In memory of Lucian Bădescu, who generously shared with friends what he treasured the most in life: mathematics, music and Christian spirituality

ON THE CASTELNUOVO–MUMFORD REGULARITY OF CURVE ARRANGEMENTS

ALEXANDRU DIMCA

Communicated by Vasile Brînzănescu

The Castelnuovo–Mumford regularity of the Jacobian algebra and of the graded module of derivations associated to a general curve arrangement in the complex projective plane are studied. The key result is an addition-deletion type result, similar to results obtained by H. Schenck, H. Terao, Ş. O. Tohăneanu and M. Yoshinaga, but in which no quasi-homogeneity assumption is needed.

AMS 2020 Subject Classification: Primary 14H50; Secondary 13D02.

Key words: Castelnuovo–Mumford regularity, plane curve, line arrangement, conic-line arrangement, nodal curve.

1. INTRODUCTION

Let $S = \mathbb{C}[x, y, z]$ be the polynomial ring in three variables x, y, z with complex coefficients, and let C : f = 0 be a reduced curve of degree $d \geq 3$ in the complex projective plane \mathbb{P}^2 . If $f = f_1 \cdots f_s$ is the factorization of f into a product of irreducible factors, we set $C_i : f_i = 0$ for $i = 1, \ldots, s$ for the irreducible components of C. Then, we regard C as the curve arrangement

$$C = C_1 \cup \cdots \cup C_s$$

and denote $d = \deg C$ and $d_i = \deg C_i$. We denote by J_f the Jacobian ideal of f, i.e., the homogeneous ideal in S spanned by the partial derivatives f_x , f_y , f_z of f, and by $M(f) = S/J_f$ the corresponding graded quotient ring, called the Jacobian (or Milnor) algebra of f. Consider the graded S-module of Jacobian syzygies of f or, equivalently, the module of derivations killing f, namely

$$D_0(f) = \{(a, b, c) \in S^3 : af_x + bf_y + cf_z = 0\}.$$

REV. ROUMAINE MATH. PURES APPL. **70** (2025), *1-2*, 73–84

doi: 10.59277/RRMPA.2025.73.84

In this paper, we study the Castelnuovo–Mumford regularity of the graded S-modules $D_0(f)$ and M(f). Recall that to any graded S-module M, one can associate a coherent sheaf \widetilde{M} on \mathbb{P}^2 . We say that \widetilde{M} is m-regular if

$$H^1\big(\mathbb{P}^2,\widetilde{M}(m-1)\big)=H^2\big(\mathbb{P}^2,\widetilde{M}(m-2)\big)=0.$$

The minimal m such that \widetilde{M} is m-regular is called the Castelnuovo–Mumford regularity of \widetilde{M} and is denoted by reg \widetilde{M} . Finally, we set reg $M = \operatorname{reg} \widetilde{M}$, see for instance [15, 18] and also [16, Definition 54] for an alternative definition. Note that for a reduced singular plane curve C of degree d, the following inequality holds

$$(1.1) \operatorname{reg} D_0(f) \le 2d - 4$$

and the equality holds if C has a unique node as its singular set, see Remark 5.1 below. On the other hand, for a line arrangement C: f = 0 the much stronger inequality

$$(1.2) \operatorname{reg} D_0(f) \le d - 2$$

holds, and equality takes place if C has only double points, see [15, Corollary 3.5]. The proof of this inequality is based on the following addition-deletion type result. With our notation above, assume that s > 1 and set

$$C' = C_1 \cup \dots \cup C_{s-1} : f' = 0.$$

Then, when C is a line arrangement, H. Schenck shows in [15] that the sheaves

$$E(f) = \widetilde{D_0(f)}$$
 and $E(f')(-1) = \widetilde{D_0(f)}(-1)$

are related by a short exact sequence of sheaves, from which the conclusion is derived. Similar exact sequences in the case when C is a conic-line arrangement having only quasi-homogeneous singularities were considered in [18], where the authors concentrate on the freeness of such arrangements. The more general situation of a curve arrangement having only quasi-homogeneous singularities was considered in [17], where an upper bound of reg E(f) in terms of reg E(f') and $d_s = \deg C_s$ when C_s is smooth is given, see [17, Lemma 3.6]. These exact sequences were extended to cover the situation when non-quasi-homogeneous singularities occur, see [6, Theorem 2.3], which can be restated as follows. First, we need some notation. For an isolated hypersurface singularity (X, 0), we set

