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We present a technique that can be used in the study of a conjecture by Danilov
and Koshevoy, concerning triples (A,B,C) of n×n complex selfadjoint matrices
such that C = A + B. The conjecture proposes an explicit formula, in terms
of traces of compressions of A and B, for one associated hive. We also use this
technique to show why an earlier attempt to prove the conjecture fails for n = 4.
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1. INTRODUCTION

Suppose that n is a natural number, and that A,B,C are selfadjoint n×n
matrices such that A+B = C. Knutson and Tao [8] showed that the eigenvalues
of A,B, and C appear as the increments of a hive between adjacent boundary
points. To make this statement precise, we recall the definition of a hive. Let
∆n be an equilateral triangle with sides of length n, divided into n2 equilateral
triangles with sides of length 1. These smaller triangles are referred to as unit
triangles, and their vertices as lattice points. The lattices points can be labeled
by pairs (p, q) of nonnegative integers such that p+ q ≤ n; see Figure 1. More
precisely, we use the top of the triangle as the origin of a system of coordinates,
the left side as the p-coordinate axis, and the right side as the q-coordinate
axis.

A hive is a real-valued function h, defined on the set of lattice points
in ∆n, that satisfies the following requirement: given distinct lattice points
X,Y, Z,W such that XY Z and WY Z are unit triangles, we have

h(X) + h(W ) ≤ h(Y ) + h(Z).

We say that a hive h is associated with the triple (A,B,C) of selfadjoint ma-
trices if the eigenvalues of A,B, and C, listed in nonincreasing order, are

h(p, 0)− h(p− 1, 0), p = 1, . . . , n,
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h(n− q, q)− h(n− q + 1, q − 1), q = 1, . . . , n, and

h(0, q)− h(0, q − 1), q = 1, . . . , n,

respectively. We only consider hives that satisfy h(0, 0) = 0. A result of [8]
states that there always exists a hive associated with (A,B,C) if C = A+B.
There are usually many such hives, but there is no simple procedure for pro-
ducing one. Trying to remedy this situation, Danilov and Koshevoy [5] defined
an explicit function hA,B,C on the lattice points in ∆n that, they conjectured,
is a hive associated with (A,B,C). To define this function, we introduce some
notation. Given a pair (P,Q) of mutually orthogonal projections on Cn, set

Figure 1 – The point (2, 3) in ∆6

(1) t(P,Q) = Tr
(
AP + (A+B)Q

)(
= Tr

(
A(P +Q) +BQ

))
.

Then, given a lattice point X = (p, q), we set

(2) hA,B,C(X) = sup t(P,Q),

where the supremum is taken over all pairs (P,Q) as above such that P and
Q have ranks p and q, respectively.

Danilov and Koshevoy [5] present some evidence in favor of the con-
jecture showing, for instance, that it is true for n = 3. The methods used
in [5] were applied in [2] in order to propose a proof for arbitrary values
of n. However, Lombard [9] provides numerical evidence that this method
may not work. The proof proposed in [2] goes as follows. Suppose that
X,Y, Z,W are, as before, the vertices of two adjacent unit triangles, and that
(PX , QX), (PW , QW ) are given pairs of mutually orthogonal projections such
that X = (rank(PX), rank(QX)) and W = (rank(PW ), rank(QW )). Then [2]
proposes to construct pairs (PY , QY ) and (PZ , QZ) of mutually orthogonal
projections such that

(3) Y =
(
rank(PY ), rank(QY )

)
and Z =

(
rank(PZ), rank(QZ)

)
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as follows. Construct orthonormal bases BX ,BW for PX , PW and B′
X ,B′

W for
QX , QW such that new orthonormal systems BY , BZ ,B′

Y ,B′
Z of appropriate

cardinalities can be formed satisfying

(4) BX ∪ BW = BY ∪ BZ and B′
X ∪ B′

W = B′
Y ∪ B′

Z ,

and the elements of BY (respectively, BZ) are orthogonal to the elements of B′
Y ,

respectively, B′
Z . (The unions in (4) should be viewed as multisets. In other

words, if a vector belongs to both BX and BW , it should also belong to BY and
to BZ .) Then from projections PY , QY , PZ , QZ whose ranges are generated by
these orthonormal systems. If such bases can be found, we have

(5) PX + PW = PY + PZ and QX +QW = QY +QZ ,

and this implies that

(6) t(PX , QX) + t(PW , QW ) = t(PY , QY ) + t(PZ , QZ).

When t(PX , QX) = hA,B,C(X) and t(PW , QW ) = hA,B,C(W ), we conclude that

hA,B,C(X) + hA,B,C(W ) ≤ hA,B,C(Y ) + hA,B,C(Z).

We show that, for n ≥ 4, such bases cannot generally be found. In
fact, pairs (PY , QY ) and (PZ , QZ) (mutually orthogonal and of appropriate
ranks) satisfying (5) may not exist. At the same time, we present the simplest
instances of a construction which produces pairs (P,Q) that achieve the supre-
mum in (2) in some cases in which there is a unique hive (with h(0, 0) = 0)
associated with (A,B,C). The construction shows that hA,B,C is indeed equal
to this unique hive h. We illustrate this method for certain matrices of size 4,
and it is this illustration that shows why the method of [2] does not work.

