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1. INTRODUCTION

Throughout this paper, X,Y are locally compact and locally connected
metric measure spaces endowed with Borel regular measures µ and ν which
are finite on compact sets such that µ(B(x, r)) > 0 for every ball B(x, r) ⊂ X
with r > 0, ν(B(y, r)) > 0 for every ball B(y, r) ⊂ Y with r > 0 and also X,Y
have countable bases. The measure ν is doubling, D ⊂ X is a domain and if
f : D → Y is a mapping, we set for x ∈ D

L(x, f) = lim sup
y→x

d(f(y), f(x))

d(y, x)
,

l(x, f) = lim inf
y→x

d(f(y), f(x))

d(y, x)
,

ν ′f (x) = lim sup
t→0

ν(f(B(x, r)))

µ(B(x, r))
.

Here, d is the distance on X and Y .
If f : D → Y is a continuous mapping, we say that f is of bounded

Dirichlet integral if
∫
D L(x, f)ndµ < ∞.

If p > 1 and D ⊂ Rn is open, we set W 1,p
loc (D,Rn) the Sobolev space of

all mappings f : D → Rn which are locally in Lp together with their weak first
order partial derivatives. Usually, a mapping f ∈ W 1,n

loc (D,Rn) is of bounded

Dirichlet integral if f ∈ W 1,n
loc (D,Rn) and

∫
D |f ′(x)|ndx < ∞ and our definition

is just a topological one (if f is, a.e., differentiable, then |f ′(x)| = L(x, f), a.e.).
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The homeomorphisms f : D → Df such that the mappings f ∈ W 1,n
loc (D,Rn),

f−1 ∈ W 1,n
loc (Df , D) and

∫
D |f ′(x)|ndx+

∫
Df

|(f−1)′(y)|ndy < ∞ form an impor-

tant class used in the mathematical models in Nonlinear Elasticity (see[15, 16])
and we study in this paper the boundary behaviour of open, discrete and closed
mappings of bounded Dirichlet integral using some methods inspired by the
theory of quasiregular mappings. We remind that if n ≥ 2, D ⊂ Rn is open and
f : D → Rn is continuous, we say that f is quasiregular if f ∈ W 1,n

loc (D,Rn)
and there exists K ≥ 1 such that |f ′(x)|n ≤ KJf (x), a.e.

Let D ⊂ X. We set A(D) to be the set of all nonconstant path families in
D and if Γ ∈ A(D) we let F (Γ) = {ρ : D → [0,∞] Borel functions |

∫
γ ρds ≥ 1

for every γ ∈ Γ locally rectifiable}.
If p > 1 and ω : D → [0,∞] is µ-measurable and finite µ, a.e., we define

the p-modulus of weight ω by

Mp
ω(Γ) = inf

ρ∈F (Γ)

∫
X

ω(x)ρp(x)dµ if Γ ∈ A(D).

If F (Γ) = ϕ, we set Mp
ω(Γ) = 0. If ω = 1, we set

Mp(Γ) = inf
ρ∈F (Γ)

∫
X

ρp(x)dµ if Γ ∈ A(D)

for the classical p-modulus.

One of the basic tools in studying quasiregular mappings is the modular
inequality of Poletsky

(1.1) Mn(f(Γ)) ≤ KMn(Γ) for every Γ ∈ A(D).

We recommend the reader the monographs [21], [22], [30], [33] for more
information about quasiregular mappings. Several generalizations of quasireg-
ular mappings were given in the last 30 years and the most important one is
the class of mappings of finite distortion (see the monographs [12] and [14]
for more information) for which a Poletsky modular inequality holds in some
particular cases (see [3] and [17]).

Martio has proposed the study of mappings distinguished by moduli in-
equalities of type

(1.2) Mq(f(Γ)) ≤ Mp
ω(Γ) for every Γ ∈ A(D)

where p, q > 1 and ω is measurable and finite, a.e.

In this class, Montel, Picard, Liouville type theorems, boundary extension
and equicontinuity results and estimates of the modulus of continuity were
given (see [1, 3], [5]–[11], [18]–[20], [23]–[26], [28]).
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If n ≥ 2 and f : D → Rn is quasiregular nonconstant, an inverse Poletsky
modular inequality holds, namely

(1.3)
Mn(Γ) ≤ K

∫
Rn

ρn(y)N(y, f,D)dy for every Γ ∈ A(D)

and for every ρ ∈ F (f(Γ)).