$$\epsilon(X,0) = \mu(X,0) - \tau(X,0),$$

where $\mu(X,0)$ (respectively, $\tau(X,0)$) is the Milnor (respectively, Tjurina) number of the singularity (X,0). We recall that $\epsilon(X,0) \geq 0$ and the equality holds

if and only if (X,0) is quasi-homogeneous, see [14]. For the curves D_1 , D_2 and $D = D_1 \cup D_2$ and a point $q \in D_1 \cap D_2$, we set

$$\epsilon(D_1, D_2)_q = \epsilon(D_1 \cup D_2, q) - \epsilon(D_1, q)$$

and then define

$$\epsilon(D_1, D_2) = \sum_{q \in D_1 \cap D_2} \epsilon(D_1, D_2)_q.$$

Now, we can recall our result in [6, Theorem 2.3], modulo a twist by -1.

THEOREM 1.1. With the above notation, assume that s > 1 and C_s is a smooth curve. Then there is an exact sequence of sheaves on \mathbb{P}^2 given by

$$0 \to E(f')(-d_s) \xrightarrow{f_s} E(f) \to i_{2*}\mathcal{F} \to 0$$

where $i_s: C_s \to \mathbb{P}^2$ is the inclusion and $\mathcal{F} = \mathcal{O}_{C_s}(D)$ a line bundle on C_s such that

$$\deg D = 2 - 2g_s - d_s - r - \epsilon(C', C_s),$$

where g_s is the genus of the smooth curve C_s and r is the number of points in the reduced scheme of $C' \cap C_s$.

Using this result, our generalized version of [17, Lemma 3.6] is the following.

THEOREM 1.2. With the above notation, assume that s > 1 and C_s is a smooth curve of degree d_s . Then $reg(D_0(f)) \le m_0$, where

$$m_0 = \max \left(\operatorname{reg}(D_0(f')) + d_s, 2d_s - 3 + \left\lfloor \frac{r + \epsilon(C', C_s)}{d_s} \right\rfloor \right).$$

In fact, our result also corrects a minor error in [17, Lemma 3.6], see Remark 7.2. The case when C is a line arrangement was settled in [15, Theorem 3.4] and was used to prove the inequality (1.2). Theorem 1.2 has the following weaker, but much simpler version.

COROLLARY 2. With the above notation, assume that s > 1 and C_s is a smooth curve of degree d_s . Then

$$\operatorname{reg}(D_0(f)) \le \max(\operatorname{reg}(D_0(f')) + d_s, \operatorname{deg}(C') + 2d_s - 3).$$

The following result is the analog of the inequality (1.2) for the curve arrangements with all the irreducible components smooth.

THEOREM 2.1. Let C: f = 0 be a curve arrangement in \mathbb{P}^2 with $d = \deg f$ such that the irreducible components $C_i: f_i = 0$ of C are smooth curves, say of degree d_i , for all $i = 1, \ldots, s$. Then

$$\operatorname{reg} D_0(f) \le d + \delta - 3,$$

where $\delta = \max(d_i : i = 1, ..., s)$ and the equality holds if C is a nodal curve.

Corollary 3. Let C: f = 0 be a conic-line arrangement with $d = \deg f$. Then

$$\operatorname{reg} D_0(f) \leq d-1$$

and the equality holds if C is a nodal conic-line arrangement containing at least one smooth conic.

Remark 3.1. The Castelnuovo–Mumford regularity $\operatorname{reg}(D_0(f))$ does not enjoy simple semi-continuity properties, see [7, Remark 5.3]. Hence, there seems to be no simple way to show that the maximal value of $\operatorname{reg}(D_0(f))$ in a fixed class of curve arrangements is obtained for the nodal curves in this class, as it is the case in (1.2) and Theorem 2.1. On the other hand, a line arrangement C: f = 0 satisfies the equality in (1.2) if and only if C is not formal, see [12, Corollary 7.8], and hence, C enjoys some geometric properties in this situation. One may ask whether the conic-line arrangements C for which the equality holds in Corollary 3 enjoy also some special properties.