The approach we propose depends on a couple of basic propositions that
allow one to construct projections PX , QX associated with a given lattice
point X starting with projections associated with a nearby lattice point. (See
Propositions 3.1 and 3.2.) This method can be used to prove [5, Conjecture 1]
in many other cases, and this will be the subject of a later publication. The
applications of Propositions 3.1 and 3.2 are made possible by using the inter-
section ring of the Grassmannian in order to construct projections to which the
technical Lemma 2.1 applies. This lemma is our way of constructing new pro-
jections from old ones and we illustrate its application in several simple cases
in Section 3. In Section 4, we consider a special class of tripples (A,B,C) of
4×4 matrices to which the results of Section 3 apply. We conclude this section,
as well as the paper, with one particular triple in this class, points X,Y, Z,W ,
and projections PX , QX , PW , QW such that no projections PY , QY , PZ , QZ (of
appropriate dimensions) satisfying (3) and (5) exist.
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2. A LEMMA ABOUT ORTHOGONAL PROJECTIONS

In the following statement, P⊥ stands for IH − P, that is, the projection
onto the kernel of the orthogonal projection P .

Lemma 2.1. Suppose that H is a Hilbert space and P,L,M are orthogonal
projections on H that satisfy the following conditions:

(1) PLH ⊂ MH, and

(2) P⊥MH ⊂ LH.

Then:

(i) P ′ = P + L−M is also an orthogonal projection.

(ii) We have P ′MH ⊂ LH and P ′⊥LH ⊂ MH.

Proof. Denote by W the orthogonal projection onto the closure of PLH,
and note that W ≤ P and (P −W )L = 0. We can rewrite

P + L−M =
(
(P −W ) + L

)
− (M −W ).

The equality (P −W )L = 0 shows that P −W +L is an orthogonal projection.
Condition (1) imples that M−W is a projection as well. To conclude the proof
of (i), it suffices (and it is also necessary) to prove the inclusion

(M −W )H ⊂ (P −W + L)H.

Indeed, suppose that x ∈ (M −W )H, so that x ∈ MH and x ⊥ WH. Observe
that P⊥x ∈ LH by (2), and

⟨Px, PLy⟩ = ⟨x, PLy⟩ = ⟨x,WPLy⟩ = 0, y ∈ H.

We also have P⊥x ∈ LH by (2), so

x = Px+ P⊥x = (P −W )Px+ L(P⊥x) ∈ (P −W + L)H,

thus proving (i).

To prove the first inclusion in (ii), suppose that x ∈ MH. Then

P ′x = Px+ Lx−Mx = Px+ Lx− x = Lx− P⊥x,

and this vector belongs to LH because P⊥MH ⊂ LH. For the second inclusion
in (ii), we note that

P ′⊥x = P⊥x+Mx− Lx = P⊥x+Mx− x = Mx− Px ∈ MH,

provided that x ∈ LH.
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Conditions (1) and (2) are not necessary for P−L+M to be a projection.
The simplest example is obtained by taking L = M. More interestingly, note
that the identity 2 × 2 matrix 12 can be written in infinitely many ways as
12 = P + L = P ′ + M with rank one projections P,L, P ′,M . In most cases,
neither (1) nor (2) is satisfied.

3. PRINCIPAL CONSTRUCTION DEVICE

We first establish some notation relating to Grassmannians, flags, and
Schubert varieties. Suppose that n, r ∈ N and r ≤ n. We denote by G(r, n) the
collection of all r-dimensional vector subspaces of Cn. Let now E = {Ej}nj=0

be a complete flag in Cn, that is, each Ej is a vector subspace of dimension j
in Cn, and Ej−1 ⊂ Ej for j = 1, . . . , n. Consider also a set I ⊂ {1, . . . , n} with
r elements i1 < · · · < ir. One can then define the Schubert variety S(E , I) to
consist of those spaces M ∈ G(r, n) for which the inequalities dim(M∩Eiℓ) ≥ ℓ
are satisfied for ℓ = 1, . . . , r. (In the notation of [6, I.5],

S(E , I) = Wa1,...,ar ,

where aℓ = (n − r) − (iℓ − ℓ) and Vℓ = Eℓ.) For example, S(E , I) = {Er} if
I = {1, . . . , r}, and S(E , I) = G(r, n) if I = {n − i + 1, i = 1, . . . , r}. Every
space M ∈ S(E , I) has an orthonormal basis {v1, . . . , vr} such that vℓ ∈ Eiℓ

for ℓ = 1, . . . , r.
We are interested in flags that arise from the eigenvectors of selfadjoint

matrices. Thus, suppose that A is such a matrix with eigenvalues α1 ≥ · · · ≥
αn, and {e1, . . . , en} is an orthonormal basis in Cn such that Aej = αjej for
j = 1, . . . , n. Then, we can define a flag E = {Ej}nj=0 by letting Ej be the linear
span of {e1, . . . , ej} for j = 1, . . . , n. Such a flag E is called an eigenflag for A.
A matrix A may have several eigenflags, but Ej , j = 1, . . . , n − 1, is uniquely

determined precisely when αj > αj+1. We also consider the flag Ẽ = (Ẽj)
n
j=0

defined by Ẽj = E⊥
n−j+1. It is convenient to use the notation α̃j = αn−j+1.

Clearly, Ẽj is an eigenflag for −A. Given a subspace M ⊂ Cn, we also use the
letter M to denote the corresponding orthogonal projection. In order to avoid
confusion, we write M ∨N for the vector space generated by M and N , or for
the corresponding projection. Similarly, M ∧N denotes the (projection onto)
the intersection of M and N . The notation M +N is reserved for the sum of
the projections M and N ; this is not a projection unless M ⊥ N . Similarly,
M −N is a projection only when N ⊂ M . Given an arbitrary I ⊂ {1, . . . , n}
and an element M ∈ S(E , I), we have (see, for instance [7]) the inequality

Tr(AM) ≥
∑
i∈I

αi.
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(a) Proof
of (7) for
m = 1

(b) Proof
of (8) for
m = 2

Figure 2 – Here, r = 7, X = (1, 2), Y = (1, 3)

This is easily verified by using a basis {e1, . . . , er} in M such that eℓ ∈ Eiℓ for

ℓ = 1, . . . , r. Similarly, if M ∈ S(Ẽ , I), we have

Tr(AM) ≤
∑
i∈I

α̃n−i+1.

