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We compute the minimal exponent of the affine cone over a complete intersection
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1. INTRODUCTION

Let X be a smooth complex algebraic variety. If Z is a nonempty hyper-
surface inX, then theminimal exponent α̃(Z) was defined by Saito in [21] using
the Bernstein–Sato polynomial of a local equation of Z, as follows. Recall that
if Z is defined in an open subset U of X by f ∈ OX(U), then the Bernstein–
Sato polynomial of f is the monic polynomial bf (s) ∈ C[s] of minimal degree
such that

bf (s)f
s ∈ DU [s] · fs+1.

Here, fs is a formal symbol on which the sheaf DU of differential operators on
U acts in the expected way. By a result of Kashiwara [11], all roots of bf are
negative rational numbers. It is easy to see, by specializing s to −1, that if
Z|U := Z ∩ U is nonempty, then bf (−1) = 0. By definition, α̃(Z|U ) = α̃(f)
is the negative of the largest root of bf (s)/(s + 1) (with the convention that
this is ∞ if bf (s) = s + 1). In order to define α̃(Z), one takes an open cover
X =

⋃
i Ui and α̃(Z) = mini α̃(Z|Ui), where the minimum is over those i such

that Z|Ui is nonempty.
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The minimal exponent of a hypersurface is an interesting invariant. A
result due to Lichtin and Kollár [12] says that the minimal exponent refines
an important invariant of singularities in birational geometry, the log canonical
threshold lct(X,Z); more precisely, we have

lct(X,Z) = min
{
α̃(Z), 1

}
.

It was shown by Saito [21] that α̃(Z) > 1 if and only if Z has rational singular-
ities. Moreover, we have α̃(Z) = ∞ if and only if Z is smooth. Recently, it was
shown that the minimal exponent characterizes the higher Du Bois property
of the singularities of Z (see [16] and [10]) and the condition for higher rational
singularities (see [9] and [19]).

If Z has isolated singularities, then the minimal exponent can be described
via asymptotic expansions of integrals along vanishing cycles, see [14] and [15].
In this incarnation, it has been extensively studied in [1] and is also known as
the Arnold exponent of f .

In [5], the authors of the present article and Olano introduced and studied
an extension of the minimal exponent α̃(Z) to the case when Z is a complete
intersection in X of pure codimension r, for any r ≥ 1. The definition was in
terms of the Kashiwara–Malgrange filtration associated to Z (the correspond-
ing description in the hypersurface case is a result due to Saito [22]). One of
the main results in [5] gave a description in terms of the minimal exponent of a
hypersurface, as follows. Suppose that Z is defined inX by f1, . . . , fr ∈ OX(X)
and g =

∑r
j=1 fjyj ∈ OY (Y ), where Y = X × Ar, with y1, . . . , yr being the

coordinates on Ar. If W = X ×
(
Ar ∖ {0}

)
, then α̃(Z) = α̃(g|W ). This

description allows deducing the main properties of the minimal exponent of
local complete intersections from the corresponding properties of the invariant
in the case of hypersurfaces. Results on the V -filtration from [3] allowed us
to relate again the minimal exponent to the log canonical threshold and to
rational singularities: we have

lct(X,Z) = min
{
α̃(Z), r

}
and α̃(Z) > r if and only if Z has rational singularities. It was also shown
in [5] that one can use the minimal exponent to detect how far the Hodge
filtration on the local cohomologyHr

Z(OX) agrees with the pole order filtration,
extending the corresponding result for hypersurfaces from [22] and [17]. In
conjunction with results from [18], this implied that the minimal exponent
detects the higher Du Bois property of local complete intersections. The fact
that it also detects higher rational singularities in this setting was subsequently
shown in [4]. Finally, the minimal exponent can be described in terms of
the Bernstein–Sato polynomial bf (s), associated to f = (f1, . . . , fr), that was
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introduced in [3]: in this case, we have bf (−r) = 0 and it was shown in [6] that
α̃(Z) is the negative of the largest root of bf (s)/(s+ r).

