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The Castelnuovo–Mumford regularity of the Jacobian algebra and of the graded
module of derivations associated to a general curve arrangement in the com-
plex projective plane are studied. The key result is an addition-deletion type
result, similar to results obtained by H. Schenck, H. Terao, Ş. O. Tohăneanu and
M. Yoshinaga, but in which no quasi-homogeneity assumption is needed.
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1. INTRODUCTION

Let S = C[x, y, z] be the polynomial ring in three variables x, y, z with
complex coefficients, and let C : f = 0 be a reduced curve of degree d ≥ 3
in the complex projective plane P2. If f = f1 · · · fs is the factorization of f
into a product of irreducible factors, we set Ci : fi = 0 for i = 1, . . . , s for the
irreducible components of C. Then, we regard C as the curve arrangement

C = C1 ∪ · · · ∪ Cs

and denote d = degC and di = degCi. We denote by Jf the Jacobian ideal of
f , i.e., the homogeneous ideal in S spanned by the partial derivatives fx, fy, fz
of f , and by M(f) = S/Jf the corresponding graded quotient ring, called the
Jacobian (or Milnor) algebra of f . Consider the graded S-module of Jacobian
syzygies of f or, equivalently, the module of derivations killing f , namely

D0(f) =
{
(a, b, c) ∈ S3 : afx + bfy + cfz = 0

}
.
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In this paper, we study the Castelnuovo–Mumford regularity of the graded
S-modules D0(f) and M(f). Recall that to any graded S-module M , one can

associate a coherent sheaf M̃ on P2. We say that M̃ is m-regular if

H1
(
P2, M̃(m− 1)

)
= H2

(
P2, M̃(m− 2)

)
= 0.

The minimal m such that M̃ is m-regular is called the Castelnuovo–Mumford
regularity of M̃ and is denoted by reg M̃ . Finally, we set regM = reg M̃ , see for
instance [15, 18] and also [16, Definition 54] for an alternative definition. Note
that for a reduced singular plane curve C of degree d, the following inequality
holds

(1.1) regD0(f) ≤ 2d− 4

and the equality holds if C has a unique node as its singular set, see Remark 5.1
below. On the other hand, for a line arrangement C : f = 0 the much stronger
inequality

(1.2) regD0(f) ≤ d− 2

holds, and equality takes place if C has only double points, see [15, Corol-
lary 3.5]. The proof of this inequality is based on the following addition-deletion
type result. With our notation above, assume that s > 1 and set

C ′ = C1 ∪ · · · ∪ Cs−1 : f
′ = 0.

Then, when C is a line arrangement, H. Schenck shows in [15] that the sheaves

E(f) = D̃0(f) and E(f ′)(−1) = D̃0(f)(−1)

are related by a short exact sequence of sheaves, from which the conclusion is
derived. Similar exact sequences in the case when C is a conic-line arrangement
having only quasi-homogeneous singularities were considered in [18], where the
authors concentrate on the freeness of such arrangements. The more general
situation of a curve arrangement having only quasi-homogeneous singularities
was considered in [17], where an upper bound of regE(f) in terms of regE(f ′)
and ds = degCs when Cs is smooth is given, see [17, Lemma 3.6]. These exact
sequences were extended to cover the situation when non-quasi-homogeneous
singularities occur, see [6, Theorem 2.3], which can be restated as follows.
First, we need some notation. For an isolated hypersurface singularity (X, 0),
we set

ϵ(X, 0) = µ(X, 0)− τ(X, 0),

where µ(X, 0) (respectively, τ(X, 0)) is the Milnor (respectively, Tjurina) num-
ber of the singularity (X, 0). We recall that ϵ(X, 0) ≥ 0 and the equality holds
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if and only if (X, 0) is quasi-homogeneous, see [14]. For the curves D1, D2 and
D = D1 ∪D2 and a point q ∈ D1 ∩D2, we set

ϵ(D1, D2)q = ϵ(D1 ∪D2, q)− ϵ(D1, q)

and then define

ϵ(D1, D2) =
∑

q∈D1∩D2

ϵ(D1, D2)q.

