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In this paper, we characterize the compact orbifolds, quotients X = D/Γ of a
bounded symmetric domain D of tube type by the action of a discontinuous
group Γ, as those projective orbifolds with ample canonical divisor possessing a
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INTRODUCTION

Let M be a simply connected complex manifold, and Γ be a properly
discontinuous group of automorphisms (biholomorphic self-maps) of M .

Then the quotient complex analytic space X =M/Γ is a normal complex
space.

In the case where the action of Γ is quasi-free, namely, Γ acts freely
outside of a closed complex analytic set of codimension at least 2, we just
consider the normal complex space X; but, in the case where the set Σ of
points z ∈M whose stabilizer is nontrivial has codimension 1, it is convenient
to replace X by the complex global orbifold X , consisting of the datum of X
and of the irreducible Weil divisors Di ⊂ X, whose union is the codimension 1
part of the branch locus B of p :M → X (B = p(Σ) is the set of critical values
of p): each divisor Di is marked with the integer mi which is the order of the
stabilizer group at a general point of the inverse image of Di.

The more general case where Γ′ is a properly discontinuous group of au-
tomorphisms of any (connected) complex manifold M ′ reduces to the previous
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one by taking M to be the universal covering of M ′ and letting Γ be the group
of lifts to M of elements of Γ′.

One says that the above global orbifold X is good if Γ admits a finite
index normal subgroup Λ which acts freely (this holds if Λ is torsion free), with
quotient a compact complex manifold Y =M/Λ: in this case X = Y/G, where
G is the finite quotient group G := Γ/Λ.

Particularly interesting are the cases where M is a contractible domain
M = D ⊂ Cn: in this case Y is a classifying space K(Λ, 1) for the group
Λ, whereas (see Section 1) X is an orbifold classifying space for the orbifold
fundamental group Γ of X .

The easiest example is the case where D = Cn, Y is a complex torus
Y = Cn/Λ, and X is a finite quotient of a complex torus: this case was
considered in [15], and can be classified by simply saying that Γ is an arbitrary
abstract even crystallographic group, endowed with a complex structure on
Λ⊗ C.

A more difficult case is the case where D ⊂⊂ Cn is a bounded symmetric
domain (see [25], [24] and also [32], [17]). Again, we have a good global orbifold,
by virtue of the so-called Selberg’s Lemma ([35], [9]).

In the case where Γ acts freely, we have a so-called locally-symmetric
manifold, and there is a vast literature devoted to their possible characteriza-
tions, some final touch with rather explicit criteria being contained in our work
with Di Scala, [17], [18].

The purpose of this note is to apply the idea, as in [15], to use orbifolds
in order to deal with the case of a non-free action of Γ. At least what is easier
here is that necessarily X must be projective, and indeed by [30], the canonical
divisor KY and the orbifold canonical divisor

KX := KX + D̂ := KX +
∑
i

mi − 1

mi
Di

must be ample.

We have a priori two options for the assumptions to be made, for instance,
we can consider the more general orbifolds introduced in [12] (see also [13], 5.5
and 5.8, and 6.1 of [14]) or the more special Deligne–Mostow orbifolds ([19],
Section 14), locally modelled as quotients of a smooth manifold by a finite
group; in the quasi-free case, where all the multiplicities mi = 1, the Orbifold
fundamental group πorb1 (X ) is the fundamental group π1(X

∗) of the smooth
locus X∗ of X, while in general Γ := πorb1 (X ) is a quotient of π1(X \D).

On the differential geometric side, the input is simpler, see [16], [17], in
the case where D is of tube type, which means that D is biholomorphic to a
tube domain T = V + iC, where V is a real vector space and C ⊂ V is an open
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self-dual convex cone containing no lines.
In fact, the main concept in the tube case is the one of a nontrivial slope

zero tensor

(1) 0 ̸= ψY ∈ H0
(
Smn(Ω1

Y )(−mKY )
)
,

(here, n := dim(Y )) which characterizes the locally symmetric manifolds of
tube type, together with the property that KY is ample.

Now, ψ descends to a meromorphic section 0 ̸= ψX on X of

(2) Smn
(
Ω1
X(logD)

)(
−m(KX +D)

)
.

Conversely, such a tensor ψX on X lifts to a holomorphic tensor ψY only if it
is orbifold type, meaning that some vanishing conditions are to be imposed
(see Section 1 for precise definitions).

