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1. INTRODUCTION

In algebraic geometry and complex geometry, the classification of vec-
tor bundles is an important problem that has attracted considerable attention
since the early sixties. One goal of the classification was the construction of
nicely behaved moduli spaces of vector bundles. This had been achieved for
line bundles, but it soon became apparent that for higher rank vector bundles
a restrictive condition was necessary to obtain moduli spaces with good geo-
metric properties. To this purpose, Mumford introduced the concept of slope-
semistability in [46] for vector bundles over algebraic curves. This was later
extended to cover coherent sheaves over higher dimensional bases. The theory
attracted even more interest through Donaldson’s work in four-manifolds differ-
ential topology. In particular, the so-called Kobayashi–Hitchin correspondence
relates moduli spaces of stable vector bundles on complex projective surfaces
to moduli spaces of anti-self-dual connections in gauge theory, thus providing
a new perspective in the study of the subject in complex geometry.

In this paper, we survey the existence and construction results of moduli
spaces of semistable coherent sheaves in both algebraic and complex geometry,
with a particular stress on functorial aspects. We do not delve into the vast
domain studying the geometric properties and applications of these moduli
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spaces in enumerative geometry, classification of manifolds, hyperkähler geom-
etry, gauge theory, etc. For this, there exists a rich literature, see for instance
[25, 45] and the references therein.

2. FIRST PROPERTIES OF SLOPE-SEMISTABLE SHEAVES

In this section, we recall the notion of slope-semistability for coherent
sheaves, and discuss its first important properties in the context of both al-
gebraic and complex-analytic geometry. Our main references here are [25,
Chapter 1], [29, Chapter 5] and [36].

Setup. Throughout this paper, we denote by (X,ω) a polarized space of
dimension n which is either

(AG) a smooth projective variety over an algebraically closed field k with an
integral ample class ω ∈ Amp1(X), or

(CG) a compact complex manifold endowed with a Hermitian metric whose
Kähler form ω is such that ∂∂̄(ωn−1) = 0; such a metric is called a
Gauduchon metric.

An important special subcase of (CG) that we frequently refer to in the
sequel is when (X,ω) is

(KG) a compact Kähler manifold endowed with a Kähler class ω ∈ H1,1(X,R).

Also, we denote by Coh(X) the category of coherent sheaves on X. It
should be understood that the coherent sheaves we consider are algebraic or
analytic depending on whether (X,ω) is in the case (AG) or (CG), respectively.

For a torsion-free sheaf E ∈ Coh(X), we define the ω-slope of E by

µω(E) :=
c1(E) · ωn−1

rk(E)
.

In the algebraic setting, the intersection product c1(E) · ωn−1 is performed in
the Chow ring A∗(X). In the (KG) setup, the first Chern class c1(E) can be
considered in singular cohomology, and the intersection product c1(E) · ωn−1

is given by cup product in the cohomology ring H∗(X,R). In the general com-
plex case, ωn−1 defines a class in Aeppli cohomology which may be integrated
against any class in (1, 1)-Bott–Chern cohomology, in particular against c1(E)
viewed as a class in H1,1

BC(X,Z). We note that in the non-Kähler complex case
the slope of E depends on the holomorphic structure of E and not merely on
its topological type.
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The following notion of slope-semistability was introduced by Mumford
in [46] over curves, and later extended in higher dimensions by Takemoto [61].
We also recall in Definition 2.3 the Gieseker–Maruyama semistability following
[37, 16].

Definition 2.1 (Slope-semistability). A sheaf E ∈ Coh(X) is ω-semistable
(respectively, ω-stable) if

1. E is torsion-free,

2. for any subsheaf F ⊂ E with 0 < rk(F ) < rk(E), we have

µω(F ) ≤ µω(E) (resp. <).

For the terminology, we also say (semi)stable, for slope-(semi)stable or
for ω-(semi)stable when ω is clear from the context. A torsion-free sheaf E
is called polystable if it is isomorphic to a direct sum of stable sheaves of the
same slope.

Definition 2.2. A coherent sheaf E onX is called simple if Hom(E,E)∼=k.

It is immediately shown that stable sheaves are simple.

Definition 2.3 (Gieseker–Maruyama-semistability). In the (AG) and (KG)
setups, one defines the Hilbert polynomial of a coherent sheaf E with respect
to ω by setting

Pω(E,m) =

∫
X
ch(E)emω ToddX .