While many of the basic properties of the minimal exponent are by now
understood in the local complete intersection case, there are few known explicit
examples beyond codimension 1. One example given in [5] is that of a complete
intersection in An, with an isolated singularity at 0, defined by homogeneous
equations of the same degree d; in this case, we have α̃(Z) = n

d , extending
a well-known formula for hypersurfaces. Our main result in this note is the
following extension to the case when the homogeneous equations defining Z
have possibly different degrees:

Theorem 1.1. Let f1, . . . , fr ∈ C[x1, . . . , xn] be homogeneous polynomi-
als that form a regular sequence, with deg(fi) = di for 1 ≤ i ≤ r, and such that
2 ≤ d1 ≤ · · · ≤ dr. For every i, we denote by Hi the hypersurface defined by
fi in An and by Z the intersection H1 ∩ · · · ∩Hr. If on An ∖ {0} each Hi is
smooth and

∑r
i=1Hi has simple normal crossings, then

(1) α̃(Z) = min
{
i+ 1

di
(n−d1−· · ·−di) | 1 ≤ i ≤ r

}
= p+ 1

dp
(n−d1−· · ·−dp),

where p is the smallest i ≤ r that satisfies d1+ · · ·+di > n (with the convention
that p = r if there is no such i).

We are interested, in particular, in the case when α̃(Z) > lct(X,Z), that
is, when α̃(Z) > r. The formula in the theorem implies that this is the case
if and only if

∑r
i=1 di < n. We also recover the well-known facts that under

the assumptions in the theorem, the pair (X, rZ) is log canonical if and only
if
∑r

i=1 di ≤ n and Z has rational singularities if and only if
∑r

i=1 di < n.
We also note that if d1 = · · · = dr and we only assume that Z∩(An∖{0})

is smooth, then after replacing each fi by a general linear combination of
f1, . . . , fr, the Kleinman–Bertini theorem implies the condition that on An ∖
{0} each Hi is smooth and

∑r
i=1Hi has simple normal crossings. Therefore,

the above theorem implies the formula for the minimal exponent in [5, Exam-
ple 4.23].

The upper bound for α̃(Z) from Theorem 1.1 can be extended to the
weighted homogeneous case, even without assuming that the equations them-
selves are homogeneous. The hypersurface case follows directly from a well-
known formula for the minimal exponent of an isolated singularity that is
nondegenerate with respect to its Newton polyhedron and the semicontinuity
of the minimal exponent in families. We then obtain the following result for
complete intersections: consider on R = C[x1, . . . , xn] the grading such that
deg(xi) = wi > 0 for 1 ≤ i ≤ n. For every nonzero f ∈ R, we denote by
wt(f) the smallest degree of a monomial xu = xu1

1 · · ·xun
n that appears with a

nonzero coefficient in f .
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Theorem 1.2. With the above notation, suppose that we have f1, . . . , fr ∈
(x1, . . . , xn)

2 ⊆ R such that wt(fi) = di, for 1 ≤ i ≤ r, with d1 ≤ d2 ≤ · · · ≤ dr.
If Z is a complete intersection of pure codimension r in some neighborhood of
0, then

α̃0(Z) ≤ min
{
i+ 1

di
(w1 + · · ·+ wn − d1 − · · · − di) | 1 ≤ i ≤ r

}
.

For the precise definition of α̃0(Z), the local version of the minimal expo-
nent of Z, see Section 2. We expect that if, in addition, f1, . . . , fr are homoge-
neous with respect to the above grading and the hypersurfaces Hi defined by
fi satisfy a suitable transversality assumption on An ∖ {0} (for example, each
Hi is irreducible and

∑r
i=1Hi has simple normal crossings in An ∖ 0}), then

the inequality in Theorem 1.2 is an equality. When all fi have the same degree,
this can be proved as in [5, Example 4.23]. When the degrees are different,
however, we can only prove the assertion in the usual homogeneous case.

The key ingredient in the proof of the lower bound for α̃(Z) in Theo-
rem 1.1 is a result of independent interest, giving a lower bound for the min-
imal exponent of a local complete intersection Z in X in terms of a suitable
resolution of (X,Z): a strong factorizing resolution in the sense of Bravo and
Villamayor [2]. Under the assumption that Z is generically reduced, this is a
proper morphism π : X̃ → X which is an isomorphism over the complement
X ∖ Zsing of the singular locus of Z, with X̃ smooth, and such that the re-

duced exceptional divisor E and the strict transform Z̃ of Z have simple normal
crossings and Z̃ is smooth. Moreover, we have a factorization

(2) IZ · O
X̃

= I
Z̃
· O

X̃
(−F ),

for an effective divisor F supported on E, where IZ and I
Z̃
are the ideals of

Z and Z̃ in X and X̃, respectively. Note that the usual Hironaka algorithm
does not guarantee the latter condition; the existence of strong factorizing
resolutions for all generically reduced Z is the main result of [2]. Given such a
resolution, we write E =

∑N
j=1Ej as the sum of prime divisors and for every j,

we denote by aj and kj the coefficients of Ej in the divisors F and, respectively,
the relative canonical divisor K

X̃/X
.