Our first result is the following:

Theorem 0.1. The global compact complex orbifolds X of bounded sym-
metric domains D of tube type (i.e., D is a product of irreducible bounded
symmetric domains of tube type) are the projective complex orbifolds such that:

(1) their orbifold fundamental group Γ admits a torsion free normal finite
index subgroup Λ,

(2) X admits a meromorphic slope zero tensor 0 ̸= ψX (a meromorphic sec-
tion of Smn(Ω1

X(logD))(−m(KX +D))) which is of orbifold type,

(3) KX := KX +
∑

i
mi−1
mi

Di is ample,

and

(i) the corresponding Galois covering Y → X = X/G (G := Γ/Λ) is smooth,
equivalently, the orbifold universal cover of X is smooth, or

(i’) Y has singularities which are 2-homologically connected, that is, they have
a resolution of singularities π : Y ′ → Y with Rjf∗(ZY ′) = 0, for j = 1, 2.

Moreover, X should be an orbifold classifying space.

Our main result is instead:

Theorem 0.2. The global compact complex orbifolds X of bounded sym-
metric domains D of tube type (i.e., D is a product of irreducible bounded
symmetric domains of tube type) are the projective complex orbifolds such that:

(1) their orbifold fundamental group Γ admits a torsion free normal finite
index subgroup Λ,
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(2) X admits a meromorphic slope zero tensor 0 ̸= ψX (a meromorphic sec-
tion of Smn(Ω1

X(logD))(−m(KX +D))) of orbifold type,

(3) KX := KX +
∑

i
mi−1
mi

Di is ample,

and

(ii) X is a Deligne–Mostow complex projective orbifold, and X is an orbifold
classifying space.

One may speculate/ask whether condition (ii) may be replaced by the
weaker assumption that X has KLT singularities.

1. COMPLEX ORBIFOLDS, DELIGNE–MOSTOW ORBIFOLDS,
ORBIFOLD FUNDAMENTAL GROUPS, ORBIFOLD

COVERINGS

This section is an abridged version of the corresponding section of [15],
so here, we are quicker in the exposition.

Definition 3 (compare [13, Definition 5.5] and [19, Section 4]). Let Z be
a normal complex space, let D be a closed analytic set of Z containing Sing(Z),
and let {Di|i ∈ I} be the irreducible components of D of codimension 1.

(1) Attaching to each Di a positive integer mi ≥ 1, we obtain a complex
orbifold (Z,D, {mi|i ∈ I}).

(2) The orbifold fundamental group πorb1 (Z \D, (m1, . . . ,mr, . . . )) is de-
fined as the quotient

πorb1

(
Z \D, (m1, . . . ,mr, . . . )

)
:= π1(Z \D)/

〈
⟨(γm1

1 , . . . , γmr
r , . . . ⟩

〉
of the fundamental group of (Z \D) by the subgroup normally generated
by simple geometric loops γi going each around a smooth point of the
divisor Di (and counterclockwise).

(3) The orbifold is said to be quasi-smooth or geometric if moreover Di is
smooth outside of Sing(Z).

(4) The orbifold is said to be a Deligne–Mostow orbifold if moreover, for
each point z ∈ Z, there exists a local chart ϕ : Ω → U = Ω/G, where
0 ∈ Ω ⊂ Cn, G is a finite subgroup of GL(n,C), ϕ(0) = z, U is an open
neighbourhood of z, and the orbifold structure is induced by the quotient
map. That is, D ∩ U is the branch locus of Φ, and the integers mi are
the ramification multiplicities.
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(5) An orbifold is said to be reduced (or impure) if all the multiplicities
mi = 1.

(6) We identify two orbifolds under the equivalence relation generated by
forgetting the divisors Di with multiplicity 1.

Remark 4. (i) A D-M (= Deligne–Mostow) orbifold is quasi-smooth,
and the underlying complex space Z has only quotient singularities (these
are rational singularities).

(ii) In the case where we have a reduced orbifold, that is, there is no diviso-
rial part, then the orbifold fundamental group is the fundamental group
of Z \ Sing(Z).

(iii) If Z =M/Γ is the quotient of a complex manifold by a properly discontin-
uous subgroup Γ, then Z is a D-M orbifold, since any stabilizer subgroup
is finite (Γ being properly discontinuous) and by Cartan’s Lemma ([6])
the action of the stabilizer subgroup becomes linear after a local change
of coordinates.