4. SOME PRELIMINARIES

We say that C: f = 0 is an m-syzygy curve if the module $D_0(f)$ is minimally generated by m homogeneous syzygies, say r_1, r_2, \ldots, r_m , of degrees $\alpha_i = \deg r_i$ ordered such that

$$(4.1) 0 \le \alpha_1 \le \alpha_2 \le \cdots \le \alpha_m.$$

We call these degrees $(\alpha_1, \ldots, \alpha_m)$ the *exponents* of the curve C. The smallest degree α_1 is sometimes denoted by mdr(f) and is called the minimal degree of a Jacobian relation for f.

The curve C is free when m=2, since then, $D_0(f)$ is a free module of rank 2, see for instance [3, 5, 10, 20]. In this case, $\alpha_1 + \alpha_2 = d - 1$. Moreover, there are two classes of 3-syzygy curves which are intensely studied, since they are in some sense the closest to free curves. First, we have the nearly free curves, introduced in [10] and studied in [2, 3, 5, 13] which are 3-syzygy curves satisfying $\alpha_3 = \alpha_2$ and $\alpha_1 + \alpha_2 = d$. Then, we have the plus-one generated line arrangements of level α_3 , introduced by T. Abe in [1], which are 3-syzygy line arrangements satisfying $\alpha_1 + \alpha_2 = d$. In general, a 3-syzygy curve is called a plus-one generated curve if it satisfies $\alpha_1 + \alpha_2 = d$.

Consider the sheafification

$$E(f) := \widetilde{D_0(f)}$$

of the graded S-module $D_0(f)$, which is a rank two vector bundle on \mathbb{P}^2 , see [19] for details. Moreover, recall that

(4.2)
$$E(f) = T\langle C\rangle(-1),$$

where $T\langle C\rangle$ is the sheaf of logarithmic vector fields along C as considered for instance in [13, 19].

Remark 4.1. Note that in [17, Equation (1.1)] the vector bundle $T\langle C\rangle$ is denoted by $\mathrm{Der}(-\log C)$, and hence, we have

(4.3)
$$\operatorname{Der}(-\log C) = T\langle C \rangle = E(f)(1).$$

In particular, this implies

(4.4)
$$\operatorname{reg}(\operatorname{Der}(-\log C)) = \operatorname{reg}(T\langle C\rangle) = \operatorname{reg}(E(f)) - 1.$$

On the other hand, in [15, Corollary 3.5], the vector bundle E(f) is denoted by \mathcal{D} , and hence here, no twist is involved. Similarly, in [18, Formula (1)], the vector bundle E(f) is denoted by \mathcal{D}_0 , and hence again, no twist is involved.

We define the submodule of Koszul-type relations KR(f) to be the submodule in $D_0(f)$ generated by the following 3 obvious relations of degree d-1, namely

$$(f_y, -f_x, 0), (f_z, 0, -f_x) \text{ and } (0, f_z, -f_y).$$

Finally, consider the quotient module of essential relations

(4.5)
$$ER(f) = D_0(f)/KR(f).$$

Note that C: f = 0 is smooth if and only if ER(f) = 0. Using this module, we define for a singular curve C: f = 0 the invariant

(4.6)
$$\operatorname{mdr}_{e}(f) = \min\{r \in \mathbb{Z} : ER(f)_{r} \neq 0\}.$$

We have $\operatorname{mdr}_e(f) = \operatorname{mdr}(f)$ when $\operatorname{mdr}(f) < d - 1$.

We introduce the following invariants associated with the curve C: f = 0.

Definition 4.2. For a homogeneous reduced polynomial $f \in S_d$ one defines

(i) the coincidence threshold

$$ct(f) = \max\{q : \dim M(f)_k = \dim M(g)_k \text{ for all } k \le q\},\$$

with g a homogeneous polynomial in S of the same degree d as f and such that g = 0 is a smooth curve in \mathbb{P}^2 .