Suppose now that B is another selfadjoint n×n matrix, and C = A+B.
Denote by β1 ≥ · · · ≥ βn (respectively, γ1 ≥ · · · ≥ γn) the eigenvalues of B
(respectively, C), and let F and G be eigenflags for B and C, respectively. Let h
be an arbitrary hive associated with (A,B,C). If X and Y are adjacent lattice
points in ∆n, there are several ways to estimate the difference h(Y ) − h(X)
in terms of the eigenvalues αj , βj , γj . We list below some of the simplest such
inequalities. Suppose that X = (p, q) and Y = (p, q + 1), where p+ q + 1 ≤ n.
Then

(7) h(Y )− h(X) ≤ αp+m+1 + βq−m+1, m = 0, . . . , q.

This inequality is obtained by applying the hive inequalities to the gray paral-
lelograms in Figure 2(A). Similarly, the inequalities

(8) h(Y )− h(X) ≥ αp+m+q+1 + βn−p−m, m = 0, . . . , n− p− q − 1,

are obtained from Figure 2(B). We write similar inequalities for the other two
possible positions of the segment XY . If X = (p, q) and Y = (p + 1, q), we
have

(9) h(Y )− h(X) ≤ γq+m+1 − βn−p+m, m = 0, . . . , p,

and

(10) h(Y )− h(X) ≥ γp+q+m+1 − βq+m+1, m = 0, . . . , n− p− q − 1.

Finally, if X = (p, q) and Y = (p− 1, q + 1), we have

(11) h(Y )− h(X) ≤ γq−m+1 − αp+q−m, m = 0, . . . , q,
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and

(12) h(Y )− h(X) ≥ γp+q−m − αp−m, m = 0, . . . , p.

We show that the inequalities (7)–(12) are also satisfied when h is replaced by
the function hA,B,C of (2). (Of course, there are many more inequalities that
hA,B,C would have to satisfy in order to be proven a hive!) The argument is
based on the following result, for whose formulation it is to convenient to use,
in addition to a pair (P,Q) of mutually orthogonal projections, the complement
R = (P +Q)⊥. We use ran(S) to denote the range of an operator S. We also
use the notation

Ĩ = {n+ 1− i : i ∈ I}
when I ⊂ {1, . . . , n}.

Proposition 3.1. Let A,B,C be selfadjoint n × n matrices with eigen-
values (αj)

n
j=1, (βj)

n
j=1, (γj)

n
j=1 and eigenflags E ,F ,G, respectively. Let P,Q,

and R be mutually orthogonal projections such that P + Q + R = 1n, and let
I, J,K be subsets of {1, . . . , n}. Suppose that there exist projections L,M,N
with the following properties:

(1) L ∈ S(E , I), M ∈ S(F , J), N ∈ S(G̃, K̃).

(2) ran(PL) ⊂ ran(M) and ran(P⊥M) ⊂ ran(L).

(3) ran(QM) ⊂ ran(N) and ran(Q⊥N) ⊂ ran(M).

(4) ran(RN) ⊂ ran(L) and ran(R⊥L) ⊂ ran(N).

Then the operators

P ′ = P + L−M, Q′ = Q+M −N, R′ = R+N − L

are mutually orthogonal projections, P ′ +Q′ +R′ = 1n, and

t(P ′, Q′) ≥ t(P,Q) +
∑
i∈I

αi +
∑
j∈J

βj −
∑
k∈K

γk.

Proof. Conditions (2)–(4), and the Lemma 2.1, show that P ′, Q′, and R′

are indeed projections. The identity P ′+Q′+R′ = 1n is trivially verified, and
it also implies that these three projections are mutually orthogonal. Finally,
we estimate

t(P ′, Q′) = Tr
(
A(P + L−M) + (A+B)(Q+M −N)

)
= Tr

(
AP + (A+B)Q

)
+Tr(AL) + Tr(BM)− Tr

(
(A+B)N

)
.

The last three traces are evaluated using the observations preceding the propo-
sition:

Tr(AL) ≥
∑
i∈I

αi, Tr(BM) ≥
∑
j∈J

βj , Tr(CN) ≤
∑
k∈K

γk,
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and these inequalities, together with the calculation above, yield the result.

The following result is obtained by applying Proposition 3.1 to matrices
(−A,−B,−C) in place of (A,B,C). We record it here for later use.

Proposition 3.2. Let A,B,C be selfadjoint n × n matrices with eigen-
values (αj)

n
j=1, (βj)

n
j=1, (γj)

n
j=1 and eigenflags E ,F ,G, respectively. Let P,Q,

and R be mutually orthogonal projections such that P + Q + R = 1n, and let
I, J,K be subsets of {1, . . . , n}. Suppose that there exist projections L,M,N
with the following properties:

(1) L ∈ S(Ẽ , Ĩ), M ∈ S(F̃ , J̃), N ∈ S(G,K).

(2) ran(P⊥L) ⊂ ran(M) and ran(PM) ⊂ ran(L).

(3) ran(Q⊥M) ⊂ ran(N) and ran(QN) ⊂ ran(M).

(4) ran(R⊥N) ⊂ ran(L) and ran(RL) ⊂ ran(N).

Then the operators

P ′ = P − L+M, Q′ = Q−M +N, R′ = R−N + L

are mutually orthogonal projections, P ′ +Q′ +R′ = 1n, and

t(P ′, Q′) ≥ t(P,Q)−
∑
i∈I

αi −
∑
j∈J

βj +
∑
k∈K

γk.

Remark 3.3. Some of the hypotheses of Proposition 3.2 are redundant.
For instance, the second inclusion in condition (2) follows from the first inclu-
sions in (3) and (4):

ran(PM) = ran(R⊥Q⊥M) ⊂ ran(R⊥N) ⊂ ran(L).