Theorem 1.3. Suppose that X is a smooth complex algebraic variety and
Z is a reduced subscheme of X that is a local complete intersection, of pure
codimension r. If π : X̃ → X is a strong factorizing resolution of (X,Z) as
above, then

α̃(Z) ≥ min
1≤j≤N

kj + 1

aj
.

Note that if Z is a hypersurface in X, then the condition (2) is automat-
ically satisfied, hence a strong factorizing resolution is simply a log resolution
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of (X,Z) such that Z̃ is smooth. In this case, the inequality in Theorem 1.3
was proved in [17, Corollary D] using the theory of Hodge ideals (see also [7,
Corollary 1.5] for a more elementary proof). We deduce the general case in
Theorem 1.3 by reducing it to the case of hypersurfaces. In order to get the
lower bound for α̃(Z) in Theorem 1.1, we construct an explicit strong factor-
izing resolution of (An, Z).

2. AN UPPER-BOUND IN THE WEIGHTED HOMOGENEOUS
CASE

Our goal in this section is to prove Theorem 1.2. Let us begin by recalling
the local version of the minimal exponent discussed in the Introduction. If Z is
a local complete intersection in the smooth variety X, of pure codimension r,
and P ∈ Z, then for every open neighborhood U of P , we have α̃(Z∩U) ≥ α̃(Z)
and α̃(Z ∩U) is constant if U is small enough. This constant value is denoted
by α̃P (Z). It is then easy to see that α̃(Z) = minP∈Z α̃P (Z). We refer to [5,
Definition 4.16] and the discussion around it for details. Of course, α̃P (Z) is
defined if we only know that Z is a local complete intersection of codimension
r at P . If Z is a hypersurface defined by f , we also write α̃P (f) for α̃P (Z).

We begin with the following result in the case of hypersurfaces. We let
R = C[x1, . . . , xn] and use the notation in Theorem 1.2.

Proposition 2.1. If f ∈ R is nonzero and 0 ∈ Z is a singular point,
then

α̃0(f) ≤
w1 + · · ·+ wn

wt(f)
.

Proof. We write f =
∑

u∈Λ aux
u, with Λ finite and au ̸= 0 for all

u ∈ Λ. Let N ≥ 2 be such that Nwi > wt(f) for all i. We consider the
family of hypersurfaces parametrized by the open subset U ⊆ A|Λ|+n, with
the hypersurface corresponding to v = ((cu)u∈Λ, b1, . . . , bn) being defined by
hv =

∑
u∈Λ cux

u + b1x
N
1 + · · ·+ bnx

N
n (here U consists of those v such that hv

is nonzero). It is clear that for v ∈ U general, hv has an isolated singularity
at 0 and it is nondegenerate with respect to its Newton polyhedron P (recall
that P is the convex hull of ∪u(u+Rn

≥0), where the union over all monomials
xu that appear with nonzero coefficient in the equation h of the hypersurface).
In this case, it is known that the minimal exponent at 0 of such a hypersurface
is 1/c, where

c = min
{
t > 0 | (t, . . . , t) ∈ P

}
(see [23], [8] or [20]). Note that P is the convex hull of(

Λ ∪ {Ne1, . . . , Nen}
)
+Rn

≥0,
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where e1, . . . , en is the standard basis of Zn. Since
∑n

i=1 uiwi ≥ wt(f) for all
u ∈ Λ ∪ {Ne1, . . . , Nen}, it follows that

∑n
i=1 uiwi ≥ wt(f) for all u ∈ P , and

thus c·
∑n

i=1wi ≥ wt(f). On the other hand, it follows from the semicontinuity
of minimal exponents (see [17, Theorem E(2)]) that for every v′ ∈ U , we have
α̃0(hv′) ≤ α̃0(hv) = 1/c, when v ∈ U general. In particular, this applies for f ,
and we get

α̃0(f) ≤
1

c
≤ w1 + · · ·+ wn

wt(f)
.