Now, we can recall our result in [6, Theorem 2.3], modulo a twist by −1.

Theorem 1.1. With the above notation, assume that s > 1 and Cs is a
smooth curve. Then there is an exact sequence of sheaves on P2 given by

0 → E(f ′)(−ds)
fs−→ E(f) → i2∗F → 0

where is : Cs → P2 is the inclusion and F = OCs(D) a line bundle on Cs such
that

degD = 2− 2gs − ds − r − ϵ(C ′, Cs),

where gs is the genus of the smooth curve Cs and r is the number of points in
the reduced scheme of C ′ ∩ Cs.

Using this result, our generalized version of [17, Lemma 3.6] is the fol-
lowing.

Theorem 1.2. With the above notation, assume that s > 1 and Cs is a
smooth curve of degree ds. Then reg(D0(f)) ≤ m0, where

m0 = max
(
reg

(
D0(f

′)
)
+ ds, 2ds − 3 +

⌊r + ϵ(C ′, Cs)

ds

⌋)
.

In fact, our result also corrects a minor error in [17, Lemma 3.6], see
Remark 7.2. The case when C is a line arrangement was settled in [15, The-
orem 3.4] and was used to prove the inequality (1.2). Theorem 1.2 has the
following weaker, but much simpler version.

Corollary 2. With the above notation, assume that s > 1 and Cs is a
smooth curve of degree ds. Then

reg
(
D0(f)

)
≤ max

(
reg

(
D0(f

′)
)
+ ds, deg(C

′) + 2ds − 3
)
.

The following result is the analog of the inequality (1.2) for the curve
arrangements with all the irreducible components smooth.

Theorem 2.1. Let C : f = 0 be a curve arrangement in P2 with d = deg f
such that the irreducible components Ci : fi = 0 of C are smooth curves, say
of degree di, for all i = 1, . . . , s. Then

regD0(f) ≤ d+ δ − 3,

where δ = max(di : i = 1, . . . , s) and the equality holds if C is a nodal curve.
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Corollary 3. Let C : f = 0 be a conic-line arrangement with d = deg f .
Then

regD0(f) ≤ d− 1

and the equality holds if C is a nodal conic-line arrangement containing at least
one smooth conic.

Remark 3.1. The Castelnuovo–Mumford regularity reg(D0(f)) does not
enjoy simple semi-continuity properties, see [7, Remark 5.3]. Hence, there
seems to be no simple way to show that the maximal value of reg(D0(f)) in
a fixed class of curve arrangements is obtained for the nodal curves in this
class, as it is the case in (1.2) and Theorem 2.1. On the other hand, a line
arrangement C : f = 0 satisfies the equality in (1.2) if and only if C is not
formal, see [12, Corollary 7.8], and hence, C enjoys some geometric properties
in this situation. One may ask whether the conic-line arrangements C for
which the equality holds in Corollary 3 enjoy also some special properties.

4. SOME PRELIMINARIES

We say that C : f = 0 is an m-syzygy curve if the module D0(f) is
minimally generated by m homogeneous syzygies, say r1, r2, . . . , rm, of degrees
αj = deg rj ordered such that

(4.1) 0 ≤ α1 ≤ α2 ≤ · · · ≤ αm.

We call these degrees (α1, . . . , αm) the exponents of the curve C. The
smallest degree α1 is sometimes denoted by mdr(f) and is called the minimal
degree of a Jacobian relation for f .

The curve C is free when m = 2, since then, D0(f) is a free module of
rank 2, see for instance [3, 5, 10, 20]. In this case, α1 + α2 = d− 1. Moreover,
there are two classes of 3-syzygy curves which are intensely studied, since they
are in some sense the closest to free curves. First, we have the nearly free
curves, introduced in [10] and studied in [2, 3, 5, 13] which are 3-syzygy curves
satisfying α3 = α2 and α1+α2 = d. Then, we have the plus-one generated line
arrangements of level α3, introduced by T. Abe in [1], which are 3-syzygy line
arrangements satisfying α1 + α2 = d. In general, a 3-syzygy curve is called a
plus-one generated curve if it satisfies α1 + α2 = d.

