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1. INTRODUCTION/MOTIVATION

The aim of this note is to shed new light on the arithmetical surjectivity
conjecture by Colliot-Thélène, cf. [10], concerning the image of local rational
points under dominant morphisms of (smooth) varieties over global fields (and
beyond). The context is as follows: Let k be a global field, and f : X → Y
be a morphism of k-varieties. Let v ∈ P(k) be the finite places of k, kv be the
completion of k at v, and X(kv), Y (kv) denote the kv-rational points.

For every v ∈ P(k), the k-morphism f gives rise to a canonical map on
kv-rational points fkv : X(kv) → Y (kv). There are obvious examples show-
ing that, in general, fkv is not surjective, e.g., f : P1

Q → P1
Q of degree two.

Therefore, for f : X → Y as above, it is natural to consider the basic property

(Srj) fkv : X(kv)→ Y (kv) is surjective for almost all v ∈ P(k),

called arithmetical surjectivity and to ask the fundamental question:
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Q: “Characterize” the arithmetically surjective morphisms f : X → Y .
This problem was considered in a systematic way by Colliot-Thélène [10], under
the following restrictive but to some extent natural hypothesis:

(∗)CT k is a number field, X, Y are proper smooth integral k-varieties,
f : X → Y is dominant morphism with geometrically integral
generic fiber.

In particular, if L := k(Y ) is the function field of Y, the generic fiber XL

of the morphism f : X → Y can be viewed as an L-variety. In this notation,
for morphisms f : X → Y satisfying (∗)CT, Colliot-Thélène considered the
hypothesis (CT) and made the conjecture (CCT) below:

(CT) For each discrete valuation k-ring R of L, and its residue field κR,
there is a regular flat R-model XR of XL whose special fiber XκR has
an irreducible component Xµ which is κR-geometrically integral.

Conjecture of Colliot-Thélène (CCT). Let f : X → Y be a dominant mor-
phism of proper smooth geometrically integral varieties over a number field k
satisfying the hypotheses (∗)CT and (CT). Then f : X → Y is arithmetically
surjective, i.e., f has the property (Srj).

In a recent paper, Denef [12] proved a stronger form of the conjecture
(CCT), by replacing the hypothesis (CT) by the weaker hypothesis (D) below.
In order to explain Denef’s result, we recall the following terminology: Let
f : X→ Y be a morphism satisfying hypothesis (∗)CT. A smooth modification
of f is any morphism f ′ : X ′ → Y ′ satisfying hypothesis (∗)CT such that there
exist modifications (i.e., birational morphisms) p : X ′ → X, q : Y ′ → Y
satisfying q ◦ f ′ = f ◦ p, i.e., one has a commutative diagram of k-morphisms:

X ′
f ′
−→ Y ′

↓p ↓q
X

f−→ Y

Given a smooth modification f ′ : X ′ → Y ′ of f, for every Weil prime
divisor E′ ⊂ Y ′, and the Weil prime divisors D′ of X ′ above E′, consider: First,
the multiplicity e(D′|E′) of D′ in f ′∗(E′) ∈ Div(X ′); second, the restriction
f ′D′ : D′ → E′ of f ′ to D′ ⊂ X ′, which is a morphism of integral k-varieties
with generic fiber Dk(E′) a k(E′)-variety. In this notation, f ′ is called spilt, if
for every E′ there is D′ such that both condition below are satisfied:

(i) e(D′|E′) = 1; (ii) Dk(E′) is a k(E′)-geometrically integral variety.

For f : X → Y satisfying (∗)CT, it turns out that the hypothesis (CT) above
implies the following weaker hypothesis involving all the smooth modification
f ′ : X ′ → Y ′ of f : X → Y as follows.

(D) For all f ′ : X ′ → Y ′, all Weil prime divisors E′ of Y ′ are split under f ′.
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Theorem ([12, Main Theorem 1.2]). If f : X→Y satisfies (∗)CT and (D),
then f is arithmetically surjective.

Finally, we recall the more recent results by Loughran–Skorobogatov–
Smeets [16] which, for morphisms f : X → Y satisfying the hypothesis (∗)CT
above, give necessary and sufficient conditions such that f : X → Y is arith-
metically surjective, by generalizing the notion of f being split as follows.
Namely, following [16], in the notation introduced above, let f ′ : X ′ → Y ′ be
a smooth modification of f : X → Y. For a Weil prime divisor E′ of Y ′ and
a Weil prime divisor D′ of X ′ above E′, let k(D′) | k(E′) be the function field
extension defined by the dominant map f ′D′ : D′ → E′. One says that E′ is
pseudo-split under f ′ : X ′ → Y ′, if for every σ ∈ Gk(E′) in the absolute Galois
group Gk(E′), there is some Weil prime divisor D′ of X ′ above E′ satisfying:

e(D′|E′) = 1 and k(D′)⊗k(E′)k(E′) has a factor stabilized by σ.

Following Loughran–Skorobogatov–Smeets [16], consider the hypothesis involv-
ing all smooth modifications f ′ : X ′→Y ′ of f : X → Y below:

(LSS) For all f ′ : X ′→Y ′, all prime E′∈Div(Y ′) are pseudo-split under f ′.

Note that if D′, E′ satisfy hypothesis (D), then k(D′) | k(E′) is a regular field
extension, hence k(D′) ⊗k(E′) k(E′) is a field stabilized by all σ ∈ Gk(E′),
thus E′ being split under f ′ obviously implies that E′ is pseudo-split under
f ′. Therefore, hypothesis (D) implies hypothesis (LSS), hence leading to the
following sharpening of Denef’s result above:

Theorem ([16, Theorem 1.4]). If f : X → Y satisfies (∗)CT, then f
satisfies (LSS) if and only if f is arithmetically surjective.

In this note, we provide a different approach to the basic problem (CCT)
considered above, and using completely different techniques, we give wide gen-
eralizations of the results from [12], [16], see e.g., Theorems 1.4 and Theo-
rem 1.5 below. The context and form in which these results hold and are
proved is as follows:

• Instead of number fields, we consider base fields k of characteristic
char(k) = 0 satisfying the hypothesis (H)k below and consider the correspond-
ing generalization (Srj)Ω(k) below of the arithmetical surjectivity (Srj)—which
coincides with (Srj) in the case of number fields.

(H)k k is of finite type over either (i) Q, or (ii) a pseudo-finite field k0.
1

Let Ω(k) be the set of discrete valuations v of k with residue field kv finite
in case (i), respectively finite over k0 in case (ii). 2 Recall that a model of k

1 k0 is pseudo-finite if k0 is perfect, PAC, and Gk0 is pro-cyclic free, see Ax [3] for basics.
2 By [13, Corollary 11.5.9], k0 (being PAC) has no discrete valuations, thus v|k0 is trivial.
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is any separated integral scheme S of finite type with function field κ(S) = k
in case (i), respectively an integral k0-variety S with function field k = k0(S)
in case (ii). For every model S of k, we denote:

ΩS(k) :=
{
v ∈ Ω(k) | v has a center xv ∈ S

}
.

In particular, xv must be a closed point of S, and conversely, for every closed
point x ∈ S there are valuations vx ∈ ΩS(k) having center x on S. Further,
we notice: First, since any two models S1 and S2 are birationally equivalent,
there is a model S which has open embeddings S ↪→ S1 and S ↪→ S2, hence
ΩS(k) ⊂ ΩS1(k),ΩS2(k). Second, Sreg ⊂ S is Zariski open dense, and for
x ∈ Sreg there are v ∈ Ω(k) with xv = x and kv = κ(x). Therefore, one has:

(†) Pk :=
{
ΩS(k) |S is regular model of k

}
is a prefilter on Ω(k).

Here, recall that a prefilter P on a non-empty set I is any non-empty subset
P ⊂ P(I) of the power set P(I) of I satisfying:

(i) ̸⃝ ̸∈ P; (ii) ∀A,B ∈ P ∃C ∈ P s.t. C ⊂ A,B.

Finally, recall that every global field k has a unique proper regular model
S0, precisely: S0 = SpecOk if k is a number field, and S0 is the projective
smooth Fp-curve with κ(S0) = k if char(k) > 0. Further, v ∈ Ω(k) are in
bijection with the closed points x ∈ S0 via Ox = Ov. Hence P(k) = ΩS0(k),
thus S0\S and P(k)\ΩS(k) are finite for k global.

This being said, a natural generalization of the property (Srj) is:

(Srj)Ω(k) k has a model S s.t. fkv : X(kv)→ Y (kv) is surjective ∀ v ∈ ΩS(k).

We next give the (fully) birational form of the pseudo-splitness hypoth-
esis (LSS) from [16], and define/introduce the pseudo-splitness of arbitrary
morphisms f : X → Y of arbitrary k-varieties.

• Pseudo-splitness of prime divisors in function field extensions over k.
Let F |k be a function field over an arbitrary base field k. For valuations
w ∈ Val(F ), we denote by wF the value group of w, by Ow,mw the valuation
ring/ideal of w, and by Fw the residue field of w. A prime divisor of F |k is
any w which satisfies the following equivalent conditions:

(i) F |k has normal k-models Z with x ∈ Z, codimZ(x) = 1, Ow = Ox.

(ii) w is a k-valuation of F , i.e., w is trivial on k, and td(Fw|k) = td(F |k)−1.