Here,

N(y, f,D) = Card f−1(y) ∩D if y ∈ Rn and N(f,D) = supy∈Rn N(y, f,D).

Motivated by this property of quasiregular mappings, in the last years, open,
discrete mappings f : D → Y for which an inverse Poletsky modular inequality
holds were studied, namely

(1.4) Mq(Γ) ≤ Mp
ω(f(Γ)) for every Γ ∈ A(D).

Here, p, q > 1 and ω is µ-measurable and finite µ, a.e.
The weight ω in relation (1.4) is quite general, while the weight ω in

relation (1.3) is a particular one, namely ω(y) = Card f−1(y) ∩ D for every
y ∈ Y . Results concerning boundary extension, equicontinuity, lightness and
discreteness of the mappings satisfying relation (1.4) were established in [4],
[27]–[29].

Vuorinen, see [31]–[33], was the first who observed that the mappings
of bounded Dirichlet integral satisfy some inverse Poletsky modular inequal-
ities and applied in this class of mappings the methods used in the study of
quasiregular mappings.

The following theorem is proved in [10] and shows that in very general
cases the mappings of bounded Dirichlet integral satisfy a modular inequality
of type (1.4) (see also [4]).

Theorem A ([10]). Let q > 1, let f : D → Y be continuous such that
µ(Bf ) = 0, ν(f(Bf )) = 0, f satisfies condition (N−1) and

∫
D L(x, f)qdµ < ∞.

Then there exists ω ∈ L1(Y ) such that Mq(Γ) ≤ M q
ω(f(Γ)) for every Γ ∈ A(D)

and
∫
f(A) ω(y)dν ≤

∫
A L(z, f)qdµ for every open set A ⊂ D.

Here, Bf = {x ∈ D|f is not a local homeomorphism at x} and we say that
f satisfies condition (N−1) if µ(f−1(A)) = 0 whenever A ⊂ Y and ν(A) = 0.

If x ∈ X, we set V(x) = {U ⊂ X open |x ∈ U}.
A mapping f : D → Y is open if it carries open sets into open sets and

is closed if it carries closed sets into closed sets. We say that f : D → Y is
proper if f−1(K) is compact whenever K ⊂ Y is compact.

Let D ⊂ X and x ∈ ∂D. We say that D is locally connected at x if
there exists a fundamental system of neighbourhoods of x, (Um)m∈N such that
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Um ∩D is connected for every m ∈ N. We say that D is finitely connected at
x if there exists a fundamental system of neighbourhoods of x, (Um)m∈N such
that Um ∩D has a finite number of components for every m ∈ N.

Usually, a domain D ⊂ Rn is weakly flat at a boundary point x ∈ ∂D if
for every ϵ > 0 and every U ∈ V(x) there exists V ∈ V(x) such that V ⊂ U and
Mn(∆(E,F,D)) > ϵ for every continua E,F in D which intersects ∂U and ∂V .
Here, ∆(E,F,D) = {γ : [0, 1] → D path such that γ((0, 1)) ⊂ D, γ(0) ∈ E,
γ(1) ∈ F}. Such a domain is locally connected at x (see [20], Lemma 3.15).
Also, such a domain is “locally” weakly flat, i.e., “there exists Ux ∈ V(x) such
that for every ϵ > 0 and every U ∈ V(x) such that U ⊂ Ux, there exists
V ∈ V(x) such that V ⊂ U and Mn(∆(E,F,D ∩ Ux)) > ϵ for every continua
E,F in D ∩ Ux which intersects ∂U and ∂V ”.

We give now a rather general definition of locally q-weakly flatness.

Definition 1.1. Let D ⊂ X a domain, q > 1 and x ∈ ∂D. We say that
D is locally q-weakly flat at x if there exist Ux ∈ V(x) and ϵ > 0 such that
for every U ∈ V(x) with U ⊂ Ux, there exists V ∈ V(x) such that V ⊂ U and
Mq(∆(E,F,D ∩ Ux)) > ϵ for every continua E,F in D ∩ Ux which intersects
∂U and ∂V .

The usual example of a n-weakly flat domainD ⊂ Rn at a boundary point
x ∈ ∂D is a domain such that there exists Ux ∈ V(x) and a quasiconformal
homeomorphism Φx : Br∩H → D∩Ux such that Φx(0) = x. Here, Br = B(0, r)
in Rn and H = {z ∈ Rn|zn > 0}.