(iv) one could more generally consider a wider class of orbifolds allowing also
the multiplicity mi = ∞: this means that the relation γmi

i = 1 is a void
condition; this more general case is useful to deal with the compactifica-
tions of finite volume quotients X = D/Γ (see, for instance, [1]).

Now, to a subgroup of the orbifold fundamental group corresponds a
connected orbifold covering of orbifolds, (see, for instance, [19]), in particular
to the trivial subgroup corresponds the orbifold universal cover(

Z̃, D̃, {m̃j}
)
.

Definition 5. We say that an orbifold (Z,D, (mj)) is an orbifold classify-
ing space if its universal covering (Z̃, D̃, {m̃j}) satisfies the properties

(a) either Z̃ is contractible and the multiplicities m̃j are all equal to 1, or

(b) there is a homotopy retraction of Z̃ to a point which preserves the subdivi-
sor D̃′ consisting of the irreducible components with multiplicity m̃j > 1.

Definition 6. The orbifold canonical divisor is defined as

KX := KX + D̂ := KX +
∑
i

mi − 1

mi
Di.

It satisfies the property that, for an orbifold covering f : Y → X , we have

f∗(KX ) = KY .
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2. LOCALLY SYMMETRIC MANIFOLDS OF TUBE TYPE AND
DESCENT OF SLOPE ZERO TENSORS

As mentioned in the Introduction, a bounded symmetric domain D is of
tube type if D is biholomorphic to a tube domain T = V + iC, where V is a
real vector space and C ⊂ V is an open self-dual convex cone containing no
lines.

Recall the notation for the classical domains:

� In,p is the domain D = {Z ∈Mn,p(C) : Ip −t Z · Z > 0}.

� IIn is the intersection of the domain In,n with the subspace of skew
symmetric matrices.

� IIIn is the intersection of the domain In,n with the subspace of symmetric
matrices.

� IVn is the Lie Ball in Cn,{
z||z21 + · · ·+ z2n| < 1, 1 + |z21 + · · ·+ z2n|2 − 2

(
|z1|2 + · · ·+ |zn|2

)
> 0

}
.

Moreover, there are the exceptional domains D16 of dimension 16 and D27

of dimension 27 (related to 2× 2 and 3× 3 matrices over the Cayley algebra).
The tube domain condition excludes the domains In,p with n ̸= p.
The following result was shown in [17], based on the concept of a slope

zero tensor mentioned in the Introduction, see (1):

0 ̸= ψY ∈ H0
(
Smn(Ω1

Y )(−mKY )
)
.

Theorem 2.1. Let X be a compact complex manifold of dimension n.
Then the following two conditions hold:

(1) KX is ample

(2) X admits a nontrivial slope zero tensor ψX ∈ H0(Smn(Ω1
X)(−mKX))

(here, m is a positive integer)

if and only if X ∼= Ω/Γ, where Ω is a bounded symmetric domain of tube type
and Γ is a cocompact discrete subgroup of Aut(Ω) acting freely.

Moreover, the degrees and the multiplicities of the irreducible factors of
the polynomial ψp (the evaluation of ψ at a point p) determine uniquely the

universal covering X̃ = Ω.
In particular, for m = 2, we get that the universal covering X̃ is a polydisk

if and only if ψp is the square of a squarefree polynomial (indeed, of a product
of linear forms).
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Now, if X is a global orbifold of a symmetric bounded domain D of tube
type, associated to a properly discontinuous subgroup Γ of biholomorphisms of
D, then by Selberg’s Lemma the group Γ admits a finite index normal subgroup
Λ and the compact complex manifold Y := D/Λ fulfils conditions (1) and (2)
of Theorem 2.1, in particular, it admits a nontrivial slope zero tensor ψY .

Since X = Y/G, G = Γ/Λ, we want to show that ψY , which is clearly G-
invariant, descends to some meromorphic tensor ψ∗

X on the smooth locus X∗

of X. Then, we define

ψX := i∗(ψ
∗
X), for i : X∗ → X being the inclusion.

In order to achieve our goal, let us consider now the following local situ-
ation.

Lemma 2.2. Consider the action of the cyclic group µq of roots of unity
at the origin in Y := Cn, via the action, for ζ ∈ µq:

(x, z) := (x1, . . . , xn−1, z) 7→ (x, ζz),

with quotient map π : Y → X,

π : (x, z) := (x1, . . . , xn−1, z) 7→ (x, y), y := zq.

