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1. INTRODUCTION

As an undergraduate, the first author was introduced by Lucian Bădescu
to the beautiful world of algebraic geometry. One of his favorite topics was that
of Lefschetz-type theorems, in particular Barth’s celebrated result for arbitrary
smooth subvarieties in projective space; he also often brought up Hartshorne’s
and Ogus’ work on local cohomological dimension and its connections to the
topology of projective varieties. We dedicate this note on a related circle of
ideas to him, in the belief that he would have enjoyed it!

Concretely, in this paper we compute the Du Bois complexes of cones over
arbitrary subvarieties in projective space; the case of smooth varieties can be
found in [25] and the references therein. We use this for several applications.
The most important is not a new result, at least in the setting of classical cones,
but we believe it nicely illustrates how such Du Bois complexes can be used
in an almost algorithmic fashion: using the birational characterization of local
cohomological dimension provided in [19], expressed in an equivalent form in
terms of the depth of Du Bois complexes, we give an alternative approach to
Ogus’ [21] interpretation of the local cohomological dimension at the vertex
of the cone over a projective variety X in terms of the topology of X. As
a new result, we extend this characterization to all abstract cones over X.
In a different direction, feeding our computation into the main technical result
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of [6], we describe the non-positive K-groups of abstract cones over a projective
variety in terms of its Du Bois complexes, extending the result in loc. cit. to
singular complex varieties.

Let X ⊆ PN be a complex projective variety of dimension n and codi-
mension r = N − n, and let Z = C(X) ⊆ AN+1 be the affine cone over X. We
denote by lcd(Z,AN+1) the local cohomological dimension of Z in AN+1, and
call

lcdef(Z) := lcd(Z,AN+1)− r

the local cohomological defect of Z. This invariant depends only on Z, and not
on the embedding in AN+1; see Section 2.2 for details. The following is a slight
reformulation of Ogus’ result [21, Theorem 4.4] (also recovered more recently
in [12] in the smooth case, and in [23] in general):

Theorem 1.1. For an integer c ≥ 0, the following are equivalent:

1. lcdef(Z) ≤ c

2. lcdef(X) ≤ c and the restriction maps H i(PN ,C) → H i(X,C) are iso-
morphisms for i ≤ n− 1− c.

In particular,

lcdef(Z) = 0 ⇐⇒ lcdef(X) = 0 and H i(PN ,C) ≃−→ H i(X,C) for all i ≤ n−1.

Note that in [21], part (1) is phrased in terms of the cohomological
dimension cd(PN ∖ X), but it is well known via a standard argument that
lcd(Z,AN+1) = cd(PN ∖X) + 1.

The interest in the last equivalence in Theorem 1.1 stems from the fact
that both sides are satisfied whenX is a smooth complete intersection in PN . It
is therefore intimately related to Hartshorne’s conjecture on small codimension
subvarieties.

Note. Recall that Barth’s theorem (see [17, Section 3.2] for a survey) states
that if X is smooth, then we always have

H i(PN ,C) ≃−→ H i(X,C) for all i ≤ n− r.

According to Theorem 1.1, this is equivalent to the universal bound lcdef(Z) ≤
r − 1.

We provide in fact an extension of Ogus’ result to any abstract cone over
X, defined by the choice of an ample line bundle L, in terms of the action
of c1(L) on the singular cohomology of X; see Theorem 2.17 for the precise
statement. In our approach, this result, hence also Theorem 1.1, follows from
two main points. One is a reformulation of the characterization of lcdef(Z) in
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[19, Theorem E], for any complex variety Z, in terms of the Du Bois complexes
of Z:

lcdef(Z) = dimZ −min
k≥0

{depthΩk
Z + k}.

See Section 2.2 for details. The second, and the main technical result here, is
the computation of the Du Bois complexes of (abstract) cones over arbitrary
subvarieties in PN , and of their depth.

Theorem 1.2. Let X be a projective variety, endowed with an ample line
bundle L. Let

Z = C(X,L) = Spec
(⊕
m≥0

H0(X,Lm)
)

be the affine cone over X associated to L, with cone point x ∈ Z. Then, the Du
Bois complexes Ωk

Z can be computed explicitly in terms of the Du Bois–Hodge
theory of X and L; see Theorem 2.6(1). The same holds for depthxΩ

k
Z ; see

Theorem 2.6(2).

On a different note, to prove Theorem 2.17, we also need a general result
of independent interest, namely a “dual” Nakano-type vanishing theorem for
Du Bois complexes. We establish this in Section 2.5, as a simple application
of the Kodaira–Saito vanishing theorem for mixed Hodge modules.

Theorem 1.3. Let X be a complex projective variety of dimension n, and
L an ample line bundle on X. Then

Hq(X,Ωp
X ⊗ L−1) = 0 for all p+ q < n− lcdef(X).

Finally, in a different direction, Theorem 1.2 is used in Section 3.2 to
compute the non-positive K-groups of cones over a projective variety in terms
of its Du Bois complexes, extending for complex varieties the result in [6] to
abstract cones over singular varieties; this is simply an appendix to loc. cit.,
as we are still using the main technical result of that paper.

Corollary 1.4. Let X be an n-dimensional complex projective variety
endowed with an ample line bundle L, and let Z = C(X,L) be the affine cone
over X associated to L. Then:

1. K0(Z) ≃ Z⊕
⊕n

i=1

⊕
m≥1Hi(X,Ωi

X/Q ⊗ Lm);

2. K−ℓ(Z) ≃
⊕n−ℓ

i=0

⊕
m≥1Hℓ+i(X,Ωi

X/Q ⊗ Lm) for all ℓ ≥ 1.