Consider the sheafification

E(f) := D̃0(f)

of the graded S-module D0(f), which is a rank two vector bundle on P2, see
[19] for details. Moreover, recall that

(4.2) E(f) = T ⟨C⟩(−1),
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where T ⟨C⟩ is the sheaf of logarithmic vector fields along C as considered for
instance in [13, 19].

Remark 4.1. Note that in [17, Equation (1.1)] the vector bundle T ⟨C⟩ is
denoted by Der(− logC), and hence, we have

(4.3) Der(− logC) = T ⟨C⟩ = E(f)(1).

In particular, this implies

(4.4) reg
(
Der(− logC)

)
= reg

(
T ⟨C⟩

)
= reg

(
E(f)

)
− 1.

On the other hand, in [15, Corollary 3.5], the vector bundle E(f) is denoted
by D, and hence here, no twist is involved. Similarly, in [18, Formula (1)], the
vector bundle E(f) is denoted by D0, and hence again, no twist is involved.

We define the submodule of Koszul-type relations KR(f) to be the sub-
module in D0(f) generated by the following 3 obvious relations of degree d−1,
namely

(fy,−fx, 0), (fz, 0,−fx) and (0, fz,−fy).

Finally, consider the quotient module of essential relations

(4.5) ER(f) = D0(f)/KR(f).

Note that C : f = 0 is smooth if and only if ER(f) = 0. Using this module,
we define for a singular curve C : f = 0 the invariant

(4.6) mdre(f) = min
{
r ∈ Z : ER(f)r ̸= 0

}
.

We have mdre(f) = mdr(f) when mdr(f) < d− 1.
We introduce the following invariants associated with the curve C : f = 0.

Definition 4.2. For a homogeneous reduced polynomial f ∈ Sd one defines

(i) the coincidence threshold

ct(f) = max
{
q : dimM(f)k = dimM(g)k for all k ≤ q

}
,

with g a homogeneous polynomial in S of the same degree d as f and
such that g = 0 is a smooth curve in P2.

(ii) the stability threshold

st(f) = min
{
q : dimM(f)k = τ(C) for all k ≥ q

}
.

In particular, for a smooth curve C : f = 0 one has ct(f) = ∞ and
st(f) = 3(d− 2) + 1. It is clear that for a singular curve C : f = 0 one has

(4.7) ct(f) = mdre(f) + d− 2.

These new invariants ct(f) and st(f) enter into the following result, see
[5, Corollary 1.7], where T = 3(d− 2).
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Theorem 4.1. Let C : f = 0 be a degree d reduced curve in P2. Then C
is a free (respectively, nearly free) curve if and only if

ct(f) + st(f) = T (respectively, ct(f) + st(f) = T + 2).

In the remaining cases, one has ct(f) + st(f) ≥ T + 3.

To state the following result, we recall some more notation. Let J = Jf
be the Jacobian ideal of f and I = If be its saturation with respect to the
maximal ideal (x, y, z). Then, the singular subscheme Σf of the reduced curve
C : f = 0 is the 0-dimensional scheme defined by the ideal I and we consider
the following sequence of defects

(4.8) defk Σf = τ(C)− dim
Sk

Ik
.

With this notation, one has the following result, see [4, Theorem 1], where g
is as in Definition 4.2 (i).

Theorem 4.2. Let C : f = 0 be a degree d reduced curve in P2. If Σf

denotes its singular locus subscheme, then

dimM(f)T−k = dimM(g)k + defk Σf

for 0 ≤ k ≤ 2d− 5. In particular, if indeg(If ) ≤ d− 2, then

st(f) = T − indeg(If ) + 1.

