex model on Zd.

The random walker on Zd is driven by the oriented edges of the
(
2d
d

)
-vertex

model as follows: From any site of Zd it jumps to a neighbouring site

– with probability 1
d in the direction of an oriented edge,

– and with probability 0 opposite to the direction of an oriented edge.

The reader can easily check that due to the construction, these probabilities
always adds up to 1, and the drift is divergence-free in the sense of (1), with the
value of b being +1 and −1, respectively, in the two cases listed above. In di-
mension d = 2, the H−1-condition (5) fails (just marginally, with a logarithmic
divergence), while in dimensions d ≥ 3 it holds. As a consequence, the central
limit theorem holds for the random walker on the

(
2d
d

)
-vertex model on Zd, in

d ≥ 3 and presumably fails in d = 2. In d = 2, the superdiffusive asymptotics
E
(
|X(t)|2

)
≍ t

√
log t is conjectured (but far from proved), cf. [25].

2. SPACES AND OPERATORS

2.1. The infinitesimal generator

The infinitesimal generator of the environment process t 7→ ηt (3) is

Lf(ω) =
∑
k∈U

(
1 + bk(ω)

)︸ ︷︷ ︸
pk(ω)

(
f(τkω)− f(ω)

)
.(13)

This operator is well defined acting on all measurable functions f : Ω → R.
It is decomposed into Hermitian and anti-Hermitian parts (with reference

to the stationary measure π) as

(14)

L = −S +A, Sf(ω) := −
∑
k∈U

(
f(τkω)− f(ω)

)
,

Af(ω) :=
∑
k∈U

bk(ω)
(
f(τkω)−f(ω)

)
.

2.2. Basic spaces and operators

We define various function spaces (over (Ω, π)) and linear operators acting
on them. With usual abuse, we denote classes of equivalence of π-a.s. equal
measurable functions simply as functions. Let the space of scalar -, vector -,
rotation-free vector -, and divergence-free vector fields be

S := {f : Ω → R : f is F-measurable}
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V := {u : Ω → RU : uk ∈ S, uk(ω) + u−k(τkω) = 0, k ∈ U , π-a.s.}

K := {u ∈ V : uk(ω) + ul(τkω) = ul(ω) + uk(τlω), k, l ∈ U , π-a.s.}

D :=
{
u ∈ V :

∑
k∈U

uk(ω) = 0, π-a.s.
}
.

These are linear spaces (over R) with no norm or topology endowed on them
yet. We call these spaces these names for the obvious reason that their lifting

f(x, ω) := f(τxω) (f ∈ S), respectively, uk(x, ω) := uk(τxω) (u ∈ V),

are translation-wise ergodic scalar, respectively, vector fields over Zd.
The linear operators ∂k, Hk,l : S → S, k, l ∈ U , defined below on the whole

space S as their domain, are the basic building blocks used in constructing more
complex operators.

(15)
∂kf(ω) := f(τkω)− f(ω),

Hk,lf(ω) := hk,l(ω)f(ω)

Using these basic operators, we further define

(16)

∇ : S → V, (∇f)k := ∂kf

∇∗ : V → S, ∇∗u :=
∑
k∈U

uk = −1

2

∑
k∈U

∂−kuk

∆ : S → S, ∆ := −∇∗∇,=
∑
k∈U

(∂k − I)

H : V → V, (Hu)k :=
1

2

∑
l∈U

Hk,l(∂k + 2I)ul.

These operators are well defined on the whole spaces given as their respective
domains and obviously,

Ran(∇) ⊂ K, Ker(∇∗) = D.

For the time being, the superscript ∗ is only a notation. It will later indicate
adjunction with respect to the inner products defined in (17) below.

On the right-hand side of (16), the term (∂k + 2I)/2 takes care of pro-
jecting back to V. This is necessary and important. One can easily check
that ∑

k∈U
bkwk = ∇∗Hw for any w ∈ K,

and this identity holds only for w ∈ K ⫋ V. Using this identity, the Hermitian
and anti-Hermitian parts of the infinitesimal generator L, defined in (14) are
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written as

S = −∆ = ∇∗∇, A = ∇∗H∇.

