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We continue the study of the perturbation problem discussed in H. D. Cornean
and R. Purice (2023) and get rid of the “slow variation” assumption by consider-
ing symbols of the form a(z+0 F(z),£) with a a real Hérmander symbol of class
SS,O(R‘I x R?) and F a smooth function with all its derivatives globally bounded,
with |6] < 1. We prove that while the Hausdorff distance between the spectra
of the Weyl quantization of the above symbols in a neighbourhood of § = 0 is
still of the order /8], the distance between their spectral edges behaves like |5|*
with v € [1/2,1) depending on the rate of decay of the second derivatives of F’
at infinity.
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1. INTRODUCTION

In [2], we investigated how the spectrum of a class of YDO changes (seen
as a subset of the real line) with respect to a family of slowly varying dilation-
type perturbations. More precisely, we worked with symbols of the form a(x +
F(0x),€) with a a real Hormander symbol of class S§ (R x RY) and F a
smooth function with all its derivatives globally bounded, and with 0 < || < 1.
The motivation came from a related problem discussed in [3] in which F' was
an affine function. In this note, we present some results that may be obtained
when one eliminates the “slow variation” hypothesis and the perturbed symbols
are of the form a(z 4§ F(x),&) instead of a(x + F(0 z),£). We note that when
F is affine as in [3], the two problems are essentially the same.

We use the multi-index conventions of [4]. Let:

(1.1) Unm(@) = max max  sup |8§‘8§a\, V(n,m) e NxN
7 la|<n|BI<m (4 ¢)eRr2d
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and 5’8’0 (R% x R?) [M] the set of smooth functions satisfying
(1.2) Upm(a) < oo, VY(n,m)eNxN.

We consider some real Hormander symbol a(z, &) of class .5’8’0 (R? x RY).

We denote by (-, ) 2(ray the scalar product in L?*(R?%) (considered antilin-
ear in the first variable), with the quadratic norm denoted simply by || - || and
we use the notation (-, '>V(V) : (V) x #(V) — C for the canonical bilinear
duality map for tempered distributions on the real finite dimensional Euclidean
space V.

Following Hérmander [4], we define the Weyl quantization of the symbol
a € 5870(]Rd x R9) as the operator:

(13) (©@p"(@))(e) = 0~ [ dy [ dne < a((e+)/20) o)
Vo e S (RY), Vo e R

Due to the Calderon—Vaillancourt Theorem (see [I] and [6], §XIII.1) this op-
erator is bounded in L%(R%) with the following bound on the operator norm:

(14) ngw(a)@HB(L2(Rd)) S CV3d+4,3d+4(a)-

We use the same notation for its extension to the entire Hilbert space. Let
Rla] € " (R? x R?) be the distribution kernel of Op“(a) (see [5]); it may be
computed by the following formula:

(1.5) Rla] == 2m)" (1@ F)a) o ¥

where T : R x R? 5 (2,9) — ((x 4+ 19)/2,z — y) € R? x R? is a bijection with
Jacobian -1 and:

(1.6)  (F¢)(v) = (2m) /2 / dg <4V p(¢), Vo € S(RY), Yo e RY
R4

is the inverse Fourier transform. We also define the distribution £[a] := &[a] o

T-! € .7(R? x RY). With a slight abuse, we can write the following explicit

formula:

(1.7)  Rlal(z+v/2,z—v/2) = Zé[a] (z,v) := (27r)*d /d dn '<"mv> a(z,m).
R
PROPOSITION 1.1 ([]). The tempered distribution R[a] € ' (R% x RY) is
in fact a smooth (with respect to the weak topology) distribution valued function
R? 5 z — Rld(z,-) € S (RY) such that for any z € R? the distribution
Rla)(z,) € ' (RY) has singular support contained in {v = 0} (possibly void)
and rapid decay together with all its derivatives, in the complement of v = 0.