The second claim in Theorem 4.2 follows by taking

k = indeg(If )− 1 ≤ d− 3

in the first claim and using the obvious equality M(g)j = Sj for j < d− 1.

Lemma 5. Let C : f = 0 be a reduced plane curve of degree d. Then

reg Jf = reg
(
D0(f)

)
+ d− 2 and reg

(
M(f)

)
= reg

(
D0(f)

)
+ d− 3.

Proof. The first claim follows from the obvious exact sequence

0 → D0(f) → S3 → Jf (d− 1) → 0.

The second claim follows from the obvious exact sequence

0 → Jf → S → M(f) → 0

which implies reg(M(f)) = reg(Jf )− 1.

The next result gives the relation between these invariants, see [7, Theo-
rem 3.3].
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Theorem 5.1. Let C : f = 0 be a reduced singular plane curve of de-
gree d. Then the equality

reg
(
M(f)

)
= st(f)

holds if and only if C : f = 0 is a free curve. Otherwise, one has

reg
(
M(f)

)
= st(f)− 1.

Remark 5.1. It was shown in [9, Theorem 1.5 and Example 4.3 (i)] that
for a reduced singular plane curve of degree d, one has st(f) ≤ 3(d − 2), and
that equality holds when C has a unique node as its singular set. Such a curve
is not free when d ≥ 3. It follows that for d ≥ 3, one has

reg
(
M(f)

)
≤ 3d− 7 and reg

(
D0(f)

)
≤ 2d− 4

with equalities when C : f = 0 is a uninodal curve.

Example 5.2. (i) If C : f = 0 is a free curve of degree d with exponents
(α1, α2) with α1 ≤ α2, then one has 1 ≤ α1 ≤ (d− 1)/2 and hence

ct(f) = α1 + d− 2,

reg
(
M(f)

)
= st(f) = 2(d− 2)− α1 = d− 3 + α2 and reg

(
D0(f)

)
= α2.

This follows from relation (4.7), Theorems 4.1 and 5.1 and Lemma 5.
(ii) If C : f = 0 is a plus-one generated curve with exponents (α1, α2, α3),

then α1 + α2 = d and one has

st(f) = d− 2 + α3

see [11, Proposition 2.1]. It follows as above that

ct(f) = α1+d−2, reg
(
M(f)

)
= st(f)−1 = d−4+α3 and reg

(
D0(f)

)
= α3−1.

We conclude this section with a local result, needed in the proofs in the
next section.

Lemma 6. Let us consider a reduced plane curve singularity (D1, 0) and
a smooth germ (D2, 0) which is not an irreducible component of (D1, 0). Then

(D1, D2)0 − ϵ(D1, D2)0 − 1 ≥ 0,

where (D1, D2)0 denotes the intersection multiplicity of (D1, 0) and (D2, 0).

Proof. We have

ϵ(D1, D2)0 = µ(D1 ∪D2, 0)− τ(D1 ∪D2, 0)−
(
µ(D1, 0)− τ(D1, 0)

)
.

Using the formula

µ(D1 ∪D2, 0) = µ(D1, 0) + µ(D2, 0) + 2(D1, D2)0 − 1,
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see [21, Theorem 6.5.1], the claim in Lemma 6 is equivalent to the much simpler
inequality

τ(D1 ∪D2, 0) ≥ τ(D1, 0) + (D1, D2)0.
Choose local coordinates at 0 ∈ C2 such that the smooth germ (D2, 0) is given
by u = 0 and the singularity (D1, 0) by g = 0. Let R = C{u, v} be the
convergent power series local ring with C coefficients and variables u and v.
Then g ∈ R is reduced and nondivisible by u. The singularity (D1, 0) has an
associated Tjurina algebra

T (g) = R/Ig,
where Ig = (g, gu, gv), such that τ(D1, 0) = dimT (g). Similarly, we consider
T (ug) = R/Iug with Iug = (ug, g + ugu, ugv) and τ(D1 ∪D2, 0) = dimT (ug).
We have the following exact sequence

0 → T (g) → R

(g, ugu, ugv)
→ R

(g, u)
→ 0,

where the second map is multiplication by u and the third map is the obvious
projection. To show that the second map is injective, assume that for h ∈ R
we have uh ∈ (g, ugu, ugv). It follows that there are germs a, b, c ∈ R such that

uh = ag + bugu + cugv.