A sheaf E ∈ Coh(X) is said to be Gieseker–Maruyama (GM) semistable (re-
spectively, Gieseker–Maruyama-stable) if

1. E is torsion-free,

2. for any subsheaf F ⊂ E with 0 < rk(F ) < rk(E), we have

Pω(F,m)

rk(F )
≤ Pω(E,m)

rk(E)
(resp. <) for m≫ 0.

Remark 2.4. It is easy to see that we have the following implications for
coherent sheaves in the (AG) or (KG) setups

ω-stable =⇒ GM -stable =⇒ GM -semistable =⇒ ω-semistable.

Examples 2.5. 1. All torsion-free sheaves of rank one and, in particu-
lar, all line bundles are stable with respect to any polarization.

2. A direct sum of semistable sheaves of the same slope is also semistable.
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3. The tangent bundle of the complex projective space Pn is stable.

4. The tangent bundle of a complex (algebraic or non-algebraic) K3 sur-
face is stable with respect to any polarization. In positive characteristic,
the stability of the tangent bundle is currently unknown [26, Chapter 9,
Section 4].

5. All non-algebraic compact complex surfaces admit irreducible, hence sta-
ble, rank two vector bundles [7]. Recall that by definition, a torsion-free
sheaf is irreducible if it admits no coherent subsheaf of intermediate rank.

The notion of slope-semistability fits within the broader context of al-
gebraic stability conditions introduced by Rudakov [56], and furthermore, it
satisfies the Harder–Narasimhan property. That is, for any torsion-free sheaf
E ∈ Coh(X) there exists a unique Harder–Narasimhan (HN) filtration

0 = E0 ⊂ E1 ⊂ · · · ⊂ Em = E

such that the factors Ei/Ei−1 are ω-semistable and

µω(E1) > µω(E2/E1) > · · · > µω(E/Em−1).

We refer the reader to [25, Section 1.3] for a proof in the algebraic case and to
[29, Theorem 5.7.15] in the analytic case.

In general, one can “approximate” any semistable sheaf E ∈ Coh(X) by
stable sheaves using Seshadri filtrations

E• : 0 = E0 ⊂ E1 ⊂ · · · ⊂ Em = E

with stable factors Ei/Ei−1 of slope µω(Ei/Ei−1) = µω(E). We denote by
grS(E•) =

⊕
iEi/Ei−1 the corresponding graded sheaf of such a filtration.

Remark 2.6. We note that a semistable sheaf E might admit many Se-
shadri filtrations, however one can show that the graded module correspond-
ing to any such filtration is uniquely determined in codimension one. In other
words, the reflexive hull grS(E•)∨∨ of the graded sheaf does not depend on
the choice of the Seshadri filtration [25, Section 1]. The graded modules of
different Seshadri filtrations may however be distinct, see [9, Example 3.1].

3. SOME KEY RESULTS ON SLOPE-SEMISTABLE SHEAVES

3.1. Set-theoretical Kobayashi–Hitchin correspondence

We present here the Kobayashi–Hitchin correspondence which establishes
a link between the algebraic geometric concept of stability and the existence of
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Hermite–Einstein metrics in complex differential geometry. It allows the use of
analytic and differential geometric methods in the study of semistable vector
bundles and their moduli spaces in complex geometry. See [36] for a thorough
treatment of this subject.

This works in the complex geometrical setup of compact complex man-
ifolds endowed with a Gauduchon metric. Let us fix a compact Gauduchon
manifold (X,ω) of dimension n. Let (E, h) be a C∞ complex vector bundle
on X, endowed with a Hermitian metric h. Then, by definition, an h-unitary
connection A on (E, h) is called ω-Hermite–Einstein if A is integrable and
satisfies

ΛωFA = − 2πi

(n− 1)! volω(X)
µω(E)IdE .

Here, Λω is the adjoint of the Lefschetz operator on forms given by wedging
with ω. Moreover, A is called irreducible if it has no decomposition A = A1⊕A2

coming from an orthogonal splitting E = E1 ⊕ E2 of the Hermitian smooth
vector bundle (E, h). Note that the integrability condition on A endows E with
a holomorphic structure EA = (E, ∂A) by the Newlander–Nirenberg theorem.

Theorem 3.1. Let (E, h0) be a Hermitian complex vector bundle on the
Gauduchon manifold (X,ω). If there exists an irreducible ω-Hermite–Einstein
connection on (E, h0), then the induced holomorphic structure EA on E is ω-
stable. Conversely, if E is an ω-stable holomorphic structure on E, then there
exists a Hermitian metric h on E such that its Chern connection with respect
to E is irreducible ω-Hermite–Einstein on (E, h). This metric h is called ω-
Hermite–Einstein on E and is unique up to multiplication by a positive factor.