Similarly, the first halves of conditions (2)–(4) in Proposition 3.1 are redundant.
However, we find that the search for the projections L,M,N is often facilitated
by writing out a redundant set of conditions.

As a first illustration of the way these two propositions above are applied,
we prove the analog of (7) with hA,B,C in place of h.

Example 3.4. Suppose that X = (p, q) and Y = (p, q + 1) are in ∆n, let
P,Q be arbitrary mutually orthogonal projections of ranks p, q+1, respectively,
and set R = (P + Q)⊥. We may assume that t(P,Q) = hA,B,C(Y ). Now, fix
m ∈ {0, . . . , q}. Proposition 3.2 shows that the inequality

hA,B,C(X) ≥ hA,B,C(Y )− αp+m+1 − βq−m+1
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can be proved if we can find projections L,M,N (of ranks 1, 1, 0, respectively)
satisfying the hypotheses for I = {p+m+ 1}, J = {q −m+ 1}, and K = ∅.
Indeed, the projections P ′, Q′ have then ranks p, q, respectively, and

t(P ′, Q′) ≥ hA,B,C(Y )− αp+m+1 − βq−m+1.

We organize the requirements on L,M,N in Table 1. The second column
indicates vectors that should belong to each space according to condition (1),
and the third column indicates subspaces that must be included to satisfy
conditions (2)–(4) of the proposition and their consequences.

L ẽn−p−m R⊥N ⊃ PM

M f̃n−q+m P⊥L ⊃ QN

N 0 Q⊥M ⊃ RL

Table 1 – Requirements for Example 3.4

For instance, L must have dimension 1 and be generated by a nonzero
vector in Ẽn−p−m, and it must contain the range of R⊥N (which is {0}),
and Q⊥f̃n−q+m must belong to N , so Q⊥f̃n−q+m = 0, that is, f̃n−q+m is in

the range of Q. Also, P⊥ẽn−p−m must belong to M ⊂ F̃n−q−m. We show that

appropriate vectors f̃n−q+m and ẽn−p−m can be chosen. Note first that f̃n−q+m

must be chosen from the space

S1 = F̃n−q+m ∧Q

that has dimension at least m + 1. For the choice of ẽn−p−m, we distinguish

two cases. If Ẽn−p−m ∧ P ̸= 0, then we choose ẽn−p−m to be an arbitrary

nonzero vector in this intersection, and we choose f̃n−q+m to be an arbitrary

nonzero vector from S1. If Ẽn−p−m ∧ P = 0 (which is the generic case), the

space S2 = Ẽn−p−m∨P has dimension (n−p−m)+p = n−m, and therefore,
S1 ∧ S2 ̸= 0. In this case, we choose a nonzero vector fn−q+m ∈ S1 ∧ S2, and

we write f̃n−q+m = ẽn−p−m + x, with ẽn−p−m ∈ Ẽn−p−m. and x ∈ P . In both
cases, one verifies with no difficulty that the spaces L generated by ẽn−p−m, M
generated by fn−q+m, and N = 0 satisfy the requirements of Proposition 3.2.

Example 3.5. We prove next the inequality

hA,B,C(Y ) ≥ hA,B,C(X) + αp+q+m+1 + βn−p−m,

analogous to (8), when X = (p, q), Y = (p, q+1), and m ∈ {0, . . . , n−p−q−1}.
This time, we choose P,Q of ranks p, q such that t(P,Q) = h(X), and we
look for spaces L,M,N satisfying the hypotheses of Proposition 3.1 for sets
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I = {p + m + q + 1}, J = {n − p − m}, and K = ∅. These hypotheses are
summarized in Table 2.

L ep+q+m+1 P⊥M ⊃ RN

M fn−p−m Q⊥N ⊃ PL

N 0 R⊥L ⊃ QM

Table 2 – Requirements for Example 3.5

Since R has codimension p + q, the space S1 = Ep+q+m+1 ∩ R has di-
mension at least m + 1. As in the preceding example, we distinguish two
cases. If P ∩ Fn−p−m ̸= 0, we choose a nonzero vector fn−p−m in that space
and choose an arbitrary ep+q+m+1 ∈ S1\{0}. In the contrary case, the space
S2 = P ∨ Fn−p−m has dimension n−m and hence, S1 ∧ S2 contains a nonzero
vector ep+q+m+1 = x+fn−p−m, where x ∈ P . One then verifies that the spaces
L = Cep+q+m+1,M = Cfn−p−m, N = 0 satisfy all the requirements.

Remark 3.6. It is possible that αp+q+m+1+βn−p−m = αp+m+1+βq−m+1.
This happens when αp+m+1=αp+m+2 · · ·=αp+q+m+1 and βq−m+1=βq−m+2=
· · · = βn−p−m. In this case, the exact value of h(Y ) − h(X) is known for
every hive h associated with (A,B,C), and the two examples above show that
hA,B,C(Y )−hA,B,C(X) is also equal to this value. In particular, if the equality
hA,B,C(X) = h(X) holds, it follows that hA,B,C(Y ) = h(Y ) as well.

Example 3.7. We continue with the analog of (9):

hA,B,C(X) ≥ hA,B,C(Y ) + βn−p+m − γq+m+1,

where X = (p, q), Y = (p+1, q), and m ∈ {0, . . . , p}. We start with projections
P,Q of ranks p+1, q and apply Proposition 3.1 with I = ∅, J = {n− p+m},
and K = {q +m + 1}. The relevant requirements on the spaces L,M,N are
summarized in Table 3.