3 Spectral regularity 447

L2(R%)-boundedness criterion. Given a distribution kernel &[a] as
in the above Proposition and using the operator-norm estimation in the
Calderon—Vaillancourt Theorem for its associated Hormander symbol a =
(1® F)R[a] € S§5(R? x RY), our main criterion for L?(R?)-boundedness of
the associated operator in L?(R%) is the boundedness of at least one of the
seminorms:

(1.8) Vo (1@ F)R), min(n,m) > 3d + 4.

Notation 1.2. We use the following notations:
o <v>:i=./1+v[2 for any v € R? and s5,(v) :=< v >P for any p € R.

e 7, for the translation with —z € R? on any space of functions or distri-
butions on RY.

o CP(R%R?) defined as the space of smooth Ré-valued functions with
bounded derivatives of all strictly positive orders.

The Problem. Let F € C(R%R?) and § € R with |§| < 1. To any
real-valued symbol a € 5’870 (R x R?%), we associate the perturbed symbols:

a[Fb(x?f) = a(:v—l—dF(ac),f)

We are interested in the variation of the spectrum o(Op“(a[F]s)) C R, as a
set, when § goes to 0.

Remark 1.3. We have the inequalities:
Unm(a[Fls) < Cp(0, F)vpm(a), V(n,m)eNxN,

with Cp,(d, F') depending on the sup-norm of the derivatives of F' up to order
n — 1, uniformly in § € (0, 1].

We use the short-hand notations (for 0| < 1):

(1.9)  Kj:=Op®(a[F);) € B(LA(R?)), R := K[a[F]5] € " (R? x RY);
(1.10)  &E4(6) := sup o(Kjy).

The Hausdorff distance. dy (A, B) :=max{sup dist(¢, B), sup dist(¢, A) }

tcA teB
for A, B subsets of C.
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2. THE MAIN RESULTS

THEOREM 2.1. There exists C(a,F) > 0 such that for 0] < 1, we have

the estimation:
dH(a(K(;), O'(Ko)) < Cla, F)\/14].

Remark 2.2. Examples from the literature show that this estimation is
“sharp”, i.e., spectral gaps of order \/|6| may be created by these type of
perturbations.

From Theorem 1.5 in [2] and some other similar results from the literature,
one may expect a more regular behaviour of the spectral edges seen as functions
of §. By spectral edges we understand quantities like sup o(Kjy), inf o(Kjy), or
the extremities of the possible inner gaps in the spectrum. In this situation,
we obtain the following result depending on the decay at infinity of the second
order derivatives of the “perturbing function” F € C°(R%;RY).

THEOREM 2.3. Suppose that (0,0, F)(z)] < C < >0+ for some
C >0, >0 and for any pair of indices (j, k). Then there exists C(a,F) >0
and do > 0 such that for |6| < o, we have the estimation:

|£4(8) — E4(0)| < C(a, F)|5|+m/ ),

3. PROOF OF THEOREM

The main idea of the proof is to construct a “quasi-resolvent” (see )
and use the unitarity of z-translations and localization around a lattice of
points in R¢ in order to control the possible linear growth of F. We notice
that the invariance of our arguments when changing F' into —F allows us to
work with § > 0.

Let us consider some exponent k € (0, 1] and the discrete family of points

Ts:= {2,(6) := 6"y € RY, v € Z%}.