We can also see that if D1 ⊂ Rn is q-weakly flat at 0, X is such that
µ(B(x, r)) ≥ r

c1
for every ball B(x, r) ⊂ X, D ⊂ X is a domain, x ∈ ∂D and

there exist mx,Mx > 0, Ux ∈ V(x) and a homeomorphism Φx : Br → Ux such
that Φx(0) = x, Φx(D1 ∩Br) = D ∩ Ux and L(z,Φx) < Mx, l(z,Φx) > mx for
every z ∈ D1 ∩Br, then D is q-weakly flat at x (see Lemma 2.1).

Let us give some examples of q-weakly flat domains in Rn.

Lemma 1.2. Let D ⊂ Rn be a domain such that 0 ∈ ∂D, let Aρ = {t ∈
(0, ρ)|D ∩ S(0, t) is a cap of a sphere} and suppose that one of the following
conditions hold:

(1.5) lim inf
ρ→0

µ1(Aρ)

ρ
> ϵ > 0.

There exists n− 1 < q < n such that

(1.6) lim inf
ρ→0

µ1(Aρ)

ρq−n+1
> ϵ > 0.

Then, if condition (1.5) holds, it results that D is locally n-weakly flat
at x and if condition (1.6) holds, then D is locally q-weakly flat at x. Here,
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D∩S(0, t) is a cap of a sphere if D∩S(0, t) = H ∩S(0, t), where H is an open
half space in Rn.

The following theorem extends some results from [31] and [29] given for
open, discrete and closed mappings in Rn.

Theorem 1.3. Let q > 1, D ⊂ X, G ⊂ Y be domains, x ∈ ∂D, let Y
be locally pathwise connected and G finitely connected at every point y ∈ ∂G
and suppose that D is locally q-weakly flat at x. Let f : D → G be continuous,
open, discrete and closed satisfying condition (N−1) such that µ(Bf ) = 0,
ν(f(Bf )) = 0 and there exists Ux ∈ V(x) such that

∫
D∩Ux

L(z, f)qdµ < ∞.

Then there exists limy→x f(y) ∈ Y .

Here, Y is the Alexandrov’s compactification of Y .

The following theorems result immediately from Theorem 1.3.

Theorem 1.4. Let Y be locally pathwise connected and G finitely con-
nected at every point y ∈ ∂G, let D ⊂ X, G ⊂ Y be domains and let f : D → G
be continuous, open, discrete and closed satisfying condition (N−1) and such
that µ(Bf ) = 0, ν(f(Bf )) = 0. Suppose that for every x ∈ ∂D there ex-
ists qx > 1 and Ux ∈ V(x) such that D is locally qx-weakly flat at x and∫
D∩Ux

L(z, f)qxdµ < ∞. Then there exists g : D → G continuous such that
g|D = f .

Theorem 1.5. Let n ≥ 2, D ⊂ Rn a domain, let Y be locally pathwise
connected and G ⊂ Y a domain finitely connected at every point y ∈ ∂G and let
f : D → G be continuous, open, discrete and closed satisfying condition (N−1)
and such that µn(Bf ) = 0, ν(f(Bf )) = 0. Suppose that for every x ∈ ∂D there
exists Ux ∈ V(x), rx > 0, n − 1 < qx ≤ n such that D ∩ S(x, t) is a cap of a
sphere for every 0 < t < rx and

∫
D∩Ux

L(z, f)qxdµn < ∞. Then there exists

g : D → G continuous such that g|D = f .

Here, µn is the Lebesgue measure in Rn.

2. PROOFS OF THE RESULTS

Lemma 2.1. Let Y be such that there exists a constant c1 > 0 such
that ν(B(y, r)) ≥ rn

c1
for every ball B(y, r) ⊂ Y and let c2 > 0 be such that

µ(B(x, r)) ≤ c2r
n for every ball B(x, r) ⊂ X. Let D ⊂ X, G ⊂ Y be domains

and f : D → G a homeomorphism such that there exist m,M > 0 such that
L(z, f) ≤ M , l(z, f) ≥ m for every z ∈ D and let q > 1. Then
Mq(Γ) ≤ CMq(f(Γ)) for every Γ ∈ A(D).
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Proof. We see that ν(f(B(x,r)))
µ(B(x,r)) ≥ ν(B(f(x),mr))

c2rn
≥ mnrn

c1c2rn
= mn

c1c2
for every

ball B(x, r) ⊂ D and hence, ν ′f (x) ≥
mn

c1c2
for every x ∈ D.

