
Dedicated to the memory of Lucian Bădescu.
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1. INTRODUCTION

We consider in this note the following question: consider triples (X,L,N),
where X is a complex projective nonsingular algebraic variety, L is a nef and
big R-divisor on X, supp(⌈L⌉ − L) is a normal crossings divisor on X, and N
is a positive integer such that

|⌈KX + iL⌉| = ∅ for all 1 ≤ i ≤ N.

Given N (sufficiently large), can we classify the pairs (X,L) with this property?
What can be said about L as N approaches +∞? For example, a necessary
condition on curves is N deg(L) ≤ 1. Note that the question does not change if
we replace X by a higher model and L by its pullback. Also, we may suppose
X admits no fibration such that the restriction of L to the general fiber satisfies
the same properties.

Here, ⌈L⌉ denotes the round up of an R-divisor, defined componentwise.
If ⌈L⌉ − L = 0, then N ≤ dimX by Kawamata–Viehweg vanishing and the
classical argument that a polynomial has no more roots than its degree. So the
difficulty seems to be hidden in the fractional part ⌈L⌉ − L. If the coefficients
of ⌈L⌉ − L are rational with bounded denominators, then N is again bounded
above.

Our motivation is to understand when |iKX | = ∅ for all 1 ≤ i ≤ N , where
X is a complex projective nonsingular variety of general type. It is known that
N is bounded above only in terms of dimX [2, 3, 7]. A positive answer to the
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question might give explicit bounds. In relation with the question above, we
have the inclusions

Γ
(
Xl,

⌈
KXl

+ (i− 1)
Ml

l

⌉)
⊆ Γ(X, iKX)

where Xl → X is a sufficiently high resolution and Ml is the mobile part on Xl

of the linear system |lKX |. The inclusions are equalities if l is divisible by i.

In this note, we solve the question in dimension one (Theorem 3.2), and
give an application when L is a positive multiple of a log divisor (Theorem 3.5).
We also solve the similar problem when successive adjoint linear systems con-
tain a given point in the base locus (Theorem 4.8). Other variants are possible,
such as failure of successive adjoint linear systems to be mobile, to generate a
fixed order of jets at a given point, etc.

Two observations come out from the curve case. First, forN > 1, only the
highest two coefficients of ⌈L⌉−L matter. Second, the Farey set of given order
appears naturally. In fact, effective non-vanishing properties for R-divisors can
be restated in terms of divisors with coefficients in the Farey set of a given order.
A similar successive failure argument was used by Shokurov [6, Example 5.2.1]
to construct lc n-complements on curves, with n ∈ {1, 2, 3, 4, 6}. In his setup,
with L = −K − B and i starting at 2, only the highest four coefficients of
B matter, and it suffices to consider coefficients of B only in the Farey set of
order 5.

It is very likely that our question can be solved for surfaces (cf. [1]).

2. ESTIMATES

For a positive integer N , consider the Farey set of order N defined by

FN = [0, 1]
⋂ N⋃

i=1

1

i
Z.

The following properties hold:

� x ∈ FN if and only if 1− x ∈ FN .

� The finite set FN decomposes the interval [0, 1) into finitely many disjoint
intervals [x, x′). For δ ∈ [0, 1), the unique interval which contains δ is

determined by the formulas x = max1≤i≤N
⌊iδ⌋
i , x′ = min1≤i≤N

1+⌊iδ⌋
i .

Denote x′ by δ+N .

Lemma 2.1. Let 0 ≤ x < x′ ≤ 1. Then (x, x′) ∩ FN = ∅ if and only if
⌊ix⌋+ ⌊i(1− x′)⌋ = i− 1 for every 1 ≤ i ≤ N .
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Proof. We have ⌊ix⌋+ ⌊i(1− x′)⌋ ≤ ix+ i(1− x′) < i. Therefore,

⌊ix⌋+ ⌊i(1− x′)⌋ ≤ i− 1.

We notice that (ix, ix′) ∩ Z = ∅ if and only if ⌊ix⌋ + 1 ≥ ⌈ix′⌉, that is
⌊ix⌋+⌊i(1−x′)⌋ ≥ i−1. So, (ix, ix′)∩Z = ∅ if and only if ⌊ix⌋+⌊i(1−x′)⌋ = i−1.

Finally, (x, x′) ∩ FN = ∅ if and only if (ix, ix′) ∩ Z = ∅ for every 1 ≤ i ≤
N .

Lemma 2.2. Let x < x′ be two consecutive elements of FN . Then:

1) x′ − x ≤ 1
N .

2) If x′ − x ≥ 1
N+1 , then x = 0 or x′ = 1.

Proof. We have two cases. Either the FN -interval is [0, 1
N ) or [N−1

N , 1),

of length 1
N , or x = p

q , x
′ = p′

q′ , where p, q, p′, q′ are positive integers such

that p′q − pq = 1, min(q, q′) ≥ 2 and max(q, q′) ≤ N < q + q′. We have
(q−1)(q′−1) > 1, since it is not possible that both q and q′ equal 2. Therefore
qq′ ≥ q + q′ + 1 ≥ N + 2. Then x′ − x = 1

qq′ ≤
1

N+2 .

Lemma 2.3. Let N ≥ 2, 0 ≤ b < 1, 1
2 ≤ δ < N−1+b

N . Then there exist

1 ≤ p < q ≤ N such that δ < p+b
q and p

q − δ < 1
N+1 .