L 0 P⊥M ⊃ RN

M fn−p+m Q⊥N ⊃ PL

N g̃n−q−m R⊥L ⊃ QM

Table 3 – Requirements for Example 3.7

The space S1 = Fn−p+m ∧ P has dimension at least m + 1. Further,

if Q ∧ G̃n−q−m ̸= 0, we choose an arbitrary nonzero vector gn−q+m in that
intersection and an arbitrary fn−p+m ∈ S1\{0}. Otherwise, the space S2 =
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Q⊥G̃n−q−m has dimension n − q − m. Since both S1 and S2 are subspaces
of Q⊥ (which has dimension n − q), we have S1 ∧ S2 ̸= 0. Then, we choose
fn−p+m = x + g̃n−q−m ̸= 0 in this intersection. In both cases, the spaces
L,M,N determined by these vectors satisfy the conditions summarized in the
table.

Example 3.8. The analog of (10) is:

hA,B,C(Y ) ≥ hA,B,C(X) + γp+q+m+1 − βq+m+1,

where X = (p, q), Y = (p + 1, q), and m ∈ {0, . . . , n − p − q − 1}. Thus, we
start with projections P,Q of ranks p, q, and look for spaces L,M,N satisfying
the conditions summarized in Table 4.

L 0 R⊥N ⊃ PM

M f̃n−q−m P⊥L ⊃ QN

N gp+q+m+1 Q⊥M ⊃ RL

Table 4 – Requirements for Example 3.8

To find the relevant vectors, we note that the condition R⊥N ⊂ L = 0
implies that gp+q+m+1 belongs to the space S = Gp+q+m+1 ∧ R of dimension

at least m+ 1. Then, we note that (Q ∨ S) ∧ F̃n−q−m has dimension at least

(q +m+ 1) + (n− q −m)− n = 1,

so we can choose a nonzero vector

x+ gp+q+1 = f̃n−q−m

in this space, with x ∈ Q. One can then construct the spaces L,M,N . In case
Q ∧ F̃n−q−m ̸= 0, the vector gp+q+1 ∈ S can be chosen arbitrarily.

Example 3.9. The analog of (11) is:

hA,B,C(X) ≥ hA,B,C(Y )− γq−m+1 + αp+q−m,

where X = (p, q), Y = (p+ 1, q − 1), and m ∈ {0, . . . , q}. Thus, we start with
projections P,Q of ranks p − 1, q + 1, and look for spaces L,M,N subject to
the conditions summarized in Table 5.

L ep+q−m P⊥M ⊃ RN

M 0 Q⊥N ⊃ PL

N g̃n−q+m R⊥L ⊃ QM

Table 5 – Requirements for Example 3.9
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We have Q⊥N = 0, so N is contained in the space S = Q ∩ G̃n−q+m of
dimension at least m+ 1. Then (R ∨ S) ∧ Ep+q−m has rank at least

(n− p− q) + (m+ 1) + (p+ q −m) = 1.

Choose ep+q−m = x + g̃n−q+m, x ∈ R, in this space and construct the spaces
L,M,N from these vectors. In the nongeneric case, Ep+q−m∧R ̸= 0, and then
g̃n−q+m can be chosen arbitrarily in S.

Example 3.10. Finally, the analog of (12) is:

hA,B,C(Y ) ≥ hA,B,C(X)− αp−m + γp+q−m,

where X = (p, q),Y = (p + 1, q − 1), and m ∈ 0, . . . , p. We start with projec-
tions P,Q of ranks p, q, and look for spaces L,M,N subject to the conditions
summarized in Table 6.

L ẽn−p+m+1 R⊥N ⊃ PM

M 0 P⊥L ⊃ QN

N gp+q−m Q⊥M ⊃ RL

Table 6 – Requirements for Example 3.10

The vector ẽn−p+m+1 must be chosen from the space S = Ẽn−p+m+1∧P of
dimension≥ m+1. We note, as in the preceding example, that (R∨S)∧Gp+q−m

has rank at least 1, so we can choose gp+q−m = x + ẽn−p+m+1, x ∈ R, in this

space. There is again a nongeneric case in which Ẽn−p+m+1 intersects R in a
nonzero space. The remaining details are easily verified.

The attentive reader noticed that the six examples above are rather sim-
ilar, though the reasoning behind solving for the spaces L,M,N may be some-
what different in each case. The arguments show that, generically, these spaces
are uniquely determined.

4. SOME RIGID HIVES OF SIZE 4

We undertake now a detailed study of certain triples (A,B,C = A+ B)
of selfadjoint 4×4 matrices. Namely, we assume that the eigenvalues of A and
B satisfy the equalities α1 = α2, α3 = α4, and β1 = β2. By adding appropriate
multiples of the identity matrix to A,B, and C, we can and do assume that
A and B are nonnegative and noninvertible, that is, α4 = β4 = 0. For each
triple (A,B,C) of this type, there is a unique associated hive h, normalized by
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Figure 3 – The 2, 2|2, 1, 1|1, 1, 1, 1 locking pattern and its dual honeycomb

Figure 4 – Flat regions for the extreme hives

h(0, 0) = 0, which is one reason for choosing these particular restrictions on
the eigenvalues of A and B. This set of conditions is called a locking pattern
in [4]. We illustrate in Figure 3 the “flat” pieces associated with this locking
pattern, that is, areas in which any hive respecting this pattern must be an
affine function. We also draw (with dotted lines) the dual honeycomb which is
extreme (derived from a tree).

The extremal structure of the set Γ of hives (such that h(0, 0) = 0)
associated with these triples (A,B,C) can be explained using the results of [3].
Namely, Γ has six extreme rays, and every element of Γ can be represented
uniquely as a sum of extreme hives, one from each extreme ray. The extreme
hives arise from the six restrictive flatness patterns represented in Figure 4.