Remark 3.2. In the setup of Theorem 3.1, if E is an ω-stable holomor-
phic structure on E, then there exists an ω-Hermite–Einstein connection A on
(E, h0) such that the induced holomorphic structure EA on E is isomorphic to
E , see [36].

3.2. Bogomolov inequality

Over a smooth projective variety or compact Kähler manifold, the Bogo-
molov inequality expresses a strong topological constraint to which semistable
torsion-free sheaves are subject. It is particularly useful in boundedness ques-
tions, see Theorem 4.6.

We state the Bogomolov inequality in the framework of algebraic and
Kähler geometry, and then make a remark on its formulation in the Gauduchon
setup.
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Theorem 3.3 (Bogomolov inequality). In the zero characteristic (AG)
setup and in the (KG) setup, for any ω-semistable sheaf E on X one has

∆(E) · ωn−2 ≥ 0,

where
∆(E) := 2 rk(E)c2(E)−

(
rk(E)− 1

)
c1(E)2.

In the (AG) setup in characteristic p > 0 and for E ω-semistable, we have

∆(E) · ωn−2 +
rk(E)2

(
rk(E)− 1

)2
(p− 1)2

ωn ≥ 0.

Remark 3.4. In the algebraic case, the theorem was first proved by Bo-
gomolov [6] over algebraic surfaces in zero characteristic. The general al-
gebraic case in zero characteristic follows from his result and the Mehta–
Ramanathan restriction Theorem 3.6. The positive characteristic case was
proved by Langer [31].

Remark 3.5. The inequality ∆(E) · ωn−2 ≥ 0 was proved in the Kähler
case by Lübke for holomorphic vector bundles E admitting an ω-Hermite–
Einstein metric, see [29, 36]. Together with the Kobayashi–Hitchin correspon-
dence, it yields the statement of Theorem 3.3 in the Kähler case. In fact,
Lübke’s proof also applies in the context of a Gauduchon manifold (X,ω),
leading to a pointwise inequality of (n, n)-forms:

∆(E, h) ∧ ωn−2 ≥ 0,

where h is an ω-Hermite–Einstein metric on E and the (2, 2)-form ∆(E, h)
is computed using the associated Chern connection, see [36, Section 2.2] for
further details.

3.3. Restriction theorems

In this subsection, we place ourselves in the algebraic setting and present
restriction results for (semi)stable sheaves. These are used in moduli theory to
prove boundedness and general properties of moduli spaces of sheaves.

Let H be an ample divisor representing the polarization ω. We assume
the dimension n of X to be larger than one. Let E ∈ Coh(X) be a torsion-
free sheaf. If D ∈ |aH| is a smooth divisor for some a > 0 such that E|D is
(semi)stable with respect to H|D, then it is immediate to see that E is also
(semi)stable with respect to H. One may wonder if a converse statement holds.
The example of the tangent bundle TPn

C
shows that some caution is required.

Indeed, its restriction to any hyperplane D is isomorphic to OPn−1
C

(1)⊕TPn−1
C

,

which is not semistable. However, a positive answer is found if one takes a
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general divisor D ∈ |aH| for a sufficiently large. This is the content of the
Mehta–Ramanathan restriction theorem [43, 44]:

Theorem 3.6. If E is a H-(semi)stable sheaf on X, then its restric-
tion E|D to a general divisor D ∈ |aH| of sufficiently large degree is (H|D)-
(semi)stable.

More refined restriction theorems which give effective bounds on the de-
gree a were proved by Flenner [14] in zero characteristic and by Langer [31,
Theorem 5.2 and Corollary 5.4] in mixed characteristic. See also the recent
paper [13] containing effective restriction results. We state here a variant of
Langer’s result.

Theorem 3.7. If E is a H-(semi)stable sheaf on X, then its restriction
E|D to a general divisor D ∈ |aH| is (H|D)-(semi)stable provided that

a >
rk(E)− 1

rk(E)
∆(E)Hn−2 +

1

rk(E)(rk(E)− 1)Hn
+

(rk(E)− 1)Hn

rk(E)
γrk(E),

where γr := 0 if char(k) = 0 and γr :=
r2(r−1)2

(p−1)2
if char(k) = p > 0.

Remark 3.8. In Theorem 3.7, “general” can be made explicit depending
on E. More precisely, if 0 = E0 ⊂ · · · ⊂ Em = E is a Seshadri filtration of E,
then the statement holds for any smooth (even normal) divisor D ∈ |aH| so
that any factor Ei/Ei−1 restricted to D remains torsion-free.