(ii) the stability threshold

$$\operatorname{st}(f) = \min \big\{ q : \dim M(f)_k = \tau(C) \text{ for all } k \ge q \big\}.$$

In particular, for a smooth curve C: f=0 one has $\operatorname{ct}(f)=\infty$ and $\operatorname{st}(f)=3(d-2)+1$. It is clear that for a singular curve C: f=0 one has

$$\operatorname{ct}(f) = \operatorname{mdr}_{e}(f) + d - 2.$$

These new invariants $\operatorname{ct}(f)$ and $\operatorname{st}(f)$ enter into the following result, see [5, Corollary 1.7], where T=3(d-2).

THEOREM 4.1. Let C: f = 0 be a degree d reduced curve in \mathbb{P}^2 . Then C is a free (respectively, nearly free) curve if and only if

$$\operatorname{ct}(f) + \operatorname{st}(f) = T \ (\textit{respectively}, \ \operatorname{ct}(f) + \operatorname{st}(f) = T + 2).$$

In the remaining cases, one has $ct(f) + st(f) \ge T + 3$.

To state the following result, we recall some more notation. Let $J=J_f$ be the Jacobian ideal of f and $I=I_f$ be its saturation with respect to the maximal ideal (x,y,z). Then, the singular subscheme Σ_f of the reduced curve C:f=0 is the 0-dimensional scheme defined by the ideal I and we consider the following sequence of defects

(4.8)
$$\operatorname{def}_{k} \Sigma_{f} = \tau(C) - \dim \frac{S_{k}}{I_{k}}.$$

With this notation, one has the following result, see [4, Theorem 1], where g is as in Definition 4.2 (i).

THEOREM 4.2. Let C: f = 0 be a degree d reduced curve in \mathbb{P}^2 . If Σ_f denotes its singular locus subscheme, then

$$\dim M(f)_{T-k} = \dim M(g)_k + \operatorname{def}_k \Sigma_f$$

for $0 \le k \le 2d - 5$. In particular, if $indeg(I_f) \le d - 2$, then

$$\operatorname{st}(f) = T - \operatorname{indeg}(I_f) + 1.$$

The second claim in Theorem 4.2 follows by taking

$$k = indeg(I_f) - 1 \le d - 3$$

in the first claim and using the obvious equality $M(g)_j = S_j$ for j < d - 1.

Lemma 5. Let C: f = 0 be a reduced plane curve of degree d. Then

$$\operatorname{reg} J_f = \operatorname{reg} (D_0(f)) + d - 2 \text{ and } \operatorname{reg} (M(f)) = \operatorname{reg} (D_0(f)) + d - 3.$$

Proof. The first claim follows from the obvious exact sequence

$$0 \to D_0(f) \to S^3 \to J_f(d-1) \to 0.$$

The second claim follows from the obvious exact sequence

$$0 \to J_f \to S \to M(f) \to 0$$

which implies $reg(M(f)) = reg(J_f) - 1$. \square

The next result gives the relation between these invariants, see [7, Theorem 3.3].

Theorem 5.1. Let C: f = 0 be a reduced singular plane curve of degree d. Then the equality

$$\operatorname{reg}(M(f)) = \operatorname{st}(f)$$

holds if and only if C: f = 0 is a free curve. Otherwise, one has

$$\operatorname{reg}(M(f)) = \operatorname{st}(f) - 1.$$

Remark 5.1. It was shown in [9, Theorem 1.5 and Example 4.3 (i)] that for a reduced singular plane curve of degree d, one has $\operatorname{st}(f) \leq 3(d-2)$, and that equality holds when C has a unique node as its singular set. Such a curve is not free when $d \geq 3$. It follows that for $d \geq 3$, one has

$$\operatorname{reg}(M(f)) \leq 3d - 7$$
 and $\operatorname{reg}(D_0(f)) \leq 2d - 4$

with equalities when C: f = 0 is a uninodal curve.