Then, a G-invariant slope zero holomorphic tensor

0 ̸= ψ ∈ H0
(
Smn(Ω1

Y )(−mKY )
)

descends to a tensor 0 ̸= ϕ, a meromorphic section of (here D = div(y))

Smn
(
Ω1
X(logD)

)(
−m(KX +D)

)
.

Proof. Write ψ as (here, r + |I| = mn)

mn∑
r=0

∑
|I|=mn−r

AI(x, z)
(dx)Idzr

(dx1 ∧ · · · ∧ dxn−1 ∧ dz)m

=
mn∑
r=0

∑
I,h

BI,h(x)z
h (dx)Idzr

(dx1 ∧ · · · ∧ dxn−1 ∧ dz)m

=

mn∑
r=0

∑
I,h

BI,h(x)q
−r+mzh+r−m (dx)Id(log y)r(

dx1 ∧ · · · ∧ dxn−1 ∧ d(log y)
)m .

G-invariance is equivalent to the condition that q divides h + r − m, hence
h = bq +m− r, and we have, downstairs on X, the tensor

ϕ :=

mn∑
r=0

∑
I,h

q−r+mBI,h(x) y
b (dx)Id(log y)r(
dx1 ∧ · · · ∧ dxn−1 ∧ d(log y)

)m .
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The holomorphic part of the tensor ϕ is the sum of the series where b ≥ 0, that
is, corresponding to the terms with

h+ r ≥ m.

Its order of pole on D is at most −b = [mq ].

Definition 7. We say that the meromorphic tensor ϕ is of orbifold type
if conversely its pull back ψ to any orbifold covering with multiplicities ≤ 1 is
holomorphic: this means that we only have terms with b such that bq+m ≥ r.

Remark 8. (i) Since in the case of a good global orbifold quotient the
slope tensor of Y cannot vanish on a divisor, the case h = 0 must occur, hence,
it follows that q|(m− r) if we have a nonzero term with h = 0 and given r.

(ii) In the case of a polydisk D, we have semispecial tensors (see [17]),
hence, we may assume that m = 1 in the previous lemma, and it follows that
these descend to the quotient as holomorphic tensors.

3. PROOF OF THE MAIN THEOREMS

We begin with some general observations, valid also for the speculation
made in the Introduction.

First of all, we concentrate especially on the necessity parts of the state-
ments; observe that X = Y/G is a Deligne–Mostow orbifold and the singulari-
ties ofX are quotient singularities, since, at any point y ∈ Y having a nontrivial
stabilizer Gy < G, the group Gy acts linearly by Cartan’s Lemma [6]. Since D
is contractible, X is an orbifold classifying space.

By [31] (Proposition 5.15, p. 158), quotient singularities (X,x) are ra-
tional singularities, that is, they are normal and, if f : Z → X is a local
resolution, then Rif∗OZ = 0 for i ≥ 1. They enjoy also the stronger property
of being KLT (Kawamata Log Terminal) singularities.

Indeed, Proposition 5.22 of [31] (where dlt=KLT if there is no bound-
ary divisor ∆,∆′) says that KLT singularities are rational singularities, while
Proposition 5.20, p. 160, says that if we have a finite morphism between normal
varieties, F : Y → X, then X is KLT if and only if Y is KLT).

Hence, conversely, if we start with a Deligne–Mostow orbifold X, the
corresponding finite covering Y is Deligne–Mostow, and if X is KLT, then also
Y is KLT.

First important principle. In both cases (ii), (iii), the normal com-
plex space Y has rational singularities.
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Moreover, Y is projective if and only if X is projective (by averaging, we
can find on Y a G-invariant very ample divisor).

We pass now to the converse implications.

Key argument. We consider the orbifold covering Y associated to the
normal torsion free subgroup

Λ < Γ := πorb1 (X),

and we show that Y is a locally symmetric manifold.

Lemma 3.1. The orbifold Y is just a normal complex space, that is, there
are no marked divisors with multiplicity mi ≥ 2.

Proof. Consider the exact sequence

1 → Λ → Γ → G→ 1.

Then the generators γi have finite order mi, hence, their image in G has
order exactly mi, because Λ is torsion free.

This means that the covering Y → X is ramified with multiplicity mi at
the divisor Di, and therefore, its inverse image in Y is a reduced divisor with
multiplicity 1.