Here, Ωi
X/Q are the Du Bois complexes over Q of the complex variety X;

see the beginning of Section 3.2. When X is embedded in PN , with L = OX(1),
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the method applies to the classical cone C(X) as well. For l ≥ 1, we have
K−l(C(X)) = K−l(C(X,L)), while for l = 0, we have

K0

(
C(X)

)
≃ Z⊕ Pic

(
C(X)

)
⊕

n⊕
i=1

⊕
m≥1

Hi(X,Ωi
X/Q ⊗ Lm).

Here, Pic(C(X)) ≃ R+/R, where R is the homogeneous coordinate ring of X,
and

R+ ≃
⊕
m≥0

H0(X,Ω0
X ⊗ Lm)

is its seminormalization. A few things can also be said about positiveK-groups,
but a precise description can only be achieved in special cases.

2. MAIN RESULTS

2.1. Preliminaries

We start by collecting the main technical definitions and facts used in
this paper.

Du Bois complexes. Let X be a complex algebraic variety. The filtered de
Rham complex (Ω•

X , F ) is an object in the bounded derived category of filtered
differential complexes on X, introduced by Du Bois in [8], following the ideas
of Deligne, and intended as a replacement for the standard de Rham complex
on smooth varieties. For each k ≥ 0, the (shifted) associated graded quotient

Ωk
X := GrkF Ω•

X [k],

is an object in Db
coh(X), called the k-th Du Bois complex of X. It follows from

definition that

Ωk
X ≃ Rϵ•∗Ω

k
X• ,

where ϵ• : X• → X is a hyperresolution of X.

Besides [8], we refer for instance to [11, Chapter V] or to [22, Chapter 7.3]
for the construction of hyperresolutions, and for a detailed treatment of Du Bois
complexes. Here, we only collect the main properties that are needed in this
paper; these are used freely in the most obvious instances.

Lemma 2.1. (1) We have Ωk
X |U ≃ Ωk

U for any open subset U ⊂ X, and
any morphism f : X → Y induces a canonical morphism Ωk

Y → Rf∗Ω
k
X ;

see [8, Section 3] and [22, Chapter 7.3].
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(2) For each k ≥ 0, there is a canonical morphism Ωk
X → Ωk

X , which is
an isomorphism if X is smooth; here, Ωk

X are the sheaves of Kähler
differentials on X; see [8, Section 4.1] or [22, p. 175].

(3) There exists a Hodge-to-de Rham spectral sequence

Ep,q
1 = Hq(X,Ωp

X) =⇒ Hp+q(X,C),

which degenerates at E1 if X is projective; see [8, Theorem 4.5(iii)] or
[22, Proposition 7.24].

(4) Given a discriminant square, i.e., a Cartesian square

E Y

Z X

g f

such that the horizontal maps are inclusions and f : Y ∖ E → X ∖ Z is
an isomorphism, then for each k ≥ 0, we have an exact triangle

Ωk
X → Ωk

Z ⊕Rf∗Ω
k
Y → Rg∗Ω

k
E

+1−−→ .

See [8, Proposition 4.11] or [22, Example 7.25].

(5) Let X• → X be a hyperresolution. Then there is a spectral sequence

Eij
1 = Hj(Xi,Ω

k
Xi
) =⇒ Hi+j(X,Ωk

X).

See [11, Chapter V, Lemma 3.1].

Depth of objects in the derived category. The notion of depth of a
module has a natural extension to complexes. Let (R,m) be a noetherian
local ring endowed with a dualizing complex ω•

R (for us this is always the local
ring of X at a closed point), and let C be an element of the bounded derived
category of finitely generated R-modules. Then one defines depth(C) in any
of the following equivalent ways:

1. min {i | Ext−i
R (C,ω•

R) ̸= 0};

2. min {i | ExtiR(R/m, C) ̸= 0};

3. min {i | H i
m(C) ̸= 0},

with the convention that the depth is −∞ if C = 0. The last two properties
are studied and shown to be equivalent in [9], while the equivalence with the
first follows from local duality.
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If X is a variety and C is an element in Db
coh(X), we especially use the

first and third interpretation, in the sense that if x ∈ X is a closed point, we
have

(1) depthx(C) = min {i | Ext−i
OX,x

(Cx, ω•
X,x) ̸= 0} = min {i | Hi

x(C) ̸= 0}.
We also set

depth(C) := min
x∈Supp(C)

depth(Cx),

where the minimum is taken over the closed points of X which lie in Supp(C),
i.e., the union of the supports of the cohomologies of C.

2.2. Local cohomological dimension via Du Bois complexes

Let X be a complex variety. A cohomological invariant that is now un-
derstood to figure prominently in the study of the Du Bois complexes of X
is the local cohomological dimension. If Y is a smooth variety containing X
(locally), this can be seen as

lcd(X,Y ) := max {q | Hq
XOY ̸= 0},

where Hq
XOY is the q-th local cohomology sheaf of OY along X. It is also a

well-known fact in commutative algebra that

codimY X = min {q | Hq
XOY ̸= 0}.

See [19, Section 2.2] for an extensive discussion.
It follows from the main results in [21] or [19] that dimY − lcd(X,Y )

depends only on X, and not the choice of Y ; for instance, in the language of
[21, Theorem 2.13], it is equal to the de Rham depth of X. This provides a
convenient invariant for our present purposes.

Definition 2.2. The local cohomological defect lcdef(X) of X is

lcdef(X) := lcd(X,Y )− codimY X.

It measures how far X is “numerically” from being a local complete intersec-
tion, and again depends only on X, and not on the choice of Y ; indeed, we
have

lcdef(X) = dimX −
(
dimY − lcd(X,Y )

)
.

This also shows that dimX ≥ lcdef(X) ≥ 0.