4. FAMILIES OF SLOPE-SEMISTABLE SHEAVES

In this section, we introduce properties of families of slope-semistable
sheaves which are essential in moduli theory. An S-flat family of coherent
sheaves on X is by definition a coherent OS×X -module E , flat over S. The
parameterizing space S is either a k-scheme or a complex analytic space, de-
pending on whether we work in the algebraic or analytic setup, respectively.

4.1. Boundedness of sets of coherent sheaves

We recall below what we mean by a bounded set of coherent sheaves on X.

Definition 4.1. Let S be a set of isomorphism classes of coherent sheaves
on X. We say that S is bounded if:

(AG) there exists a scheme S of finite type over k and a coherent sheaf E on
S×X such that S is contained in the set of isomorphism classes of fibers
of E over points of S [25, Definition 1.7.5];
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(CG) there exists a complex analytic space S, a compact subset K ⊂ S and
a coherent sheaf E on S × X such that S is contained in the set of
isomorphism classes of fibers of E over points of K [67, Definition 5.1].

WhenX is complex projective, the above two definitions are in fact equiv-
alent via the GAGA Theorem, cf. [65, Remark 3.3].

Note that if S is a bounded family of sheaves on X, then the Chern classes
(seen in the numerical group of X in the algebraic case, and in the singular
cohomology ring H∗(X,Z) in the analytic case, respectively) of the elements
in S range within a finite set.

The following boundedness criterion is due to Grothendieck [19] in the
algebraic case. The analytic version can be found in [67].

Proposition 4.2. Let S be a set of isomorphism classes of torsion-free
sheaves on X. Then S is bounded if and only if the following two conditions
are fulfilled:

1. S is dominated, i.e., there exists a bounded set T of classes of coherent
sheaves on X such that each element of S is a quotient of an element
of T ,

2. the slope function µω is upper bounded on S.

4.2. Openness of semistability

The following result shows that slope-semistability, respectively, slope-
stability, is an open property in flat families of sheaves. Its proof is based on
the boundedness criterion stated in Proposition 4.2.

Proposition 4.3. Let (X,ω) be a polarized space as in our (AG) or
(KG) setups. Let E be an S-flat family of coherent sheaves on X. Then the
locus S◦ of closed points s ∈ S such that E|{s}×X is ω-semistable (respectively,
ω-stable) is a Zariski open subset of S.

Proof. See [25, Proposition 2.3.1] for a proof in the algebraic case, and
[67, Corollary 6.7] for the analytic case.

Remark 4.4. The above result is in general false for non-Kähler Gaudu-
chon manifolds, see [62].
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4.3. Langton’s semistable reduction

We treat the algebraic case. For the analytic case, see [66].

Proposition 4.5 (Semistable reduction, [30]). Let (X,ω) be as in the
(AG) setup. Let R be a DVR over k of quotient field K. Let E be an R-flat
family of coherent sheaves on X such that EK is ω-semistable. Then there
exists a subsheaf F ⊂ E such that FK

∼= EK and such that Fk is ω-semistable.

4.4. Boundedness of semistability

The Chern character of a coherent sheaf E on X determines its numerical
type ch(E) in the numerical group Knum(X)Q in the (AG) case, respectively
in the singular cohomology group H∗(X,Q) in the (CG) case. Given a class γ
in Knum(X)Q, respectively in H∗(X,Q), we consider the following boundedness
statement:

Bγ(ω): The set of isomorphism classes of coherent sheaves E of class γ
on X that are ω-semistable is bounded.

Boundedness of semistable sheaves was intensively studied and it took
the efforts of many mathematicians to completely solve the algebraic case (e.g.,
[5, 27, 61, 16, 40, 59, 31]).

Theorem 4.6. In the (AG) setup, boundedness of semistability Bγ(ω)
holds for any numerical class γ.

In the (KG) case, the boundedness statement is not yet known in full
generality. We present here a few results that indicate its validity.

Theorem 4.7. Let (X,ω) be a compact Kähler manifold and γ be a topo-
logical class in H∗(X,Q). Then Bγ(ω) is known in the following cases:

� when γ is the class of a rank 1 coherent sheaf [65, Corollary 5.5],

� when X is complex projective, but ω is not necessarily an ample class
[23, Proposition 6.3].

� when X is a (not necessarily algebraic) K3 surface or a 2-dimensional
torus and the class ω is γ-generic, see [64, Theorem 4.3] and [53, Sec-
tion 2.2.1] for details.