This equality implies that a is divisible by u, which is not a factor of g, and
hence h ∈ Ig. This exact sequence implies that

dim
R

(g, ugu, ugv)
= dimT (g) + dim

R

(g, u)
= τ(D1, 0) + (D1, D2)0.

Since Iug ⊂ (g, ugu, ugv), we have

τ(D1 ∪D2, 0) ≥ dim
R

(g, ugu, ugv)

and this completes our proof.

7. THE PROOFS OF THE MAIN RESULTS

7.1. Proof of Theorem 1.2

If we twist the exact sequence of sheaves in Theorem 1.1 by OP2(t) and
take the associated long cohomology sequence, we get

H1
(
P2, E(f ′)(t− ds)

)
→ H1

(
P2, E(f)(t)

)
→ H1

(
Cs,OCs(Dt)

)
→

→ H2
(
P2, E(f ′)(t− ds)

)
→ H2

(
P2, E(f)(t)

)
→ 0.

Here
degDt = degD + tds = (2 + t)ds − d2s − r − ϵ(C ′, Cs).
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Here, the vanishing H1(P2, E(f ′)(t − ds)) = 0 takes place for any t − ds ≥
reg(D0(f

′))− 1, hence for any

(7.1) t ≥ reg
(
D0(f

′)
)
+ ds − 1.

Next, we have

dimH1
(
Cs,OCs(Dt)

)
= dimH0

(
Cs,OCs(K −Dt)

)
,

where K is the canonical divisor of the curve Cs. It follows that

deg(K −Dt) = deg(K)− deg(Dt) = 2d2s − 5ds + r + ϵ(C ′, Cs)− tds,

since degK = ds(ds − 3). Next, H1(Cs,OCs(Dt)) = 0 if deg(K −Dt) < 0, in
other words if

(7.2) t > 2ds − 5 +
r + ϵ(C ′, Cs)

ds
.

This strict inequality is easily seen to be equivalent to the following non-strict
inequality.

(7.3) t ≥ 2ds − 4 +
⌊r + ϵ(C ′, Cs)

ds

⌋
.

The inequalities (7.1) and (7.3) imply that the integer m0 defined in Theo-
rem 1.2 satisfies H1(P2, E(f)(m0 − 1)) = 0. To complete the proof of The-
orem 1.2 it remains to show that H2(P2, E(f)(m0 − 2)) = 0. To get this
vanishing, we take t = m0 − 2 in the above exact sequence and see that

H2
(
P2, E(f ′)(m0 − 2− ds)

)
= 0.

Indeed, one has

m0 − 2− ds ≥
(
reg

(
D0(f

′)
)
+ ds

)
− 2− ds = reg

(
D0(f

′)
)
− 2

and we know that H2(P2, E(f ′)(reg(D0(f
′)) − 2) = 0. In fact, for any co-

herent sheaf F of P2, the vanishing H2(P2,F(m)) = 0 implies the vanishing
H2(P2,F(m+ 1)) = 0 as the obvious exact sequence

0 → F(m) → F(m+ 1) → G → 0

shows. Here, the morphism F(m) → F(m+1) is induced by multiplication by
a linear form ℓ ∈ S1, L is the line ℓ = 0 and G is a coherent sheaf supported
on L. This completes our proof.