The key result we use here is [19, Theorem E], characterizing the local
cohomological dimension in terms of the vanishing of higher direct images of
forms with log poles on a log resolution. Via results of Steenbrink, this was
equivalently phrased in terms of Du Bois complexes as follows:
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Theorem 2.3 ([19, Corollary 12.6]). Let X be a subvariety of a smooth
variety Y . For any integer c, we have

lcd(X,Y ) ≤ c ⇐⇒ Extj+k+1
OY

(Ωk
X , ωY ) = 0 for all j ≥ c and k ≥ 0.

or equivalently

lcdef(X) ≤ c ⇐⇒ Extj+k+1
OX

(Ωk
X , ω•

X) = 0 for all j ≥ c− dimX and k ≥ 0.

The second equivalent statement is simply obtained by translating into
the language introduced here, and using Grothendieck duality for the inclusion
X ↪→ Y . The fundamental consequence is the following:

Corollary 2.4. We have the identity

lcdef(X) = dimX −min
k≥0

{depthΩk
X + k}.

Proof. Using Theorem 2.3, the identity follows from (1).

This formula opens the door to the study of lcdef(X) based on objects in
the bounded derived category of coherent sheaves, providing an alternative to
the topological approach in [21] (or in [23] and [2]).

Example 2.5 (Varieties with lcdef(X) = 0). An important point is to
recognize those varieties that behave numerically like local complete intersec-
tions, without necessarily being so. Here, this is encoded in the condition
lcdef(X) = 0, or equivalently lcd(X,Y ) = codimY X in any embedding. Be-
sides local complete intersections, this is known to hold for instance when X
has quotient singularities [19, Corollary 11.22], when X is affine with Cohen–
Macaulay Stanley–Reisner coordinate algebra [19, Corollary 11.26], when X
is an arbitrary Cohen–Macaulay surface or threefold by [21, Remark p. 338]
and [7, Corollary 2.8] respectively, and when X is a Cohen–Macaulay fourfold
whose local analytic Picard groups are torsion [7, Theorem 1.3].

2.3. Du Bois complexes of cones over singular varieties

The set-up for this entire section and the next is the following: X is a
projective variety of dimension n, endowed with an ample line bundle L, and

Z = C(X,L) = Spec
(⊕
m≥0

H0(X,Lm)
)

is the affine cone over X associated to L, with cone point x ∈ Z.

Our first goal is to describe the Du Bois complexes Ωk
Z , generalizing the

result obtained in [25, Appendix A] (and earlier in different language in [6])
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when X is smooth. More precisely, noting that Z is affine, we describe the
global sections of their cohomology sheaves. Our second goal is to use this
description in order to compute their depth at the cone point. We combine all
of this in the following:

Theorem 2.6. With the notation above:

(1) The Du Bois complexes Ωk
Z are given by

Γ(Z,H0Ω0
Z) ≃ C⊕

⊕
m≥1

H0(X,Ω0
X ⊗Lm) ≃ C⊕

⊕
m≥1

H0(X,H0Ω0
X ⊗Lm),

Γ(Z,HiΩ0
Z) ≃

⊕
m≥1

Hi(X,Ω0
X ⊗ Lm) for i ≥ 1,

and for k ≥ 1,

Γ(Z,HiΩk
Z)

∼=
⊕
m≥1

Hi(X,Ωk
X ⊗ Lm)⊕

⊕
m≥1

Hi(X,Ωk−1
X ⊗ Lm).

(2) We have depthxΩ
k
Z ≥ 1 for every k ≥ 0. Moreover, if d ≥ 1 is an integer:

(i) depthxΩ
0
Z > d if and only if

� H0(X,Ω0
X ⊗ Lm) = 0 for all m ≤ −1;

� Hi(X,Ω0
X ⊗ Lm) = 0 for all m ≤ 0 and 1 ≤ i ≤ d− 1.

(ii) If k ≥ 1, then depthxΩ
k
Z > d if and only if

� Hi(X,Ωk
X ⊗ Lm) = Hi(X,Ωk−1

X ⊗ Lm) = 0 for m ≤ −1 and
0 ≤ i ≤ d− 1;

� H0(X,Ωk
X) = 0;

� The map Hi(X,Ωk−1
X ) → Hi+1(X,Ωk

X) given by cup product
with c1(L) is an isomorphism for 0 ≤ i ≤ d − 2 and injective
for i = d− 1.1

In this section, we focus on the proof of Theorem 2.6(1), while (2) is
proved in the next one. To this end, we consider the blow-up square

E ≃ X Z̃ = SpecX(
⊕

m≥0 L
m)

x Z

i

f f

obtained by blowing up Z at the cone point. We denote

U := Z ∖ {x} = Z̃ ∖ E.

1See Lemma 2.12 and Remark 2.13 for a detailed discussion of this map.
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Using Lemma 2.1(4), we have the following exact triangles:

Ω0
Z → Rf∗Ω

0
Z̃
⊕Ox → Rf∗Ω

0
E

+1−−→
and

Ωk
Z → Rf∗Ω

k
Z̃
→ Rf∗Ω

k
E

+1−−→
for k ≥ 1. Since Z̃ is an A1-bundle over E ≃ X, these exact triangles are split.

Lemma 2.7. With the notation above, for each k ≥ 0 there exists a “pull-
back” map

Rf∗Ω
k
E → Rf∗Ω

k
Z̃

inverse to the natural restriction map Rf∗Ω
k
Z̃
→ Rf∗Ω

k
E.

As a consequence, after passing to hypercohomology, the exact triangles
above lead to direct sum decompositions:

(2) H0(Z̃,Ω0
Z̃
)⊕ C ≃ H0(Z,Ω0

Z)⊕H0(E,Ω0
E)

and

(3) Hi(Z̃,Ωk
Z̃
) ≃ Hi(Z,Ωk

Z)⊕Hi(E,Ωk
E)

for i ≥ 0 and k ≥ 1. Moreover, the summands Hi(E,Ωk
E) can be identified

with Hi(X,Ωk
X), via the zero section of π. We next compute π∗Ω

k
Z̃
, via the

projection π : Z̃ → X.