Remark 4.8. In the non-Kähler case, boundedness of semistability cannot
be expected in the above formulation as can be seen from the following example.
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Let X be a class V II surface. Then b1(X) = 1 and the identity component
Pic0(X) of the Picard group ofX is isomorphic to C∗. In this case, holomorphic
line bundles with c1 = 0 form an unbounded family of semistable sheaves on
X, with respect to any polarization.

A possible remedy to this situation would be to fix the first Chern class
of the line bundles in the Bott–Chern cohomology of X, and not only in the
singular cohomology. The effect would be to fix the degree of the considered
line bundles. The set parametrizing line bundles of fixed degree in the above
example is a circle in C∗ centered at 0 [36, Section 1.3].

5. MODULI FUNCTORS AND MODULI STACKS

5.1. Moduli functors of sheaves

In this subsection, we let C be the category (Sch/k) of k-schemes in the
algebraic geometric setting, and the category (An/C) of (not necessarily sepa-
rated) complex analytic spaces in the complex geometric setting.

Definition 5.1. Let F : C → (Sets) be a contravariant functor and ϕ :
F → Hom(−,M) a natural transformation of functors whereM is an algebraic
space over k, respectively an analytic space. We say that ϕ is:

� a categorical moduli space for F if any other natural transformation
ψ : F → Hom(−, N) with N an algebraic space over k, respectively an
analytic space factorizes through ϕ. One also says that M corepresents
the functor F in this case;

� a coarse moduli space for F if it is a categorical moduli space and also,
induces a bijection at the level of k-points F (Spec k) → Hom(Spec k,M),
respectively of C-points;

� a fine moduli space for F if ϕ is an isomorphism of functors.

Let (X,ω) be a polarized space as in the algebraic, respectively Kähler
setup. Given a class γ in Knum(X)Q, respectively in H∗(X,Q), let us denote
CohX,γ : C → (Sets) the functor of coherent sheaves of class γ, which sends
an object S ∈ C to the set of isomorphism classes of flat families of coherent
sheaves of class γ on X parameterized by S. In the sequel, we consider the
following subfunctors of the functor CohX,γ :

� CohssX,ω,γ of ω-semistable sheaves,

� CohsX,ω,γ of ω-stable sheaves,
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� Cohlf,sX,ω,γ of ω-stable locally free sheaves,

� CohsplX,γ of simple torsion-free sheaves [1, 28],

� Coh
(SLF )
X,ω,γ of torsion-free sheaves with Seshadri locally free graduations

[54, 8],

� Coh
(SR)
X,ω,γ of torsion-free sheaves with Seshadri reflexive graduations [54].

All these functors are Zariski-open subfunctors of CohX,γ , see Proposition 4.3
and the above cited references.

We discuss the question whether these functors admit a categorical, coarse
or fine moduli space after saying a few words about the corresponding moduli
stacks.

5.2. Moduli stacks of sheaves

Since the theory of analytic stacks is less developed, in this subsection
we place ourselves in the algebraic setup and recall some known facts about
the stack of coherent sheaves. For a detailed account on stacks and algebraic
stacks, we refer the reader to [34, 50, 17, 4, 60].

Consider the category CohX whose objects are pairs (S,E), where S is
a scheme over k and E is an S-flat family of sheaves on X. A morphism
(S′, E′) → (S,E) in CohX consists of a map f : S′ → S of k-schemes together
with a morphism E → f∗E

′ of sheaves whose adjoint is an isomorphism. We
visualize this as a cartesian diagram

E′ //

��

E

��
S′ f // S

This defines a category fibered in groupoids over the category of schemes over k.

Proposition 5.2 ([60, Tag 09DS, Tag 0DLY]). The category CohX is an
algebraic stack locally of finite type and with affine diagonal over k.

Given a numerical class γ ∈ Knum(X), we consider the open substacks

CohssX,ω,γ , CohsX,ω,γ , Coh
lf,s
X,ω,γ , Coh

spl
X,γ , Coh

(SLF )
X,ω,γ , Coh

(SR)
X,ω,γ

of CohX corresponding to the functors

CohssX,ω,γ ,Coh
s
X,ω,γ ,Coh

lf,s
X,ω,γ ,Coh

spl
X,γ ,Coh

(SLF )
X,ω,γ ,Coh

(SR)
X,ω,γ .
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Theorem 4.6 implies that CohssX,ω,γ is quasi-compact, therefore so are CohsX,ω,γ ,

Cohlf,sX,ω,γ ,Coh
(SLF )
X,ω,γ ,Coh

(SR)
X,ω,γ too. Furthermore, Proposition 4.5 yields that

CohssX,ω,γ is universally closed over k. All together, we obtain

Proposition 5.3. The substack CohssX,ω,γ ⊂ CohX is open and a univer-
sally closed algebraic stack of finite type and with affine diagonal over k.