Remark 7.2. Even in the case when all the singularities in the intersec-
tion C ′ ∩ Cs are quasi-homogeneous, our result is slightly different from [17,
Lemma 3.6]. First of all, taking into account the twist explained in Remark 4.1
and equation (4.4), Lemma 3.6 in [17] can be restated as

reg
(
D0(f)

)
≤ max

(
reg

(
D0(f

′)
)
+ ds, 2ds − 4 +

⌊ r

ds

⌋)
.
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This difference with our Theorem 1.2 comes from the fact that in [17] the strict
inequality (7.2) is not replaced by the non-strict inequality (7.3). When r/ds
is an integer and if

reg
(
D0(f

′)
)
+ ds ≤ 2ds − 4 +

r

ds

then the claim in [17, Lemma 3.6] is false. Such situations really do occur.
Indeed, let C ′ be a free curve of degree d′ and exponents (α1, α2) with inequality
α2 ≤ d′− 3. Let Cs be a smooth curve meeting C ′ transversally in dsd

′ points,
which are all nodes for C. Then Example 5.2 (i) implies

reg
(
D0(f

′)
)
+ ds = α2 + ds ≤ d′ − 3 + ds ≤ 2ds − 4 + d′.

Hence, such examples exist even in the class of line arrangements. On the
other hand, Theorem 3.4 in [15] which covers the case of C a line arrangement
is correctly stated.

7.3. Proof of Corollary 2

Note that using Lemma 6, we have the following

r + ϵ(C ′, Cs) =
∑

p∈C′∩Cs

(
1 + ϵ(C ′, Cs)p

)
≤

∑
p∈C′∩Cs

(C ′, Cs)p = deg(C ′)ds.

This clearly proves Corollary 2.

7.4. Proof of Theorem 2.1 and Corollary 3

We can assume in this proof that δ = d1 > 1, since the case of line
arrangements is clear by [15]. Then, we have

reg
(
D0(f1)

)
= 2d1 − 3,

using for instance Theorem 5.1. Hence, the first claim holds for k = 1. Now
assume that this claim holds for k = s− 1 and apply Corollary 2. We get

reg
(
D0(f)

)
≤ max(d+ d1 − 3, d1 + · · ·+ ds−1 + 2ds − 3).

This inequality yields the first claim for k = s since d1 ≥ ds.
Now, we consider the second claim, when C is in addition a nodal curve.

Such a curve C cannot be free, see for instance [8]. Hence, the equality
reg(D0(f)) = d+ d1 − 3 is equivalent to the equality

(7.4) st(f) = 2d− 5 + d1,

in view of Lemma 5 and Theorem 5.1. Hence, it remains to prove the following.
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Lemma 8. Let C : f = 0 be a nodal curve arrangement in P2 with d =
deg f such that the irreducible components Ci : fi = 0 of C are smooth curves,
say of degree di, for all i = 1, . . . , s. Then, if δ = max(di : i = 1, . . . , s) > 1,
one has the following equalities

st(f) = 2d− 5 + δ and indeg If = d− δ.

Proof. Assume again that δ = d1. First, we use Theorem 4.2 and see that
(7.4) is equivalent to indeg If = d− d1, in other words to the two relations

If,d−d1−1 = 0 and If,d−d1 ̸= 0.

Since C is a nodal curve, then If consists of all the polynomials vanishing at
all the nodes of C. In particular,

f2f3 · . . . · fs ∈ If,d−d1

and hence If,d−d1 ̸= 0.

Finally, we prove that If,d−d1−1 = 0. Let h ∈ If,d−d1−1 and assume first
that the curve H : h = 0 is reduced. For any 1 ≤ k ≤ s, we consider the
intersection H ∩Ck. Note that on Ck there are exactly dk(d− dk) nodes of the
curve C. The inequality

dk(d− dk) > dk(d− d1 − 1) = degC1 degH

implies that Ck is an irreducible component of H for all k = 1, . . . , s. This is
impossible since

degC = d > d− d1 − 1 = degH.

If the curve H is not reduced, we apply the above argument to the associated
reduced curve Hred and get again a contradiction since degHred ≤ degH. This
completes the proof of Lemma 8 and also of Theorem 2.1.

Corollary 3 is an obvious consequence of Theorem 2.1 for δ = 2.
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