Example 5.2. (i) If C: f = 0 is a free curve of degree d with exponents (α_1, α_2) with $\alpha_1 \leq \alpha_2$, then one has $1 \leq \alpha_1 \leq (d-1)/2$ and hence

$$ct(f) = \alpha_1 + d - 2,$$

$$\operatorname{reg}(M(f)) = \operatorname{st}(f) = 2(d-2) - \alpha_1 = d-3 + \alpha_2 \text{ and } \operatorname{reg}(D_0(f)) = \alpha_2.$$

This follows from relation (4.7), Theorems 4.1 and 5.1 and Lemma 5.

(ii) If C: f = 0 is a plus-one generated curve with exponents $(\alpha_1, \alpha_2, \alpha_3)$, then $\alpha_1 + \alpha_2 = d$ and one has

$$\operatorname{st}(f) = d - 2 + \alpha_3$$

see [11, Proposition 2.1]. It follows as above that

$$ct(f) = \alpha_1 + d - 2$$
, $reg(M(f)) = st(f) - 1 = d - 4 + \alpha_3$ and $reg(D_0(f)) = \alpha_3 - 1$.

We conclude this section with a local result, needed in the proofs in the next section.

LEMMA 6. Let us consider a reduced plane curve singularity $(D_1,0)$ and a smooth germ $(D_2,0)$ which is not an irreducible component of $(D_1,0)$. Then

$$(D_1, D_2)_0 - \epsilon(D_1, D_2)_0 - 1 \ge 0,$$

where $(D_1, D_2)_0$ denotes the intersection multiplicity of $(D_1, 0)$ and $(D_2, 0)$.

Proof. We have

$$\epsilon(D_1, D_2)_0 = \mu(D_1 \cup D_2, 0) - \tau(D_1 \cup D_2, 0) - (\mu(D_1, 0) - \tau(D_1, 0)).$$

Using the formula

$$\mu(D_1 \cup D_2, 0) = \mu(D_1, 0) + \mu(D_2, 0) + 2(D_1, D_2)_0 - 1,$$

see [21, Theorem 6.5.1], the claim in Lemma 6 is equivalent to the much simpler inequality

$$\tau(D_1 \cup D_2, 0) \ge \tau(D_1, 0) + (D_1, D_2)_0.$$

Choose local coordinates at $0 \in \mathbb{C}^2$ such that the smooth germ $(D_2, 0)$ is given by u = 0 and the singularity $(D_1, 0)$ by g = 0. Let $R = \mathbb{C}\{u, v\}$ be the convergent power series local ring with \mathbb{C} coefficients and variables u and v. Then $g \in R$ is reduced and nondivisible by u. The singularity $(D_1, 0)$ has an associated Tjurina algebra

$$T(g) = R/I_q$$

where $I_g = (g, g_u, g_v)$, such that $\tau(D_1, 0) = \dim T(g)$. Similarly, we consider $T(ug) = R/I_{ug}$ with $I_{ug} = (ug, g + ug_u, ug_v)$ and $\tau(D_1 \cup D_2, 0) = \dim T(ug)$. We have the following exact sequence

$$0 \to T(g) \to \frac{R}{(g, ug_u, ug_v)} \to \frac{R}{(g, u)} \to 0,$$

where the second map is multiplication by u and the third map is the obvious projection. To show that the second map is injective, assume that for $h \in R$ we have $uh \in (g, ug_u, ug_v)$. It follows that there are germs $a, b, c \in R$ such that

$$uh = ag + bug_u + cug_v.$$

This equality implies that a is divisible by u, which is not a factor of g, and hence $h \in I_g$. This exact sequence implies that

$$\dim \frac{R}{(g, ug_u, ug_v)} = \dim T(g) + \dim \frac{R}{(g, u)} = \tau(D_1, 0) + (D_1, D_2)_0.$$

Since $I_{uq} \subset (g, ug_u, ug_v)$, we have

$$\tau(D_1 \cup D_2, 0) \ge \dim \frac{R}{(g, ug_u, ug_v)}$$

and this completes our proof. \Box

7. THE PROOFS OF THE MAIN RESULTS

7.1. Proof of Theorem 1.2

If we twist the exact sequence of sheaves in Theorem 1.1 by $\mathcal{O}_{\mathbb{P}^2}(t)$ and take the associated long cohomology sequence, we get

$$H^1(\mathbb{P}^2, E(f')(t-d_s)) \to H^1(\mathbb{P}^2, E(f)(t)) \to H^1(C_s, \mathcal{O}_{C_s}(D_t)) \to$$