We notice that for any z € I's, the bounded operator 7_3; Kg7: has the integral
kernel Ro(z + 2, v), with Ko(z,v) given in (L.9). Thus, given some v € 7% let
us consider the difference: K5 — 7_._ (5 Ko7, (5) and its associated distribu-
tion kernel, considered as smooth distribution valued function on R? and use
Newton—Leibniz formula in the first variable to obtain:

(3.1)

Rs(z,) — Ro(z + 0%y,) = Rg(z + 9 F(2), ) — Ro(z +0"y,-)

1
_ /O ds ((V50) (= + 0%y + s F() — 5%7), ) - (§ F(2) — 6%)
=: 0" [D1R0](z,) - (51_"“F(z) - 7)
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with the last line giving the definition of [©1R0](z,-). We can then define the
mapping

\IIS[F]@ RS 2 2+ 6%y + s(6 F(z) — §"y) e R?
and write that in the sense of tempered distributions:

1
[018] = /0 ds (V.$) o (W,[F]%, 1)
1
= (2m) /2 / ds ((1® F)(Va)) o (W,[FID, 1))

1
— @2n) (10 F) [/O ds ((V.a)o (\I/S[F]gyé), ]1))} ,

with 1:R? — R? being the identity map, denoting by (¥, ®) the map
RY x R 5 (z,y) — (¥(z), U(y)) € R? x R?

for any pair of maps ¥ € C°(R% R%) and ® € C°(R?; R?). The above formula
implies that:

1
(32) (10 F)[Dify] = (27) 42 [/O ds ((V-a) o (2,[F)). 1))].

In order to estimate the operator norm of the linear operator defined by this
distribution kernel, we use our boundedness criterion (1.8]) and notice that:

(33) 9207 (1e F)[D1%] = (2m) | / s ((7.000% ) o ([P, 1))]

being bounded by |41, (a). Thus, if we can impose by some localization
procedure, a bound uniform in (z,7) € R? x Z4 for the factor 6'~*F(z) — v
and its z-derivatives then, we may obtain a decaying factor 6" going to 0 with
0 > 0. We are thus led to consider the following partition of unity:

e We fix a function g € C§°(R%; [0, 1]) such that: > ezdd(z — 7)? =1, for
all z € R,

e For any v € Z%, we define the cut-off function:
glF5),(2) = g (6" F(2) — ),

e Given v € Z¢, we denote by V, the set of all ' € 7% with the property
that the support of g[Fs],, has a non-empty overlap with the support of
g[F5]y, including 7/ = . Denote by n, € N\ {0} the cardinal of V,
notice that it is clearly independent of «v and ¢ and that:

3 [olFshy(2)]> =1, Vz € R,

yezZd



450 H. Cornean and R. Purice 6

zesuppyg[Fsl, = 3L >0, [0™F(z) —4| < L.

e Finally, let us denote by G[F;|, the self-adjoint, bounded operator of
multiplication with g[Fs], in L%(R%). Obviously, G[Fs], = Op™(g[Fs],)
for g[Fs], € Sg}O(Rd x R%) a symbol independent of the second variable.

The quasi-resolvent for Ks. Let us fix any 3 ¢ O'(Ko) and define:
(3.4)

Ty(3:0) := 71—, (5) (Ko — 31) 7' 7. (5), =Y G[Fj), 6) G[Fs)y.
~ezd

Remark 3.1. Unitarity of translations and the functional calculus for self-
adjoint operators imply that for any d € [0, 1], we have the estimation:

|‘T"/(3;5)HB(L2(Rd)) = H(KO _311)71HIB3(L2(]R11)) S diSt(j,O’(K{)))_l, vf}/ € Zd‘

LEMMA 3.2. For any § € [0,1] the series in (3.4) is convergent in the
strong operator topology and we have the estimation

TG Ngr2@ay < v/ (ng+1)/2[| (Ko — 311)_1”13(L2(Rd))
< \/(ng +1)/2dist (3,0 (Kp)) ™"

Proof. For the convenience of the reader, we reproduce here our proof of
Lemma 2.4 in [2]. For ¢ € L?(RY), we fix M € N, we define:

T(3:0)M = " G[F], Ty (3:6) G[Fs),

IvI<M
and compute:
Y > (GIFs)y Ty(3:6) GIFs]y ¥, GlFs)y Tyr(5:8) GFs)yr )
Iy|<SM ' eVsy
v+1 2
<= Y T30 Gl vl
<M
ng+1 2
<o =50 o) 3 [ P ()P da
<M
1112 ng+1 9
< H(Ko—é]l) HB(LQ(]RJ)) 92 ku

where in the last equality we used the quadratic partition of unity identity in
the definition of g € C$°(R%; [0, 1]). The convergence and the estimation in the
Lemma follow. [
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PropoSITION 3.3. With the above notations and assumptions, we have:

| (K5 —30) T(3:6) — n\\B(LQ(Rd)) < C(a, F) 6" [dist(3,0(Ko))]

Proof. For any M € N, let T(g;é)(M) as in the begining of the proof
of Lemma be the partial sum approaching T'(3;d) in the strong operator
topology and let us consider the product:

(3.5) (Ks —30) T(3:0)M = Y (K5 — 51) G[Fs), T (3:0) G[Fy),.
|y|<M

We notice that for any v € Z%, we can write that:
(Ks —31) G[Fs], T,(3;0) GLF5)y
=1_.(5) (Ko —31)"'7,_(5) G[Fs)y Ty (3; 6) G[Fs)y
(3.6) + [(Ks —31) — 17—, (5) (Ko — 30) "7, ()] G[F3]y T4 (3:0) G[F3]4
= [9lFs), )" 1 + [r—s5) (Ko — 31) 772, 5) » GLF3sly) Ty (3:6) GIFyl,
+ (K5 —31) — 7. (5) (Ko — 31)7'7._5)] GIF3]y T (3 6) G[Fs)y.
LEMMA 3.4. For any v € Z%, we have the estimation:
[[(K5 = 51) — 7. ) (Ko —31)7'7. 5] G[Ffs]VHIB(LQ(Rd)) < C(a, F)o".
Proof. We consider the bounded operator:
(3.7) H5 = [(K(s — 5]1) — szﬂ,(é) (Ko — 3]1)717’%/(5)] G[F(;h
appearing in the statement of Lemma and compute its distribution kernel:
R[Hj] = [R[a[Fs] — (Rla] o (7.5 © 7o (5))) ] (1 © g[F5y).
We prefer to work with the modified kernels:
(3.8)
Rs = R[Hslo Y1
= [(R[alF]s] = (Klal o (72, 0) @ 72, 0)))) 0 T [(1 @ g[Fb]) 0 T
= (8%~ (R0 (7o © 1)) [(1© glFS],) o T
= [(% = (00 (72 @ D) 1 93] [[(1 9 9(F) 0 Y] (1 98],

with the last line valid for any NV € N and the first factor above being bounded
for any N € N due to the arguments using (3.3]). In fact, by (3.1)) we can write:

(1o F)is =6 [ 3 (10 FDis);) * (10 F)[0'7F — ) @ o))
1<j<d

« (M@ F)([(1@g[Fs]y) o T (1 ®s_n))]
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where x denotes the bilinear operation:

(F*G)(w.) = [ dnF.nGla ).
Concerning the second factor above, we notice that:

(3.9) [(1 ® g[F3)y) © T_l} (z,v) = g((s(l_“) F(z—v/2)— 'y)

and using the compactness of the support of the cut-off function g, we deduce
that on the support of the function (1& F)([(1® g[Fs]y)o Y71 (1®s_x)) there
exists some L > 0, depending only on the diameter of the support of g such
that:

L > }5(1_”)17(2 —v/2) — 7‘
= )5(1_”) (F(z) — /01 ds [(v/?) (VF)(z— SU/Z)D —7‘
> (1609 F(z) =] = |5t /01 s [(0/2) - (VF)(z = sv/2)] |

and thus we have the inequality:

1
(609 F(z) — 4| < L+ 6079 /0 ds [(0/2) - (V F) (= = s0/2)]

< LA46979((1/2)||[V Fllos) <v > .