Rather than list the values of these six kinds of extreme hives, we list in
Table 7 the eigenvalues of the triples (A,B,C) that produce such hives. In this
table, a, b, c, d, e, f represent nonnegative real numbers.
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α β γ

a, a, 0, 0 0, 0, 0, 0 a, a, 0, 0

0, 0, 0, 0 b, b, 0, 0 b, b, 0, 0

c, c, 0, 0 c, c, 0, 0 c, c, c, c

0, 0, 0, 0 d, d, d, 0 d, d, d, 0

e.e, 0, 0 e, e, e, 0 2e, e, e, e

f, f, 0, 0 f, f, 0, 0 2f, f, f, 0

Table 7 – Eigenvalues for the extreme hives

Thus, the eigenvalues of a general triple (A,B,C) that satisfies the above
requirements are described below.

α1 = α2 = a+ c+ e+ f

α3 = α4 = 0

β1 = β2 = b+ c+ d+ e+ f

β3 = d+ e

β4 = 0(13)

γ1 = a+ b+ c+ d+ 2e+ 2f

γ2 = a+ b+ c+ d+ e+ f

γ3 = c+ d+ e+ f

γ4 = c+ e

Conversely, the constants a, b, c, d, e, f can be calculated from the eigenvalues
of A,B, and C as follows:

a = γ2 − β1

b = β1 − γ3

c = α1 + β1 − γ1(14)

d = α1 + β1 + β3 − γ1 − γ4

e = α1 + β1 + β3 − γ2 − γ3

f = γ1 + γ3 − α1 − β1 − β3.

It can be seen from Figure 3 that A and B have no common reducing spaces
(equivalently, (A,B,C) is irreducible) precisely when all constants a, b, c, d, e, f
are different from zero. (This can also be deduced from the main result of [1]
because the corresponding hive has six attachment points.) We summarize
some useful properties of these irreducible triples.
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Lemma 4.1. Suppose that (A,B,C) is an irreducible triple of 4× 4 self-
adjoint matrices such that C = A + B, α1 = α2, α3 = α4 = 0, β1 = β2, and
β3 = 0. Then:

(1) α2 > α3,

(2) β2 > β3 > β4,

(3) γ1 > γ2 > γ3 > γ4 > 0,

(4) E2 ∧ F2 = E⊥
2 ∧ F2 = 0,

(5) G⊥
1 ∧ E2, G

⊥
1 ∧ E⊥

2 , G
⊥
1 ∧ F2, and G⊥

1 ∧ F⊥
2 have rank one, and

(6) (E2 ∨G1)(G
⊥
1 ∧ F2) ̸= 0.

Proof. The inequalities (1), (2), and (3) are seen immediately by inspect-
ing (13).

If E2 and F2 have a common nonzero vector x, then x is a common
eigenvector for A and B and hence, it generates a reducing space. The second
equality in (4) follows for the same reason.

Since G⊥
1 has rank three and E2 has rank two, G⊥

1 ∧ E2 has rank one
or two. The second possibility amounts to G1 ≤ E⊥

2 , in which case G1 is
an eigenspace for both A and C, hence a reducing subspace. The projection
G⊥

1 ∧ E⊥
2 has rank one for the same reason. Suppose now that G1 ≤ F⊥

2 and
let g1 be a unit vector in G1. Then

γ1 = ⟨Cg1, g1⟩ = ⟨Ag1, g1⟩+ ⟨Bg1, g1⟩ ≤ α1 + β3,

or, equivalently according to (13),

a+ b+ c+ d+ 2e+ 2f ≤ (a+ c+ e+ f) + (d+ e),

which is not true because, for instance, b > 0. To conclude the proof of (5),
suppose that G1 ⊂ F2. Then G1 is an eigenspace for B and C, hence a reducing
space.

To prove (6), suppose now (E2 ∨G1)(G
⊥
1 ∧F2) = 0 and x is a unit vector

in the range of G⊥
1 ∧ F2. Then E2x = 0, so x is in both E⊥

2 and F2, contrary
to the already proved assertion (4).

We show that [5, Conjecture 1] is correct for the triples under considera-
tion. We also determine, for every point X = (p, q) ∈ ∆4, pairwise orthogonal
projections PX , QX of ranks p, q such that t(PX , QX) = hA,B,C(X). Most
of these pairs of projections are uniquely determined in the irreducible case.
We list the values of h and the corresponding projections in Table 8. The
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X h(X) PX QX

(0, 0) 0 0 0
(1, 0) α1 ∗ E 0
(2, 0) α1 + α2 = 2α1 E2 0
(3, 0) 2α1 + α3 ∗ E3 0
(4, 0) 2α1 + 2α3 = Tr(A) E4 0
(3, 1) Tr(A) + β1 ∗ F⊥ ∗ F
(2, 2) Tr(A) + 2β1 F⊥

2 F2

(1, 3) Tr(A) + 2β1 + β3 F⊥
3 F3

(0, 4) Tr(A) + Tr(B) = Tr(C) 0 G4

(0, 3) γ1 + γ2 + γ3 0 G3

(0, 2) γ1 + γ2 0 G2

(0, 1) γ1 0 G1

(1, 1) α1 + γ1 E2 ∧G⊥
1 G1

(2, 1) 2α1 + α3 + β1 ∗ (E2 ∨ F )− F ∗ F

(1, 2) α1 + α3 + β1 + γ1

(E2 ∧G⊥
1 )

+[(E⊥
2 ∨G1)(F2 ∧G⊥

1 )]
−(F2 ∧G⊥

1 )
G1 + (F2 ∧G⊥

1 )

Table 8 – Values of the unique hive

nonunique entries are marked with an asterisk. In this table, E (respectively,
F ) denotes an arbitrary projection of rank one such that E ≤ E2 (respec-
tively, F ≤ F2), E3 denotes any projection of rank three such that E2 ≤ E3,
and [(E⊥

2 ∨ G1)(F2 ∧ G⊥
1 )] denotes the rank one projection onto the range of

(E⊥
2 ∨G1)(F2 ∧G⊥

1 ).