Lemma 2.8. With the notation above, we have

π∗Ω
0
Z̃
≃

⊕
m≥0

Ω0
X ⊗ Lm,

and for each k ≥ 1, a split exact triangle⊕
m≥0

Ωk
X ⊗ Lm → π∗Ω

k
Z̃
→

⊕
m≥1

Ωk−1
X ⊗ Lm +1−−→ .

Proof. Recall that Z̃ = SpecX(SymL). Given a hyperresolution ϵ• :
X• → X, it induces a hyperresolution Z̃• = SpecX•(Sym ϵ∗•L) of Z̃. For each

Z̃i → Xi, we have

π∗OZ̃i
≃

⊕
m≥0

Lm

and for k ≥ 1, a split exact sequence

0 →
⊕
m≥0

Ωp
Xi

⊗ ϵ∗iL
m → π∗Ω

p

Z̃i
→

⊕
m≥1

Ωp−1
Xi

⊗ ϵ∗iL
m → 0.

Since the splitting given by d is compatible with the maps in the hyperresolu-
tion, we get the result by pushing these forward to X, and using the projection
formula.
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We are now ready to deduce the result stated at the beginning of the
section:

Proof of Theorem 2.6(1). Putting together (2), (3), and Lemma 2.8, we
obtain

H0(Z,Ω0
Z) ≃ C⊕

⊕
m≥1

H0(X,Ω0
X ⊗ Lm)

Hi(Z,Ω0
Z) ≃

⊕
m≥1

Hi(X,Ω0
X ⊗ Lm) for i ≥ 1,

and for each i and k ≥ 1, a split exact sequence

0 →
⊕
m≥1

Hi(Ωk
X ⊗ Lm) → Hi(Z,Ωk

Z) →
⊕
m≥1

Hi(Ωk−1
X ⊗ Lm) → 0.

Since Z is affine, we have Γ(Z,HiΩk
Z) = Hi(Z,Ωk

Z), from which the result
is immediate.

It is also worth noting the following quick consequence of Theorem 2.6(1),
presumably known to experts.

Corollary 2.9. The cone Z = C(X,L) is seminormal if and only if X
is seminormal.

Proof. It is well known that a variety X is seminormal if and only if the
natural map OX → H0Ω0

X is an isomorphism.

In our case, the cone Z is seminormal if and only if

φ : Γ(Z,OZ) =
⊕
m≥0

H0(X,Lm) → Γ(Z,H0Ω0
Z) = C⊕

⊕
m≥1

H0(X,H0Ω0
X ⊗Lm)

is an isomorphism. Hence, it is clear that if X is seminormal, then so is Z.

Conversely, suppose Z is seminormal. Since the map φ preserves the
grading given by L, we have isomorphisms

H0(X,Lm) → H0(X,H0Ω0
X ⊗ Lm)

for all m ≥ 1, induced by the inclusion of sheaves OX ↪→ H0Ω0
X ; using Serre’s

theorems, it is then straightforward to check that this inclusion has to be an
isomorphism.

Finally, when L is very ample, one can also consider the classical cone
C(X) over the corresponding embedding in projective space. For future use,
we record the following result that relates C(X,L) to C(X).
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Lemma 2.10. Suppose L = OX(1) is very ample, defining an embedding
X ⊂ Pn. Then for each k,

Ωk
C(X) → Rπ∗Ω

k
C(X,L)

is a quasi-isomorphism, where π is the natural map C(X,L) → C(X). Conse-
quently, lcdef(C(X)) = lcdef(C(X,L)).

Proof. The isomorphism Ωk
C(X)→Rπ∗Ω

k
C(X,L) follows from Lemma 2.1(4),

given that π is an isomorphism away from the vertex points. The last assertion
then follows from Corollary 2.4.

2.4. Depth of Du Bois complexes of cones

In this section, we focus on the proof of Theorem 2.6(2). In other words,
we characterize the depth of Ωk

Z , where Z is the cone over a possibly singular
projective variety X, in terms of cohomological data of the Du Bois complexes
of X.

To do so, still using the notation of the previous section, we must first
also understand the Du Bois complexes of the complement U = Z ∖ {x} of
the vertex of the cone. Note first that a completely similar argument as in
Lemma 2.8 gives:

Lemma 2.11. For U = Z̃ ∖ E = Z ∖ {x}, we have

π∗Ω
0
U ≃

⊕
m∈Z

Ω0
X ⊗ Lm,

and for each k ≥ 1, a (not necessarily split) exact triangle⊕
m∈Z

Ωk
X ⊗ Lm → π∗Ω

k
U →

⊕
m∈Z

Ωk−1
X ⊗ Lm +1−−→ .

Passing to hypercohomology, we obtain

Hi(U,Ω0
U ) ≃

⊕
m∈Z

Hi(X,Ω0
X ⊗ Lm)

for i ≥ 0, and for k ≥ 1, a long exact sequence

· · · →
⊕
m∈Z

Hi(Ωk
X ⊗ Lm) →

→ Hi(U,Ωk
U ) →

⊕
m∈Z

Hi(Ωk−1
X ⊗ Lm)

di−→
⊕
m∈Z

Hi+1(Ωk
X ⊗ Lm) → · · ·
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Lemma 2.12. The differentials di in the long exact sequence above are
zero, except on the m = 0 summand, where

Hi(X,Ωk−1
X )

di−→ Hi+1(X,Ωk
X)

is induced by cup product with c1(ϵ
∗
jL) on each term Xj in a hyperresolution

of X.

