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1. Introduction

The space S2k of modular cusp forms of even weight 2k for the full modular group
Γ = PSL2(Z) is endowed with several rational structures. Besides the subspace S0

2k

of forms with rational Fourier coefficients, there are the spaces S+
2k and S−2k defined by

Kohnen and Zagier [KZ84], of forms with rational even, and respectively odd, periods.
In this paper we prove explicit formulas decomposing an arbitrary f ∈ S2k in terms of
forms belonging to the three rational structures. Using the Shimura correspondance,
we also prove a similar decomposition for forms of half integral weight k + 1/2 when
k is even.

To state the results, let w = 2k − 2, and for 0 ≤ n ≤ w define the nth period of
f ∈ S2k by:

rn(f) =

∫ i∞

0

f(z)zndz.

Let Rn ∈ S2k be the cusp form defined by requiring that the Petersson product
(f,Rn) = rn(f)/in+1, for all f ∈ S2k. The forms Rn with n even (resp. odd) span the
space S−2k (resp. S+

2k) of forms f with rj(f)/ij+1 rational for j odd (resp. even).

Theorem 1.1. For all f ∈ S2k we have the decompositions:

f = (−1)k−13−12−w
w−2∑
n=2
n even

(
w

n

)
s−n (f)(−1)n/2Rn

= i(−1)k−13−12−w
w−1∑
j=1
j odd

(
w

j

)
s+j (f)(−1)(j+1)/2Rj,

where s−n (f), s+j (f) are the following linear combinations of odd, respectively even
periods of f :

s−n (f) =
n∑
j=1
j odd

(
n

j

)
rj(f), s+j (f) =

j∑
n=0
n even

(
j

n

)
rn(f).

Key words and phrases. Forms with rational periods; Shimura correspondence; Rankin-Cohen
brackets.
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The theorem can be seen as providing explicit inverses to the Eichler-Shimura
maps which attach to a cusp form its even or odd period polynomial. In Section 4, we
restate it in terms of the natural pairing on period polynomials induced by the cup
product in parabolic cohomology. It turns out that the formula in the theorem refines
(and implies) a formula due to Haberland expressing the Petersson product of two
cusp forms in terms of their periods. It also implies the invariance of a modified period
polynomial pairing, with respect to the Hecke action. The proof of Theorem 1.1–
given in Section 3–follows immediately from the Eichler-Shimura relations, recalled
in Section 2, and the explicit computation by Kohnen and Zagier of the periods of
Rn.

In Section 5, Theorem 1.1 is combined with work of Kohnen and Zagier to prove
a formula for rn(f)f in terms of forms with rational Fourier coefficients, when f
is a Hecke cusp form (by Hecke form we always mean an eigenform of the Hecke
operators, normalized so that the Fourier coefficient of q is 1). The forms with
rational coefficients that appear are Rankin-Cohen brackets of Eisenstein series; in
the simplest case n = 0, these forms are products of Eisenstein series, and the formula
in Theorem 5.1 becomes:

r0(f)f =
2

3

w−1∑
j=1
j odd

(
w

j

)
s+j (f)

[
Gj+1Gj̃+1 +

δj,1 + δj,w−1
4wπi

G′w+

+
kBj+1Bj̃+1

B2k(j + 1)(j̃ + 1)
G2k

](1.1)

where j̃ = w − j and

Gl(z) = −Bl

2l
+
∑
n≥1

σl−1(n)qn, q := e2πiz

is the Eisenstein series of weight l for l ≥ 2 even (G2 is not a modular form, and the
term involving the derivative (with respect to z) G′w is needed to complete G2Gw to
a modular form of weight 2k). A similar formula for r0(f)f was proved by Manin
[Ma73] (the Coefficients theorem).

The last result involves the Shimura correspondence between forms of integral
and half integral weight. Let Sk+1/2 denote the Kohnen space of cusp forms of weight
k+1/2 for the group Γ0(4). They are characterized by the condition that their Fourier
coefficients c(n) vanish if (−1)kn ≡ 2, 3 (mod 4). The space Sk+1/2 admits a basis
of eigenforms for Hecke operators of square index, and the Shimura correspondence
provides a bijection between these eigenforms and Hecke cusp forms in S2k.