We notice that the function ([(1 & g[Fs]4) o Y71](1 ® s_x)) is of class
BC>(R% x R?) having rapid decay in the second variable, with uniform bounds
with respect to 0 € [0, 1], so that its partial Fourier transform

(Mo F)([(1®glFs)y) o YT (1 @5 y))

is a function of class BO*®(RY x R?) = 5’870 (R4 x R?), uniformly with respect
to 0 € [0,1].
Recalling now our boundedness criterion (|1.8]):

I[(Ks —31) — 7—.5) (Ko — 31) "' 7. ()] 9[F5)4||

B(L2(R4))
< 13444 3a+4((1© F)Rs),
the conclusion of Lemma [3.4] follows. ]
LEMMA 3.5. For any v € Z%, we have the estimation:
Iz (Ko = 31) "7 6) » GLEL ]| < Ca, 1) 01,

B(L2(RY))
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Proof. In a similar way, with the proof of our previous Lemma [3.4] we
consider the linear operator:
(3.10)

(72 5) (Ko — 31) 7' 7. (5), G[F5s),)
=75 (Ko —30)7'7. (), GIFsly — GlFsly 7. 5) (Ko — 3]1)_17,27(5)
and its distribution kernel:
Res = (Rla] o (15 @ 7o (5)) [(1 @ glF5)y) — (9[Fs)y ©1)]
with the modified form:
:éc,a i =Regso X!
[R5 (e 8 W] [((1 8 0lFsh) o T) — (ol @ 1) 0 7).

Let us analyse the smooth function in the second factor above:
(3.11)

(12 0lF,) 0 T7) — ((6lFsly ©1) o T (210)
— g0z v/2) — ) — g F (= + v/2) - )
1
=— /ds (Vyg) (5(17”)F(2 —0/2) =y 4 5617
0
x (F(z+v/2) — F(z —v/2)) (6Y")(F(2 +v/2) — F(z —v/2))
1/2
—§(=r) /ds/ dt vy, OpFj(z + sv)r
1<j,k<d 1/2
x (0;9) ((5( F(z —0/2) — 4 617" (F(z+v/2) — F(z —v/2))
and our boundedness criterion clearly implies the conclusion of Lemmal[3.5] [

Putting together (3.6), Remark and the above two lemmas, and opti-

mizing the estimation by taking x = 1 — k = 1/2, we conclude that:
a1y U DOIEL TG GIRL — ol = X0 GlRL,
' | x19) HB iy < Cla,F) 512 (dist (3, 0(Ko)) ™"

Finally, we have to use the fact that
Zg(x— 2 =1 and Zgw— € [0,n4],
~ezZd ~EZ4

both series being locally finite, so that the finite sums in (3.5 are convergent
and summing up over v € Z¢ using the estimation (3.12) clearly implies the
conclusion of Proposition O
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End of the proof of Theorem (2.1 -. If dist(3, o(Op(a))) > C6'/2, the
conclusion of Proposition 1mphes that 3 ¢ o(Ks).
Finally, replacmg T (3;0) in . 3.4) by:

(3.13) =Y GFs|y 7. 5 (Ks — 31)'7_, (5 G[Fs),

~ezZd
all the arguments above can still be applied in order to obtain the following
estimation similar to the conclusion of Proposition [3.3}

[ (Ko = 51) 8(:0) = Ulg2(gay, < Cla, F)8Y2 (dist(5, 0(K5))

It follows that if dist(3, o(Dp™ (a[F]s))) > C6Y/2 then, 3 ¢ o(Kj) and Theo-
rem [2.1] is proven.

4. PROOF OF THEOREM

In this case, we no longer estimate norms, but rather quadratic forms.
The main idea is to replace the perturbation x — x + 0 F(z) with a similar
one in a new variable v € R? namely = +— 2 + 0 F(u), and use the unitarity of
translations in estimating the modified quadratic form. In order to control the
distance between the new variable v and z := (x +y)/2, we use a scaled weight
function Wy (z — u) as in [2] (see ([4.2))). We treat only the case £4(5) — £4(0),
the other one, i.e., £_(d) — £_(0) following by a quite similar argument.