Proof. For each k and m, completely analogously to Lemma 2.1(5), we
have a spectral sequence

Eq,p
1 = Hp(Xq,Ω

k
Xq

⊗ ϵ∗qL
m) =⇒ Hp+q(X,Ωk

X ⊗ Lm),

by means of which the differentials di, with i = p + q, are induced by the
corresponding differentials

Hp(Xq,Ω
k−1
Xq

⊗ ϵ∗qL
m)

dp−→ Hp+1(Xq,Ω
k
Xq

⊗ ϵ∗qL
m)

on each term in the hyperresolution.
It suffices therefore to show the statement of Lemma 2.12 when X is

smooth, meaning that in this case

dp : H
p(X,Ωk−1

X ⊗ Lm) → Hp+1(X,Ωk
X ⊗ Lm)

is 0 on the terms with m ̸= 0, and cup product with c1(L) on the terms with
m = 0.

To this end, let ω ∈ Hp(X,Ωk−1
X ⊗ Lm) be represented by the Čech p-

cocycle

{ωi0i1···ipt
m
i0i1···ip}i0i1···ip ∈ Čp(X,Ωk−1

X ⊗ Lm).

where we fix an open cover {Ui = SpecAi}i over which L = tiAi is locally free,
and we denote by ti0i1···ip := ti0 |Ui0

∩···∩Uip
. To simplify notation, we denote

this restriction by ti0 as well.
If m ̸= 0, then ω lifts to a cocycle { 1

md(ωi0i1···ipt
m
i0
)}i0i1···ip ∈ Čp(Ωk

Z̃∖E
),

thus its image in Čp+1(Ωk
Z̃∖E

) is zero.

If m = 0, then ω lifts to { 1
ti0i1···ip

d(ωi0i1···ipti0)}i0i1···ip ∈ Čp(Ωk
Z̃∖E

). Using

the cocycle condition
∑

j(−1)jωi0i1···îj ···ipip+1
= 0, one computes that

φp(ω) =
{
ωi1i2···ip+1 ∧

dti1
ti1

+
∑
j>0

(−1)jωi0i1···îj ···ipip+1
∧ dti0

ti0

}
i0i1···ipip+1

=
{
ωi1i2···ip+1 ∧

(dti1
ti1

− dti0
ti0

)}
i0i1···ipip+1

,

which (up to sign) represents the class ω ∪ {d log gij}i,j , where gij are the
transition maps of L, satisfying ti = gijtj . Since the class of d log gij can be
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identified with c1(L) ∈ H2(X,Z) ∩H1,1(X) (see, e.g., [10, p. 141]), we obtain
the conclusion.

Remark 2.13. It is well known that for a line bundle L on a (possibly
singular) projective variety X, we have

c1(L) ∈ F 1H2(X,C) = H2(X,F 1Ω•
X),

and therefore it defines an element in H1(X,Ω1
X); see, e.g., [1] for a discussion.

The differentials in Lemma 2.12 can be seen as cup product with this element;
equivalently, they arise from the action of c1(L) on singular cohomology

· ∪ c1(L) : H
i+k−1(X,C) → H i+k+1(X,C),

via Lemma 2.1(3). However, Lemma 2.12 can also be taken to be a definition
of this action.

When in addition L is very ample, giving an embedding ι : X ↪→ PN , there
are induced morphisms of mixed Hodge structures ι∗i : H

i(PN ,C) → H i(X,C),
commuting with cup product, and such that ι∗2(c1(O(1))) = c1(L). Thus, the
Lefschetz maps on PN and X are compatible, in the sense that for each i there
is a commutative diagram

H i(PN ,C) H i+2(PN ,C)

H i(X,C) H i+2(X,C).

c1(O(1))

c1(L)

As a consequence of the calculations above and of the results of the pre-
vious section, we obtain:

Corollary 2.14. With notation as above, we have:

(i) The maps Hi(Z,Ωk
Z) → Hi(U,Ωk

U ) induced by restriction are injective for
all i, k.

(ii) The map H0(Z,Ω0
Z) → H0(U,Ω0

U ) is an isomorphism if and only if

H0(X,Ω0
X ⊗ Lm) = 0 for all m ≤ −1.

For i ≥ 1, the map Hi(Z,Ω0
Z) → Hi(U,Ω0

U ) is an isomorphism if and
only if

Hi(X,Ω0
X ⊗ Lm) = 0 for all m ≤ 0.

(iii) For k ≥ 1, the map Hi(Z,Ωk
Z) → Hi(U,Ωk

U ) is an isomorphism if and
only if

� Hi(X,Ωk
X ⊗ Lm) = Hi(X,Ωk−1

X ⊗ Lm) = 0 for m ≤ −1;
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� The differential

Hi−1(X,Ωk−1
X )

di−→ Hi(X,Ωk
X) is surjective

and the differential

Hi(X,Ωk−1
X )

di−→ Hi+1(X,Ωk
X) is injective.

We are finally ready to compute the depth at the Du Bois complexes of Z,
which is crucial for the proof of Theorem 2.17, but may also be of independent
interest.

Proof of Theorem 2.6(2). Recall that we denote U = Z ∖ {x}. For each
k, there is a long exact sequence

· · · → Hi
x(Z,Ω

k
Z) → Hi(Z,Ωk

Z) = H0(Z,HiΩk
Z) → Hi(U,Ωk

U ) → · · · .
Thus, the condition

depthxΩ
k
Z > d ⇐⇒ Hi

x(Z,Ω
k
Z) = 0 for all i ≤ d

is equivalent to the following two conditions:

1. Hi(Z,Ωk
Z) → Hi(U,Ωk

U ) is an isomorphism for 0 ≤ i ≤ d− 1;

2. Hd(Z,Ωk
Z) → Hd(U,Ωk

U ) is injective.

The assertion is then an immediate consequence of Corollary 2.14.