Before giving the proof of Theorem 1.2, we give a lemma that describes
the infimum in this theorem.

Lemma 2.2. Let w ∈ R and let d1 ≤ · · · ≤ dr be positive integers. If for
1 ≤ i ≤ r, we put

αi := i+ 1
di
(w − d1 − · · · − di),

then the following hold:

i) If i ≤ r − 1 is such that di = di+1, then αi = αi+1.

ii) If i ≤ r−1 and di < di+1, then αi ≥ αi+1 if and only if d1+ · · ·+di ≤ w.

iii) We have mini αi = αp, where p is the smallest i ≤ r that satisfies d1 +
· · ·+ di > w (with the convention that p = r if there is no such i).

Proof. The first two assertions follow from the fact that for i ≤ r− 1, we
have

αi − αi+1 =
(w − d1 − · · · − di)(di+1 − di)

didi+1
,

and the third assertion is an easy consequence.

We can now prove the upper bound for the minimal exponent of complete
intersections in terms of the weights of the defining equations.

Proof of Theorem 1.2. For every i, with 1 ≤ i ≤ r, let

αi = i+ 1
di
(w1 + · · ·+ wn − d1 − · · · − di),

and let p be such that αp = mini αi. By Lemma 2.2i), we may assume that if
p > 1, then dp−1 < dp.

Let g =
∑r

j=1 fjyj ∈ O(An × Ar), where y1, . . . , yr are the coordinates
on Ar. It follows from the description of the minimal exponent of Z in terms
of g given in the Introduction that if U = Ar ∖ {0} ⊇ U ′ = (yp ̸= 0), then

α̃0(Z) = max
V ∋0

α̃(g|V×U ) ≤ max
V ∋0

α̃(g|V×U ′),

where V runs over the open neighborhoods of 0 in An. We put zj = yj/yp for
1 ≤ j ≤ r, j ̸= p, so z1, . . . , ẑp, . . . , zr can be viewed as coordinates on Ar−1.



7 The minimal exponent of cones 39

Since g is homogeneous of degree 1 with respect to y1, . . . , yr, it follows that if
we put

h = g/yp = f1z1+ · · ·+ fp−1zp−1+ fp+ fp+1zp+1+ · · ·+ frzr ∈ O(An×Ar−1),

then

α̃(g|V×U ′) = α̃(h|V×Ar−1)

(we use here the fact that the minimal exponent does not change by pull-back
by a smooth surjective morphism, see for example [5, Proposition 4.12]). We
thus conclude that

(3) α̃0(Z) ≤ α̃(0,0)(h).

By assumption, we have fp ∈ (x1, . . . , xn)
2, and thus h has a singular

point at (0, 0). If we consider the weight of zj to be dp − dj for 1 ≤ j ≤ p− 1
and ϵ > 0 for p+1 ≤ j ≤ r, then we see that wt(h) = dp, hence it follows from
Proposition 2.1 that
(4)

α̃(0,0)(h) ≤
1

dp

(
w1+· · ·+wn+(dp−d1)+· · ·+(dp−dp−1)+(r−p)ϵ

)
= αp+

r − p

dp
ϵ.

By combining (3) and (4), and letting ϵ go to 0, we obtain the inequality in
the theorem.

3. A GENERAL LOWER BOUND VIA A STRONG
FACTORIZING RESOLUTION

In this section, we prove the lower bound on the minimal exponent in
terms of a strong factorizing resolution.

Proof of Theorem 1.3. We may assume that X is affine and Z is defined
by a regular sequence f1, . . . , fr ∈ OX(X). Let g = f1y1+ · · ·+ fryr ∈ OY (Y ),
where Y = X × Ar, with y1, . . . , yr being the coordinates on Ar. Let W =
X × (Ar ∖ {0}), so α̃(Z) = α̃(g|W ).

Consider now the morphism

φ = π × idAr : Ỹ = X̃ ×Ar → Y.