As in the case of moduli functors, one can define the notions of categori-
cal/coarse/fine moduli spaces for algebraic stacks in the following way.

Definition 5.4. Let X be an algebraic stack over k and ϕ : X→Hom(−,M)
a morphism of stacks, where M is an algebraic space over k. We say that ϕ is:

� a categorical moduli space for X if any other morphism ψ :X→Hom(−, N)
with N an algebraic space over k factorizes through ϕ;

� a coarse moduli space for X if it is a categorical moduli space and more-
over, induces a bijection between the set of isomorphism classes of k-
points of X and Hom(Spec k,M);

� a fine moduli space for X if ϕ is an isomorphism of stacks.

Note that the above moduli stacks never admit fine moduli spaces, since
the automorphism groups of the objects are non-trivial. As to the existence of
categorical or coarse moduli spaces for moduli stacks, this is equivalent to the
existence of categorical or coarse moduli spaces for the corresponding moduli
functors described above.

A more refined version of a categorical moduli space is the following.

Definition 5.5 ([2]). A quasi-compact and quasi-separated morphism ϕ :
X →M from an algebraic stack X to an algebraic space M is said to be a good
moduli space if

1. the pushforward functor on quasi-coherent sheaves is exact, and

2. the induced morphism of sheaves OM → ϕ∗OX is an isomorphism.

Good moduli spaces are always categorical [2, Theorem 6.6], but not
coarse in general.

A natural question to be discussed next is that of the existence of a
categorical/good/coarse moduli space for the above moduli stacks.
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6. MODULI SPACES OF SHEAVES

In algebraic and in complex geometry, the first moduli spaces of sheaves
of particular interest were moduli spaces of line bundles and more generally, of
vector bundles. In the latter case, it was soon observed that in order to obtain
moduli spaces with good geometric properties (such as local-separatedness) one
has to impose some restriction on the class of vector bundles to be classified.
This led Mumford to introduce the slope-stability condition in [46].

Theorem 6.1. The functor Cohlf,sX,ω,γ admits a separated coarse moduli

space M lf,s
X,ω,γ. In the (AG) case, M lf,s

X,ω,γ is a quasi-projective scheme over k.

This result was proved in the algebraic geometrical context using Geo-
metric Invariant Theory methods over curves by Mumford [46], Seshadri [58]
(see also [49]), over surfaces by Gieseker [16] and in higher dimensions by
Maruyama [38]. In the analytic setup, the result is a consequence of the ex-
istence of a coarse moduli space of simple vector bundles, proved by Nor-
ton [48] using Banach-analytic techniques, together with the openness of sta-
bility, Proposition 4.3.

Remark 6.2. In general, the moduli spaces M lf,s
X,ω,γ are rarely fine [39].

A situation when this is known to happen is when X is a curve, ω is the
fundamental class of X, and the rank and degree of the concerned vector
bundles are coprime.

In complex geometry, moduli spaces of stable vector bundles are re-
lated via the Kobayashi–Hitchin correspondence to moduli spaces of Hermite–
Einstein connections.

Theorem 6.3 (Moduli-theoretical Kobayashi–Hitchin correspondence, as
seen in [11, 29, 35, 42, 36]). Let (X,ω) be a Gauduchon compact complex mani-
fold. Let E be a smooth complex vector bundle on X and h a Hermitian metric
on E. Then the set-theoretical Kobayashi–Hitchin correspondence yields a real-
analytic isomorphism

MHE
X,ω,E,h →M lf,s

X,ω,E
between the moduli space of ω-Hermite–Einstein connections on (E, h) and the
moduli space of ω-stable holomorphic structures on E.

In general, the moduli spaces M lf,s
X,ω,γ are not compact. If one aims

at constructing natural compactifications, one generally needs to relax both
the locally-freeness and the stability condition of the coherent sheaves to be
parametrized.

We already mentioned moduli spaces of simple vector bundles. These ex-
tend to (not necessarily separated) moduli spaces of simple torsion-free sheaves.
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Theorem 6.4 ([1, 28]). The functor CohsplX,γ admits a coarse moduli space

M spl
X,γ.

Corollary 6.5. The functor CohsX,ω,γ admits a separated coarse moduli

space M s
X,ω,γ as an open subset in M spl

X,γ.