Let Γ ∈ A(D) and ρ ∈ F (f(Γ)) and let ∆ = {γ ∈ Γ|f ◦ γ0 is absolutely
continuous}. Here, if γ : [a, b] → D is a rectifiable path, then γ0 : [0, l(γ)] → D
is given by the relation γ = γ ◦ sγ and sγ is the length function of γ. We see
from [7] that Mq(Γ) = Mq(∆).

Let γ ∈ ∆. Using Lemma 2.3 from [7], we have

1 ≤
∫
f◦γ

ρds ≤
∫
γ

ρ(f(x))L(x, f)ds ≤ M

∫
γ

ρ(f(x))ds

and hence Mρ ◦ f ∈ F (∆). Using the change of variable formulae, we have

Mq(Γ) = Mq(∆) ≤ M q

∫
D

ρq(f(x))dµ ≤ M qc1c2
mn

∫
D

ρq(f(x))ν ′f (x)dµ

≤ M qc1c2
mn

∫
f(D)

ρq(y)dν.

Since ρ ∈ F (f(Γ)) was arbitrarily chosen and taking C = Mqc1c2
mn , we

proved that Mq(Γ) ≤ CMq(f(Γ)).

Proof of Lemma 1.2. If Γ is a path family in S(0, t) and q > 1, we set

M q
S(0,t)(Γ) = inf

ρ∈F (Γ)

∫
S(0,t)

ρq(z)dS(0,t).

Using [30] (Theorem 10.12, p. 28) and [2] (Theorem 3), we see that if C
is a cap of sphere in Rn and a, b ∈ C, a ̸= b, then

Mn
S(0,t)(∆(a, b, C)) ≥ C(n)

t
,

M q
S(0,t)(∆(a, b, C)) ≥ C(n, q)

tq−n+1
if n− 1 < q < n.

We can suppose that 0 < ϵ < 1. Let 0 < r < 1 be such that µ1(Aρ) > ϵρ
if q = n, µ1(Aρ) > ϵρq−n+1 if n − 1 < q < n for every 0 < ρ ≤ r and
let U ∈ V(0) be such that U ⊂ B(0, r), let δ = infz∈∂U |z| > 0 and we can
suppose that 0 < δ < r. Let V = B(0, δϵ4 ) and Kδ = Aδ ∩ ( δϵ4 , δ). Then

µ1(Kδ) ≥ µ1(Aδ) − δϵ
4 > µ1(Aδ)

2 . We can find points at ∈ D ∩ S(0, t) ∩ E,
bt ∈ D ∩ S(0, t) ∩ F for every t ∈ Kδ, where E,F are continua in D ∩ Br

which intersects ∂U and ∂V . Let Γ ∈ ∆(E,F,D ∩Bδ) and ρ ∈ F (Γ). Then, if
Γt = ∆(at, bt, D ∩ S(0, t)) for every t ∈ Kδ, it results that ρ|S(0, t) ∈ F (Γt) for
every t ∈ Kδ.
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Suppose that condition (1.5) holds. Then∫
Rn

ρn(z)dµn ≥
∫
Br

ρn(z)dµn =

r∫
0

( ∫
S(0,t)

ρn(z)dS(0,t)

)
dt

≥
∫
Kδ

C(n)

t
dt ≥

∫
Kδ

C(n)

δ
dt =

C(n)µ1(Kδ)

δ
≥ C(n)µ1(Aδ)

2δ
≥ C(n)ϵ

2
.

If condition (1.6) holds, then∫
Rn

ρq(z)dµn ≥
∫
Br

ρq(z)dµn =

r∫
0

( ∫
S(0,t)

ρq(z)dS(0,t)

)
dt

≥
∫
Kδ

C(n, q)

tq−n+1
dt ≥

∫
Kδ

C(n, q)

δq−n+1
dt =

C(n, q)µ1(Kδ)

δq−n+1
≥ C(n, q)µ1(Aδ)

2δq−n+1
≥ C(n, q)

2
ϵ.

Since ρ ∈ F (Γ) was arbitrarily chosen, we proved that D is locally q-
weakly flat at 0.