We intend to estimate the difference £, (0)—E&4(0) for 6 > 0 small enough,
and begin by making explicit the defining formula :

E(0) = sup (¢, Op(a[Fls) @) 12 g

1612 gy =1
(4.1) P -1
= sup (K5, (0®¢)oT >=Y(Rd><]Rd)'
1612 gy =1

The weight function. Let us consider the functions:
(4.2) W(z) 1= (4m) "2 e—ﬁ, W, (2) := YW (k 2), Ve € (0,1]
and the following identity:
(4.3) 2_1(\10 +0/2]% + |w — v/2\2) = |w|®+ [v]*/4, Y(w,v) e R? xR
We deduce that:
/ dz0,.(z) = 1, Vke(0,1],
Rd
(4.4) W, (2 — u)
= ((k/47) 20, (0)) "W, (2 — u+v/2) V2 W (2 — u — 0/2) 2,
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for any (z,u,v,x) € [RY? x (0,1].
Our strategy is to replace in formula (4.1) the distribution:

(4.5) Rs = </ du ((Tum],{) ® 1)) Rs,
]Rd
with the distribution:
(4.6) W, [R] = /R du (720, @ 1) (7—s £y © 1))
and estimate:
(4.7) Er(k,0) = e ((R5], (58 0) 0 T™) iy

PROPOSITION 4.1. With the above notations and hypothesis, for any ¢ €
S (RY) there exists some C(a,F) > 0 such that the following estimation is
true:

<Qﬂﬁ[ﬁ5] ’ ($® ¢) © T71>y(RdXRd) = (¢7 Dp(a) ¢)L2(Rd) + C(CL,F) HQ H(bH%Q

Proof. Starting from (4.7)), we have to estimate the following iterated
integrals:

‘/Rddu/Rd dzwﬁ(zu)/Rddvgb(quv/Q)qb(zv/2)ﬁ0(2+6F(u),v)).

We use the rapid decay in v € R? of the kernel £(z + 0F(u),v) by
breaking the integral in v € R? in a bounded region and its complementary.
In fact, we choose some function y € C$°(R?), taking values in [0, 1], having
support in the ball |v| < R and being equal to 1 on the ball |v| < r, for some
strictly positive r < R.

Let us first estimate the integral on the unbounded region, for any x €

) and N € N:

’/ du/ dz2,.(z — u)
R4 R4

X / dvo(z +v/2)¢(z — v/2) Ko (z + 0F (u),v) [1 — X(H’l})]‘
R

< /iN<7“_Nsup sup < v >V \ﬁo(zw)o |61z ey < Crl@) Y 16172 ra)-
2€R4 |v|>7

On the support of x, we use the second formula in (4.4) and write that:

/ /szU zZ—u /dv¢(2+v/2)¢(z—v/2)ﬁ0(2+5F(u),v) X(kv)
R4 d



456 H. Cornean and R. Purice 12

= (¢, (]le X T—éF(u)) (]I]Rﬁ 02y Dpw<an)) (]I]Rﬁ ® TéF(u))¢) L2(R4;L2(R4))
with:
(Rlak] o T)(z,v)
= ((/4m) = P20,(0) T R0 (2, v) x(wv) = X0 x () (2, v),
1
= Solz,0) () + 12 [ ds (0 /16) 0y (10) S 2.0,
0
¢ = (7_2W,) p € L? (]RZ; L2(Rg)).
We notice that we have a unitary map
(4.9) L*RY) 5 ¢ = ¢ = (7-4W,) ¢ € L*(RE; L*(RY))
and the equality (taking into account the unitarity of translations):