Assume now that k is even. If g ∈ Sk+1/2 is a Hecke eigenform, and f ∈ S2k the
corresponding Shimura lift, then we have the following explicit formula for g in terms
of the odd periods of f and certain “indefinite theta series” θn (the terminology is
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explained in Section 6):

(1.2)
c(1)(f, f)

(g, g)(−1)k/22k
g =

2

3

w−2∑
n=2
n even

s−n (f)θn

where c(1) is the first Fourier coefficient of g, and

(1.3) θn = −θw−n = − 1

(w/2− n/2)!
[θ(τ), Gk−n(4τ)]n/2 (0 < n < k, n even).

Here θ(z) =
∑

n∈Z q
n2

, and the definition of the Rankin-Cohen bracket is recalled in
Section 5.

This formula allows for easy computation of all the coefficients of the half integral
weight form g, once the odd periods of its Shimura lift f are known. The right-hand
side of this identity appears in disguise in a formula in [KZ84] (on p.237), expressing
the coefficients of g in terms of the odd periods of f and certain arithmetic functions
related to the Fourier coefficients of θn. It is this identity that provided the motivation
for Theorem 1.1.

The present article can be seen as an addition to the program initiated in [KZ84],
of studying modular forms through their periods rather than their Fourier expansions.
An interesting feature of this approach is that formulas for Fourier coefficients of Hecke
eigenforms of integral and half integral weight are obtained without directly using the
action of Hecke operators. Instead, the main tool is a generalization of an identity of
Rankin to Rankin-Cohen brackets, obtained by Zagier [Za77].
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2. Eichler-Shimura-Manin theory

In this section we review the Eichler-Shimura-Manin theory, in the form needed
for the proof of Theorem 1.1. We also give a short proof, based on Theorem 1.1, of
the extra relation satisfied by the even periods of all cusp forms, found by Kohnen
and Zagier.

For f ∈ S2k, the period polynomial r(f) is defined by:

r(f)(x) =

∫ i∞

0

f(z)(x− z)wdz =
w∑
n=0

(−1)n
(
w

n

)
rw−n(f)xn.
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The group PGL2(Z) acts on the space Vw of polynomials of degree ≤ w by

(P |γ)(x) = (cx+ d)wP

(
ax+ b

cx+ d

)
, γ =

(
a b
c d

)
.

It is easy to see that (r(f)|γ)(x) =
∫ γ−1∞
γ−10

f(z)(x − z)wdz, and taking for γ the

two generators S =

(
0 −1
1 0

)
, and U =

(
1 −1
1 0

)
of Γ it follows that the period

polynomials r(f) belong to the subspace Ww of Vw defined by the relations:

Ww = {P ∈ Vw : P + P |S = 0, P + P |U + P |U2 = 0}.

This subspace is invariant under the action of η =

(
−1 0
0 1

)
, which acts on poly-

nomials by P |η(x) = P (−x); therefore we have a decomposition Ww = W+
w ⊕W−

w ,
corresponding to the decomposition of a polynomial P = P+ + P− into its even and
odd parts.

Writing the relations defining W±
w in terms of coefficients yields the Eichler-

Shimura relations satisfied by the periods of f . For later use, it is convenient to state
them in terms of the sums, defined for 0 ≤ n ≤ w:

s−n (f) =
n∑
j=1
j odd

(
n

j

)
rj(f), s+n (f) =

n∑
j=0
j even

(
n

j

)
rj(f).

For n an integer, we denote by ñ = w−n. Then for 0 ≤ n ≤ w we have [Ma73],[La76],
[KZ84]:

(ES.odd) s−n (f) + s−ñ (f) = 0, n even; s−n (f) + s−ñ (f) = rn(f), n odd

(ES.even) s+n (f)− s+ñ (f) = 0, n odd; s+n (f)− s+ñ (f) = rn(f), n even

Note that the relations above imply that rn(f) = (−1)n+1rñ(f).
In Appendix A, we also prove the relations satisfied by periods of Eisenstein

series, which can also be written compactly in terms of Bernoulli number identities
involving sums similar to s−n and s+n .

Remark 2.1. The periods of f =
∑

n≥1 anq
n are related to the critical values of its

(analytically continued) L-function L(f, s) =
∑

n≥1 ann
−s by

rn(f) =
n!in+1

(2π)n+1
L(f, n+ 1).