This is a projective morphism which is an isomorphism over the complement
of Zsing ×Ar. The exceptional divisors of φ are the Ei ×Ar, with 1 ≤ i ≤ N .
Moreover, it follows from the definition of a strong factorizing resolution that
we can cover X̃ by open subsets Vj , such that on each Vj ×Ar we can write

g ◦ φ|Vj×Ar = vj ·
r∑

i=1

hiyi,
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where the divisor div(vj) defined by vj is supported on G = E × Ar and

h1, . . . , hr generate the ideal of Z̃ in Vj . Moreover, the coefficient of Ei ×Ar

in div(vj) is ai. Note that if Vj ∩ Z̃ = ∅, then
∑r

i=1 hiyi defines a smooth
hypersurface in Vj ×Ar, that has simple normal crossings with G.

By assumption, Z̃ is smooth, of codimension r in X̃, and has simple
normal crossings with E (that is, both E and E|

Z̃
are reduced simple normal

crossing divisors). Therefore, we may and indeed assume that for every j such
that Vj ∩ Z̃ ̸= ∅, we have algebraic coordinates x1, . . . , xn on Vj such that
hi = xi for i ≤ r and E|Vj =

∑r+s
i=r+1 ai · div(xi).

Let φW : φ−1(W ) → W be the restriction of φ over W . Note that on
φ−1(W ) ∩ (Vj ×Ar), with Vj ∩ Z̃ ̸= ∅, the divisor defined by

(x1y1 + · · ·+ xryr) ·
r+s∏

i=r+1

xaii

has simple normal crossings. Since g ◦ φ clearly defines a simple normal cross-
ing divisor in φ−1(W )∩ (Vj ×Ar) when Vj ∩ Z̃ = ∅, we conclude that φW is a
log resolution of (W, div(g)|W ) which is an isomorphism over W ∖ V (g). The
exceptional divisors of φW are the E′

i = Ei×(Ar∖{0}) and the relative canon-
ical divisor of φW is

∑N
i=1 kiE

′
i. Moreover, the divisor div(g)|W is reduced: its

singular locus is contained in Zsing × (Ar ∖ {0} (see [5, Lemma 4.22]) and thus
div(g) is generically reduced, hence reduced. In addition, its strict transform
on φ−1(W ) is smooth: this is clear on Vj × (Ar ∖ {0}) if Vj ∩ Z̃ = ∅, while if

Vj∩ Z̃ ̸= ∅, it follows from the fact that it is defined by
∑r

i=1 xiyi. We can thus
apply the lower bound on the minimal exponent of a hypersurface in terms of
a log resolution (see [17, Corollary D] or [7, Corollary 1.5]) to conclude that

α̃(Z) = α̃(g|U ) ≥ min
1≤i≤N

ki + 1

ai
,

which is the assertion in the theorem.

4. THE FORMULA IN THE HOMOGENEOUS CASE

Our main goal in this section is to prove Theorem 1.1. In order to prove
the lower bound in the theorem, we use Theorem 1.3. We thus proceed to
describe a strong factorizing resolution of (An, Z).

With the notation in Theorem 1.1, let π1 : X1 → An be the blow-up of the
origin, with exceptional divisor E1. Suppose that k ≥ 1 and 1 ≤ p1, p2, . . . , pk
are such that

d1 = · · · = dp1 < dp1+1 = · · · = dp1+p2 < · · ·< dp1+···+pk−1+1 = · · · = dp1+···+pk .
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Note that p1 + · · · + pk = r. In order to simplify the notation, we put
ej = dp1+···+pj for 1 ≤ j ≤ k. We define a morphism π : Y → An to be

the composition of π1 with
∑k−1

i=1 (ei+1−ei) smooth blow-ups, as follows. First,
we consider (e2 − e1) blow-ups, each of these blowing up the intersection of
the previous exceptional divisor with the strict transforms of H1, . . . ,Hp1 . We
next consider (e3 − e2) blow-ups, each of these blowing up the intersection of
the previous exceptional divisor with the strict transforms of H1, . . . ,Hp1+p2 ,
etc.

Proposition 4.1. With the above notation, the composition π : Y → An

has the following properties:

i) If r ≤ n− 1, then π is a strong factorizing resolution of (An, Z).

ii) If r = n, then π is a log resolution of the pair (An, Z).