Notation. D(F |k) := {v | v prime divisor of F |k or v the trivial valuation}

For k-function field extensions E|F , the restriction map D(E|k) → D(F |k),
v 7→ w := v|F is well defined and surjective. In particular, if v ∈ D(E|k) and
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w = v|F , then there is a canonical k-embedding of the residue function fields
Fw := κ(w) ↪→ κ(v) =: Ev, and e(v|w) : = (vE : wF ) is finite if either v is
trivial or w is non-trivial. In particular, if w = v|F , then the absolute Galois
group GFw of Fw acts canonically on the Fw-algebra Ev⊗Fw Fw =

∏
iE
′
i by

permuting the factors E′i of Ev ⊗Fw Fw.

Definition 1.1. In the above notation, we say that:

1) w ∈ D(F |k) is generalized pseudo-split (g.p.s.) in D(E|k), if ∀σ ∈ GFw

∃ v ∈ D(E|k) such that: (i) w = v|F ; (ii) e(v|w) = 1 if w is non-trivial;
(iii) Ev ⊗FwFw has a factor E′ which is a field stabilized by σ.

2) D(F |k) is g.p.s. in D(E|k), if all w ∈ D(F |k) are g.p.s. in D(E|k).

The generalized pseudo-splitness relates to the hypothesis (LSS) as fol-
lows: Let f : X → Y be a dominant morphism of proper smooth varieties over
a field k with char(k) = 0, and setting K = k(X), L = k(Y ), let K |L be the
corresponding k-extension of function fields. By Hironaka’s Desingularization
Theorem, the system of projective smooth models (Xµ)µ and (Yµ)µ are cofinal
(w.r.t. the domination relation) in the system of all the proper models of K|k,
respectively L|k. Hence, if fµ : Xµ → Yµ, µ ∈ I is the (projective) system
of all the smooth modifications of f satisfying the hypothesis (∗)CT, by mere
definitions one has:

Fact 1.2. The hypothesis (LSS) implies that D(L|k) is g.p.s. in D(K|k).

• Generalized pseudo-splitness of morphisms of arbitrary k-varieties.
Let f : X → Y be a morphism of arbitrary varieties over some base field k, and
for y ∈ Y , let Xy be the reduced fiber of f at y ∈ Y . For y ∈ Y and x ∈ Xy,
we denote ky := κ(y), kx := κ(x). Hence, f defines canonically an extension of
k-function fields kx | ky, and one has the restriction map D(kx|k) → D(ky|k),
vx 7→ vy := (vx)|ky . Denoting the residue fields κvy := kyvy and κvx := kxvx, it
follows that κvx |κvy is canonically a function field extension over k.

Definition 1.3. In the above notation, for f : X → Y we say that:

1) vy ∈ D(ky|k) is g.p.s. under f , if for every σ ∈ Gky there are x ∈ Xy and
vx ∈ D(kx|k) satisfying: vy = (vx)|ky , e(vx|vy) = 1 if vy is non-trivial, and
κvx⊗κvy

κvy has a factor which is a field stabilized by σ.

And y ∈ Y is g.p.s. under f , if all vy ∈ D(ky|k) are g.p.s. under f.

2) Finally, the morphism f : X → Y is g.p.s., if all y ∈ Y are g.p.s. under f .

This being said, the results extending/generalizing and shedding new light
on the aforementioned [12, Main Theorem 1.2], and [16, Theorem 1.4], are:
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Theorem 1.4. For k satisfying (H)k, char(k) = 0, let f : X → Y be a
morphism of arbitrary k-varieties. Then f has property (Srj)Ω(k) if and only
if f is generalized pseudo-split.

Theorem 1.5. For k satisfying (H)k, char(k) = 0, let f : X → Y be a
dominant morphism of proper smooth k-varieties, and set K=k(X), L=k(Y ).
Then f satisfies (Srj)Ω(k) if and only if D(L|k) is generalized pseudo-split in
D(K|k).

Corollary 1.6. The property (Srj)Ω(k) is a fully birational property of
dominant morphisms f : X → Y of proper smooth k-varieties, i.e., it depends
on properties of the function field extension k(X)|k(Y ) only.

The main point in our approach is to use Ax–Kochen–Ershov Principle
(AKE) type results (together with some general model-theoretical facts about
rational points and ultraproducts of local fields), as originating from [3, 4, 5],
see, e.g., [18] for details on AKE.

Finally, one should mention that [12, Subsection 6.3], gives a sketch of
a quite short proof of (CCT) –as initially stated by Colliot-Thélène– using the
AKE Principle, but not of the stronger final results from in [12]. Actually, the
main results of both [12] and [16] are based on quite deep desingularization
facts, e.g., [1, 2], and build on previous results and ideas by the authors, cf.
[11, 17, 21], aimed at –among other things–giving arithmetic geometry proofs
of the AKE. We should also mention that using methods similar to the ones
introduced here, Z. Cai [8] reproved/improved and shed completely new light
on the birationality of the main results of Gvirtz [14].

Here is an example – resulting from discussions with Daniel Loughran,
showing the relation between Theorem 1.4 above, and the previous results.

Example 1.7. Let

Y = P1
t , X= V (T 2

0 + T 2
1 − t2T 2

2 ) ⊂ Y ×k Proj k[T0, T1, T2].

One checks directly that for k = Q, the canonical projection f : X → Y has
the property (Srj), and f is smooth and split above all points y ∈ Y satisfying
y ̸= (1 : 0). Further, for the k-rational point y = (1 : 0) ∈ Y one has: The
fiber Xy above (1: 0) ∈ Y is smooth, but not pseudo-split. In particular, the
previous results do not apply. On the other hand, f is generalized pseudo-split:
Namely, all y ̸= (1: 0) are split under f , thus pseudo-split under f ; and for
y = (1: 0), one has Xy ∋ x = (0 : 0 :1) 7→ (1: 0) = y ∈ Y, Kx = k = Ly, and
D(Kx|k) = {v0k} = D(Ly|k) with v0k the trivial valuation of k. Hence, y is
pseudo-split under f in the sense defined above.
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2. ULTRAPRODUCTS AND RATIONAL
POINTS/GENERALIZED PSEUDO-SPITNESS

2.1. Ultraproducts and approximation results for points

We begin by recalling a few facts, which are/should be well known to
experts; see, e.g., [6], [9], [13, Chapter 7], for details on ultraproducts and
other model theoretical facts. The fact below is a (very) special case of  Loś
Ultraproducts Theorem (but one can give easily a direct proof using just defi-
nitions). Namely, in the class of field extensions k̃|k, consider the following ∀ ∃
formula in the language Lrings augmented with constants for k:

(∗) ∀ y ∈ Y (k̃) ∃ x ∈ X(k̃) such that f(x) = y .

Then  Loś Ultraproducts Theorem instantly gives the following.

Fact 2.1. Let (ki|k)i∈I be a family of field extensions, PI be a fixed pre-
filter on I, and for every ultrafilter U on I with PI ⊂ U , let ∗kU :=

∏
i∈I ki/U

be the corresponding ultraproduct. Then, for every morphism f : X → Y of
k-varieties, the following are equivalent:

(i) There is I0 ∈ PI such that fki : X(ki)→ Y (ki) is surjective ∀ i ∈ I0.

(ii) The map f
∗kU : X(∗kU)→ Y (∗kU) is surjective for all ultrafilters U ⊃ PI .

Thus if I is infinite, fki : X(ki) → Y (ki) is surjective for almost all i ∈ I iff
f

∗kU : X(∗kU)→ Y (∗kU) is surjective for all non-principal ultrafilters U in I.

Definition 2.2. A field k-extension k′ → l′ is called quasi-elementary, if
for every ∀ ∃ formula ϕ in the language Lrings augmented with constant from k,
one has: ϕ holds over k′ iff ϕ holds in l′.3

Fact 2.3. Let f : X → Y be a morphism of k varieties, and Cf be the
class of field extensions k′|k with fk′ : X(k′)→ Y (k′) surjective. One has:

1) Cf is closed w.r.t. ultraproducts and sub-ultrapowers, i.e., Cf satisfies: If
ki ∈ Cf , i ∈ I, then

∏
i ki/U ∈ Cf , and if k′I/U ∈ Cf , then k′ ∈ Cf .

2) Cf is closed under quasi-elementary k-field extensions, i.e., if k′ ↪→ l′ is
a quasi-elementary k-field extension, then k′ ∈ Cf iff l′ ∈ Cf .

Proof. Assertion 1) follows from Fact 2.1 by mere definition. For 2): The
proof follows immediately using the formula (∗) from the proof of Fact 2.1.

3 Thanks to the Referee for this reformulation of my old definition of “quasi-elementary.”
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2.2. Ultraproducts of localizations of arithmetically significant fields

We introduce notation and recall well-known facts and generalize the
context in which the conclusion of Theorems 1.4, 1.5 hold, finally allowing
to announce Theorems 4.1, 5.1 below. We first collect basic facts in a general
setting and subsequently discuss the more special situation of fields satisfying
Hypothesis (H)k as stated in the Introduction.

2.2.1 Basics and Notation

Notations/Remarks 2.4. For arbitrary fields k, let A ⊂ k× denote finite
subsets, and consider sets Σk ⊂ Val(k) of discrete valuations v, with perfect
residue field kv if char(k) = p > 0, satisfying:

(P) ΣA :=
{
v ∈ Σk |A ⊂ O×v

}
̸= ̸⃝ ∀A ⊂ k× finite.

In particular, PΣk
:= {ΣA}A is a prefilter on the set of valuations Σk.

For v ∈ Σk, let kv be the completion of k at v ∈ Σk, and U always be
ultrafilters on Σk with PΣk

⊂ U . Thus, PΣk
and U are non-principal. Given

U , consider the ultraproducts:

∗kU :=
∏

vkv /U , ∗OU :=
∏

vOv /U , ∗mU :=
∏

vmv /U , ∗κU :=
∏

vkv/U .