 $\to H^2(\mathbb{P}^2, E(f')(t-d_s)) \to H^2(\mathbb{P}^2, E(f)(t)) \to 0.$

Here

$$\deg D_t = \deg D + t d_s = (2+t)d_s - d_s^2 - r - \epsilon(C', C_s).$$

Here, the vanishing $H^1(\mathbb{P}^2, E(f')(t-d_s)) = 0$ takes place for any $t-d_s \ge \operatorname{reg}(D_0(f')) - 1$, hence for any

(7.1)
$$t \ge \text{reg}(D_0(f')) + d_s - 1.$$

Next, we have

$$\dim H^1(C_s, \mathcal{O}_{C_s}(D_t)) = \dim H^0(C_s, \mathcal{O}_{C_s}(K - D_t)),$$

where K is the canonical divisor of the curve C_s . It follows that

$$\deg(K - D_t) = \deg(K) - \deg(D_t) = 2d_s^2 - 5d_s + r + \epsilon(C', C_s) - td_s,$$

since deg $K = d_s(d_s - 3)$. Next, $H^1(C_s, \mathcal{O}_{C_s}(D_t)) = 0$ if deg $(K - D_t) < 0$, in other words if

(7.2)
$$t > 2d_s - 5 + \frac{r + \epsilon(C', C_s)}{d_s}.$$

This strict inequality is easily seen to be equivalent to the following non-strict inequality.

(7.3)
$$t \ge 2d_s - 4 + \left\lfloor \frac{r + \epsilon(C', C_s)}{d_s} \right\rfloor.$$

The inequalities (7.1) and (7.3) imply that the integer m_0 defined in Theorem 1.2 satisfies $H^1(\mathbb{P}^2, E(f)(m_0 - 1)) = 0$. To complete the proof of Theorem 1.2 it remains to show that $H^2(\mathbb{P}^2, E(f)(m_0 - 2)) = 0$. To get this vanishing, we take $t = m_0 - 2$ in the above exact sequence and see that

$$H^{2}(\mathbb{P}^{2}, E(f')(m_{0}-2-d_{s}))=0.$$

Indeed, one has

$$m_0 - 2 - d_s \ge (\operatorname{reg}(D_0(f')) + d_s) - 2 - d_s = \operatorname{reg}(D_0(f')) - 2$$

and we know that $H^2(\mathbb{P}^2, E(f')(\operatorname{reg}(D_0(f')) - 2) = 0$. In fact, for any coherent sheaf \mathcal{F} of \mathbb{P}^2 , the vanishing $H^2(\mathbb{P}^2, \mathcal{F}(m)) = 0$ implies the vanishing $H^2(\mathbb{P}^2, \mathcal{F}(m+1)) = 0$ as the obvious exact sequence

$$0 \to \mathcal{F}(m) \to \mathcal{F}(m+1) \to \mathcal{G} \to 0$$

shows. Here, the morphism $\mathcal{F}(m) \to \mathcal{F}(m+1)$ is induced by multiplication by a linear form $\ell \in S_1$, L is the line $\ell = 0$ and \mathcal{G} is a coherent sheaf supported on L. This completes our proof.

Remark 7.2. Even in the case when all the singularities in the intersection $C' \cap C_s$ are quasi-homogeneous, our result is slightly different from [17, Lemma 3.6]. First of all, taking into account the twist explained in Remark 4.1 and equation (4.4), Lemma 3.6 in [17] can be restated as

$$\operatorname{reg}(D_0(f)) \le \max\left(\operatorname{reg}(D_0(f')) + d_s, 2d_s - 4 + \left\lfloor \frac{r}{d_s} \right\rfloor\right).$$