Proof. Suppose δ ≥ N−1
N . Then, we can take p = N − 1, q = N . Suppose

δ < N−1
N . Let δ ∈ [x, x′) be the unique half-open ZN -interval which contains

it. We have 0 < x < x′ = p
q < 1. By Lemma 2.2.(2), x′ − x < 1

N+1 . Then

δ < p
q ≤ p+b

q and p
q − δ ≤ x′ − x < 1

N+1 .

Lemma 2.4. Let N ≥ 1 and b ∈ [0, 1).

1) N−1+b
N ≤ x < 1 if and only if ⌊ix− b⌋ = i− 1 for all 1 ≤ i ≤ N .

2) If N ≥ 2 and N−2+b
N−1 ≤ x < N−1+b

N , then ⌊Nx− b⌋ = N − 2.

Proof. 1) The implication ⇐= is clear. Now consider the converse. Let

1 ≤ i ≤ N . We have i− i+(N−i)b
N ≤ ix− b < i− b. Since b < 1, i+(N − i)b < i.

Therefore i− 1 < ix− b < i. Therefore ⌊ix− b⌋ = i− 1.
2) We have the following: N − 1 − 1−b

N−1 ≤ Nx − b < N − 1. Therefore
⌊Nx− b⌋ = N − 2.

Proposition 2.5. Let 0 ≤ b ≤ δ < 1, 0 ≤ b′ ≤ δ′ < 1, δ′ ≤ δ and
δ + δ′ ≤ 1. Let N ≥ 2. Then

⌊iδ − b⌋+ ⌊iδ′ − b′⌋ ≥ i− 1 for all 1 ≤ i ≤ N

if and only if one of the following holds:
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a) δ ≥ N−1+b
N , or

b) 1+b
2 ≤ δ < N−1+b

N and δ′ ≥ max{ q−p+b′

q ; 1 ≤ p < q ≤ N, δ < p+b
q }.

Moreover, δ ≥ 1− 1
N in case a). In case b), δ + δ′ > 1− 1

N+1 and δ′ ≥ 1
N (in

particular, δ + 2δ′ > 1). And δ′ = δ if and only if δ′ = δ = 1
2 , b = 0.

Proof. Let N = 2. The system of inequalities becomes ⌊2δ − b⌋+ ⌊2δ′ −
b′⌋ ≥ 1. That is 2δ − b ≥ 1 or 2δ′ − b′ ≥ 1. If 2δ − b ≥ 1, we are in case a). If
2δ′ − b′ ≥ 1, then δ′ ≥ 1

2 . Then δ ≥ 1
2 . Then δ = δ′ = 1

2 and b = b′ = 0. We
are in case a).

Let N ≥ 3. Suppose δ ≥ N−1+b
N . By Lemma 2.4.1), ⌊iδ−b⌋ = i−1 for all

1 ≤ i ≤ N . The system of inequalities is satisfied. Suppose δ < N−1+b
N . From

the case N = 2, we obtain

1 + b

2
≤ δ <

N − 1 + b

N
.

Suppose the system of inequalities is satisfied. Let 1 ≤ p < q ≤ N with
δ < p+b

q . Then p > qδ − b, that is p − 1 ≥ ⌊qδ − b⌋. The inequality for

i = q gives p − 1 + ⌊qδ′ − b′⌋ ≥ q − 1. Therefore ⌊qδ′ − b′⌋ ≥ q − p. That is

qδ′ − b′ ≥ q − p. Therefore δ′ ≥ q−p+b′

q . So b) holds.

Conversely, suppose b) holds. Let 1 ≤ i ≤ N . Let p = 1 + ⌊iδ − b⌋.
If p = i − 1, then ⌊iδ − b⌋ + ⌊iδ′ − b′⌋ ≥ ⌊iδ − b⌋ = i − 1. If p < i, then

1 ≤ p < i ≤ N and δ < p+b
i . By b) for q = i, we deduce δ′ ≥ i−p+b′

i . Then
⌊iδ′ − b′⌋ ≥ i − p. Therefore ⌊iδ − b⌋ + ⌊iδ′ − b′⌋ ≥ p − 1 + i − p = i − 1. We
conclude that the system of inequalities holds if it is equivalent to a) or b).

In case a), δ ≥ N−1+b
N ≥ 1 − 1

N . Consider case b). We have N ≥ 3. By

Lemma 2.3, there exists 1 ≤ p < q ≤ N such that δ < p+b
q and p

q − δ < 1
N+1 .

By b), δ′ ≥ q−p+b′

q . Therefore

δ + δ′ ≥ δ +
q − p

q
>

p

q
− 1

N + 1
+

q − p

q
= 1− 1

N + 1
.

From δ < N−1+b
N , we deduce δ′ ≥ 1+b′

N . In particular, we have that δ′ ≥ 1
N and

δ + 2δ′ > 1 + 1
N(N+1) .

Suppose δ′ = δ. Since δ ≥ 1+b
2 and δ + δ′ ≤ 1, we deduce δ = δ′ = 1

2 and
b = 0.