3.1. Proof of Theorem 0.1

Case (i): if we assume that Y is smooth, then Y admits a nontrivial slope
zero tensor, and we may directly invoke Theorem 2.1, using that by (3), X and
Y have ample canonical divisor, since KY = π∗(KX ).

Similarly, if the universal covering is smooth, also Y is smooth, because
by assumption Λ is torsion free and the stabilizers are finite, whence Λ acts
freely.

Case (i’): as in [15], we prove that Y must be smooth.
Let Y ′ be a resolution of Y . Since by assumption R1f∗(ZY ′) = 0 (this is

true, for instance, if Y has rational singularities) and R2f∗(ZY ′) = 0, we have
an isomorphism

Hj(Y ′,Q) ∼= Hj(Y,Q), j = 1, 2.
Hence, the degree 1 morphism α : Y ′ → Y yields an isomorphism of first

and second cohomology groups.
We follow a similar argument to the one used in [10], proof of Proposi-

tion 4.8: it suffices to show that α is finite, because then α, being finite and
birational, is an isomorphism Y ′ ∼= Y by normality, hence, we have shown that
Y is smooth and we proceed as for case (i).
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Now, if α is not finite, there is a curve C which is contracted by α,
hence, its homology class c ∈ H2(Y

′,Q) maps to zero in H2(Y,Q). And,
since H2(Y,Q) ∼= H2(Y ′,Q), the class c of C, by the projection formula, is
orthogonal to the whole of H2(Y ′,Q), which is the pull back of H2(Y,Q).

This is a contradiction because, Y ′ being projective, the class c of C
cannot be trivial.

3.2. Proof of Theorem 0.2

By (ii), X is a Deligne–Mostow orbifold, hence, also Y is a Deligne–
Mostow orbifold, therefore, Y is a normal space with quotient singularities
(and these are rational singularities)1.

We need now to mimic the proof in the case where Y is smooth, for
instance, the proof of Theorem 2.1, extending it to the case of a normal space
Y with quotient singularities 2.

The first ingredient is: the existence of a complete Kähler–Einstein metric
on the orbifold Y with ample KY . This was first proven in dimension 2 in [29]
(see also [36] for the techniques used) and was proven later on in a more general
situation in [7] and [20].

The second ingredient is Proposition 5.4 of [8]: take the orbifold universal
covering Ỹ of Y , and let Y ′ be its smooth part. Then there exists a De Rham
decomposition of Riemannian manifolds

Y ′ =
∏
i

Y ′
i ,

where the holonomy action on each factor is irreducible.

Now, the slope zero tensor is parallel for the Levi-Civita connection (by
the Bochner principle, since the slope is zero), as proven by S. Kobayashi in [26],
hence all the factors have holonomy different from the Unitary group.

Since KY is ample, there are no flat factors, and by the Theorem of
Berger [3] and Simons the holonomy of each factor is the holonomy of an
irreducible bounded symmetric domain.

Now, the orbifold metric on Ỹ is complete, since the metric on the orbifold
Y is complete; and for each i, we can take the completion Ỹi, hereby obtaining
a decomposition for Ỹ .

1Similarly, under assumption (iii), Y has KLT singularities, which are also rational singu-
larities.

2Pay attention: the orbifolds of [8] are the D-M orbifolds with all mi ≤ 1, that we call
here of reduced type!
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Now, Y ′
i ⊂ Ỹi admits a holomorphic map f ′i to an irreducible bounded

symmetric domain Di: by the Hartogs property, fi extends to a holomorphic
map

fi : Ỹi → Di,

which is an isometry when restricted to Y ′
i .

Because of completeness, fi is surjective, and since Ỹi is normal, its sin-
gular locus has codimension 2, hence f ′i : Y

′
i → f ′i(Y

′
i ) must be an isomorphism

as the target is simply connected, and we have a covering space.

Again by Hartogs, the inverse of fi, defined on f ′i(Y
′
i ), extends to yield

an isomorphism; hence, fi is an isomorphism.

In particular, it follows that Y is smooth, hence, we only need now to
invoke Theorem 2.1.

3.3. Final remarks

Remark 9. (a) As already discussed, if X has KLT singularities, by
Proposition 5.20 of [31], Y also has KLT singularities (these are also ratio-
nal singularities). In this case, we need again to find a Kähler–Einstein metric
on Y , and to use the Bochner principle.

(b) One may also ask whether one can replace the condition of KLT
singularities for X by the condition that X has rational singularities, proving
then that Y also has rational singularities.
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