Proof. We note that if r ≤ n− 1, then the assumption on Z implies that
it is generically reduced, hence reduced, since it is a complete intersection and
thus Cohen–Macaulay. Therefore, in this case, it makes sense to say that π is
a strong factorizing resolution.

The blow-up X1 is covered by affine open charts U1, . . . , Un, where Ui has
coordinates

xi, y1, . . . , yi−1, yi+1, . . . , yn

such that xj = xiyj for all j ̸= i. Note that if IZ = (f1, . . . , fr), then

IZ · OUi = (xd1i g1, . . . , x
dr
i gr),

where gj = fj(y1, . . . , yi−1, 1, yi+1, . . . , yn) for 1 ≤ j ≤ r. Moreover, E1 ∩ Ui is

defined by xi and if r < n, then the strict transform Z̃ of Z on X1 is defined
in Ui by (g1, . . . , gr), hence it is smooth. Note that if k = 1 (that is, we have
d1 = · · · = dr), then π1 is a strong factorizing resolution when r < n and is a
log resolution of (X,Z) for r = n. Therefore, we are done in this case.

Suppose now that k > 1. We note that, by our assumption on f1, . . . , fr,
the hypersurfaces defined by xi, g1, . . . , gr in Ui are smooth and their sum has
simple normal crossings. It follows that for every point P ∈ Ui, we can find
algebraic coordinates z0, . . . , zn−1 in a neighborhood WP of P such that the
ideal IZ · OWP

is equal to:

Case 1. (z1, . . . , zr). This is the case when P ̸∈ E1, when we may
assume that WP ∩ E1 = ∅. This case is clear: it follows from the definition of
π that the morphism Y → X1 is an isomorphism over WP and it is clear that
above WP the condition for π to be a strong factorizing resolution (if r < n)
or a log resolution of (X,Z) (if r = n) is satisfied.
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Case 2. (zd10 z1, . . . , z
dr
0 zr). This is the case when r < n and P lies on

the hypersurfaces defined by xi, g1, . . . , gr. Note that Z̃ is defined in WP by
(z1, . . . , zr).

Case 3. (zd10 z1, . . . , z
dq
0 zq, z

dq+1

0 ), for some q < r. This is the case when
P lies on E1 and gj(P ) = 0 for j ≤ q, but gq+1(P ) ̸= 0. After getting rid of
some redundant generators, we may assume that q = p1 + · · ·+ pm. If r < n,
then we see that Z̃ does not meet WP in this case.

We now consider the next blow-up π2 : X2 → X1 in our sequence: we
blow up along E1 ∩ H̃1 ∩ · · · ∩ H̃p1 , where H̃j denotes the strict transform of
Hj on X1. Let us describe π2 over the above open subset WP ⊆ Ui when we
are in Case 2 or Case 3. Note that we are blowing up along the zero locus of
(z0, z1, . . . , zp1), which is smooth. Let Vj be the chart in π−1

2 (WP ) given by

zℓ = uℓ for ℓ ∈ {j, p1 + 1, . . . , n} and zℓ = ujuℓ for 0 ≤ ℓ ≤ p1, ℓ ̸= j

for some j, with 1 ≤ j ≤ p1. An easy computation shows that IZ · OVj

is generated by ud1+1
j ud10 in both Cases 2 and 3. Since uj defines the π2-

exceptional divisor and u0 defines the strict transform of E1, we see that IZ ·OVj

is the ideal of a divisor supported on the exceptional locus. Therefore, the
condition for a strong factorizing resolution (in the case r < n) or for a log
resolution (in the case r = n) is trivially satisfied over Vj .

We next consider the chart V0 in π−1
2 (WP ) given by

zℓ = uℓ for ℓ ∈ {0, p1 + 1, . . . , n} and zℓ = u0uℓ for 1 ≤ ℓ ≤ p1.

Note that the π2-exceptional divisor is defined in this chart by u0. Again, an
easy computation shows that IZ · OV0 is equal to

(ue1+1
0 u1, . . . u

e1+1
0 up1 , u

e2
0 up1+1, . . . , u

ek
0 ur)

in Case 2 and to
(ue1+1

0 u1, . . . , u
e1+1
0 up1 , . . . , u

em+1

0 )
in Case 3 (we recall that m is such that q = p1 + · · · + pm). We thus see
that if we are in Case 2, after performing (e2 − e1) such blow-ups, we are in
the situation where k is replaced by k − 1: in the only charts that we need to
consider, we have coordinates v0, v1, . . . , vn−1, such that the pull-back of IZ is
equal to

(ve20 v1, . . . , v
e2
0 vp1+p2 , v

e3
0 vp1+p2+1, . . . , v

ek
0 vr).