(¢, (Tga ® T_gp(u) - Op*(ax) - Tsr(w))®) = (o, DPW(GHW)LQ(W)-

Thus, if we change the Hilbert space L?(R%) with L?(R?; L?(R%)) via the above
unitary map, we may conclude that:

/ du/ dz W, (2 — U)/ dv ¢(z +v/2)(z — v/2) Ko (2 + 6F (u),v) x(kv)
R4 Rd Rd
= (¢v Dpw(an)¢)L2(Rd) = (¢a Dpw(ax)¢)L2(Rd) + /iz/RddZ /]Rddv

L2(Rd;L2 (rd))

- 1 o vl2 v 2
< e+ o720t — o/ [[ase ) U (e 67w, 0) o

where we have put into evidence the symbol a, € Sg,O(Rd x R%) associated
to the integral kernel R[a](z,y)x(k(x —y)). Then, we may control the factor
(|v|2/16) using the rapid decay of & with respect to the variable v € RY and
write that exp(s|kv|?/16)x(kv) < exp(R?/16). Finally, we use once again the
estimation on the support of 1 — x:

(@, Op(ax) 8) 12 gay
= (02 DP(@)6) 1oy — [ 2] Q03T 0TD0lz — /2 0(z0)[1 = x(0)]
(62 99(@) ) gy — [ df 0BT+ 0700z = 0/2) Sofe. )1 = x(wv)]
< &V (N sup sup < v >N [Ro(2,0)]) 16132y < C@) B 911 -

2z€R4 |v|>7

O]
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Proposition [£.1] clearly implies the estimation:
(4.10) £:(0) = £4(0)] = O(x?).

PROPOSITION 4.2. There exists C(a, F) > 0 such that for any ¢ € L*(R?)
and for any (k,0) € (0,1) x (0,1):

<ﬁ5 ’ (5 ® ¢) © T71>y(Rded) - <Qn[ﬁ5] ’ (5 X ¢) © T71>y(Rd><Rd)

4.11
(4.11) = C(a, F) H(ﬁH%Q(Rd) (6/0 + 5K201TF 4 §%K72).

Proof. We compute
(R, (0© )0 T™") ey — (WR], (6©6) 0 T™) ) sy
:/Rd du/Rdszﬁ,i(z—u)/ dv p(z +v/2)p(z —v/2)
X [Ro(z+ 6F(2),v) — Koz +0F(u),v)]
/dzﬂﬁ zu/dv¢(z+v/2)¢(zv/2)
R
X (V280)(z + 6F(2) + s6(F(u) — F(z)),v)
1
X [/ ds((zfu)~VF)(z+s(ufz))].

0

We need a second cut-off, this time on the perturbing field F' € C{°(R9). Let us
consider the same function xy € C$°(R?) as in the proof above and the weighted
one xg(z) := x(f z) for some cut-off parameter 6 € (0,1]. Then, we define:

(4.12) Fp:=xoF, Fj:=(—-xp)F

and the corresponding integral kernels &5 and 20[R5]° with F' replaced by Fjp
and respectively, Rﬁ and 20[Rs]* with F replaced by Fol.
We have the evident estimations:

<ﬁ5 ’ (¢ ®¢)oT > F(RIxRL) <RD ’ ($® ¢) o T71>,§”(Rd><Rd)

—/ dz/ dvg(z +v/2)¢(z — v/2) [Ro(z + 6Fp(2),v) — Ko(z,0)]
Rd Rd
/Rdvgb z4+v/2)p(z —v/2) /Ods [Fp(2) - (9:80) (2 + s6 Fy(2),v)],

and

[(W[Rs]°, (6 ® ¢) 0T~ >,/(Rd><Rd) (Ro, (9@ ¢)o T_1>,5”(Rd><Rd)}

‘/Rddu/RdszII 2 —u /dde¢(2_v/2)
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X [Ro(z + 6Fp(u),v) — Ko(z,0)] ‘

:5/Rddz/Rddv¢(lz—&—1)/2)¢(z—v/2) [/ﬂ{dduﬁﬂﬁ(z—u)
X (/o ds [Fy(u) - (8Zﬁo)(z—|—s§Fg(u),v)]>}

We estimate the above two differences in the next two lemmas.