Proposition 4.2. Suppose that (A,B,C) is an irreducible triple of 4×4
selfadjoint matrices such that A + B = C, α1 = α2, α3 = α4 = 0, β1 = β2,
and β4 = 0, and let h be the unique associated hive. Then hA,B,C(X) = h(X)
for every lattice point X in ∆4. Moreover, all the pairs (P,Q) of mutually
orthogonal projections satisfying X = (rank(P ), rank(Q)) and hA,B,C(X) =
t(P,Q) are described in Table 8.

Proof. The values of the hive are deduced immediately from the various
inequalities required for every two adjacent small triangles. The fact that
hA,B,C equals this hive h at each boundary lattice point is immediate; in fact,
this is true for every triple (A,B,C = A + B) in every dimension. Similarly,
the spaces P,Q associated to each boundary point are derived immediately
from arbitrary eigenflags for A,B, and C. All of these spaces are uniquely
determined except for E,E3, and F . We proceed with the three remaining
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lattice points, starting with (1, 1).
Suppose that P and Q are arbitrary mutually orthogonal projections of

rank one. Then Tr(AP ) ≤ α1 and Tr((A+B)Q) = Tr(CQ) ≤ γ1. Adding these
two inequalities, we obtain t(P,Q) ≤ α1+γ1 and so, hA,B,C((1, 1)) ≤ h((1, 1)).
On the other hand, E2∧G⊥

1 has rank at least one. Choose a rank one projection
P ≤ E2 ∧ G⊥

1 and set Q = G1. Then P and Q are mutually orthogonal and
t(P,Q) = α1 + γ1. This proves that hA,B,C((1, 1)) = h((1, 1)) and provides
explicit spaces that realize the supremum in the definition of hA,B,C(1, 1). To
show that these are the only spaces with this property, consider arbitrary P
and Q such that t(P,Q) = α1 + γ1. Since Tr(AP ) ≤ α1 and Tr(CQ) ≤ γ1,
we must have equality in both cases. The uniqueness of E2 and G1 implies
P ≤ E2 and Q = G1. Moreover, since P ⊥ Q, we have P ≤ E2 ∧G⊥

1 . Thus, P
is uniquely determined because E2 ∧G⊥

1 has rank one by Lemma 4.1(5).
Next, consider (2, 1). Suppose that P and Q are arbitrary mutually or-

thogonal projections of ranks 2 and 1. We have

t(P,Q) = Tr
(
A(P +Q)

)
+Tr(BQ) ≤ 2α1 + α3 + β1

because α1, α1, α3 are the top three eigenvalues of A and β1 is the top eigenvalue
of B. Thus, hA,B,C((2, 1)) ≤ h((2, 1)). On the other hand, suppose that F is
an arbitrary rank one projection such that F ≤ F2. Lemma 4.1(4) shows that
E2∨F has rank three, and thus, P = (E2∨F )−F has rank two. If we setQ = F ,
we see immediately that t(P,Q) = h(P,Q). Conversely, suppose that P and Q
satisfy the equality t(P,Q) = h(P,Q). Then, we have Tr(A(P+Q)) = 2α1+α3

and Tr(BQ) = β1. It follows that E2 ≤ P + Q and Q is generated by a unit
vector f ∈ F2. Thus, P +Q = E2∨Q, so P = (E2∨Q)−Q, and this completes
the description of all maximizing pairs (P,Q).

Finally, consider (1, 2). Inequalities (7) and (8), with m = 1 in both
cases, show that

α4 + β2 ≤ h
(
(1, 2)

)
− h

(
(1, 1)

)
≤ α3 + β1.

Under the current assumptions, both inequalities are equalities, and Remark 3.6
shows that we also have

hA,B,C

(
(1, 2)

)
− hA,B,C

(
(1, 1)

)
= α3 + β1.

Since hA,B,C((1, 1)) = h((1, 1)), it follows that hA,B,C((1, 2)) = h((1, 2)) as
well.

Suppose now that P and Q are mutually orthogonal projections of ranks
one and two such that t(P,Q) = hA,B,C((1, 2)); that such projections exist was
seen in Examples 3.4 and 3.5. From 3.4, there exist spaces L,M,N satisfying
the conditions in that example, such that the projections P ′ = P − L + M ,
Q′ = Q−M satisfy t(P ′, Q′) ≥ hA,B,C((1, 1)). As shown earlier in this proof,
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such projections P ′, Q′ are uniquely determined, namely, P ′ = E2 ∧ G⊥
1 and

Q′ = G1. Therefore, we have

P = P ′ + L−M, Q = G1 +M,

= (E2 ∧G⊥
1 ) + L−M,

Q = Q′ +M = G1 +M,

and Lemma 2.1(ii) shows that P ′L ⊂ M and P ′⊥M ⊂ L. The space M must
contain a vector from F2 and be orthogonal to G1, so M ≤ F2∧G⊥

1 . Therefore,
M = F2 ∧ G⊥

1 by Lemma 4.1(5). Since P ′⊥ = E⊥
2 ∨ G1, part (6) of the same

lemma shows that If P ′⊥M ̸= 0, and thus, L is the projection onto the range
of P ′⊥M . This concludes the proof of the proposition.

Remark 4.3. In the algebraic operation defining P(1,2), no two terms can-
cel each other. In particular, the space P(1,1) is not contained in P(1,2), but
P(1,2) is not orthogonal to P(1,1). This indicates that the space P(1,2) is not
usually generated by a vector from P(1,1) or P(2,2).