Remark 2.15 (The case when X is smooth). We make some remarks
about the content of Theorem 2.6(2) when X is smooth, as a blueprint for what
we should aim for in the singular case. With this assumption, the statement
translates into the fact, say when k ≥ 1, that depthxΩ

k
Z > d is equivalent to

the following two conditions being satisfied simultaneously:

(i) H i(X,Ωk
X ⊗ L⊗m) = H i(X,Ωk−1

X ⊗ L⊗m) = 0 for all m ≤ −1 and 0 ≤
i ≤ d− 1.

(ii) The maps Hk−1,i(X) → Hk,i+1(X) induced by cup product with c1(L)
are isomorphisms for −1 ≤ i ≤ d− 2, and injective for i = d− 1.

If d ≤ n− k+ 2, then i ≤ d− 1 implies i+ k < n = dimX, and therefore
condition (i) holds automatically thanks to Nakano vanishing. The injectivity
of all the maps in (ii) is also automatic, because of the Hard Lefschetz theorem.
These observations and similar ones for k = 0, in conjunction with Corollary 2.4
and Remark 2.13, essentially finish the proof of Theorem 1.1 whenX is smooth.

Thus, when X is singular, we need in particular a suitable replacement
for the Nakano vanishing theorem. This is of independent interest, and is the
topic of the next section.
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2.5. Vanishing for dual Du Bois complexes

The Du Bois complexes of a projective varietyX of dimension n are known
by [11, Theorem V.5.1] to satisfy the analogue of the Kodaira–Akizuki–Nakano
vanishing theorem, in the sense that

Hq(X,Ωp
X ⊗ L) = 0 for all p+ q > n,

for any ample line bundle L on X. The Serre dual statement for twists by L−1

does not however hold automatically, as in general, we only have morphisms
Ωn−p
X → D(Ωp

X) that are not necessarily isomorphisms, where

D(−) = RHom(−, ω•
X)[−n]

is the (shifted) Grothendieck duality functor. Instead, the correct statement
turns out to be the following, which is an expanded version of Theorem 1.3 in
the Introduction.

Theorem 2.16. Let X be a projective variety of dimension n, and L an
ample line bundle on X. Then

Hq(X,D(Ωp
X)⊗ L) = 0 for q − p > lcdef(X).

Equivalently,

Hq(X,Ωp
X ⊗ L−1) = 0 for p+ q < n− lcdef(X).

Proof. The second statement follows from the first by Grothendieck–Serre
duality.

To check the first statement, fix an embedding X ↪→ PN given by a
sufficiently high power of L. Let QH

PN [N ] denote the trivial Hodge module on
PN . Then, as in [19, Proposition 13.1], the Du Bois complexes satisfy

Ωp
X ≃ RHomOY

(
GrFp−N DRPN i∗i

!QH
PN [N ], ω•

PN

)
[p−N ].

Dualizing, we obtain

D(Ωp
X) = RHomOX

(Ωp
X , ω•

X)[−n]
∼= RHomOPN

(Ωp
X , ω•

PN )[−n]

∼=
(
GrFp−N DRPN i∗i

!QH
PN [N ]

)
[N − p− n].

Consider now the spectral sequence

Ei,j
2 = Hi

(
X,GrFp−N DRPN Hj

(
i∗i

!QH
PN [N ]

)
⊗ L

)
=⇒ Hi+j

(
X,GrFp−N DRPN

(
i∗i

!QH
Y [N ]

)
⊗ L

)
.

We have that

� Hj(i∗i
!QH

PN [N ]) = Hj
XOPN = 0 for j > lcd(X,PN );
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� Hi(X,GrFp−N DRPN Hj(i∗i
!QH

PN [N ])⊗L)=0 for i > 0, by Saito’s vanishing
theorem for mixed Hodge modules [24, Section 2.g].

It follows that Ei,j
2 = 0 if i+ j > lcd(X,PN ). We conclude that

Hq
(
X,D(Ωp

X)⊗ L
)
= 0

when q−p+N−n> lcd(X,PN ), or equivalently q−p> lcdef(X), as required.

2.6. Proof of the main result

The following statement is the more general version of Theorem 1.1
promised in the Introduction, that applies to any abstract cone over X.

Theorem 2.17. Let X be an n-dimensional projective variety endowed
with an ample line bundle L, and let Z = C(X,L) be the associated cone over
X. Then the following are equivalent:

1. lcdef(Z) ≤ c

2. lcdef(X) ≤ c, and the “Lefschetz” maps

H i(X,C) → H i+2(X,C)

given by cup product with c1(L) are isomorphisms for −1 ≤ i ≤ n− 3− c
and injective for i ≤ n− 2− c, with the convention that H−1(X,C) = 0.2

Proof. First, we note the inequality

(4) lcdef(X) ≤ lcdef(Z).

Indeed, we clearly have lcdef(Z ∖ {x}) ≤ lcdef(Z), where x ∈ Z is the cone
point, while lcdef(Z ∖ {x}) = lcdef(X), since Z ∖ {x} is a locally trivial C∗-
bundle over X.

Note now that by Corollary 2.4, we have

lcdef(Z) = dimZ −min
k≥0

{depthΩk
Z + k}.

As a consequence, we have an equivalence between the following two conditions:

1. lcdef(Z) ≤ c

2. lcdef(X) ≤ c, and
depthxΩ

k
Z ≥ n+ 1− c− k

holds for all k ≥ 0.

2In particular, all Hi(X,C) in this range are 0 for i odd, and 1-dimensional for i even.
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Hence, we focus on understanding when this last condition holds. By Theo-
rem 2.6(2), applied with d = n− c−k,3 it is in turn equivalent to the following
conditions being satisfies simultaneously:

(a) Hi(X,Ω0
X) = 0 for 1 ≤ i ≤ n− c− 1;

(b) H0(X,Ωk
X) = 0 for 1 ≤ k ≤ n− c− 1;

(c) Hi(X,Ωk
X ⊗ Lm) = 0 for all m ≤ −1 and i+ k ≤ n− c− 1;

(d) For 1 ≤ k ≤ n − c − 2, the map Hi(X,Ωk−1
X ) → Hi+1(X,Ωk

X) is isomor-
phism when 0 ≤ i ≤ n− c− k − 2, and injective when i = n− c− k − 1.