Basically, we work in the real Hilbert spaces

S2 :=
{
f ∈ S : ∥f∥22 :=

∫
Ω
|f(ω)|2 dπ(ω) < ∞,

∫
Ω
f(ω) dπ(ω) = 0

}
,

V2 :=
{
u ∈ V : ∥u∥22 :=

1

2

∑
k∈U

∥uk∥22 < ∞,

∫
Ω
u(ω) dπ(ω) = 0

}
,

K2 := K ∩ V2, D2 := D ∩ V2,

with the scalar products

⟨f, g⟩ :=
∫
Ω
f(ω) g(ω) dπ(ω), ⟨u, v⟩ := 1

2

∑
k∈U

⟨uk, bk⟩.(17)

(We do not introduce different notation for the norms and scalar products in
S2, respectively, V2. The precise meaning of ∥·∥2 and ⟨·, ·⟩ is always clear from
the context.)

Due to ergodicity of (Ω,F , π, τz : z ∈ Zd), the space of square integrable
vector fields V2 is orthogonally decomposed as

V2 = K2 ⊕D2.

Later, we denote by Π : V2 → K2 the orthogonal projection from V2 to K2,
see (20).

In Section 3.2, we also need the Banach spaces

S∞ :=
{
f ∈ S : ∥f∥∞ := ess sup

ω∈(Ω,µ)
|f(ω)| < ∞,

∫
Ω
f(ω) dπ(ω) = 0

}
,

V∞ :=
{
u ∈ V : ∥u∥∞ := max

k∈U
ess sup
ω∈(Ω,µ)

|uk(ω)| < ∞,

∫
Ω
u(ω) dπ(ω) = 0

}
,

K∞ := K ∩ V∞, D∞ := D ∩ V∞.

The operators ∂k : S2 → S2, ∇ : S2 → K2, ∇∗ : V2 → S2, ∆ : S2 → S2 are
bounded, and their adjointness relations (with respect to the scalar products
(17)) are obviously

∂∗
k = ∂−k (∇)∗ = ∇∗ ∆∗ = ∆ ≤ 0.

The operators Hk,l and H defined in (15), respectively, (16), when restricted to
S2, respectively, to V2, are unbounded with respect to the norms ∥·∥2. However,
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as multiplication operators, there is no issue with their proper definition as
densely defined self-adjoint, respectively, skew-self-adjoint operators:

H∗
k,l = Hk,l H∗ = −H.

2.3. The space H− and the Riesz operators

As ∆ = ∆∗ ≤ 0, we define the self-adjoint operators |∆|1/2 = (−∆)1/2

and |∆|−1/2 = (−∆)−1/2 in terms of the Spectral Theorem, and the subspace

(18)
H− :=

{
f ∈ S2 : ∥f∥2− := lim

λ↘0
⟨f, (λI −∆)−1f⟩ = ∥|∆|−1/2f∥22 < ∞

}
= Dom(|∆|−1/2) = Ran(|∆|1/2).

Since ∆ is a bounded operator over (S2, ∥·∥2), the Euclidean space (H−, ∥·∥−) is
a complete Hilbert space (closed in the ∥·∥−-norm, as defined in (18)), and since
0 is a non-degenerate eigenvalue of ∆ (due to ergodicity of (Ω, π, τz : z ∈ Zd)),
H− is a dense subspace of (S2, ∥·∥2).

Next, we define the Riesz operators

Λ := ∇|∆|−1/2 : S2 → K2, Λ∗ := |∆|−1/2∇∗ : V2 → S2.(19)

It is obvious that

∥Λf∥2 = ∥f∥2 for f ∈ S2, Ker(Λ∗) = D, ∥Λ∗u∥2 = ∥u∥2 for u ∈ K2.

(More pedantically, a priori Λ : H− → K2 extends to Λ : S2 → K2 as an
isometry.) Finally, we also have

Λ∗Λ = IS2 , Π := ΛΛ∗ : V2 → K2.(20)

The latter being the orthogonal projection from V2 to K2.

3. PROOF OF THEOREM 1.1

3.1. Kipnis–Varadhan theory – the abstract form

The proof of Theorem 1.1 is based on the non-reversible (i.e., non-self-
adjoint) and non-sectorial version of martingale approximation a la Kipnis–
Varadhan, summarized concisely in this section.

Let (Ω,F , π) be a probability space and t 7→ ηt ∈ Ω a Markov process
assumed to be stationary and ergodic under the probability measure π, whose
infinitesimal generator acting on L2(Ω, π) decomposes as

L = −S +A, S := −(L+ L∗)/2, A := (L− L∗)/2.
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and whose resolvent is denoted

Rλ := (λI − L)−1.