Remark 2.6. Let b ∈ [0, 1), let N ≥ 1. Consider the totally ordered finite
set [0, 1)∩{p+b

q ; 1 ≤ q ≤ N, p ∈ N}. The maximal element is N−1+b
N . If N = 1,

this is the only element. If N ≥ 2, the next largest element is N−2+b
N−1 .
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Corollary 2.7. Let 0 ≤ δ′ ≤ δ < 1, δ + δ′ ≤ 1, and N ≥ 2. Then
⌊iδ⌋+ ⌊iδ′⌋ ≥ i− 1 for all 1 ≤ i ≤ N if and only if δ+N + δ′ ≥ 1.

Proposition 2.8. Let 0 ≤ B ≤ ∆ be R-divisors on a nonsingular curve
such that ⌊∆⌋ = 0 and deg∆ ≤ 1. Let P be a point where ∆ attains its
maximal multiplicity, let P ′ be a point where ∆′ = ∆−δPP attains its maximal
multiplicity. Denote ∆′′ = ∆− δPP − δP ′P ′. Let N ≥ 2.

Then deg⌊i∆ − B⌋ ≥ i − 1 for all 1 ≤ i ≤ N if and only if ⌊N∆′′⌋ = 0
and ⌊iδP − bP ⌋+ ⌊iδP ′ − bP ′⌋ ≥ i− 1 for all 1 ≤ i ≤ N .

Proof. Suffices to show ⌊N∆′′⌋ = 0. We use induction on N .
Let N = 2. Suppose by contradiction ⌊2∆′′⌋ ̸= 0. Then ∆′′ has a coeffi-

cient δ′′ ≥ 1
2 and δP ≥ δP ′ ≥ δ′′ ≥ 1

2 . Then deg∆ ≥ 3
2 > 1, a contradiction.

Therefore ⌊2∆′′⌋ = 0.
Let N > 2. Suppose δP ≥ N−1+bP

N . In particular, deg∆′ ≤ 1
N . If

⌊N∆′⌋ ̸= 0, then δP ′ ≥ 1
N . Therefore ∆ = N−1

N P + 1
NP ′ and B ≤ 1

NP ′. Here,
∆′′ = 0. If ⌊N∆′⌋ = 0, then ⌊N∆′′⌋ = 0.

Suppose δP < N−1+bP
N .

Case N−2+bP
N−1 ≤ δP . Then ⌊NδP − bP ⌋ = N − 2. Denote B′ = B − bPP .

Our system of inequalities becomes deg⌊N∆′−B′⌋ ≥ 1. That is ⌊N∆′−B′⌋ ≠
0. That is NδQ − bQ ≥ 1 at some point Q ∈ supp∆′. We have

δP + δP ′ ≥ δP + δQ ≥ N − 2

N − 1
+

1

N
= 1− 1

(N − 1)N
.

From (N − 1)N > N , we deduce δP + δP ′ > 1 − 1
N . Therefore, deg∆′′ < 1

N .
Following, we have ⌊N∆′′⌋ = 0.

Case δP < N−2+bP
N−1 . By induction, ⌊iδP − bP ⌋ + ⌊iδP ′ − bP ′⌋ ≥ i − 1 for

all 1 ≤ i ≤ N − 1. By case b)N−1 of Proposition 2.5, δP + δP ′ > 1− 1
(N−1)+1 .

Therefore, deg∆′′ < 1
N and ⌊N∆′′⌋ = 0.

Corollary 2.9. Suppose ∆ ≥ 0, ⌊∆⌋ = 0 and deg∆ ≤ 1. Let P be
a point where ∆ attains its maximal multiplicity δ. Let P ′ be a point where
∆′ = ∆− δP attains its maximal multiplicity δ′. Denote ∆′′ = ∆− δP − δ′P ′.
Let N ≥ 2.

Then deg⌊i∆⌋ ≥ i − 1 for all 1 ≤ i ≤ N if and only if ⌊N∆′′⌋ = 0 and
δ+N + δ′ ≥ 1.

2.1. Case N = +∞

Let ∆ be an effective R-divisor on a nonsingular curve. Let δ be the
higher multiplicity of ∆, attained at P say. Let δ′ be the highest multiplicity
of ∆′ = ∆− δP . Note δ ≥ δ′.
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Lemma 2.10. Suppose deg∆ ≤ 1. Then deg⌊i∆⌋ ≥ i− 1 for all i ≥ 1 if
and only if ∆ = P or ∆ = δP + (1− δ)P ′ for some δ ∈

[
1
2 , 1

)
.

Proof. Let ⌊∆⌋ ≠ 0. That is ∆ ≥ P for some P . That is ∆ = P .
The inequalities are satisfied. Let ⌊∆⌋ = 0. From above, the highest two
coefficients of ∆ satisfy δ + δ′ ≥ 1 − 1

N , with N → ∞. Therefore δ + δ′ ≥ 1.
From deg∆ ≤ 1, we deduce δ′ = 1 − δ and ∆ = δP + (1 − δ)P ′. Here,
⌊iδ⌋+ ⌊i− iδ⌋ = i− (⌈iδ⌉ − ⌊iδ⌋) ≥ i− 1.

Corollary 2.11. We consider deg⌊i∆⌋ = i− 1 for all i ≥ 1 if and only
if ∆ = δP + (1− δ)P ′ for some δ ∈ [12 , 1] \Q.

Lemma 2.12. deg∆ ≤ 1, deg⌊i∆⌋ ≥ i − 1 (1 ≤ i ≤ N) if and only if
δ+N + δ′ ≥ 1.