The main point is now to note that by Theorem 1.3, condition (c) is guaranteed
to hold precisely when lcdef(X) ≤ c.

On the other hand, conditions (a), (b) and (d) taken together are easily
seen to be equivalent to

(d′) For all i, k ≥ 0, the map

Hi(X,Ωk
X) → Hi+1(X,Ωk+1

X )

is an isomorphism when −1 ≤ i + k ≤ n − c − 3 and injective when
i+ k = n− c− 2.

This in turn is equivalent to the condition on the Lefschetz maps in (2) in the
statement of Theorem 2.17, using Lemma 2.1(3) and the fact that these maps
are compatible with the differentials in Lemma 2.12; see also Remark 2.13.

Proof of Theorem 1.1. In the classical setting, we have in addition that
X is embedded in some PN , and L = OX(1). By Lemma 2.10, it suffices to
prove Theorem 1.1 for Z = C(X,L). The point is simply to observe that the
Hodge-theoretic conditions in (2) in Theorem 2.17 are in this case equivalent
to the condition that the restriction maps are isomorphisms

(5) H i(PN ,C) ≃−→ H i(X,C) for all i ≤ n− 1− c.

Note that the Lefschetz maps on PN and X are compatible, as in the dia-
gram in Remark 2.13. Recall that the second condition in (2) in Theorem 2.17
says that the maps

H i(X,C) → H i+2(X,C),
given by cup product with c1(L), are isomorphisms for all −1 ≤ i ≤ n− 3− c,
and injective for i ≤ n− 2− c. This condition certainly holds if (5) is satisfied.

3Note that Theorem 2.6(2) applies when d ≥ 1, or equivalently k ≤ n− c− 1.
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(Injectivity holds for i = n − 2 − c, since in this case H i(X,C) must be 0 or
1-dimensional, while the Lefschetz map is nontrivial if H i(PN ,C) is so.)

Conversely, since H1(X,C) = 0, assuming that the bottom horizontal
maps in the diagram are isomorphisms for i ≤ n − 3 − c, it is clear that (5)
holds.

3. OTHER APPLICATIONS

Here, we describe further consequences of our calculation of the Du Bois
complexes of cones over singular varieties.

3.1. Higher Du Bois singularities and Bott vanishing

A natural strengthening of the notion of Du Bois singularities has been
considered in [18], [13], [19] and [20] in the case of local complete intersections.
The weaker condition of pre-p-Du Bois singularities was defined in general
in [25]; it means that up to degree p the Du Bois complexes have no higher
cohomologies:

Ωj
X ≃ H0Ωj

X for all j ≤ p.

Using Theorem 2.6(1), we obtain a criterion for cones over singular vari-
eties to be pre-p-Du Bois, extending [25, Corollary 7.4].

Corollary 3.1. Let X be a projective variety endowed with an ample
line bundle L, and let Z = C(X,L) be the associated cone over X. Then Z
has pre-p-Du Bois singularities if and only if

Hi(X,Ωj
X ⊗ Lm) = 0 for all i,m ≥ 1, j ≤ p.

Following [15, Section 2.3], we say that a projective variety X satisfies
Bott vanishing if

H i(X,Ω
[j]
X ⊗A) = 0

for all j ≥ 0 and i > 0, and any ample line bundle A on X. Here, Ω
[j]
X denotes

the reflexive differentials (Ωj
X)∨∨.

Corollary 3.2. Let X be a projective variety with rational singularities.
Then the following are equivalent:

1. Z = C(X,L) has pre-p-Du Bois singularities for all ample line bundles
L and all p.

2. X has pre-p-Du Bois singularities for all p and satisfies Bott vanishing.
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Proof. Due to the main result of [16], when X has rational singularities,

we have H0Ωj
X ≃ Ω

[j]
X for all j. Thus (1) follows from (2) by Corollary 3.1.

Conversely, suppose first that X does not have pre-p-Du Bois singularities,
meaning HiΩj

X ̸= 0 for some i > 0 and j ≤ p. By Serre’s theorems, we can

choose L sufficiently positive, so that Hs(X,HtΩj
X ⊗ L) = 0 for all s > 0 and

t ≥ 0, and H0(X,HiΩj
X ⊗ L) ̸= 0. Then, the spectral sequence

Es,t
2 = Hs(X,HtΩj

X ⊗ L) =⇒ Hs+t(X,Ωj
X ⊗ L)

degenerates, and gives

Hi(X,Ωj
X ⊗ L) ≃ H0(X,HiΩj

X ⊗ L) ̸= 0.

This is a contradiction, again by Corollary 3.1, which also implies that X
satisfies Bott vanishing once we know that it is pre-p-Du Bois.

Remark 3.3. For varieties whose singularities are not rational, it may in
fact make sense to define the Bott vanishing condition in terms of H0Ωj

X rather

than Ω
[j]
X . The statement of Corollary 3.2, minus the rational singularities

assumption, would remain unchanged.
For example, one can show along the lines of [15] that if X is a variety

with int-amplified endomorphisms, then for every ample line bundle A on X,
we have

H i(X,HjΩk
X ⊗A) = 0

for i > 0 and j, k ≥ 0.

3.2. K-groups of cones

Another consequence of Theorem 2.6 is the computation of the non-
positive K-groups of abstract cones over a projective variety in terms of its Du
Bois complexes, following the approach in [6] for classical cones over smooth
varieties, and using the main technical result of that paper. Please see the
introduction of loc. cit. for a discussion of the problem, and of the important
techniques introduced by the authors in a series of papers dedicated to the
study of K-groups.