For our current purpose, we can (somewhat restrictively) assume that the
operators L, S,A are bounded and also that the self-adjoint part S is ergodic
on its own. That is: Sf = 0 if and only if f is constant. With this in view, we
restrict all computations to the subspace of codimension 1

L2,0 :=
{
f ∈ L2 :

∫
Ω
f dπ = 0

}
.

(This corresponds to the Hilbert space S2 in the concrete setting of our prob-
lem.)

Finally, we’ll also need the subspace

H− :=
{
f ∈ L2,0 : ∥f∥2− := lim

λ↘0
⟨f, (λI + S)−1f⟩ = ∥S−1/2f∥2 < ∞

}
= Dom(S−1/2) = Ran(S1/2),

with the operators S±1/2 defined in terms of the Spectral Theorem.
We quote from [21, 6, 22] the Kipnis–Varadhan martingale approximation

in the non-self-adjoint setting. See the monograph [7] for historic background.

Theorem 3.1 ([21, 6, 22], Theorem KV). Let φ ∈ L2,0(Ω, π). If the
following two conditions hold

lim
λ→0

λ1/2∥Rλφ∥2 = 0, lim
λ→0

∥S1/2Rλφ− v∥2 = 0, v ∈ L2,(21)

then

σ2 := 2 lim
λ→0

⟨φ,Rλφ⟩ = 2∥v∥22 ∈ [0,∞)

exists, and there exists an L2-martingale t 7→ Z(t), with stationary and ergodic
increments, adapted to the natural filtration Ft of the Markov process t 7→ ηt,
and with variance

E
(
|Z(t)|2

)
= σ2t,

such that

lim
t→∞

t−1E
(
|
∫ t

0
φ(ηs) ds− Z(t)|2

)
= 0.(22)

Conditions (21) of Theorem 3.1 are difficult to check directly. Sufficient condi-
tions are known under the names of Strong Sector Condition [26], respectively,
Graded Sector Condition [20]. See also the monograph [7] for context and
details. However, these conditions hold only under very special assumptions
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about the Markov process considered: a graded structure of the infinitesimal
generator L acting on an accordingly graded Hilbert space L2. This structural
assumption simply doesn’t hold in many cases of interest, including our current
problem.

The next theorem, quoted from [6], provides a sufficient condition which
does not assume sectorial structure (grading) of the infinitesimal generator L
acting on the Hilbert space L2,0(Ω, π). Let

B := {f ∈ H− : AS−1/2f ∈ H−}

and B : B → L2,0 defined as

Bf := S−1/2AS−1/2f.

Note that the operator B : B → L2,0 is unbounded (except for the elementary
cases when the operator S : L2,0 → L2,0 is invertible) and skew symmetric.
Indeed, for f, g ∈ B all the straightforward steps below are legitimate

⟨f, S−1/2AS−1/2g⟩ = ⟨S−1/2f,AS−1/2g⟩

= −⟨AS−1/2f, S−1/2g⟩ = −⟨S−1/2AS−1/2f, g⟩.

Of course, it could happen that the subspace B is not dense in L2,0, or, even
worse, that simply B = {0}. Even if B is a dense subspace in L2,0, in principle
it could still happen that the operator B (which, in this case, is densely defined
and skew-symmetric) is not essentially skew-self-adjoint.

Theorem 3.2 ([6], Theorem 1). We assume that there exists a subspace
C ⫅ B which is dense in L2,0 and the operator B : C → L2 is essentially
skew-self-adjoint (that is, B = −B∗). Then for any φ ∈ H− the conditions of
Theorem 3.1 (and hence, the martingale approximation (22)) hold.

Remark 3.3. (1) In [6], the theorem is formulated in slightly differ-
ent terms. However, it is easy to see that this form follows directly from that
of Theorem 1 in [6].

(2) The conditions of Theorem 3.2 are equivalent to B being dense in L2,0

and B : B → L2 essentially skew-self-adjoint. The formulation of the theorem
gives some flexibility in choosing the core C ⫅ B.

3.2. Proof of Theorem 1.1

We check the conditions of Theorem 3.2 for the concrete case under con-
sideration, when the Markov process t 7→ ηt is the environment process cf. (3),
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its infinitesimal generator L given in (13), (14) acts on the Hilbert space S2,
and φ is the drift given in (10).