Then ∗OU is the valuation ring of ∗kU , say ∗OU = O∗vU with valuation ∗vU

having valuation ideal m∗vU = ∗mU , residue field ∗kU
∗vU = ∗κU , and value group

∗vU
∗kU =

∏
vvk/U = ZΣk/U = ∗ZU .

1) One has the (canonical) diagonal field embedding ∗ıU : k ↪→ ∗kU , and since
PΣk
⊂ U , it follows that ∗vU is trivial on k.

2) If ωv ⊂ Ov is a set of representatives for kv, then ∗ωU :=
∏

vωv/U ⊂ ∗OU

is a system of representatives for the residue field ∗κU . Further, if ωv are
multiplicative, so is ∗ωU .

3) The value group ∗vU
∗kU = ∗ZU is a Z-group. Further, if πv ∈ kv is a

uniformizing parameter for v ∈ Σk, then πU = (πv)v/U is an element of
minimal value in ∗vU

∗kU .

4) The field ∗kU is Henselian with respect to ∗vU , and one has:

a) Let char(k) = 0. Recalling that ∗vU is trivial on k, hence k = k∗vU ,
let T ⊂ ∗OU be any lifting of a transcendence basis of κU | k . Then
by Hensel Lemma, the relative algebraic closure κU ⊂ ∗OU of k(T ) in
∗kU is a field of representatives for ∗κU .
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b) Let char(k) = p > 0. By hypothesis, kv is perfect ∀ v ∈ Σk, hence
the Teichmüller system of representatives Fv ⊂ kv for kv is a field
and kv = Fv((π′v)) for any π′v ∈ k with v(π′v) = 1. Therefore, one
has: κU = FU :=

∏
v Fv/U ⊂ ∗OU is a perfect field and a system of

representatives for ∗κU , the “Teichmüller system” of representatives.

• Note that in both cases a), b) above, the fields of representatives κU⊂ ∗OU

for κU defined there are relatively algebraically closed in ∗kU .

5) Finally, for κU ⊂ ∗kU as above, let kU := κU(πU)h ⊂ ∗kU be the henseliza-
tion of κU(πU) with respect to the πU -adic valuation, and vU := (∗vU)|kU .

• Note that kU ⊂ ∗kU is the relative algebraic closure of κU(πU) in ∗kU .

2.2.2 Hypothesis (H)k revisited

Let k be as in Hypothesis (H)k from the Introduction, i.e., char(k) = 0
and k satisfies one of the hypotheses:

(i) k is of finite type. (ii) k is a function field k|k0 with k0 pseudo-finite.

Recall the basic definitions/facts from Introduction: First, Ω(k) ⊂ Val(k)
is the set of all discrete valuations v of k such that the residue field kv is
finite in case (i), respectively, finite over k0 in case (ii). Second, for models
S of k, ΩS(k) ⊂ Ω(k) is the set of all v ∈ Ω(k) which have a center xv on
S. In particular, the center xv ∈ S of v ∈ ΩS(k) is a closed point of S, and
conversely, every closed point x ∈ S is the center of some v ∈ ΩS(k).

Let Ω0
S(k) ⊂ ΩS(k) be the set of all v ∈ ΩS(k) such that kv = κ(xv).

Recall that if x ∈ Sreg is closed, then ∃ vx ∈ ΩS(k) having center x on S and
kvx = κ(x), hence vx ∈ Ω0

S(k).
Next, for arbitrary non-empty subsets Σk ⊂ Ω(k), we denote:

SΣk
:=

{
x ∈ S|∃ v ∈ Σk such that x is the center of v on S

}
.

Fact 2.5 (Hypothesis (H)k revisited/Basics). Let k satisfy (H)k, S de-
note models of k, and Σk ⊂ Ω(k) be non-empty. Then the following hold:

1) Letting U⊂ S denote open dense subsets, the following are equivalent:

(a) Σk satisfies (P); (b) SΣk
is Zariski dense in S; (c) UΣk

̸= ̸⃝ ∀U .

2) The same holds correspondingly for subsets Σ0
k ⊂ Ω0

S(k).

3) In case (b), let S be geometrically integral over k0. Then Sreg(k0) is
Zariski dense, hence, one can choose Σk such that kv = k0 for all v ∈ Σk.



116 F. Pop 10

Let us further suppose that Σk ⊂ Ω(k) satisfies condition (P) from No-
tation/Remark 2.4, and for ultrafilters U on Σk satisfying U ⊃ PΣk

, we de-
note/consider:

a) The field of representatives κU⊂ ∗OU for ∗κU = ∗kU
∗vU from loc. cit, 4).

b) The k-embedding of valued fields kU = κU(πU)h ↪→∗kU from loc. cit., 5).

Fact 2.6 (Hypothesis (H)k/Residue fields). By [9], [13, Chapter 11], one
has that κU is a pseudo-finite field, which moreover, is ℵ1-saturated in case (i),
respectively ℵ• = max(ℵ1,ℵ|k|+)-saturated in case (ii).

Fact 2.7 (Hypothesis (H)k/AKE). The canonical k-embedding of valued
fields kU , vU ↪→ ∗kU ,

∗vU satisfies:

(i) ∗vU is trivial on κU giving canonical k-identifications κU = kUvU = ∗kU
∗vU .

(ii) vUkU = Z ↪→∗ZU =∗vU
∗kU are Z-groups with 1Z= vU(πU)=∗vU(πU)=1∗ZU .

In particular, if char(k) = 0, by the AKE Principle one has:

(∗) kU ↪→ ∗kU is an elementary k-embedding of (valued) fields.

2.2.3 Pseudo-splitness revisited

Before discussing the more specific situation over fields satisfying Hy-
pothesis (H)k from the Introduction, we make the following general definition,
which is at the core of the generalizations of the results from the Introduc-
tion. Further, for every field, say F , we identify its absolute Galois group
GF := Gal(F s|F ) with AutF (F ) under F s ↪→ F . We say that a subextension
F ′|F ↪→ F s|F is co-procyclic if GF ′ is procyclic, or equivalently, F ′ ⊂ F s is the
fixed field F ′ = (F s)σ of some σ ∈ GF .

Definition/Remark 2.8. Let λ|κ be a field extension, and κ′|κ be an alge-
braic extension. We say that λ|κ is κ′-reduced-pseudo-split, for short r.p.s. or
reduced-pseudo-split above κ′, if the κ′-algebra (λ⊗κκ

′)red has a factor λ′ such
that λ′|κ′ is a regular field extension.

Notice that in the case char(κ) = 0, the κ′-algebra λ ⊗κκ
′ is reduced,

hence the notions of “reduced-pseudo-split” and “pseudo-split” are identical.

In the remaining of this subsection, we consider the following situation:

– k satisfies hypothesis (H)k from Introduction, in particular, char(k) = 0.
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– Σk ⊂ Ω(k) satisfies condition (P), as introduced in Notations/Remarks 2.4.
Further, in the case (ii), i.e., k is the function field over a pseudo-finite field
k0, we fix a generator σ0 of Gk0 , and for finite extensions l0|k0, we define
Frobl0 := σn

0 with n = [l0 : k0].

– Hence, if l|k is finite Galois and v ∈ Σk is unramified in l|k, say w|v prolongs
v to l|k, then Frob(v) := Froblw ∈ Gal(l|k) is well-defined up to conjugation
in both cases (i) and (ii) of hypothesis (H)k.

Definition 2.9. Let k, Σk be as above, σ ∈ Gk, and F |k be a function field.

1) The co-procyclic extension k
σ| k of k is called Σk-definable, if for all finite

Galois extensions l | k, and all ΣA ∈ PΣk
, one has:

ΣA, l|k(σ) :=
{
v ∈ ΣA | v unramified in l | k and Frob(v) := σ|l

}
̸= ̸⃝.

2) And algebraic extension F ′|F is co-procyclic Σk-definable, if F ′ = F
σF

for some σF ∈ GF such that σk := (σF )|k ∈ Gk is Σk-definable.

Remarks 2.10. Let k be of finite type, S be a model of k, Σk ⊂ ΩS(k).

1) If SΣk
⊂ S has the Dirichlet density δ(SΣk

) = 1, e.g., if SΣk
⊂ S is open

dense, then all elements σ ∈ Gk are Σk-definable (apply the Chebotarev
Density Theorem, e.g., [19], etc.).

2) If SΣk
⊂ S is Frobenian, [20, Theorem 3.3], say defined by a finite Galois

extension k1|k and a set of conjugacy classes Φ ⊂ Gal(k1|k), then σ ∈ Gk

is Σk-definable iff σ|k1 ∈ Φ.

Proposition 2.11. In the context and notation from Definition 2.9, let
further E|F be an extension of k-function fields. The following hold:

1) σ ∈ Gk is Σk-definable iff k
σ
= ∗kU ∩ k = κU ∩ k for some U ⊃ PΣk

.

2) F ′|F is co-procyclic Σk-definable iff there is an ultrafilter U ⊃ PΣk
on Σk

and a k-embedding ȷF : F ↪→ κU such that F ′ = F ∩ κU .

3) Let F ′ = F ∩ κU be as at 2) above. Then E|F is reduced-pseudo-split
above F ′ iff ȷF : F ↪→ κU prolongs to a field embedding ȷE : E ↪→ κU .