We note that in the algebraic setup, one can further show that the moduli
space M s

X,ω,γ is quasi-projective over k [38].
When X is a curve, the functor CohssX,ω,γ admits a projective categori-

cal moduli space M ss
X,ω,γ , which contains M s

X,ω,γ as an open subscheme [58].
The geometric points of M ss

X,ω,γ correspond to isomorphism classes of Seshadri
graduations of semistable sheaves, and therefore M ss

X,ω,γ is not a coarse moduli
space in general.

When trying to employ Geometric Invariant Theory for constructing
compactifications of M s

X,ω,γ in higher dimensions, one is led to consider the
Gieseker–Maruyama-semistability condition, see Definition 2.3.

Theorem 6.6 ([16, 38, 59, 2]). In the algebraic setup and in zero char-
acteristic, the substack CohGMss

X,ω,γ ⊂ CohX,γ of Gieseker–Maruyama-semistable

sheaves is open and admits a projective good moduli space MGMss
X,ω,γ .

Remark 6.7. In positive characteristic, the above statement holds if one
replaces “good moduli” by “adequate moduli”, see Alper [3].

Remark 6.8. In the general (KG) setup, the existence of the Gieseker–
Maruyama moduli space is generally unknown. There exist partial results when
X is complex projective and ω is a non-ample Kähler class [24].

A different way to enlarge the open substack Cohlf,sX,ω,γ is to look at

Coh(SLF )
X,ω,γ and Coh(SR)

X,ω,γ . For these, one still gets good moduli spaces in the
(AG) setting and characteristic zero [54]. See also [8] for the complex analytic
case.

7. FURTHER TOPICS

7.1. Donaldson–Uhlenbeck compactification

In this subsection, we consider the case when (X,ω) is a polarized smooth
complex projective surface. Let E be a smooth complex vector bundle onX and
h a Hermitian metric on E. Recall that by the moduli-theoretical Kobayashi–
Hitchin correspondence there is a real-analytic isomorphism

MHE
X,ω,E,h →M lf,s

X,ω,E
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between the moduli space of ω-Hermite–Einstein connections on (E, h) and the
moduli space of ω-stable holomorphic structures on E.

It is important in Donaldson theory to work with suitable compactifica-
tions of moduli spaces of anti-self-dual connections. These were constructed
by Donaldson based on compactness results due to Uhlenbeck [10] and lead
also to a compactification MDU

X,ω,E,h of MHE
X,ω,E,h, which we call the Donaldson–

Uhlenbeck compactification.
On the algebraic geometrical side, we have already seen a compactifi-

cation of the moduli space M lf,s
X,ω,E of slope-stable vector bundles by adding

Gieseker–Maruyama-semistable torsion-free sheaves at the boundary, which is
the Gieseker–Maruyama moduli space MGMss

X,ω,ch(E). Le Potier [32] and Li [33]
constructed a projective morphism

φ :MGMss
X,ω,ch(E) → PN

C

which is an immersion on M lf,s
X,ω,E . Furthermore, Li proved that the closure of

the image φ(M lf,s
X,ω,E) inside P

N
C is homeomorphic to the Donaldson–Uhlenbeck

compactification MDU
X,ω,E,h. This extends the inverse of the Kobayashi–Hitchin

correspondence as a homeomorphism of compact spaces

φ(M lf,s
X,ω,E) →MDU

X,ω,E,h.

In particular, one can transfer the complex algebraic structure of φ(M lf,s
X,ω,E)

to the Donaldson–Uhlenbeck compactification.
As a further compactification of M lf,s

X,ω,γ , in [25, Chapter 8], Huybrechts

and Lehn constructed a complex projective moduli space Mµss
X,ω,γ of slope-

semistable sheaves over a smooth surface, which comes together with a natural
transformation of functors

CohssX,ω,γ → Hom(−,Mµss
X,ω,γ).

However, Mµss
X,ω,γ does not corepresent the moduli functor in general.

Similar results were obtained by Greb, Sibley, Toma, Wentworth [22] in
dimension larger than two using the analogue of the Donaldson–Uhlenbeck
compactification due to Tian [63] and the higher dimensional analogue of the
Huybrechts–Lehn moduli space Mµss

X,ω,γ .

7.2. Moduli of pure sheaves

Until now, we have only considered classification problems of torsion-free
sheaves. It is however natural to extend this research to lower-dimensional
coherent sheaves. The analogue of the torsion-free condition in this situation
is the purity condition.
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Definition 7.1. A coherent sheaf E on X is said to be pure of dimension d
if any non-trivial coherent subsheaf F ⊂ E has dimension d too.