Corollary 4.4. Under the hypotheses of Proposition 4.2, set X = (1, 1),
Y = (2, 1), Z = (1, 2), W = (2, 2), PX = G⊥

1 ∧ E2, QX = G1, PW = F⊥
2 ,

QW = F2, and F1 = F2 − G⊥
1 ∧ F2. Let (PY , QY ) and (PZ , QZ) be pairs

of mutually orthogonal projections such that sets Y = (rank(PY ), rank(QY )),
Z = (rank(PZ), rank(QZ)), and

(15) t(PY , QY ) + t(PZ , QZ) ≥ t(PX , QX) + t(PW , QW ).

Then t(PY , QY ) = h(Y ), t(PZ , QZ) = h(Z), and therefore there exists a pro-
jection F ≤ F2 of rank one such that

PY = E2 ∧ F − F, QY = F,

PZ = (G⊥
1 ∧ E2) +

[
(G1 ∨ E⊥

2 )(G
⊥
1 ∧ F2)

]
− (G⊥

1 ∧ F2), and

QZ = G1 + (G⊥
1 ∧ F2).

1. The equality

(16) QY +QZ = QX +QW .

holds precisely when F = F1 is the projection onto the range of F2G1.

2. If (16) holds, then

(17) PY + PZ = PX + PW .

if and only if

(18)
[
(G1 ∨ E⊥

2 )(G
⊥
1 ∧ F2)

]
= E⊥

2 ∧ F⊥
1 .

When this last equality holds, we have (G⊥
1 ∧E2)∨ (G⊥

1 ∧F2) ≥ E⊥
2 ∧F⊥

1 .
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Proof. Suppose that (15) is satisfied. Since we have t(PY , QY ) ≤ h(Y ),
t(PZ , QZ) ≤ h(Z), t(PX , QX) = h(X), t(PW , QW ) = h(W ), and h(Y )+h(Z) =
h(X) + h(W ), we conclude that t(PY , QY ) = h(Y ) and t(PZ , QZ) = h(Z).
The formulas for PX , QX , PY , and QY follow from Proposition 4.2. To verify
assertion 1, we rewrite (16):

(G1 +G⊥
1 ∧ F2) + F = G1 + F2

and thereby deduce that F = F1. Suppose now that condition (16) is satisfied,
so F = F1. Then (17) is equivalent to

(PY +QY ) + (PZ +QZ) = (PX +QX) + (PW +QW ).

Thus,

(E2 ∨ F1) +
(
(G⊥

1 ∧ E2) +
[
(G1 ∨ E⊥

2 )(G
⊥
1 ∧ F2)

]
+G1

)
= (G⊥

1 ∧ E2 +G1) + 14,

and, after cancellations, we obtain

E2 ∨ F1 +
[
(G1 ∨ E⊥

2 )(G
⊥
1 ∧ F2)

]
= 14.

This is equivalent to assertion (18) because

14 − E2 ∨ F1 = (E2 ∨ F1)
⊥ = E⊥

2 ∧ F⊥
1 .

To verify the last assertion, let ξ be a nonzero vector in G⊥
1 ∧ F2. We have

ξ − (G⊥
1 ∧ E2)ξ ̸= 0 for otherwise ξ would be a common nonzero vector of E2

and F2. If (18) holds, this vector generates E
⊥
2 ∧ F⊥

1 .

It is easy to see that condition (18) does not hold for generic flags E ,F ,
and G. The eigenflags of A,B, and C are perhaps not generic, but it is fairly
easy to find examples for which (18) does not hold. We present one such
example next.

Example 4.5. The matrices

A =


1 1 1 1
1 3 −1 1
1 −1 3 1
1 1 1 1

 , B =


2 0 0 0
0 2 0 0
0 0 1 0
0 0 0 0

 , C =


3 1 1 1
1 5 −1 1
1 −1 4 1
1 1 1 1


satisfy C = A+B, A has eigenvalues 4, 4, 0, 0, and C has eigenvalues

γ1 = 5.818114 . . .

γ2 = 5.081282 . . .

γ3 = 1.799919 . . .

γ4 = 0.300684 . . .
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The formulas (14) show that the constants a, b, c, d, e, f are nonzero, so the
triple (A,B,C) is irreducible. To see whether (18) is verified in this case, we
observe that the ranges of E2, F2, and G1 are generated by


1
1
1
1

 ,


0
1
−1
0


 ,




1
0
0
0

 ,


0
1
0
0


 , and


ξ1 = 1.523818 . . .
ξ2 = 4.23607 . . .
ξ3 = −0.94177 . . .
ξ4 = 1

 ,

respectively. The numerical calculations were done with the help of Mathemat-
ica, and exact values can be obtained as well, for instance

γ1 =
1

4

(
13 +

√
5 +

√
6(13−

√
5)
)
,

ξ1 =
γ1

γ1 − 2
,

with similar formulas for ξ2 and ξ3. It is easy to verify that F1, G⊥
1 ∧ F2,

G⊥
1 ∧ E2, and E⊥

2 ∧ F⊥
1 are generated by the vectors

ξ1
ξ2
0
0

 ,


−ξ2
ξ1
0
0

 ,


ξ2 − ξ3

−ξ1 − 2ξ3 − ξ4
ξ1 + 2ξ2 + ξ4

ξ2 − ξ3

 , and


−ξ2
ξ1
ξ1

ξ2 − 2ξ1

 ,

respectively. By Corollary 4.4(2), the equation (18) would require that the last
three of these vectors be linearly dependent, and this is not true. For instance,
the determinant∣∣∣∣∣∣

−ξ2 ξ2 − ξ3 −ξ2
ξ1 −ξ1 − 2ξ3 − ξ4 ξ1
0 ξ1 + 2ξ2 + ξ4 ξ1

∣∣∣∣∣∣ = ξ1[ξ2(2ξ3 + ξ4) + ξ1ξ3]

is easily seen to be strictly negative.
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