If k > 2, then the next blow-up is along the ideal (v0, v1, . . . , vp1+p2), and the
process continues as above. In the end, we see that in the only charts that we
need to consider, we have coordinates w0, . . . , wn−1 such that the pull-back of
IZ is wdr

0 · (w1, . . . , wr). Therefore, in such a chart, the condition for having a
strong factorizing resolution is satisfied.
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Similarly, if we are in Case 3, then after the first (e2−e1)+· · ·+(em+1−em)
blow-ups, in the only charts that we need to consider, we have coordinates
w0, . . . , wn−1 such that the pull-back of IZ is (w

em+1

0 ). Therefore, in this chart,
we only have the ideal of a divisor supported on the exceptional locus, so
this satisfies the condition for π to be a strong factorizing resolution when
r < n and to be a log resolution when r = n. This completes the proof of the
proposition.

Remark 4.2. With the notation in Proposition 4.1, it follows from the
definition of π that if r < n, then starting with X1, at each step we blow
up a smooth center that is not contained in the strict transform of Z on the
respective variety. In fact, with the notation in the proof, for every chart Ui

on X1 and for every exceptional divisor on Y whose image in X1 intersects Ui,
we see that gr does not vanish along this image.

We can now prove the main result of this note.

Proof of Theorem 1.1. We put αk = k + n−d1−···−dk
dk

for every k, with
1 ≤ k ≤ n. By Lemma 2.2, we know that mink αk = αp, where p is as in the
statement of the theorem. Since the inequality

α̃(Z) ≤ αp

follows from Theorem 1.2, we only need to prove the opposite inequality.
Suppose first that

∑r
j=1 dj > n. Note that since α̃(Z) ≤ αn < r, we know

that in this case, we have α̃(Z) = lct(X,Z), and thus only need to show that
lct(X,Z) ≥ αp. For basic facts about log canonical thresholds (including the
definition), we refer to [13, Chapter 9]. As in the proof of Proposition 4.1, we
consider the blow-up π1 : X1 → An of An, with exceptional divisor E1. Note
that KX1/An = (n−1)E1. We have seen in the proof of Proposition 4.1 that we

can cover X1 by affine open charts Ui, such that IZ · OUi = (xd1i g1, . . . , x
dr
i gr),

where xi defines E1 in Ui, and the divisors defined by xi, g1, . . . , gr are smooth
and their sum has simple normal crossings. We need to show that ifG is a prime
divisor onW , where φ : W → X1 is such that π1◦φ is a log resolution of (X,Z),
with the valuation ordG corresponding toG, and if aG = ordG(IZ) and kG is the
coefficient of G in KW/X , then kG+1

aG
≥ αp. Suppose that the image of G on X1

intersects the chart Ui and let b0 = ordG(xi) and bj = ordG(gj) for 1 ≤ j ≤ r.
We may and indeed assume that b0 > 0: otherwise, since Z ∖ {0} is smooth,
of codimension r in An ∖ {0}, we have lct(An ∖ {0}, Z ∖ {0}) = r, and thus
kG+1
aG

≥ r > αp. It is well known that since the divisor div(xi) +
∑r

j=1 div(gj)
has simple normal crossings, if k′G is the coefficient of G in KW/X1

, then

k′G + 1 ≥ b0 + b1 + · · ·+ br
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(see, for example, the proof of [13, Lemma 9.2.19]). Since

KW/X = KW/X1
+ φ∗(KX1/An) = KW/X1

+ (n− 1)φ∗(E1),

we have

kG + 1 = k′G + 1 + (n− 1)b0 ≥ nb0 +
r∑

j=1

bj .

Since
ordG(IZ) = min{b0dj + bj | 1 ≤ j ≤ r},

it follows that it is enough to show that

(5) nb0 +
r∑

j=1

bj ≥ αp ·min{b0dj + bj | 1 ≤ j ≤ r}.

If we put uj = bj/b0 for 1 ≤ j ≤ r and M = min{dj +uj | 1 ≤ j ≤ r}, then (5)
becomes

(6) n+
r∑

j=1

uj ≥ αpM.