This difference with our Theorem 1.2 comes from the fact that in [17] the strict inequality (7.2) is not replaced by the non-strict inequality (7.3). When r/d_s is an integer and if

$$\operatorname{reg}(D_0(f')) + d_s \le 2d_s - 4 + \frac{r}{d_s}$$

then the claim in [17, Lemma 3.6] is false. Such situations really do occur. Indeed, let C' be a free curve of degree d' and exponents (α_1, α_2) with inequality $\alpha_2 \leq d' - 3$. Let C_s be a smooth curve meeting C' transversally in $d_s d'$ points, which are all nodes for C. Then Example 5.2 (i) implies

$$reg(D_0(f')) + d_s = \alpha_2 + d_s \le d' - 3 + d_s \le 2d_s - 4 + d'.$$

Hence, such examples exist even in the class of line arrangements. On the other hand, Theorem 3.4 in [15] which covers the case of C a line arrangement is correctly stated.

7.3. Proof of Corollary 2

Note that using Lemma 6, we have the following

$$r + \epsilon(C', C_s) = \sum_{p \in C' \cap C_s} \left(1 + \epsilon(C', C_s)_p \right) \le \sum_{p \in C' \cap C_s} (C', C_s)_p = \deg(C') d_s.$$

This clearly proves Corollary 2.

7.4. Proof of Theorem 2.1 and Corollary 3

We can assume in this proof that $\delta = d_1 > 1$, since the case of line arrangements is clear by [15]. Then, we have

$$reg(D_0(f_1)) = 2d_1 - 3,$$

using for instance Theorem 5.1. Hence, the first claim holds for k = 1. Now assume that this claim holds for k = s - 1 and apply Corollary 2. We get

$$reg(D_0(f)) \le \max(d + d_1 - 3, d_1 + \dots + d_{s-1} + 2d_s - 3).$$

This inequality yields the first claim for k = s since $d_1 \ge d_s$.

Now, we consider the second claim, when C is in addition a nodal curve. Such a curve C cannot be free, see for instance [8]. Hence, the equality $reg(D_0(f)) = d + d_1 - 3$ is equivalent to the equality

$$(7.4) st(f) = 2d - 5 + d_1,$$

in view of Lemma 5 and Theorem 5.1. Hence, it remains to prove the following.

LEMMA 8. Let C: f = 0 be a nodal curve arrangement in \mathbb{P}^2 with $d = \deg f$ such that the irreducible components $C_i: f_i = 0$ of C are smooth curves, say of degree d_i , for all $i = 1, \ldots, s$. Then, if $\delta = \max(d_i: i = 1, \ldots, s) > 1$, one has the following equalities

$$st(f) = 2d - 5 + \delta$$
 and indeg $I_f = d - \delta$.

Proof. Assume again that $\delta = d_1$. First, we use Theorem 4.2 and see that (7.4) is equivalent to indeg $I_f = d - d_1$, in other words to the two relations

$$I_{f,d-d_1-1} = 0$$
 and $I_{f,d-d_1} \neq 0$.

Since C is a nodal curve, then I_f consists of all the polynomials vanishing at all the nodes of C. In particular,

$$f_2f_3\cdot\ldots\cdot f_s\in I_{f,d-d_1}$$

and hence $I_{f,d-d_1} \neq 0$.

Finally, we prove that $I_{f,d-d_1-1}=0$. Let $h\in I_{f,d-d_1-1}$ and assume first that the curve H:h=0 is reduced. For any $1\leq k\leq s$, we consider the intersection $H\cap C_k$. Note that on C_k there are exactly $d_k(d-d_k)$ nodes of the curve C. The inequality

$$d_k(d - d_k) > d_k(d - d_1 - 1) = \deg C_1 \deg H$$

implies that C_k is an irreducible component of H for all k = 1, ..., s. This is impossible since

$$\deg C = d > d - d_1 - 1 = \deg H.$$

If the curve H is not reduced, we apply the above argument to the associated reduced curve $H^{\rm red}$ and get again a contradiction since $\deg H^{\rm red} \leq \deg H$. This completes the proof of Lemma 8 and also of Theorem 2.1. \square

Corollary 3 is an obvious consequence of Theorem 2.1 for $\delta = 2$.