Proof. To 1): For the implication ⇒, notice that PΣk
(σ) := {ΣA,l|k}A, l|k

is a prefilter on Σk such that any ultrafilter U containing PΣk
(σ) contains

PΣk
. Let l|k be a finite Galois extension. Then for v ∈ ΣA,l|k(σ) ∈ U , setting

lv := lkv one has: lv|kv is unramified and lσ = l ∩ kv. Hence lσ = l ∩ ∗kU , and
finally k

σ
= k ∩ ∗kU .
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For the converse implication, let U be such that k
σ
= ∗kU∩k. To show that

σ is Σk-definable, we have to show that for all finite Galois extensions l|k, the
set ΣA, l|k(σ) is non-empty. First, since k

σ
= ∗kU ∩k, it follows that lσ = ∗kU ∩ l.

Hence, there exists a set Vl ∈ U such that for all v ∈ Vl one has lσ = kv ∩ l.
Further, let ΣA ⊂ Σk be given. Since PΣk

⊂ U , hence ΣA ∈ U , w.l.o.g., we can
suppose that Vl ⊂ ΣA. Second, let B ⊂ k× be a finite set such that all discrete
valuations w of k with w(B) = 0 are unramified in l|k. (Note that such sets
B exist: If Sl → S is the normalization of S in the finite Galois extension l|k,
then there exists an affine open dense subset S′ ⊂ S such that Sl is étale above
S′. Hence, if w has its center in S′, then w is unramified in l|k, etc.) Then
setting Al := A∪B, one has: Vl ∩ΣAl

∈ U , and all v ∈ Vl ∩ΣAl
are unramified

in l|k. Hence ΣAl, l|k is non-empty, thus ΣA,k|l ⊃ ΣAl, l|k is non-empty as well,
concluding that σ is Σk-definable.

To 2): To ⇒: Since κU is a perfect pseudo-finite field, k ↪→ F ↪→ κU

gives rise to an embedding of perfect fields k′ = k ∩ κU ↪→ κ′ = F ∩ κU ↪→ κU

and to surjective projections Ẑ ∼= GκU ↠ GF ′ ↠ Gk′ . Hence, F ′|F is by mere
definitions co-procyclic and Σk-definable. For the converse implication, let
F ′|F be co-procyclic and Σk-definable. Then k′ := k∩F ′ is co-procyclic and Σk-
definable. Hence, there is some U such that k′ = k∩κU , and obviously, F ′|k′ is a
regular field extension. We claim that there is a k-embedding ȷF : F ↪→ κU such
that F ′ = F ∩ κU , hence k′ ⊂ F ′. First, F ′0 := Fk′ ⊂ F ′ is a regular function
field over k′, and setting F̃0 = F ′0, there is an increasing sequence of cyclic field
subextensions (F̃i|F ′i )i∈N of F |F ′ such that F ′ = ∪i∈NF ′i , F = ∪i∈NF̃i, and
F̃i|F ′i is the maximal subextension of F |F ′ of degree ⩽ i. By algebra general
non-sense, the sequence (F̃i|F ′i )i and the conditions it satisfies are expressible
by a type p(t) over k′, where t is a transcendence basis of F0|k′; and since κU

is a perfect PAC pseudo-finite field, the type p(t) is finitely satisfiable. Since
κU is ℵ1-saturated in case (i), and ℵ|k|+-saturated in case (ii), the type p(t)
is satisfiable in κU , thus F = F0 has a k′-embedding ȷF : F ↪→ κU such that
F ′ = F ∩ κU .

To 3): For the direct implication, let ȷF : F → κU be a k-embedding,
F ′ = F ∩ κU , and E′ be a factor of (E ⊗F F ′)red such that E′|F ′ is a regular
field extension. Then E′ = F ′(Z ′) for a geometrically integral F ′-variety Z ′.
Since κU is a PAC field which is ℵ1-saturated in case (i), respectively ℵ|k|+-
saturated in case (ii), it follows that Z ′(κU) contains “generic points” of Z ′,
that is, points z′ ∈ Z ′(κU) which are defined by an F ′-embedding ız′ : E′ → κU

of the function field E′ := F ′(Z ′) into κU . Hence, if ȷ′ : E → E ⊗F F ′′ → E′ is
the canonical k-embedding, then ȷE := ız′ ◦ ȷ′ :→ κU prolongs ȷF to E.

For the converse implication, let ıE : E → κU be the given prolongation
of ȷF : F → κU , and consider the compositum E′ ⊂ κU of F ′ and ıE(E) over
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F inside κU . Since F ′ = F ∩ κU and κU is perfect, it follows that F ′ is perfect
and relatively algebraically closed in κU . Hence, F ′ is perfect and relatively
algebraically closed in the subfield E′ ⊂ κU of κU . Therefore, E′|F ′ is a regular
field extension. Finally, since E′ is generated by F ′ and ıU(E) over ȷU(F ) inside
κU , it follows that E′ is a factor of the F -algebra E⊗F F ′, thus of (E⊗F F ′)red
as well. Conclude that E is reduced-pseudo-split above F ′.

3. SETUP FOR GENERALIZATIONS OF THEOREM 1.4 AND
THEOREM 1.5

The generalizations of Theorem 1.4 and Theorem 1.5 we aim at are based
on generalizing (Srj)Ω(k) and both the pseudo-splitness of prime divisors in
function field extensions over k and of morphisms of k-varieties as defined in
the Introduction. These generalizations are obtained by considering arbitrary
base fields k endowed with sets Σk ⊂ Val(k) of discrete valuations of k satisfying
Hypothesis (P) from Notations/Remarks 2.4 above, and defining/introducing
(Srj)Σk

and the Σk-pseudo-splitness of both prime divisors in function field
extension over k and of morphisms of arbitrary k-varieties.

This being said, Theorem 1.4 and Theorem 1.5 from the Introduction
are consequence of Theorems 4.1 and Theorem 5.1 below, which are a kind of
general non-sense type results.

Finally, if not explicitly otherwise stated, all fields in this section have
characteristic equal to 0 (although some facts discussed below hold in char-
acteristic p > 0 as well). Recall that in this case, reduced-pseudo-splitness
coincides with pseudo-splitness.

3.1. Σk-pseudo-splitness (Σk-p.s.)

Let k with char(k) = 0 and Σk be a set of valuations v of k satisfying
hypothesis (P) from Notations/Remarks 2.4, but otherwise be arbitrary. Then
Proposition 2.11 hints at the following generalizations of pseudo-splitness (p.s.).

Definition 3.1. Let k with char(k) = 0, Σk and U ⊃ PΣk
be as in Nota-

tions/Remarks 2.4, and κ|k ↪→ λ|k be an extension of k-field extensions.

1) Let a k-embedding ȷκ : κ→ κU be given. We say that:

a) A field extension κ′|κ is ȷκ-definable, if κ′ = κ∩κU as κ-field extension.

b) λ|κ is ȷκ-p.s., if ȷκ prolongs to a κ-embedding ȷλ : λ ↪→ κU .

2) We say that λ|κ is:
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a) U-p.s., if λ|κ is ȷκ-p.s. for all k-embeddings ȷκ : κ→ κU .

b) Σk-p.s., if λ|κ is U-p.s. for all U ⊃ PΣk
.

Remarks 3.2. In the above notation, the transitivity of pseudo-splitness
holds as follows: Let λµ|κµ be ȷκµ-p.s., say via ȷλµ : λµ → κU , µ = 1, 2. Then:

1) Suppose that λ1|κ1 ↪→ λ2|κ2, and (ȷλ2)|λ1 = ȷλ1 . Then λ2|κ1 is ȷκ1-p.s.

2) In particular, if λ0|κ1 ↪→ λ1|κ1 is a k-subextension, then λ0|κ1 is ȷκ1-p.s.

Obviously, the same holds correspondingly for U -p.s. and Σk -p.s.

Proposition 3.3. Let k with char(k) = 0, Σk and U ⊂ PΣk
be as above,

E|F be an extension of k-function fields, and Z be an F -variety with function
field F (Z) = E. Let ȷF : F ↪→ κU be a k-embedding, and F ′ = F ∩ κU be the
resulting ȷF -definable extension of F . One has:

1) E|F is ȷU -p.s. if and only if Z(κU) is Zariski dense.

2) Suppose that κU is PAC. Then E|F is ȷF -p.s. iff E⊗F F ′ has a factor
E′|F ′ with E′|F ′ a regular field extension.

Proof. To 1): Let Z ′ := ZF ′ = Z ×F F ′ be the base change under F ′|F ,
Z ′µ be the irreducible components of Z ′. Then reasoning as in the proof of
assertion 2) from Proposition 2.11 one has: Z(κU) is Zariski dense iff Z ′µ(κU) is
Zariski dense for some Z ′µ iff Z ′µ is F ′-geometrically integral and E′= F ′(Z ′µ)
is F ′-embeddable in κU iff E|F is ȷU -p.s.

To 2): Argue as in the proof of assertion 1) using that κU is PAC.

Corollary 3.4 (Proposition 2.11 revisited). Let k satisfy the Hypoth-
esis (H)k, hence, char(k) = 0, Σk satisfy condition (P), and U ⊃ PΣk

be an
ultrafilter on Σk. Let E|F be an extension k-function fields, ȷF : F ↪→ κU be a
k-embedding, and F ′ := F ∩ κU . Then E|F is p.s. above F ′ iff ȷF : F ↪→ κU

has a prolongation ȷE : E ↪→ κU to E.

3.2. Σk-pseudo-splitness and the properties (Srj)U and (Srj)Σk

For the moment, let F |k be a function field, where char(k) = 0 as usual.
1) For given w ∈ D(F |k), let t = (t1, . . . , tr) be a system of w-units in F

whose image in Fw (which we denote by t as well), is a transcendence basis of
Fw| k. Then k(t) ⊂ F is a rational function subfield, and by Lemma 4.4, the
relative algebraic closure kt ⊂ F h of k(t) in the henselization F h is a field of
representatives for Fw = F hwh. Further, if π ∈ F ′ is a uniformizing parameter,
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then F0 = k(π, t) is a rational function field with F |F0 finite, F h = kt(π)h.
Hence if w0 := w|F0 , then e(w|w0) = 1 and f(w|w0) = [kt : k(t)].