LEMMA 4.3. The symbol af ,(z,n) associated to the kernel

1
ﬁg,a(z,v) = /0 ds [Fg(z) . ((‘Lﬁo)(z + 86 Fg(z),v)]

belongs to SO o(R? x RY) with seminorms bounded by CO~' for (5,0) € (0,1]*.

Proof. We can write that:
cholzin) = @n)! [ dveT < Rg(a.)

' 1
= (27)%/? /]Rd dv e <Y /0 ds [Fy(z) - (0:(1® F)a) (2 + s6 Fy(z),v)]

1
= / ds [Fy(z) - (0:a)(z + s0 Fy(z),n)].
0
As in Remark we notice that

Vnm(ase) < (sup|Fp(2)]) sup vngrm(alFls)
z€R4 0<s<1
< Mp6~! sup Vn+17m(a[F]s) O
0<s<1

(4.13)

LEMMA 4.4. The symbol ag4(z,m) associated to the kernel

ﬁ(;@(z v) 1= /]Rd du,.(z — u) (/01 ds [Fg(u) . (8zﬁo)(z + séFg(u),v)D

belongs to SS’O(Rd x RY) with seminorms bounded by CO~' for (6,6) € (0,1]2.

Proof. We can write that:

ag o(z,m) = (2) / dv e 1< R g(2,v)

/ds/ du,.(z — u) ([Fy(u) - (8:a) (2 + s6 Fy(u),n)]).
R4
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As in Remark [I.3] we notice that

Vn,m(aiw) < (SUP ‘FG |) sup Vn+1,m(a[F]3)
(4.14) ucRd 0<s<1
< Mp6~' sup Unt1,m(a[Flg) O
0<s<1
Putting the above results together, we conclude that:
(85, (@ ¢)o T_1>y(Rded) — (W[KF], (@ @) o T ), (]Rded)’
< C(F)s6~L.
Let us consider now the “outer region” integrals:
<ﬁ5L (9@ ¢)o T71>,¢(Rd><Rd) - <w[ﬁ6l] (9@ )oY~ > 7 (RIxRY)
= 0L1[¢] (5,0, k) + °T2[¢] (6, 6, x)

(4.15)

(4.16)

where:

96,0, k) := /Rddu/Rddzm(z—u)/Rddvgzmqj/z)gb(z—v/Q)

x (V.80) (2 + 6F4 (2),v) [((z —u)- VF)(2)
1

+0/2) [ ds(L=9)((z W © (z )V © V) Ff) (= + sl 2)]

T5[9)(9,0, k) == (1/2) /Rddu/RddZQU z—u /ddv¢(z+v/2)d)(z—v/2)
1
< [ 0= ST 0 V)80) (- + 67 () + 50(F- () = F (). )

X /1 dt ((z —u) - VF(,J‘)(z +t(u—z)) /1 dt' ((z — u) - VFQL)(Z +t'(u— 2)).
%Ve may conclude that: ’

(4.17) |T1[8](8,0,K)| < k7208132, |T2[0)(8,0,8)|] < K37, O
The result of Proposition [4.2] clearly implies that:

(4.18) EL(8) — E4(6 \ = O(5/0 + or20"H 4 52k 72).

Taking into account (4.10)) and (4.18)), in order to finish the proof of Theo-
rem we only have to make the following choices for our scaling parameters:

e 0 =57 for some p € (0,1), so that 66~ = 6*;
o k2 = §P so that o201+t — §(1—p)+(1—p)(1+p) — §2+m)(1-p) 4d §2x~2 =

e imposing p = (24 u)(1 — p) € (0,1) means taking p = (1 + p)/(2 + p).
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