Corollary 2.13. deg∆ ≤ 1, deg⌊i∆⌋ = i− 1 (1 ≤ i ≤ N) if and only if

� δ ∈ [N−1
N , 1), ⌊N∆′⌋ = 0, or

� δ′ ≥ 1 − δ+N and either deg∆ < 1, or deg∆ = 1 and i∆ /∈ Z for all
1 ≤ i ≤ N .

Proof. deg⌊i∆⌋ ≤ deg i∆ ≤ i. The equality follows if and only if deg∆ =
1, i∆ ∈ Z.

2.2. Fractions with bounded numerators

For l ∈ Z≥1, define Al to be the set of rational numbers x ∈ (0, 1) which
admit a representation x = p

q with p, q positive integers and p ≤ l.

Note that x ∈ (0, 1) belongs to Al if and only if { 1
x} belongs to the Farey

set of order l. If x ∈ Al, then {l′x} ∈ Al′l. We have inclusions Al ⊆ Al+1, and
maxAl =

l
l+1 .

The set 1−Al is related to the hyperstandard set [5] associated to Fl+1.

Lemma 2.14. Let x ≥ y belong to Al, with x + y = 1. Then x = p
q and

y = q−p
q for some 1 ≤ p ≤ l, p < q ≤ 2p, gcd(p, q) = 1. In particular, q ≤ 2l.

Lemma 2.15. Let x ∈ Al. Let N be the unique positive integer such that
x+N+1 < 1 ≤ x+N . Then N ≤ l + 1, and equality is attained only if x = l

l+1 .

Proof. Note thatN = ⌊ 1
1−x⌋. Let x = p

q be the reduced form, where p ≤ l.

Since x < 1, j = q−p is a positive integer. Then N = ⌊ 1
1−x⌋ = 1+⌊pj ⌋ ≤ 1+p.

Equality holds if and only if j = 1.
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Lemma 2.16. Let 1 > x ≥ y > 0 with x + y < 1. Let N be the unique
positive integer such that x+N+1 + y < 1 ≤ x+N + y. Suppose x, y are rational,

with reduced forms x = p
q , y = p′

q′ . Then N ≤ (p + 1)(p′ + 1), and equality is
attained if and only if

(x, y) =
( p

p+ 1
,

p′

1 + p′(p+ 1)

)
.

Proof. We have x < 1. Then x = p
p+j for some positive integer j. The

inequality y < 1− x is equivalent to q′ ≥ 1 + p′ + z, where z = ⌊pp
′

j ⌋. Denote

y′ = p′

1+p′+z . Then y ≤ y′ < 1− x.
Note that N + 1 is the smallest index of a rational number contained in

the interval (y, 1− x). We have two cases. If y < y′, then N + 1 ≤ 1 + p′ + z.
If y = y′, then N +1 ≤ 1+ p′+ z+ p+ j. We conclude that N ≤ p+ p′+ j+ z.

We claim that j+z ≥ 1+pp′ implies j = 1 or pp′ ≤ j. Indeed, we deduce
j + pp′

j ≥ 1 + pp′. If j > 1, we have pp′ ≤ j.

We claim that x < 1
2 implies N = 1. Indeed, suppose N ≥ 2. Then,

assume x+N ≤ 1
2 and y ≥ 1

2 such that we obtain y > x, a contradiction!
For x = 1

2 , we have p = j = 1. We have x > 1
2 if and only if p > j.

We conclude that N ≤ p+ p′ + 1+ pp′, and the equality is attained only
if j = 1 and y = y′.

Proposition 2.17. Let x ≥ y in Al with x+ y < 1. Let N be the unique
positive integer such that x+N+1 + y < 1 ≤ x+N + y. Then N ≤ (l + 1)2, and
equality is attained only for

(x, y) =
( l

l + 1
,

l

l2 + l + 1

)
.

3. SUCCESIVE VANISHING

Let C be a complex smooth projective curve, and B,L R-divisors on C
with B ≥ 0 and degL ≥ 0.

Lemma 3.1. |⌈K +B + L⌉| = ∅ if and only if one of the following holds:

1) C = P1, L ∼ 0, B ≤ P for some point P ∈ C.

2) C = P1, L ∼ Q−∆, ⌊∆⌋ = 0, B ≤ ∆ for some point Q ∈ C.

3) C is an elliptic curve, L ∼ Q− P , B = 0, for some point Q ̸= P .

In particular, degL ≤ 1.
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Proof. By Riemann–Roch and Serre duality, we have

−h0
(
−⌈B + L⌉

)
= g − 1 + deg⌈B + L⌉.

In particular, g ≤ 1. Note deg⌈B + L⌉ ≥ 0, with equality if and only if B = 0
and L is Cartier of degree 0. If g = 1, then B = 0, L is Cartier of degree zero,
and h0(−L) = 0 (case 3)).

Suppose g = 0. Then deg⌈B + L⌉+ h0(−⌈B + L⌉) = 1.

If deg⌈B + L⌉ = 0, then B = 0, L ∼ 0 (case 1)). Else deg⌈B + L⌉ = 1.
Denote ∆ = ⌈B + L⌉ − L. In particular, B ≤ ∆.

Case ⌊∆⌋ ̸= 0. That is ∆ ≥ P for some P ∈ C. Since degL ≥ 0 and
deg⌈B + L⌉ = 1, we obtain 0 ̸= B ≤ ∆ = P,L ∼ 0 (case 1)).