2) Let E|F be an extension of k-function fields, prEF : D(E|k)→ D(F |k),
v 7→ w := v|F . For w ∈ D(F |k), let Dw(E|k) := {v ∈ D(E|k)|w = v|F } be the
fiber of prEF at w ∈ D(F |k).

3) Next, let f : X → Y , x 7→ y be a morphism of k-varieties. In particular,
f gives rise to restriction maps D(kx|k)→ D(ky|k), vx 7→ vy := (vx)|ky . Thus,
if Xy is the reduced fiber of f above y, one has a canonical restriction map

(D) D(X) := ∪x∈XyD
(
kx|k

)
→ D

(
ky|k

)
, vx 7→ vy := (vx)|ky

Notice: For vx 7→ vy as above, κvx := kxvx, κvy := kyvy are k-function fields and
since Ovx dominates Ovy , one has a canonical residue field extension κvx |κvy .

Definition 3.5. Let k with char(k) = 0, Σk ⊂ Val(k), and U ⊃ PΣk
be as

in Notations/Remarks 2.4. In the above notation and context, define/consider:

1) Valuations. We say that w ∈ D(F |k) is U-p.s. in D(E|k) if for every
k-embedding ȷw : Fw ↪→ κU ∃ v ∈ D(E|k) with w = v|L such that Ev|Fw
is ȷw-p.s. in the sense of Definition 3.1, and e(v|w) = 1 if w is non-trivial.

• We say that D(F |k) is Σk-p.s. in D(E|k), or under D(E|k)→D(F |k), if
all w ∈ D(F |k) are U-p.s. in D(E|k) for all U ⊃ PΣk

in the above sense.

2) Morphisms. Let f : X → Y , x 7→ y, be given. We say that vy ∈ D(ky|k)
is U -p.s. under f, if for every k-embedding ȷy : κvy → κU ∃ vx ∈ D(X)
such that κvx |κvy is ȷy-p.s., and e(vx|vy) = 1 if vy is non-trivial.

• We say that: (a) vy is Σk-p.s. under f, if vy is U -p.s. for all U ⊃ PΣk
.

(b) f is U -p.s. above y ∈ Y , if all vy ∈ D(ky|k) are U -p.s. under f .

(c) f is Σk-p.s. if f is U-p.s. above every y ∈ Y for all U ⊃ PΣk
.

3) Properties (Srj)Σk
and (Srj)U for k-morphisms f : X → Y . We say that:

(a) f has the property (Srj)Σk
if there is ΣA ∈ PΣk

such that:

fkv : X(kv)→ Y (kv) is surjective for all v ∈ ΣA.

(b) f has the property (Srj)U if fkU : X(kU)→ Y (kU) is surjective.

Remarks 3.6. Let f : X → Y be a morphism of k-varieties, char(k) = 0.
If X,Y are integral and f is dominant, let L = k(Y ) ↪→ k(X) = K be corre-
sponding k-embedding of function fields. One has:
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1) In notations from Introduction, let k satisfy (H)k, and Σk = Ω(k). Then:

(a) f has property (Srj)Ω(k) iff f has property (Srj)Σk
.

(b) If f is g.p.s. as in Definition 1.1, then f is Σk-p.s.

(c) If D(L|k) is g.p.s. in D(K|k), then D(L|k) is Σk-p.s. in D(K|k).

1)′ In particular, this is so for k a number field. Further, since char(k) = 0,
the AKE Principle holds for kU ↪→ ∗kU for each U .

2) For k, Σk as in Notations/Remarks 2.4, by Fact 2.7, TFAE:

– f : X → Y has the property (Srj)Σk
.

– f
∗kU : X(∗kU)→ Y (∗kU) is surjective ∀ U ⊃ PΣk

ultrafilters on Σk.

2)′ Since char(k) = 0, the AKE Principle holds for kU ↪→ ∗kU , and therefore:

f has property (Srj)Σk
iff f has the property (Srj)U for all U ⊃ PΣk

.

4. PROOF OF THEOREM 1.4 (REVISITED)

In the notation/context from Section 3, Theorem 1.4 follows from:

Theorem 4.1 (Theorem 1.4, revisited). In the context of Notations/Re-
marks 2.4 and Definition 3.5 above, let char(k) = 0 and f : X → Y be a
morphism of k-varieties. Then one has:

1) f has property (Srj)Σk
iff f is Σk -pseudo-split.

2) f has property (Srj)U iff f is U-pseudo-split.

Proof. To 1): Since char(k) = 0, by Remark 3.6, 2)′, the property (Srj)Σk
is

equivalent to the property (Srj)U for all ultrafilters U ⊃ PΣk
. Further, by mere

definition, f being Σk -pseudo-split is the same as f being U -pseudo-split for
all U ⊃ PΣk

. Thus, 1) follows from 2).

To 2): Let U ⊃ PΣk
be fixed. Giving yU ∈ Y (kU) is equivalent to giving

(y, ıy) with y ∈ Y and ıy : ky = κ(y)→ kU is a field k-embedding. In particular,
if fy : Xy → y is the (reduced) fiber of f at y, and letting y(kU) be the points
defined by (y, ıy) for all possible ıy : ky → kU , one has: fkU : X(kU) → Y (kU)
is surjective iff the maps fkU

y : Xy(kU) → y(kU) are surjective for all y ∈ Y .
Further, f is U-pseudo-split iff f is U-p.s. above every y ∈ Y . Therefore, the
proof of Theorem 4.1, 2) is reduced to the Key Lemma 4.2 below.

Key Lemma 4.2. In the notation from Theorem 4.1, the following holds:

fkU
y : Xy(kU)→ y(kU) is surjective iff f is U-p.s. above y.
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Proof of Key Lemma 4.2. We begin by recalling two basic facts about
valuations without (transcendence) defect, see [7, Chapter VI], and [15], for
some/more details on (special cases of) this. Let Ω, w be a valued field with v
trivial on some subfield κ of Ω, hence on the prime field of Ω. One says that
w has no (transcendence) defect on Ω|κ if there exists a transcendence basis
of Ω |κ of the form tw ∪ t satisfying the following: First, wtw is a basis of the
Q-vector space wΩ ⊗ Q, and second, t consists of w-units such that its image
in the residue field Ωw, which we denote again by t, is a transcendence basis
of Ωw |κ. In particular, if κt ⊂ Ω is the relative algebraic closure of κ(t) in Ω,
then κt is a maximal subfield of Ω such that w is trivial on κt, and further, Ωw
is algebraic over κtw. Moreover, if w is Henselian, then Hensel Lemma implies
that Ωw is purely inseparable over κtw. Hence, if t is a separable transcendence
basis of of Ωw |κ, then κt ⊂ Ω is a field of representatives of Ωw.

One of the main properties of valuations w without defect is that for any
subfield F ⊂ Ω, the restriction of w to F is a valuation without defect as well,
see [15]. In particular, if l ⊂ Ω is any subfield such that w|l is trivial, and F | l
is a function field, then w|F is a prime divisor of the function field F |l if and
only if w|F is a discrete valuation. Specifically, for kU = κU(πU)h endowed with
vU as in Notations/Remarks 2.4, 5), the discussion above implies:

Fact 4.3. Let l ⊂ kU be a subfield with vU trivial on l. Let F | l be a
function field and F ↪→ kU be an l-embedding. Then v := (vU)|F is either
trivial, or a prime divisor of F | l.

Lemma 4.4. Let F |k be a function field, F h be the henselization of F
with respect to w ∈ D(F |k), and π ∈ F with w(π) = 1. The following hold:

1) Let κ′ ⊂ F h be a field of representatives for κw := Fw. Then F h = κ′(π)h.

2) If Fw |k is separably generated, fields of representative κ′ ⊂ F h for the
residue field κw = Fw exist.

Proof. To 1): Consider the henselization F1 := κ′(π)h. Then F1 ⊂ F h

satisfies F1w = F hw, wF1 = wF , thus f(F h|F1) = 1 = e(F h|F1). Since w has
no defect, the fundamental equality holds, i.e., [F h:F1] = e(F h|F1)f(F h|F1).
Thus, finally [F h : F1] = 1, hence F h = κ′(π)h.

To 2): Let t be the lifting to F of a separable transcendence basis of
Fw|k, also denoted by t. Then Fw|k is finite separable over k(t), and conclude
by applying Hensel Lemma.

Coming back to the proof of Key Lemma 4.2, we begin with two general
remarks about the relationship between kU -rational points and prime divisors
as follows. Let Z be a k-variety, and kz = Oz/mz be the residue field at z ∈ Z.
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Recall the canonical field embeddings k ↪→ kU and the canonical valuation vU

of kU , its canonical uniformizing parameter πU , and its residue field κU = kUvU .
For z ∈ Z, let kz = Oz/mz be the residue field at z ∈ Z.

I) Rational points: Recall that every zU ∈ Z(kU) is given by (z, ız) with
z ∈ Z and ız : kz ↪→ kU a k-embedding. Let vz := (vU)|kz be the restriction of
vU to kz under ız : kz → kU . Then ız : kz, vz ↪→ kU , vU is a k-embeddings of
valued fields, which defines the k-embedding of the residue fields ȷz : κvz ↪→ κU .
Finally, by Fact 4.3, one has that vz ∈ D(kz|k).