It is essentially straightforward (and shown in [13]) that theH−1-condition
(5) (and thus, also (6), (7), (8), jointly) are equivalent to φ ∈ H−1. (Hence,
the name of the condition (5).) It remains to prove skew-self-adjointness of
the operator S−1/2AS−1/2 = |∆|−1/2∇∗H∇|∆|−1/2 – properly defined. This is
exactly what we do in what follows.

In this case, the subspace B is

B := {f ∈ H− : ∇∗H∇|∆|−1/2f ∈ H−}

and B : B → S2 acts as

Bf := |∆|−1/2∇∗H∇|∆|−1/2f.(23)

Let

C := {f = |∆|1/2g : g ∈ S∞}

Obviously, the subspace C is dense in (S2, ∥·∥2), and for f ∈ C, the equation
f = |∆|1/2g determines uniquely g ∈ S∞. Furthermore,

∇∗H∇|∆|−1/2f = ∇∗H∇ g︸︷︷︸
∈S∞︸ ︷︷ ︸

∈K∞︸ ︷︷ ︸
∈V2

∈ H−.

Thus, indeed,

C ⫋ B ⫋ S2 = C,

where C denotes closure of C with respect to the norm ∥·∥2.

Proposition 3.4. The linear operator B : C → S2 is essentially skew-
self-adjoint.

Proof. Let

F := ΛC = {∇g : g ∈ S∞} ⫋ K∞ ⫋ K2,

and define the operator F := F → K2 as

F := ΛBΛ∗ = ΠHΠ, Fu := ΠH u︸︷︷︸
∈K∞︸ ︷︷ ︸
∈V2︸ ︷︷ ︸

∈K2

,(24)

where Λ,Λ∗ and Π are the Riesz operators and the orthogonal projection de-
fined in (19), (20).
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Since Λ : S2 → K2, Λ
∗ : K2 → S2 are isometries, the statement of the

proposition is equivalent to the operator F : F → K2 being essentially skew-
self-adjoint. This is what we are going to prove.

Obviously, the operator F is skew-symmetric on F , since for u,w ∈ F
the identity

⟨u,Hv⟩ = −⟨Hu, v⟩
is legitimate. Next, we define the adjoint of F : F → K2. Its domain is

F∗ := {w ∈ K2 : ∃c = c(w) < ∞ : ∀u ∈ F : |⟨w,Hu⟩| ≤ c∥u∥2},
and F ∗ : F∗ → K2 is defined uniquely by the Riesz Lemma: for any w ∈ F∗,
F ∗w is the unique element of K2 such that for all u ∈ F

⟨F ∗w, u⟩ = ⟨w,Hu⟩.
Obviously, F ⫋ F∗, F ∗|F = −F , and

F ≺ F ∗∗ ⪯ −F ∗.

In order to conclude

F ∗∗ = −F ∗

and thus, essential skew-self-adjointness of F , as defined in (24), it is sufficient
to prove that F ∗ is skew-symmetric on F∗.

For K < ∞, let

hKk,l(ω) := hk,l(ω)11(|hk,l(ω)| ≤ K).

These truncated functions inherit the stream-tensor (anti)symmetries (6). We
define the bounded operator HK : V2 → V2 by (15) and (16), with the stream
tensor h replaced by its truncated version hK .

Lemma 3.5. For w ∈ F∗

F ∗w = − wlim
K→∞

ΠHKw,(25)

where wlim denotes weak limit in the Hilbert space (K2, ∥·∥2).

Proof. This is straightforward. Let w ∈ F∗ and u ∈ F . Then

− lim
K→∞

⟨HKw, u⟩ = lim
K→∞

⟨w,HKu⟩ = ⟨w,Hu⟩ = ⟨F ∗w, u⟩,

where the limit in the second step follows from uniform integrability and almost
sure convergence (over (Ω, π)) of the sequence of functions

ω 7→
∑
k,l∈H

wk(ω)h
K
k,l(ω)

(
ul(ω) + ul(τkω)

)
as K → ∞.

Since F is dense in K2, (25) follows.
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From (25), the skew-symmetry of the operator F ∗ : F∗ → K2 drops out:

⟨w,F ∗u⟩ = lim
K→∞

⟨w,HKu⟩ = − lim
K→∞

⟨HKw, u⟩ = −⟨F ∗w, u⟩

for u,w ∈ F∗. This concludes the proof of essential skew-self-adjointness of
the operator F : F → K2 and thus, of the operator B of (23) defined on the
core C = Λ∗F .

This also concludes checking all conditions of Theorem 3.2 in the concrete
setting and thus, also the proof of Theorem 1.1.
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