Case ⌊∆⌋ = 0. Choose any point Q ∈ C. Then L ∼ Q−∆ (case 2)).

Theorem 3.2. Let N ≥ 2. Then |⌈K + B + iL⌉| = ∅ for all 1 ≤ i ≤ N
if and only if one of the following holds:

1) C = P1, L ∼ 0, B ≤ P for some point P ∈ C.

2) C = P1, L ∼ Q −∆, ⌊∆⌋ = 0, B ≤ ∆ and deg⌊i∆ − B⌋ ≥ i − 1 for all
1 ≤ i ≤ N .

3) C is an elliptic curve, L ∼ Q−P , P /∈ Bs |iQ−(i−1)P | for all 1 ≤ i ≤ N ,
and B = 0.

Proof. From N = 1, we have three cases.

In case 1), K +B + iL ∼ −P for all i ≥ 1. Therefore |⌈K +B + iL⌉| = ∅
for all i ≥ 1.

In case 2), C is a rational curve, L ∼ Q −∆ for some point Q, ⌊∆⌋ = 0
and B ≤ ∆. Note that ∆ = ⌈L⌉−L, so ∆ is an intrinsic invariant of the linear
equivalence class of L. We have

K +B + iL ∼ K + iQ− (i∆−B) ∼ (i− 2)Q− (i∆−B).

So |⌈K +B + iL⌉| = ∅ if and only if deg⌊i∆−B⌋ ≥ i− 1.

Note ⌈K +∆+ 2L⌉ ∼ 0.

In case 3), C is an elliptic curve, L ∼ Q − P and |iL| = ∅ for every
1 ≤ i ≤ N . The linear system |iQ − (i − 1)P | is fixed, so the last property is
equivalent to P /∈ Bs |iQ− (i− 1)P | for all 1 ≤ i ≤ N .

The divisor L may have non-integer coefficients only in case 2). And in
this case, ∆ = ⌈L⌉ − L.
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Corollary 3.3. Let C = P1 and L an R-divisor with degL ≥ 0. Then
⌈K + iL⌉ = ∅ for all 1 ≤ i ≤ N if and only if there exists a ∈ k(C)× such that

(a) + L ≤ x′P ′ − xP,

where P ̸= P ′ and x < x′ are consecutive elements of FN . For each N , the
maximal elements are rational, and finitely many. For N = 1, the maximal
element is unique, equal to P ′. For N ≥ 2, there exists an integer 1 ≤ i ≤
(N − 1)N such that the linear system |iLmax| is free of degree 1.

Theorem 3.4. |⌈K +B + iL⌉| = ∅ for all i ≥ 1 if and only if one of the
following holds:

� C = P1, L ∼ 0, B ≤ P for some P .

� C = P1, L ∼ ϵ(P1 − P2), P1 ̸= P2, ϵ ∈ (0, 1), and either B = 0, or ϵ is
rational of index l and 0 ̸= B ≤ 1

lP1.

� C is an elliptic curve, L ∼ P1 − P2, |iP1 − (i− 1)P2| ̸= P2 for all i ≥ 1,
B = 0.

Proof. We may suppose C = P1.

Case ⌊∆⌋ ≠ 0. That is δ ≥ 1. Then δ = 1. Then ∆ = P,L ∼ 0 (first
case).

Case ⌊∆⌋ = 0. Let P be the point of maximal multiplicity for ∆ (assumed
non-zero). Then δ < 1. Let N(1− δ) > 1. Then case a)N does not occur. So
we are in case b)N . Therefore

δ + δ′ > 1− 1

N
.

Letting N → ∞, we obtain δ + δ′ ≥ 1. Then the equality holds. Then

∆ = δP + (1− δ)P ′, L ∼ (1− δ)(P − P ′).

We have K +B + iL ∼ K + iQ− (i∆−B). Therefore, vanishing holds up to
N if and only if

⌊iδ − b⌋+ ⌊i(1− δ)− b′⌋ ≥ i− 1 (i ≥ 1).

This is equivalent to

b+ b′ ≤ 1− {iδ − b} (i ≥ 1).

From i = 1, we deduce that b′ = 0. The system of inequalities becomes
1− b ≥ {iδ − b} for all i ≥ 1. If b = 0, it is satisfied. If b > 0, it is satisfied if
and only if δ is rational and b ≤ 1

q where q is the index of δ.
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3.1. An application

Let C be a proper smooth curve, let B be an effective R-divisor on C
such that deg(K +B) ≥ 0.

– Suppose deg⌊B⌋ ≥ 1. By Lemma 3.1, exactly one of the following holds:

a) deg⌊B⌋ = 1 and r(K +B) ∼ 0 for some positive integer r, or

b) |⌈K + ⌊B⌋+ n(K +B)⌉| ≠ ∅ for all n ≥ 1.

In case a), we may choose r minimal with this property, and then |⌈K+ ⌊B⌋+
n(K +B)⌉| ≠ ∅ if and only if r does not divide n.

– For the rest of this section, suppose ⌊B⌋ = 0. That is, B has coefficients
in [0, 1). Let m ∈ Z≥1. Suppose N ≥ 2 is an integer such that |⌈K + im(K +
B)⌉| = ∅ for every 1 ≤ i ≤ N .