One defines the notions of ω-(semi)stability and GM -(semi)stability also
for pure sheaves in the (AG) and (KG) setups. For this, one writes the Hilbert
polynomial of a coherent sheaf E of dimension d on X in the following form

Pω(E,m) =
d∑

i=0

αi(E)mi, where αi(E) =
1

i!

∫
X
ch(E)ωiToddX .

Definition 7.2. A coherent sheaf E of dimension d on (X,ω) is said to be
ω-(semi)stable if

1. E is pure,

2. for any coherent subsheaf F ⊂ E with 0 < αd(F ) < αd(E), we have

αd−1(F )

αd(F )
(≤)

αd−1(E)

αd(E)
.

Definition 7.3. A coherent sheaf E of dimension d on (X,ω) is said to be
GM -(semi)stable if

1. E is pure,

2. for any coherent subsheaf F ⊂ E with 0 < αd(F ) < αd(E), we have

Pω(F,m)

αd(F )
(≤)

Pω(E,m)

αd(E)
for m≫ 0.

One can also consider the following notion of semistability that interpo-
lates between slope-semistability and GM-semistability.

Definition 7.4. For integers 1 ≤ ℓ ≤ d ≤ n, a coherent sheaf E of dimen-
sion d on (X,ω) is said to be ℓ-(semi)stable if

1. E is pure,

2. for any coherent subsheaf F ⊂ E with 0 < αd(F ) < αd(E), we have∑d
i=d−ℓ αi(F )m

i

αd(F )
(≤)

∑d
i=d−ℓ αi(E)mi

αd(E)
for m≫ 0.

For any class γ and ℓ between 1 and dim(γ), we obtain a chain of corre-
sponding open subfunctors of ℓ-semistable sheaves

CohGMss
X,ω,γ ⊂ CohℓssX,ω,γ ⊂ CohssX,ω,γ ⊂ CohX,γ .

The existence of moduli spaces of pure sheaves has been established in
various situations:
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� The case of simple pure sheaves is settled in [1] and [28].

� In the characteristic zero (AG) context, Simpson [59] proved the existence
of a projective categorical moduli space for CohGMss

X,ω,γ using techniques
of Geometric Invariant Theory; the positive characteristic case is to be
found in [41].

� Analogues of the Huybrechts–Lehn moduli spaces for ℓ-semistable sheaves
were constructed in [51].

7.3. Change of semistability and wall-crossing

In this subsection, we restrict the discussion to the algebraic geometric
setting. When the dimension of X is larger than one, the moduli spaces of
semistable sheaves above depend on the choice of the polarization ω in the
ample cone Amp1(X). The situation which seems to appear in general is that,
for any numerical class γ ∈ Knum(X), there exists a locally finite set W of real
algebraic hypersurfaces w ⊂ Amp1(X), called walls, leading to a decomposition
into connected components, called chambers, of

Amp1(X) \
⋃

w∈W
w

accounting for the change of (semi)stability in the following sense. If ω1, ω2 are
ample classes in the same chamber, then a coherent sheaf E of class γ is ω1-
(semi)stable if and only if E is ω2-(semi)stable. If this is indeed the case, then
moduli spaces with respect to ω1 and ω2 coincide. The next step to understand
the variation of the moduli spaces depending on the polarization would be to
study wall-crossing, i.e., the relation between moduli spaces corresponding to
adjacent chambers.

The existence of a chamber structure as above is guaranteed once the
following stronger boundedness property for semistable sheaves is established.

Definition 7.5 (Uniform boundedness of semistable sheaves). Given a nu-
merical class γ ∈ Knum(X), we say that the uniform boundedness of semista-
bility holds for γ if for any compact subset K ⊂ Amp1(X)R, the set of isomor-
phism classes of coherent sheaves of type γ on X that are ω-semistable with
respect to some ω ∈ K is bounded.

In the surface case, uniform boundedness is established using the Bogo-
molov inequality and the Hodge Index Theorem [55, 18, 15, 12, 47]. In this
case, the resulting walls are moreover rational linear, a situation which is pro-
pitious to the study of wall-crossing phenomena, see the above references for
such studies.
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Another situation where a rational linear chamber structure exists is the
case of two-dimensional pure sheaves [52].

In higher dimensions, a wall and chamber structure exists [23], however
walls are neither linear nor rational in general [55, 57]. This problem was
circumvented in [21, 20] by introducing a more refined notion of semistability
for which wall-crossing is well-behaved.
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[18] L. Göttsche, Change of polarization and Hodge numbers of moduli spaces of torsion free
sheaves on surfaces. Math. Z. 223 (1996), 2, 247–260.

[19] A. Grothendieck, Techniques de construction et théorèmes d’existence en géométrie
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