Proof of Theorem 1.3. Let us show that f : D → G is a proper mapping.
Let K ⊂ G be compact and let xk ∈ f−1(K), k ∈ N. Taking eventually a
subsequence, we can suppose that there exists y ∈ K such that yk = f(xk) → y.
Let A = {xk}k∈N. If A′ ∩D = ϕ, then A is closed in D and we can find rk → 0
and ak ∈ B(xk, rk) such that f(ak) ̸= y for every k ∈ N and f(ak) → y
and B(xk, rk) ∩ B(xp, rp) = ϕ for k ̸= p, k, p ∈ N. Let B = {ak}k∈N. Then

B′∩D = ϕ and hence B is closed in D and y ∈ f(B)\f(B) and this contradicts
the fact that f : D → G is a closed mapping. It results that A′ ∩D ̸= ϕ and
taking eventually a subsequence, we find a ∈ D such that xk → a and hence
f−1(K) is compact. We proved that f is proper and hence f−1(y) is a finite
set for every y ∈ G.

Suppose that limy→x f(y) ∈ Y does not exist. Then there exist xk, yk ∈
D ∩ Ux, xk → x, yk → x such that f(xk) → z1, f(yk) → z2 with z1 ̸= z2
and since f is a closed mapping, we see that z1, z2 ∈ ∂G. Since G is finitely
connected at z1, z2, we find k0 ∈ N, R > 0, U1 ∈ V(z1), U2 ∈ V(z2) such that
d(U1, U2) > R and components Ep of Up∩G, p = 1, 2 such that f(xk) ∈ E1∩G,
f(yk) ∈ E2 ∩G for every k ≥ k0 and we can take k0 = 1. Since E1 and E2 are
domains and Y is locally pathwise connected, we see that E1, E2 are pathwise
connected.

Let ϵ > 0 and Q ∈ V(x) with Q ⊂ Ux such that for every U ∈ V(x) with
U ⊂ Q there exists V ∈ V(x) such that V ⊂ U and Mq(∆(E,F,D ∩ Q) > ϵ
for every continua E,F in D ∩Q which intersects ∂U and ∂V . Let U ∈ V(x)
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be such that U ⊂ Q and
∫
D∩U L(z, f)qdµ < ϵRq and take V ∈ V(x) such that

V ⊂ U and Mq(∆(E,F,D ∩ Q) > ϵ for every continua E,F in D ∩ Q which
intersects ∂U and ∂V .

Since f−1(f(x1)) is a finite set, we can suppose that f−1(f(x1))∩U = ϕ.
Let pk : [0, 1] → E1 be a path such that pk(0) = f(xk) and pk(1) = f(x1). Since
f : D → G lifts the paths (see [34], p. 186), we find a path q̃k : [0, 1] → D
such that q̃k(0) = xk and f ◦ q̃k = pk and taking xk close enough to x, we can
suppose that xk ∈ V . Then q̃k(1) ̸∈ U and then |q̃k| ∩ ∂U ̸= ϕ, |q̃k| ∩ ∂V ̸= ϕ.
We take qk a subpath of q̃k such that qk(0) = xk, |qk| ⊂ U , |qk| ∩ ∂U ̸= ϕ,
|qk| ∩ ∂V ̸= ϕ and |f ◦ qk| ⊂ |pk|.

In the same way, we find a path γk : [0, 1] → D such that γk(0) = yk,
|γk| ∩ ∂U = ϕ, |γk| ∩ ∂V ̸= ϕ and |f ◦ γk| ⊂ |λk|, where λk : [0, 1] → E2 is a
path such that λk(0) = f(yk) and λk(1) = f(y1). Let Γk = ∆(|qk|, |γk|, D∩U).
We see from Theorem A that there exists ωx ∈ L1(Y ) such that Mq(Γ) ≤
M q

ωx(f(Γ)) for every Γ ∈ A(D ∩ U) and
∫
f(A) ωx(z)dν ≤

∫
A L(z, f)qdµ for

every open set A ⊂ D ∩ U . We also see that

η =
1

d(E1, E2)
χf(D∩U) ∈ F

(
f(Γk)

)
.

We have

ϵ < Mq(Γk) ≤ M q
ωx

(
f(Γk)

)
≤ 1

Rq

∫
f(D∩U)

ωx(y)dν ≤ 1

Rq

∫
D∩U

L(z, f)qdµ < ϵ

and we reached a contradiction.

We, therefore, proved that there exists limy→x f(y) ∈ Y .

Proof of Theorem 1.5. We see from Lemma 1.2 thatD is locally qx-weakly
flat at every point x ∈ ∂D and we apply Theorem 1.3.
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