II) Prime divisors: Let vz ∈ D(kz|k) be a prime divisor, πz a fixed uni-
fomizing parameter, and κvz:= kzvz be the residue function field over k. Let
ȷz : κvz → κU be given. Then by Lemma 4.4, the vz-henselization khz of kz
contains a field of representatives κ′ ⊂ khz for κvz and khz = κ′(πz)h. Hence,
ȷz : κvz → κU and πz give rise to a k-embedding of valued fields ı0z : κ′(π) ↪→ kU

via π 7→ πU and κ′ ∼= κvz → κU defined by ȷz. Since kU is henselian, ı0z extends
to a k-embedding of the henselization κ′(π)h = khz , say ıhz : κ′(π)h = khz → kU ,
hence by restriction, to a k-embedding ız : kz, vx → kU , vU of valued fields.

Conclude: Every k-embedding ȷz : κvz → κU together with a uniformizing
parameter πz ∈ kz define a k-embedding of valued fields ız : kz, vz → kU , vU

such that πz 7→ πU and κvz → κU equals ȷz : κvz → κU . Thus, ȷz together
with πz give rise to the kU -rational point zU ∈ Z(kU) defined by (z, ız), thus by
restriction, to xU ∈ Z(kU), such that vz = (vU)|kz under ız : kz → kU .

Back to the proof of the Key Lemma 4.2, proceed as follows:

The direct implication: fkU
y

(
Xy(kU)

)
= y(kU) ⇒ f is U-p.s. above y.

Given vy ∈ D(ky|k) and ȷy : κvy = kyvy → κU , prove: ∃ vx ∈ D(X|k) with
vy = (vx)|ky such that κvx |κvy is U-p.s. and e(vx|vy) = 1 if vy is non-trivial.

Case 1. vy is the trivial valuation, hence ky = κvy . Then y ∈ Y together
with the k-embedding ıy = ȷy : ky → κU ⊂ kU define a kU -rational point
yU ∈ Y (kU) such that the restriction of vU to ky under ıy is the trivial valuation
vy = vU |ky . Since fkU

y : X(kU)→ y(kU) is surjective, there is xU ∈ X(kU) with

fkU (xU) = yU . Hence, xU is defined by a point x ∈ X with f(x) = y and
a k-embedding ıx : kx → kU whose restriction to ky equals ıy. Then if vx
is the restriction of the valuation vU to kx under the k-embedding ıx, one
has: First, (vx)|ky = vy, and second, by Fact 4.3, vx ∈ D(kx|k). Further, the
residue field k-embedding ȷx : κvx → κU prolongs the residue field k-embedding
ȷy : κvy = ky → κU . Conclude that vy ∈ D(ky|k) is U-p.s. in D(kx|k).

Case 2. vy is non-trivial. Let πy ∈ ky be a uniformizing parameter at vy.
By the discussion at Prime divisors above, any k-embedding ȷy : κvy → κU and
a uniformizing parameter πy ∈ ky of vy gives rise to a k-embedding ıy : ky → kU

of valued fields, i.e., vy = (vU)|ky under ıy, such that πy 7→ πU and inducing
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ȷy : κvy → κU on the residue field. Among other things, (y, ıy) defines a kU -
rational point yU ∈ y(kU). Since fkU

y : Xy(kU)→ y(kU) is surjective, there is a

kU -rational point xU ∈ X(kU) such that fkU (xU) = yU . Let xU be defined by
(x, ıx) with x ∈ Xy and ıx : kx → kU a k-embedding. Then f(xU) = yU implies
f(x) = y and ıx : kx → kU prolongs ıy : ky → kU , or equivalently, (ıx)|ky = ıy.
Hence setting vx := (vU)|kx , and recalling that vy := (vU)|ky by the definition
of vy, one gets: vy = (vx)|ky , and the residue field k-embedding ȷx : κvx → κU

prolongs ȷy : κvy → κU . Second, since vy is non-trivial, if follows that vx is non-
trivial. Third, since vx = (vU)|kx under ıx : kx → kU , it follows by Fact 4.3 that
vx is a prime divisor of kx, which restricts to the prime divisor vy of ky under
the field extension kx |ky. Finally, since πy ∈ ky maps to πU ∈ kU , one has
e(vU |vy) = 1. Hence since e(vx|vy) divides e(vU |vy) = 1, we get e(vx|vy) = 1.
Conclude that vy is U -p.s. in D(kx|k), hence in D(X).

The converse implication: f is U-p.s. above y ⇒ fkU
y

(
Xy(kU)

)
= y(kU)

Given yU ∈ y(kU), say defined by a k-embedding ıy : ky → kU , prove:
∃x ∈ Xy and a k-embedding ıx : kx → kU which prolongs ıy to kx.

To proceed, consider the restriction vy := (vU)|ky of vU to ky under ıy.
Then, vy is either trivial or, by Fact 4.3, a prime divisor of ky |k. Therefore,
vy ∈ D(ky|k), and one has a k-embedding of valued fields ıy : ky, vy → kU , vU ,
thus the k-embedding of residue fields ȷy : κvy = kyvy → κU .

Case 1. vy is trivial, hence ky = kyvy = κvy and ıy = ȷy : ky = κvy → κU .
Since vy ∈D(ky|k) is U -p.s., there is x ∈ X such that setting kx = κ(x) one
has: f(x) = y, hence x ∈ Xy, and there is vx ∈ D(kx|k) such that vy = (vx)|ky
and ȷx : κvx = kxvx → κU prolonging ȷy. First, if vx is trivial, the k-embedding
ıx = ȷx : kx → κU defines a k-rational point xU such that fU(xU) = yU . Second,
if vx is non-trivial, the residue field κvx = kxvx is a function field over k.
Thus, by the discussion at Prime divisors above, it follows that choosing a
uniformizing parameter πx ∈ kx, one gets a k-embedding ıx : kx → kU by
πx 7→ πU and having ȷx : κvx → κU as residue field k-embedding. Finally, the
resulting (x, ıx) define a kU -rational point xU such that fU(xU) = yU .

Case 2. vy is non-trivial, hence a prime divisor of ky|k. Since vy is
U -p.s. above y, there is x ∈ X with f(x) = y and vx ∈ D(kx|k) such that
vy = (vx)|ky , ȷx : κvx → κU prolonging ȷy : κvy → κU and e(vx|vy) = 1. In
particular, if π = πy ∈ ky is a uniformizing parameter of vy, then π ∈ kx is
a uniformizing parameter of vx. Hence, arguing as in Prime divisors above,
π together with ȷx : κvx → κU give rise to a k-embedding of valued fields
ıx : kx, vx → kU , vU with π 7→ ıy(πy) and having ȷx : κvx → κU as k-embedding
of the residue fields. Since ȷx prolongs ȷy to κvx , it follows that vy = (vx)|ky .
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Therefore, (x, ıx) defines a rational point xU ∈ X(kU) such that fU(xU) = yU .

This completes the proof of Key Lemma 4.2, thus of Theorem 4.1. □

5. PROOF OF THEOREM 1.5 (REVISITED)

In the notation/context from Section 3, Theorem 1.5 follows from:

Theorem 5.1 (Theorem 1.5, revisited). Let k with char(k) = 0, Σk and
U ⊃ PΣk

be as in Notations/Remarks 2.4 and Definition 3.5. Given a dominant
morphism f : X → Y of proper smooth k-varieties, let K = k(X), L = k(Y )
be their function fields. Then one has:

1) f satisfies (Srj)Σk
iff D(L|k) is Σk-p.s. in D(K|k).

2) f satisfies (Srj)U iff D(L|k) is U-p.s. in D(K|k).
Hence, (Srj)Σk

and (Srj)U are fully birational properties of dominant morphisms
of proper smooth k-varieties, i.e., these properties depend on properties of the
corresponding function field extensions only.

Proof. First, by Theorem 4.1, f has property (Srj)Σk
iff f is Σ-p.s., and

correspondingly for (Srj)U . Hence, 1), 2) from Theorem 5.1 are equivalent
to/can be reformulated as follows:

1)′ f is Σk-p.s. iff D(L|k) is Σk-p.s. in D(K|k).
2)′ f is U-p.s. iff D(L|k) is U-p.s. in D(K|k).
Second, by mere definitions, 2)′ ⇒ 1)′, hence, we need to prove asser-

tion 2)′ only. We begin by recalling a few facts, all of which follow by mere
definition (and are well known to experts).

Fact 5.2. (I) Let Z be a proper k-variety with function field F = k(Z).
Then there are “many” surjective projective systems (Zµ)µ∈I of proper k-models
of F |k w.r.t. the domination relation ≻. If char(k) = 0, one can choose Zµ

to be projective smooth k-varieties. Finally, the projective limit of any such
system (Zµ)µ is the Riemann–Zariski space Valk(F ). Precisely:

(a) If v ∈ Valk(F ) has center zµ ∈ Zµ, then Ov = ∪µOzµ, v = (zµ) ∈ lim←−µ
Zµ.

(b) If (zµ)µ ∈ lim←−µ
Zµ, then ∃v ∈ Valk(F ) having center zµ ∈ Zµ, etc. Further,

v ↔ (zµ)µ iff mv = ∪µmzµ, and if so, then Fv = ∪µκ(zµ).

(II) Given a dominant morphism f : X → Y of proper k-varieties, with
function field extension K = k(X) ←↩ k(Y ) = L, there are “many” co-final
systems fµ : Xµ → Yµ, µ ∈ I of modifications of f . Further, one has:

(a) If char(k) = 0, one can choose fµ : Xµ → Yµ to be smooth modifications.
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(b) Let v ∈ Val(K|k), w := v|L ∈ Val(L) have centers xµ ∈ Xµ, yµ ∈ Yµ.