As in [5], for any subfield F ⊂ C and complex variety X, one can define
the p-th Du Bois complex of X over F as

Ωp
X/F = Rϵ•∗Ω

p
X•/F

where ϵ• : X• → X is a hyperresolution of X.4 The formula for the Du Bois
complexes of cones in Theorem 2.6 remains valid in this setting, with the same

4Note that we are considering (locally) differential forms of the coordinate algebra of X
over F . We are not necessarily assuming that X is defined over F .
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proof where Ωp
X is replaced by Ωp

X/F . Moreover, one checks exactly as in the

slightly more restrictive [5, Lemma 2.1] that there is an isomorphism

Ωp
X/F ≃ Ωp

cdh,X/F ,

where Ωp
cdh,X/F := Ra∗a

∗Ωp
X/F is the sheafification of Ωp

X/F in the cdh-topology,
the map a : Xcdh → Xzar being the natural change-of-topology morphism.

We are now ready to describe the calculation of non-positive K-groups of
cones.

Proof of Corollary 1.4. By [6, Theorem 1.2], for the affine cone Z =
C(X,L) over the n-dimensional projective variety X, we have

� K0(Z) ≃ Z⊕
⊕dimZ−1

i=1 Γ(HiΩi
Z/Q)/d

(
Γ(HiΩi−1

Z/Q)
)
;

� K−ℓ(Z) ≃ Γ(Z,HℓΩ0
Z/Q) ⊕

⊕n−ℓ
i=1 Γ(Z,Hℓ+iΩi

Z/Q)/d
(
Γ(Z,Hℓ+iΩi−1

Z/Q)
)
,

ℓ ≥ 1.

Here, d is the action on global sections of the differential

Hℓ+iΩi−1
Z/Q! →Hℓ+iΩi

Z/Q.

Using the calculation of Du Bois complexes of abstract cones in Theo-
rem 2.6(1) (in place of [6, Corollary 2.10]) then yields

� K0(Z) ≃ Z⊕
⊕n

i=1

⊕
m≥1Hi(X,Ωi

X/Q ⊗ Lm);

� K−ℓ(Z) ≃
⊕n−ℓ

i=0

⊕
m≥1Hℓ+i(X,Ωi

X/Q ⊗ Lm), ℓ ≥ 1.

Note that if X is embedded in PN by L = OX(1), one can consider the
classical cone C(X), and the method in loc. cit. applies to this as well. Thus,
for ℓ ≥ 1, we have

K−ℓ

(
C(X)

)
= K−ℓ

(
C(X,L)

)
thanks to Lemma 2.10. For ℓ = 0, we have

K0

(
C(X)

)
≃ Z⊕ Pic

(
C(X)

)
⊕

n⊕
i=1

⊕
m≥1

Hi(X,Ωi
X/Q ⊗ Lm)

where Pic(C(X)) ≃ R+/R; here, R is the homogeneous coordinate ring of X,
and

R+ ≃
⊕
m≥0

H0(X,Ω0
X ⊗ Lm)

is its seminormalization. The last statement follows from Theorem 2.6(1) and
the well-known fact that the structure sheaf OZsn of the seminormalization of
Z can be identified with H0Ω0

Z . For the statement about Pic(C(X)), we are
using [6, Proposition 1.5].
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Remark 3.4. As a consequence, K−ℓ(Z) = 0 for l > n + 1, where as
usual n = dimX. This vanishing result holds in greater generality, see [4,
Theorem 6.2] and [14, Theorem B]. Moreover, if X is a complex algebraic
variety with Du Bois singularities, then

K−n−1(Z) ≃
∞⊕

m=1

Hn(X,Lm),

as in the case when X is smooth. More generally, if the complex algebraic
varietyX has pre-p-Du Bois singularities (see the previous section), the formula
for K−ℓ(Z) essentially coincides with that in the smooth case for ℓ ≥ n − p,
since in this case we have that H0Ωk

X/Q ≃ Ωk
X/Q for k ≤ p; indeed, this is

the case by definition for Ωk
X = Ωk

X/C, and the statement over Q follows by

analyzing the spectral sequence in [3, Lemma 4.2]:

Eij
1 = Ωi

C/Q ⊗C Hi+jΩp−i
X/C =⇒ Hi+jΩp

X/Q.

Note that, when X has rational singularities, we have H0Ωk
X ≃ Ω

[k]
X for all k,

while if X is a p-Du Bois local complete intersection, then H0Ωk
X ≃ Ωk

X for
k ≤ p; see [19] for a general discussion.

Remark 3.5 (Higher K-groups). With the same notation as above, ac-
cording to [6, Theorem 1.13], for l ≥ 1 the group Kl(Z) breaks up into a direct
sum of eigenspaces of the Adams operator, given by:

� K
(i)
l (Z) ∼= HC

(i−1)
l−1 (R) for 0 < i < l;

� K
(l)
l (Z) ∼= K

(l)
l (C)⊕ torsΩl−1

Z/Q/d torsΩ
l−2
Z/Q;

� K
(l+1)
l (Z) ∼= coker

(
Γ(Z,H0Ωl−1

Z/Q)
d−→ Γ(H0Ωl

Z/Q/Ω
l
Z/Q)

)
;

� K
(i)
l (Z) ∼= coker

(
Γ(Hi−l−1Ωi−2

Z/Q)
d−→ Γ(Hi−l−1Ωi−1

Z/Q)
)
for i ≥ l + 2.

For i ≥ l+2, Theorem 2.6(1) and a similar argument as in the computa-
tion of non-positive K-groups gives

K
(i)
l (Z) ≃

⊕
m≥1

Hi−l−1(X,Ωi−1
X/Q ⊗ Lm).

Still using Theorem 2.6, further explicit calculations can be performed for
special choices of X; these appear later.
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