REFERENCES

- T. Abe, Plus-one generated and next to free arrangements of hyperplanes. Int. Math. Res. Not. IMRN 2021 (2021), 12, 9233-9261.
- [2] T. Abe and A. Dimca, On the splitting types of bundles of logarithmic vector fields along plane curves. Internat. J. Math. 29 (2018), 8, article no. 1850055.
- [3] E. Artal Bartolo, L. Gorrochategui, I. Luengo, and A. Melle-Hernández, On some conjectures about free and nearly free divisors. In: Singularities and Computer Algebra, pp. 1–19. Springer, Cham, 2017.
- [4] A. Dimca, Syzygies of Jacobian ideals and defects of linear systems. Bull. Math. Soc. Sci. Math. Roumanie (N.S.) **56(104)** (2013), 2, 191–203.

- [5] A. Dimca, Freeness versus maximal global Tjurina number for plane curves. Math. Proc. Cambridge Philos. Soc. 163 (2017), 1, 161–172.
- [6] A. Dimca, On free and plus-one generated curves arising from free curves by addition-deletion of a line. Bull. Math. Sci. 14 (2024), 3, article no. 2450007.
- [7] A. Dimca, D. Ibadula, and A. Măcinic, Numerical invariants and moduli spaces for line arrangements. Osaka J. Math. 57 (2020), 4, 847–870.
- [8] A. Dimca and P. Pokora, On conic-line arrangements with nodes, tacnodes, and ordinary triple points. J. Algebraic Combin. **56** (2022), 4.
- [9] A. Dimca and G. Sticlaru, Koszul complexes and pole order filtrations. Proc. Edinburg. Math. Soc. (2) 58 (2015), 2, 333–354.
- [10] A. Dimca and G. Sticlaru, Free and nearly free curves vs. rational cuspidal plane curves. Publ. Res. Inst. Math. Sci. 54 (2018), 1, 163–179.
- [11] A. Dimca and G. Sticlaru, Plane curves with three syzygies, minimal Tjurina curves, and nearly cuspidal curves. Geom. Dedicata 207 (2020), 29–49.
- [12] M. DiPasquale, J. Sidman, and W. Traves, Geometric aspects of the Jacobian of a hyperplane arrangement. 2023, arXiv:2209.04929v2.
- [13] S. Marchesi and J. Vallès, Nearly free curves and arrangements: a vector bundle point of view. Math. Proc. Cambridge Philos. Soc. 170 (2021), 1, 51–74.
- [14] K. Saito, Quasihomogene isolierte Singularitäten von Hyperflächen. Invent. Math. 14 (1971), 123–142.
- [15] H.K. Schenck, Elementary modifications and line configurations in \mathbb{P}^2 . Comment. Math. Helv. **78** (2003), 3, 447–462.
- [16] H. Schenck, Hyperplane arrangements: computations and conjectures. In: Arrangements of hyperplanes-Sapporo 2009, Adv. Stud. Pure Math. 62, pp. 323–358. Math. Soc. Japan, Tokyo, 2012.
- [17] H. Schenck, H. Terao, and M. Yoshinaga, Logarithmic vector fields for curve configurations in P² with quasihomogeneous singularities. Math. Res. Lett. 25 (2018), 6, 1977– 1992.
- [18] H. Schenck and S.O. Tohăneanu, Freeness of conic-line arrangements in \mathbb{P}^2 . Comment. Math. Helv. **84** (2009), 2, 235–258.
- [19] E. Sernesi, The local cohomology of the Jacobian ring. Doc. Math. 19 (2014), 541–565.
- [20] A. Simis and Ş.O. Tohăneanu, Homology of homogeneous divisors. Israel J. Math. 200 (2014), 1, 449–487.
- [21] C.T.C. Wall, Singular Points of Plane Curves. London Math. Soc. Stud. Texts 63, Cambridge Univ. Press, Cambridge, 2004.

Received 26 March 2024

Université Côte d'Azur,
CNRS, LJAD, France
Alexandru.Dimca@univ-cotedazur.fr
and
Simion Stoilow Institute of Mathematics
of the Romanian Academy
P.O. Box 1-764, RO-014700 Bucharest, Romania