Then fµ(xµ) = yµ, and L ↪→ K gives rise to canonical k-embeddings:

mw = ∪µmyµ ⊂ ∪µOyµ = Ow ↪→ Ov = ∪µOxµ ⊃ ∪µmxµ = mv

Lw = ∪µκ(yµ) ↪→ ∪µκ(xµ) = Kv.

(c) If v ∈ D(K|k), w = v|L, ∃ Iv ⊂ I cofinal s.t. Ov = Oxµ, Ow = Oyµ for
all µ ∈ Iv.

Definition/Remark 5.3. Let Z be an integral k-variety, F = k(Z), z ∈ Z
be a regular point, t = (t1, . . . , td) be a regular system of parameters at z.
Define/consider the following:

1) The deg-valuation w of Oz, defined by w(t) = 1 for t ∈ mz\m2
z, satisfies:

w ∈ D(F |k) and Fw = kz(ti/td)i<d is the rational function field in (ti/td)i<d.

2) The lex-valuation w̃ ∈ Valk(K) of Oz is defined via the k-embedding
F ↪→ kz((t1)) . . . ((td)), and has residue field Fw̃ = κ(z) = kz.

Back to the proof of Theorem 5.1, recall that f : X → Y being a dominant
morphism of proper k-varieties, the fiber Xy ⊂ X at any y ∈ Y is a proper (not
necessarily) integral ky-variety. And if y = ηY ∈ Y is the generic point, thus
kηY = L = k(Y ), then XηY = XL is a proper integral L-variety. Finally, the
same holds, correspondingly, for all modifications f ′ : X ′ → Y ′ of f : X → Y,
thus for all fµ : Xµ → Yµ, etc.

The direct implication: f is U-p.s. ⇒ D(L|k) is U-p.s. in D(K|k)

We have to show that every w ∈ D(L|k) is U-p.s. in D(K|k).

Case 1. w is the trivial valuation of L|k. Then the center of w on Y
is the generic point ηY , XηY is a proper smooth L-variety and w has residue
field κw = L. Since ηY is U-p.s. under f, for each k-embedding ȷw : L ↪→ κU

there is x ∈ XL and vx ∈ D(kx|k) with w = (vx)|L trivial and a prolongation
of ȷw : L → κU to a k-embedding ȷx : κvx → κU . Since XL is proper, the
valuation vx has center z on X, and the following hold: First, since ηY ∈ Y is
the center of w = (vx)|L on Y , one has f(z) = ηY . Second, κ(z) ⊂ κvx , thus
ȷz := (ȷx)|κ(z) is a k-embedding prolonging ȷw to κ(z). Finally, if v ∈ D(K|k)
is the deg-valuation of Oz, then the residue field κv of v is a rational function
field over κ(z). Hence, since td(κU |k) is infinite, ȷz prolongs to a k-embedding
ȷv : Kv → κU . Thus, w is U-p.s. in D(K|k).

Case 2. w is non-trivial, hence w ∈ D(L|k) is a prime divisor of L|k.
Since L = κ(ηY ), and f is U-p.s., there is x ∈ XηY and vx ∈ D(kx|k) such that
w = (vx)|L, e(vx|w) = 1 and the k-embedding ȷw : Lw → κU prolongs to a
k-embedding ȷx : κvx → κU . Let ṽ ∈ Valk(K) be the lex-valuation of Ox, thus
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Kṽ = κ(x) = kx. By Fact 5.2, there is a smooth modification f ′ : X ′ → Y ′

of f such that the center y′0 ∈ Y ′ of w satisfies Ow = Oy′0
, hence mw = my′0

and Lw = κ(y′0). Further, if x′ ∈ X ′ is the center of ṽ on X ′, then x′ 7→ x
under X ′ → X, and κ(x) ⊂ κ(x′) ⊂ Kṽ = κ(x), thus kx = κ(x) = κ(x′) =:kx′ .
Therefore, vx ∈ D(kx′ |k), and ȷx′ = ȷx prolongs ȷw to k′x. Hence mutatis
mutandis, w.l.o.g., we can suppose that Y = Y ′, X = X ′, and y0 ∈ Y satisfies
Ow = Oy0 , etc. Finally, let v0 := vx◦ṽ be the valuation theoretical composition.
Since w = (vx)|L, one has: ṽ|L is trivial, and (v0)|L = (vx)|L = w. Thus, if
x0, x ∈ X are the centers of v0, ṽ on X, then f(x) = ηY and f(x0) = y0.

Let Z ⊂ X be the Zariski closure of x, hence x0 ∈ Z, and px ∈ Spec(Ox0)
be such that OZ,x0 = Ox0/px, and mZ,x0 = mx0/px is the center of vx in Z. In
particular, if π ∈ Ow = Oy0 is a uniformizing parameter, then π ∈ mZ,x0\m2

Z,x0
.

Hence, if π0 ∈ Ox0 is a preimage of π under Ox0 ↠ Ox0/px = OZ,x0 , then one
has π0 ∈ mx0\m2

x0
. Further, Z ↪→ X

f−→Y defines an injective k-morphism
OZ,x0 ↞ Ox0 ←↩ Oy0 such that mZ,x0 ↞ mx0 ←↩ my0 = mx0 ∩ Oy0 , thus residue
field k-embeddings κ(x0) = κ(x0)←↩ κ(y0). And since vx has center x0 on Z,
it follows that κ(x0) ⊂ κvx , and therefore, ȷ0 := (ȷx)|κ(x0) is a k-prolongation
of ȷw to κ(x0). Next, let v be the deg-valuation of Ox0 . Then v ∈ D(K|k),
v(π) = 1, Ox0 ≺ Ov, and Kv is a κ(x0)-rational function field. Thus td(κU |k)
being infinite, ȷ0 : κ(x0) → κU prolongs to a k-embedding ȷv : Kv → κU .
Finally, Ow = Oy0 ≺ Ox0 , thus Ow ≺ Ov, implying w = v|L.

Conclude that w ∈ D(L|k) is U-p.s. in D(K|k).

The converse implication: D(L|k) is U-p.s. in D(K|k) ⇒ f is U-p.s.
Given y ∈ Y and ky = κ(y), we show that every vy ∈ D(ky|k) is U-p.s.

under f . First, if y = ηY is the generic point, then the generic point x = ηX
of X is in Xy, L = ky ↪→ kx = K under f , and w := vy ∈ D(ky|k) = D(L|k) is
U-p.s. in D(K|k) = D(kx|k) by hypothesis. Next suppose that y ̸= ηY . Since
f : X → Y is proper, the fiber Xy is a proper ky-variety.

Case 1. vy is the trivial valuation of ky, i.e., ky = κvy . Let ȷy : κvy ↪→ κU

be a k-embedding, w ∈ D(L|k) be the deg-valuation of the local ring Oy, thus
Lw is a rational function field over κvy = ky. Hence, since td(κU |k) is infinite
and Lw|κvy is a rational function field, the k embedding ȷy : κvy → κU has
k-prolongations to Lw. Since D(L|k) is U-p.s. in D(K|k), there is v ∈ D(K|k)
such that e(v|w) = 1 and Kv|Lw is ȷw-p.s., that is, ȷw has a prolongation
ȷv : Kv → κU to Kv. So, if x ∈ X is the center of v, then f(x) = y is the
center of w on Y, thus x ∈ Xy, and κvy = ky = κ(y) ↪→ κ(x) ⊂ Kv canonically.
Hence, setting kx = κ(x), the restriction ȷx := (ȷv)|kx prolongs ȷy : κvy ↪→ κU

to kx. Thus the trivial valuation vx ∈ D(kx|k) satisfies vy = (vx)|ky , and
κvy = ky ↪→ κU prolongs to a k-embedding κvx = kx ↪→ κU .
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Conclude: vy ∈ D(ky|k) is U-p.s. in D(kx|k) for some x ∈ Xy.
Case 2. vy ∈ D(ky|k) is non-trivial. The proof is a little bit involved, and

takes place in two main steps: Namely, let ȷy : κvy → κU be given. Then, in
Step 1, we find some point x′ ∈ Xy, and a discrete k-valuation v′ of kx′ := κ(x′)
with vy = v′|ky and e(v′|wy) = 1 and a k-embedding ȷx′ : κv′ = kx′v′ → κU

prolonging ȷy : κvy → κU . Nevertheless, v′ is not necessarily a prime divisor
of kx′ . In Step 2, we use v′ to finally find the “right” point x ∈ Xy and
vx ∈ D(kx|k) with the desired properties.

Step 1. Let w̃ ∈ Valk(L) be the lex-valuation of Oy, thus Lw̃ = ky, and
w := vy ◦ w̃ be the valuation theoretical composition. Then Lw = kyvy = κvy ,
Ow ⊂ Ow̃, mw ⊃ mw̃, and Ovy = Ow/mw̃, thus wL/vyky = w̃L canonically. Let
πy ∈ ky have vy(πy) = 1, and π ∈ Ow be a preimage of πy. Then w(π) ∈ wL is
the unique minimal positive element, hence mw = πOw, and the “canonical”
coarsening Ow̃ = Ow[1/π] of Ow has valuation ideal mw̃. We construct a
valuation v ∈ Valk(K) such that w = v|L, v(π) is the minimal element in vK,
and ȷw prongs to a k-embedding ȷv : Kv → κU . Hence, if Oṽ = Ov[1/π] is the
“canonical” coarsening of Ov, one has: w̃ = ṽ|L. Hence, if x′ is the center of
ṽ on X, then f(x′) = y, and Ov′ = Ov/mṽ is a DVR of kx′ with residue field
κv′x = Kv, thus ȷx′ : κv′x = Kv → κU prolongs ȷy.