By Theorem 3.2, C = P1 and there are two possibilities:

1) m(K +B) ∼ 0, or

2) m(K +B) ∼ Q−∆ where ⌊∆⌋ = 0 and deg⌊i∆⌋ ≥ i− 1 for 1 ≤ i ≤ N .

Consider case 2). Then ∆ = ⌈mB⌉ −mB. Write ∆ = δP + δ′P ′ +∆′′, where
P, P ′ are distinct points not contained in the support of ∆′′, 1 > δ ≥ δ′ ≥ 0
and δ′ is greater or equal to the coefficients of ∆′′. Since K+B is nef, we have
deg∆ ≤ 1. In particular, δ + δ′ ≤ 1. We have two cases:

2a) Suppose δ + δ′ = 1. Then ∆ = δP + (1 − δ)P ′ and 1
2 ≤ δ < 1. Since

Q ∼ P , we obtain m(K +B) ∼ (1− δ)(P − P ′).

2b) Suppose δ + δ′ < 1. By Corollary 2.9, deg⌊i∆⌋ ≥ i− 1 for all 1 ≤ i ≤ N
if and only if 1 ≤ δ+N + δ′ and ⌊N∆′′⌋ = 0.

By Lemma 2.15 and Proposition 2.17, we obtain.

Theorem 3.5. Suppose the smallest two (possibly equal) non-zero coeffi-
cients of {mB} are of the form 1− p

q , for some positive integers p, q with p ≤ l.
Then exactly one of the following holds:

a) nm(K +B) ∼ 0 for some 1 ≤ n ≤ 2l, or

b) |⌈K + nm(K +B)⌉| ≠ ∅ for some 1 ≤ n ≤ (l + 1)2 + 1.

The inequality in b) is attained for C = P1, m = 1, B = (1 − l
1+l )P +

(1− l
1+l+l2

)P ′. This resembles examples considered in [4].
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Corollary 3.6. Suppose the smallest two (possibly equal) non-zero co-
efficients of B are of the form 1− 1

q , for some positive integers q (i.e., standard
coefficients). Then exactly one of the following holds:

a) nm(K +B) ∼ 0 for some 1 ≤ n ≤ 2, or

b) |⌈K + nm(K +B)⌉| ≠ ∅ for some 1 ≤ n ≤ 5.

4. SUCCESSIVE BASE POINT

Let C/k be a nonsingular projective algebraic curve, let B,L be R-divisors
such that B ≥ 0 and degL ≥ 0. Let Q ∈ C be a closed point.

Proposition 4.1. Let D be a divisor on C. Then Q ∈ Bs |K+D| if and
only if Q /∈ Bs |Q−D|.

Proof. From the short exact sequence 0 → IQ(K +D) → OC(K +D) →
OQ → 0, we deduce that Q ∈ Bs |K + D| if and only if the homomorphism
H1(K +D −Q) → H1(K +D) is not injective. By Serre duality, this means
that Γ(−D) → Γ(−D +Q) is not surjective. That is Q /∈ Bs | −D +Q|.

Theorem 4.2. Q ∈ Bs |⌈K +B + L⌉| if and only if one of the following
holds:

1) L ∼ Q− P (Q ̸= P ), B = 0.

2) L ∼ Q− P , 0 ̸= B ≤ P .

3) L ∼ Q−∆, ⌊∆⌋ = 0, B ≤ ∆.

Proof. Our assumption is equivalent to Q /∈ Bs |Q− ⌈B + L⌉|. In partic-
ular, deg⌈B + L⌉ ≤ 1.

Case deg⌈B + L⌉ = 0. Then B = 0, L has integer coefficients and has
degree zero. Following, D = P for some point P ̸= Q. We are in case 1).

Case deg⌈B + L⌉ = 1. Then D = 0, so ⌈B + L⌉ ∼ Q and we denote
∆ = ⌈B + L⌉ − L. Then B ≤ ∆, L ∼ Q − ∆. The property ⌈B + L⌉ ∼ Q
translates into ⌊∆ − B⌋ = 0. If ⌊∆⌋ = 0, this property holds (case 3)). If
⌊∆⌋ ≠ 0, we deduce from deg∆ ≤ 1 that ∆ = P for some point P ∈ C and
0 ̸= B ≤ P (case 2)).

Remarks:

– If L1 ∼ L2, then ⌈L1⌉ − L1 = ⌈L2⌉ − L2 and L1 − ⌊L1⌋ = L2 − ⌊L2⌋;
– deg⌈L⌉ is 0 in cases 1),2), and 1 in case 3). In case 3), ∆ = ⌈L⌉ − L;
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– We have ⌈K+B+L⌉ ∼ K+Q−P (Q ̸= P ) in case 1), and ⌈K+B+L⌉ ∼
K +Q in cases 2), 3);

– |K +Q| is empty if C = P1, |K|+Q if g ≥ 1;

– |K +Q− P | (Q ̸= P ) is empty if g ≤ 1, |K − P − P ′|+Q+ P ′ if C is
hyperelliptic of genus g ≥ 2 (where P +P ′ is the fiber of C → P1) , |K−P |+Q
if C is non-hyperelliptic of genus g ≥ 2.

In particular, if the linear system |⌈K + B + L⌉| is not empty, its fixed
part has degree 0, 1 or 2.

– It follows that B is a boundary and ⌊B⌋ ≠ 0 if and only if B = P,L ∼
Q− P (so P is uniquely determined by B).