We define an increasing sequence k1 < k2 < · · · < ks = r such that

k1 = max{j | 1 ≤ j ≤ r, dj + uj = M},
and if kℓ < r, then

kℓ+1 = max
{
k > kℓ | dk + bk = min{dj + uj | j > kℓ}

}
.

With this notation, the inequality (6) becomes

(7)
n+ u1 + · · ·+ ur

dk1 + uk1
≥ αp.

For 1 ≤ q ≤ s, let us put

(8) βkq :=
n+ kqukq +

∑kq
j=1(dkq − dj) +

∑
j>kq

uj

dkq + ukq
.

For every j < k1, we have uj ≥ uk1 +(dk1 − dj), hence the left-hand side of (7)
is ≥ βk1 and thus (7) follows if we show

(9) βk1 ≥ αp.

The key step is to show that if q < s, then

(10) βkq ≥ min{αkq , βkq+1}.
Indeed, if we view βkq as a function of ukq , since 0 ≤ ukq ≤ ukq+1+(dkq+1−dkq),
we see that βkq is bounded below by the minimum taken when ukq = 0 and
when ukq = ukq+1 + (dkq+1 − dkq). In the former case, the value is

n+
∑kq

j=1(dkq − dj) +
∑

j>kq
uj

dkq
≥ αkq ,
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while in the latter case, using the fact that uj ≥ ukq+1 + dkq+1 − dj for kq <
j ≤ kq+1, the value is

n+ kq(ukq+1 + dkq+1 − dkq) +
∑kq

j=1(dkq − dj) +
∑

j>kq
uj

ukq+1 + dkq+1

≥ βkq+1 .

We thus obtain the inequality in (10). Using the fact that αkq ≥ αp for all q
gives

βk1 ≥ min{αp, βks}.

On the other hand, we have ks = r, and thus

βks =
n+ rur +

∑r
j=1(dr − dj)

dr + ur
.

As above, if we view this as a function of ur, we see that it is bounded below
by the minimum of its values when ur = 0 (which is αr) and the value of
the limit when ur goes to infinity (which is r > αr). We thus conclude that
βk1 ≥ αp, completing the proof of (9), and thus the proof of the theorem when∑r

j=1 dj > n.
Suppose now that

∑r
j=1 dj ≤ n. Note that since we assume dj ≥ 2 for

all j, we have r < n. By Theorem 1.3, in order to show that α̃(Z) ≥ αr, it
is enough to show that if G is a prime π-exceptional divisor on Y , then we
have kG+1

aG
≥ αr (note that we keep the notation in the first part of the proof).

We choose again a chart Ui on X1 that intersects the image of G and put
b0 = ordG(xi) and bj = ordG(gj) for 1 ≤ j ≤ r. As before, it is enough to show
that

(11) nb0+b1+···+br
aG

≥ αr,

where aG = min{b0dj + bj | 1 ≤ j ≤ r}. A key point is that, by construction,
we have br = 0 (see Remark 4.2). This implies that

(12) aG ≤ b0dr.

On the other hand, since bj ≥ aG − b0dj for j ≥ 1, we have

nb0+b1+···+br
aG

≥
nb0 +

∑r
j=1(aG − b0dj)

aG
= r + (n−d1−···−dr)b0

aG
≥ αr,

where the last inequality follows from (12), using the fact that n ≥
∑r

j=1 dj .
This proves (11) and completes the proof of the theorem.

Remark 4.3. In the statement of Theorem 1.1, we made the assumption
that d1 ≥ 2. The general case can be easily reduced to this one: indeed,
suppose that dq = 1 < dq+1 for some q ≤ r−1. In this case, Z is isomorphic to



46 Q. Chen, B. Dirks, and M. Mustaţă 14

a closed subscheme W of An−q defined by homogeneous equations of degrees
dq+1 ≤ · · · ≤ dr, and which satisfies the hypothesis in Theorem 1.1. Moreover,
by [5, Proposition 4.14], we have α̃(Z) = α̃(W ) + q.
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[2] A. Bravo and O.U. Villamayor, A strengthening of resolution of singularities in charac-
teristic zero. Proc. London Math. Soc. (3) 86 (2003), 23, 327–357.
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