Concretely: Since ky = κ(y) and κvy = kyvy are finitely generated over
k, and further, Ovy = Ow/mw̃, Ovy/(π) = κvy , by Fact 5.2, 2) and 3), there is
a smooth modification f0 : X0 → Y0 of f such that the centers ỹ and yw of w̃
and w on Y0, and pỹ := mw̃ ∩ Oyw satisfy π ∈ myw\m2

yw and further:

(∗) κ(ỹ) = ky = Lw̃, κ(yw) = κvy = Lw, Ovy = Oyw/pỹ, mvy = myw/pỹ,

Next, let ȷy : κvy ↪→ κU be a given k-embedding. Since Y0 is smooth, the
deg-valuation w0 ∈ D(L|k) of Oyw satisfies w0(a) = 1 for all a ∈ myw\m2

yw ,
hence w0(π) = 1, and Lw0 is a rational function field over κ(yw) = κvy = Lw.
Hence, since td(κU |k) is infinite, ȷy : κvy → κU has (many) k-prolongations ȷw0 :
Lw0 ↪→ κU . Finally, since D(L|k) is U-p.s. in D(K|k), there is v0 ∈ D(K|k)
satisfying: w0 = (v0)|L, e(v0|w0) = 1, and Kv0|Lw0 is ȷw0-p.s., i.e., there is a
k-embedding ȷv0 : Kv0 ↪→ κU prolonging ȷw0 . Hence, if x0 ∈ X0 is the center
of v0, one has f0(x0) = y0 and k-embeddings κvy = κ(y0) ↪→ κ(x0)→ Kv0, and
(ȷv0)|κ(x0) prolongs ȷy. Hence, one has that κ(x0)|κvy is ȷy-pseudo-split, and
second, v0(π) = 1 = w0(π) implies π ∈ mx0\m2

x0
.

Finally, let fµ : Xµ → Yµ, µ ∈ I be a cofinal projective system of smooth
modifications of f0 : X0 → Y0, and ỹµ, yµ be the centers of w̃, w on Yµ.
Further, let f̃µ : Zµ → SpecOyµ , µ ∈ I be the projective system of the fibers
of fµ above SpecOyµ . By Fact 5.2, 2), one has ∪µOyµ = Ow, and therefore,

lim←−µ
Zµ = Valw(K) =

{
v′ ∈ Valk(K)

∣∣ v′|L = w
}
.
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Lemma 5.4. Let Zµ,π,ȷy ⊂ f−1µ (yµ)⊂Zµ be the set of points xµ satisfying
both (j) π ∈ mxµ\m2

xµ
and (jj) ȷy : κvy→κU prolongs to some ȷxµ :κ(xµ) ↪→κU .

Then (Zµ,π,ȷy)µ is a projective system with the non-empty projective limit

Valȷy(K) =
{
v ∈ Valw(K)|π ∈ mv\m2

v, ȷy : κvy→ κU prolongs to ȷv: Kv ↪→ κU

}
.

Proof of Lemma 5.4. First, (Xµ,π,ȷy)µ is a projective system, because (j),
(jj) are compatible with the projections Xµ′ → Xµ, xµ′ 7→ xµ. Indeed, one has

xµ′ 7→ xµ ⇒ Oxµ ≺ Oxµ′ ⇒ mxµ = mxµ′ ∩ Oxµ and κ(xµ) ↪→ κ(xµ′).

Hence, if xµ′ satisfies (j), (jj) and xµ′ 7→ xµ, then xµ satisfies (j), (jj). Next, let
(xµ)µ = v be given with v ∈ Valw(K). Then, by Fact 5.2, (I), it immediately
follows that π ∈ mv\m2

v. Finally, since Kv = ∪µ κ(xµ), by the saturation
property of κU , the inductive system of prolongations ȷxµ : κ(xµ) ↪→ κU , µ ∈ I
of ȷy to each κ(xµ) gives rise to a k-embedding ȷv : Kv = ∪µκ(xµ) ↪→ κU which
k-prolongs ȷy : κvy → κU to Kv, i.e., ȷy = (ȷv)|κvy

. □
In the notation from Lemma 5.4 above, let v ∈ Valȷy(K), thus w = v|L,

π ∈ mv\m2
v, and ȷy : κvy → κU prolongs to a k-embedding ȷv : κ(v)→ κU . Then

v(π) is the minimal positive element in vK, thus mw = πOw ↪→ πOv = mv,
and therefore: Oṽ := Ov[1/π], is a valuation ring such that w̃ = ṽ|L, and
O0 := Ov/mṽ is a DVR of k0 := Kṽ with valuation ideal m0 = πO0 = mv/mṽ.
Let v0 be the canonical valuation of O0, thus v0(π) = 1.

Let x′ ∈ X be the center of ṽ on X. Then w̃ = ṽ|L implies f(x′) = y, and
consider the residue field embeddings ky = κ(y) ↪→ κ(x′) = : kx′ ↪→ k0 = Kṽ.
Then v′ := (v0)|kx′ satisfies: First, v′|ky = (v0)|ky = vy, hence e(v′|vy) divides
e(v0|vy) = 1, thus e(v′|vy) = 1, i.e., Ov′ is a DVR of kx′ with v′(π) = 1 = vy(π).4

Second, the residue field k-embeddings κvy ↪→ κv′ := kx′v′ ↪→ Kv satisfy:
ȷy = (ȷv)|κvy

, hence ȷv′ := (ȷv)|κv′ prolongs ȷy to κv′ .
Step 2. To simplify notations, set F := ky, w := vy ∈ D(F |k), ȷw := ȷvy ,

and E′ := kx′ . Hence w = v′|F , v′(π) = 1 = w(π), and ȷv′ : E′v′ → κU prolongs
ȷw : Fw → κU to E′v′. Since char(k) = 0, there is a system of representatives
λ ⊂ F h and let t be a system of v′-units whose image in E′v′ is a transcendence
basis of E′v′ over Fw, thus |t| = td(E′v′|Fw). Then F h = λ(π)h, and setting
E0 := λ(π, t) and Eh := Eh

0 ⊂ E′h, vh := (v′h)|Eh , one has: vhEh = Z = v′hE′h

and Ehvh = E′v′ = E′hv′h have characteristic zero.
Conclude: By the AKE Principle, one hast that Eh ≺ E′h.

To proceed, the canonical k-embeddings ky ↪→ F h ↪→ E′h and kx′ ↪→ E′h define
an F h-rational point yhF ∈ Y (F h) and an E′h-rational point xhE′ ∈ X(E′h) such
that f(xhE′) = yhF . Hence, since Eh ≺ E′h and f : X → Y is defined over k,
there is xhE ∈ X(Eh) such that f(xhE) = yhF . Hence, if xhE is defined by a point

4 Recall: we do not claim that v′ is a prime divisor of kx′ |k, but rather a discrete valuation.
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x ∈ X and a k-embedding kx ↪→ Eh, then f(x) = y, and vx := (v′)|kx satisfies
w = (vx)|F . And since E′v′ = E′hv′h = Ehvh, one has that ȷvx := (ȷv′)|κvx

prolongs ȷw to κvx .

Claim. vx has no transcendence defect.
Indeed, let rF = td(F |k) − 1. Since w ∈ D(F |k), td(Fw|k) = rF = td(λ|k),
the latter equality following by the definition of λ|k. Second, by definition of
E0|k one has td(E0|k) = rF + |t|+ 1. Next, since Eh|E0 is algebraic, one has
td(Eh|k) = td(E0|k) = rF + |t|+ 1. Hence E′v′ = Ehvh implies:

td(Eh|k)− 1 = rF + |t| = td(Fw|k) + td(E′v′|Fw) = td(Ehvh|k).

Hence, by the discussion before Fact 4.3, vx = (vh)|kx is discrete and has no
transcendence defect, thus vx ∈ D(kx|k). Conclude that w = vy is U-p.s. in
D(kx|k) for some x ∈ Xy. □

Acknowledgments. I would like to thank several people at the IHP special pro-

grams in the spring 2018 and summer 2019, especially Z. Chatzidakis, J.-L. Colliot-Thélène,

E. Hrushovski, J. Koenigsmann, F. Loeser, J. Lee, D. Loughran, B. Poonen, A. Skorobo-

gatov, A. Smeets, S. Starchenko, T. Szamuely, O. Wittenberg, for discussions, comments

and suggestions concerning the subject and content of this note. Finally, last but not least,

thanks are due to the reviewers of the manuscript for suggestions and comments which im-

proved the presentation quite a bit.

REFERENCES

[1] D. Abramovich, J. Denef, and K. Karu, Weak toroidalization over non-closed fields.
Manuscripta Math. 142 (2013), 1-2, 257–271.

[2] D. Abramovich and K. Karu, Weak semistable reduction in characteristic 0. Invent.
Math. 139 (2000), 2, 241–273.

[3] J. Ax, The elementary theory of finite fields. Ann. of Math. (2) 88 (1968), 239–271.

[4] J. Ax and S. Kochen, Diophantine problems over local fields, I. Amer. J. Math. 87 (1965),
605–630.

[5] J. Ax and S. Kochen, Diophantine problems over local fields, III. Decidable fields. Annals
of Math. 83 (1966), 437–456.

[6] J.L. Bell and A.B. Slomson, Models and Ultraproducts: An Introduction. North-Holland
Publishing Co., Amsterdam, London, 1969.
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