Lemma 4.3. Q ∈ Bs |⌈K + B + iL⌉| for 1 ≤ i ≤ 2 if and only if one of
the following holds:

1) L ∼ Q− P (Q ̸= P ), Q /∈ Bs |2P −Q|, B = 0.

2) L ∼ 0, 0 ̸= B ≤ P ∼ Q.

3) L ∼ Q−∆, ⌊∆⌋ = 0, B ≤ ∆, Q /∈ Bs |⌊2∆−B⌋ −Q|.

Proof. From N = 1, we have three cases:

1) L ∼ Q−P , Q ̸= P , B = 0. The new condition is Q /∈ Bs |Q−2(Q−P )|.
That is Q /∈ Bs |2P −Q|.

2) L ∼ Q−P , 0 ̸= B ≤ P . The new condition is Q /∈ Bs |Q−⌈B+2(Q−
P )⌉|. That is Q /∈ Bs |⌊2P − B⌋ − Q|. In particular, deg⌊2P − B⌋ ≥ 1. That
is 0 ̸= B ≤ 1

2P . Then ⌊2P −B⌋ = P . The condition becomes Q /∈ Bs |P −Q|.
Therefore P ∼ Q. Therefore L ∼ 0.

3) L ∼ Q−∆, ⌊∆⌋ = 0, B ≤ ∆. The new condition is Q /∈ Bs |Q− ⌈B +
2Q− 2∆⌉|. That is Q /∈ Bs |⌊2∆−B⌋ −Q|.

Theorem 4.4. Let N ≥ 2. Then Q ∈ Bs |⌈K + B + iL⌉| for 1 ≤ i ≤ N
if and only if one of the following holds:

1) L ∼ Q− P (Q ̸= P ), Q /∈ ∪N
i=2Bs |iP − (i− 1)Q|, B = 0.

2) L ∼ 0, 0 ̸= B ≤ P ∼ Q.

3) L ∼ Q−∆, ⌊∆⌋ = 0, B ≤ ∆, Q /∈ ∪N
i=2Bs |⌊i∆−B⌋ − (i− 1)Q|.

It remains to classify case 3): suppose L ∼ Q−∆, ⌊∆⌋ = 0, B ≤ ∆.

Note ⌊i∆−B⌋ ≤ i∆−B ≤ i∆ and deg∆ ≤ 1. Therefore deg⌊i∆−B⌋ ≤ i,
and equality holds if and only if B = 0,deg∆ = 1, iB ∈ Z. Therefore Q /∈
Bs |⌊i∆−B⌋ − (i− 1)Q| if and only if
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� B = 0, deg∆ = 1, i∆ ∈ Z, Q /∈ Bs |i∆− (i− 1)Q|, or

� ⌊i∆−B⌋ ∼ (i− 1)Q.

Lemma 4.5. Let P1 ̸= P2, P1 ∼ P2. Then C ≃ P1.

Below, if we write ∆ = δ1P1 + δ2P2, we mean P1 ̸= P2 too.

Lemma 4.6. Q ∈ Bs |⌈K + B + 2L⌉| if and only if one of the following
holds:

� ∆ = 1
2P1 +

1
2P2, Q /∈ Bs |P1 + P2 −Q|, B = 0.

� ∆ = 1
2P1 +

1
2P2, Q ∼ P1, 0 ̸= B ≤ P2.

� ⌊2∆⌋ ∼ Q,B ≤ min(∆, {2∆}).

Proof. Go through cases 1, 2, 3 of Theorem 4.3.

Lemma 4.7. Q ∈ ∩3
i=2Bs |⌈K+B+iL⌉| if and only if one of the following

holds:

� C ≃ P1, ∆ = 1
2P1 +

1
2P2, B ≤ 1

2P2. N = +∞.

� C ≃ P1,∆ = 2
3P1 +

1
3P2, 0 ̸= B ≤ 1

3P1. N = +∞.

� ∆ = 2
3P1 +

1
3P2, Q ∼ P1, B ≤ 1

3P2.

� ⌊i∆⌋ ∼ (i− 1)Q (1 ≤ i ≤ 3), B ≤ min3i=1{i∆}.

Proof. For each solution in Lemma 4.6, go through cases 1, 2, 3 of The-
orem 4.4.

Theorem 4.8. Let L ∼ Q − ∆, ⌊∆⌋ = 0, B ≤ ∆, and N ≥ 3. Then
Q ∈ ∩N

i=1Bs |⌈K +B + iL⌉| if and only if one of the following holds:

1) C ≃ P1, ∆ = δP1 + (1− δ)P2, δ ∈ ZN ∩ [12 ,
N−1
N ), and B ≤ 1

lPj for j = 1
or 2, where l = index(δ).

2) C ≃ P1,∆ = N−1
N P1 +

1
NP2, 0 ̸= B ≤ 1

NP1.

3) ∆ = N−1
N P1 +

1
NP2, Q ∼ P1, B ≤ 1

NP2.

4) ⌊i∆⌋ ∼ (i− 1)Q (1 ≤ i ≤ N), B ≤ minNi=1{i∆}.
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Proof. We use induction on N . We do case N = 3 by hand. Let N > 3.
We consider separately the solutions for N − 1, and impose the new condition
Q ∈ Bs |⌈K +B +NL⌉|, using Theorem 4.2.

Case (1)N−1, (2)N−1: here, one must show N → ∞ (must write down).
Case (3)N−1: Let ∆ = N−2

N−1P1 + 1
N−1P2, Q ∼ P1, B ≤ 1

N−1P2. Since
N∆ /∈ Z, only case 3) of Theorem 4.2 may apply for NL. The new condition
is NL ∼ Q − ∆N , ⌊∆N⌋ = 0, B ≤ ∆N . We obtain ∆N ∼ N∆ − (N − 1)Q.
That is ∆N = {N∆} and ⌊N∆⌋ ∼ (N − 1)Q. We have

N∆ =
(
N − 2 +

N − 2

N − 1

)
P1 +

(
1 +

1

N − 1

)
P2.

Therefore ⌊N∆⌋ = (N − 2)P1 + P2. Then (N − 2)P1 + P2 ∼ (N − 1)Q. Then
P2 ∼ P1. Since P1 ̸= P2, we obtain C ≃ P1. The condition B ≤ ∆N is already
satisfied. We obtain C ≃ P1,∆ = N−2

N−1P1+
1

N−1P2, B ≤ 1
N−1P2, which belongs

to case (1)N .
Case (4)N−1: suppose case 3) of Theorem 4.2 applies to NL. That is

NL ∼ Q − ∆N , ⌊∆N⌋ = 0, B ≤ ∆N . As above, we obtain ∆N = {N∆},
⌊N∆⌋ ∼ (N − 1)Q. We obtain case (4)N .

Suppose now that cases 1) or 2) of Theorem 4.2 apply to NL. That is
N∆ ∼ (N − 1)Q+ PN , and either Q ̸= PN , B = 0, or 0 ̸= B ≤ PN . We have

N∆ ∼ (N − 1)Q+ PN .

Now ∆ has degree one. It has at least two coefficients.
Case δ ≥ N−1

N . Then δ ≥ N−1
N . Then ∆ = N−1

N P1+
1
NP2. The conditions

become P1 ∼ Q,PN ∼ P2.
Case δ < N−1

N . Then δ+δ′ > 1− 1
N+1 . Since N∆ ∈ Z, we deduce ∆′′ = 0.

Therefore ∆ = δP1 + (1 − δ)P2, and iδ /∈ Z for every 1 ≤ i ≤ N − 1. Since
2∆ /∈ Z, we have δ ̸= 1

2 . Therefore δ ∈ (12 ,
N−1
N ). Consequently, ⌊2∆′⌋ = 0. The

condition ⌊2∆⌋ ∼ Q becomes P1 ∼ Q. Set j = ⌈ 1
1−δ ⌉, so that ⌊j(1 − δ)⌋ = 1.

We have δ < N−1
N . Since δ ∈ ZN , we obtain δ ≤ N−2

N−1 . Since (N − 1)δ /∈ Z, we
obtain δ < N−2

N−1 . Therefore j ≤ N − 1. Then ⌊j∆⌋ ∼ (j − 1)Q and P1 ∼ Q

imply P2 ∼ Q. Then P1 ∼ P2. Therefore C ≃ P1. We obtained two cases:

� ∆ = N−1
N P1 +

1
NP2, P1 ∼ Q,PN ∼ P2.

� C = P1, ∆ = δP1 + (1− δ)P2, and δ < N−1
N , δ ∈ ZN \ ZN−1.

It remains to understand the condition on B too. First case: (3)N or (2)N .
Second (1)N .

Corollary 4.9. Q ∈ Bs |⌈K + B + iL⌉| for every i ≥ 1 if and only if
one of the following holds:
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1) L ∼ Q− P (Q ̸= P ), Q /∈ ∪i≥2Bs |iP − (i− 1)Q|, B = 0.

2) L ∼ 0, 0 ̸= B ≤ P ∼ Q.

3) C ≃ P1, L ∼ ϵ(P1 − P2) (P1 ̸= P2), ϵ ∈ (0, 12 ], and either ϵ /∈ Q and
B = 0, or ϵ ∈ Q and B ≤ 1

lPj for j = 1 or 2, where l ≥ 1 is minimal
such that lϵ ∈ Z.

Proof. We use Theorem 4.8 for every N . The first two cases are valid for
all N . Two cases remain:

3a) C = P1, L ∼ Q − (δP1 + (1 − δ)P2), δ ∈ [12 , 1) ∩ Q and B ≤ 1
lPj for

some j = 1, 2, where l is the index of δ.
3b) L ∼ Q−∆, ⌊∆⌋ = 0, ⌊i∆⌋ ∼ (i− 1)Q for all i ≥ 1, B ≤ infi≥1{i∆}.

By diophantine approximation, the last condition becomes B = 0. By Corol-
lary 2.12, ∆ = δP1 + (1− δ)P2 with δ ∈ [12 , 1) \Q. Finally,

⌊iδ⌋P1 + ⌊i− iδ⌋P2 ∼ (i− 1)Q (i ≥ 1).

Since δ ̸= 1
2 , we have δ′ < 1

2 . Therefore, the condition for i = 2 becomes
P1 ∼ Q. Let j = ⌈ 1

1−δ ⌉. Then ⌊j − jδ⌋ = 1. The condition for j becomes

P2 ∼ Q. Therefore P1 ∼ P2, so we have C ≃ P1.
Note that L ∼ Q− (δP1 + (1− δ)P2) ∼ (1− δ)(P1 − P2).
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