If f is a Hecke cusp form, the periods rn(f) are nonzero if n 6= k − 1. Indeed L(f, s)
is given by an absolutely convergent Euler product for <(s) > k+ 1/2, and the Euler
factors do not vanish at s = n+ 1 > k.
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The Eichler-Shimura relations consist of all but one of the linear relations satisfied
by the periods of all f ∈ S2k. Consider the maps

r± : S2k → W±
w

taking f to the even r+(f) or odd r−(f) parts of its period polynomial. The Eichler-
Shimura theorem states that the map r− is an isomorphism, while r+ is an isomor-
phism onto a codimension 1 subspace of W+

w , which does not contain the polynomial
p0(x) = xw − 1.

The extra linear relation satisfied by the even periods of all cusp forms was found
by Kohnen and Zagier, and it immediately follows from Theorem 1.1. Indeed, taking
the 0th period of the second identity, one obtains (after using the computation of
r0(Rn) in [KZ84] and rewriting the result using the Bernoulli number identity (3.2)
applied to N = w + 1):

(2.1)
w−1∑
j=1
j odd

(
w

j

)
s+j (f)rj(G2k) +

B2k

2k

s+w+1(f)

w + 1
= 0,

which is the Kohnen-Zagier relation, as stated in [CZ93, p.91] (s+w+1 is defined in the
same way as s+n for 0 ≤ n ≤ w). The periods rj(G2k) of Eisenstein series are defined
in Appendix A.

3. Proof of the main theorem

In this section we prove Theorem 1.1. It is enough to prove the first identity; the
second follows from the first by expressing (f, g) = (g, f) using Corollary 4.1 in the
next section.

The proof is based on Kohnen and Zagier’s computation of the periods of Rn,
which we state here only in the case of interest to us.

Proposition 3.1. [KZ84, Thm. 1] If m is odd and n is even, 0 < m,n < w, then:

(−1)k2−ww!rm[(−1)n/2Rn] = n!m̃!βn−m − ñ!m̃!βñ−m + n!m!βm−ñ − ñ!m!βm−n

where ñ = w − n, and βj−1 equals Bj/j! if j ≥ 0 is even, and zero otherwise.

We have to show that:

(3.1) f = (−1)k−13−12−w
w∑
n=0
n even

(
w

n

)
s−n (f)(−1)n/2Rn.

Note that s−0 (f) = s−w(f) = 0, but it will be convenient to have these terms as
well. By the Eichler-Shimura isomorphism, it is enough to check that for m odd,
1 ≤ m ≤ w − 1, the mth period of the right-hand side equals rm(f).
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Let f# ∈ S2k denote the right-hand side of (3.1). By Proposition 3.1, we write:

rm(f#) = 3−1
w∑
n=0
n even

s−n (f)

[
m̃!

n!
βñ−m −

m̃!

ñ!
βn−m +

m!

n!
βm−n −

m!

ñ!
βm−ñ

]
.

Since s−ñ (f) = −s−n (f) for n even, the first two terms inside the brackets give the
same contribution to the sum, as do the last two terms. We can write therefore

rm(f#) =
2

3
(S1 + S2)

where S1 =
w∑
n=0
n even

s−n (f)
m̃!

n!
βñ−m and S2 is defined like S1 with m replaced by m̃.

Expanding s−n and interchanging the order of summation yields:

S1 =
w∑
j=1
j odd

w∑
n=j
n even

m̃!

j!(n− j)!
rj(f)βñ−m

=
m̃∑
j=1
j odd

m̃+1∑
n=j
n even

(
m̃

j

)
rj(f)

m̃− j + 1

(
m̃− j + 1

m̃− n+ 1

)
Bm̃−n+1.

The sum over n can be computed using the Bernoulli number identity

(3.2)
N∑
n=0
n even

(
N

n

)
Bn =

N

2
+BN + δ1,N

(for N = m̃− j+ 1). We obtain S1 = 1
2
(s−m̃(f) + rm(f)). Replacing m by m̃ yields S2,

and using (ES.odd) we obtain rm(f#) = rm(f). �

4. Bilinear form on period polynomials

In this section we show that Theorem 1.1 refines a formula of Haberland express-
ing the Petersson inner product of two cusp forms in terms of their periods. It is also
equivalent to the Hecke invariance of a natural pairing on period polynomials induced
from cup product on the parabolic cohomology group H1

par(Γ, Vk).
To explain the connection, it is convenient to restate Theorem 1.1 in terms of the

pairing on the space Vw of polynomials of degree ≤ w given by:〈
w∑
n=0

anx
n,

w∑
n=0

bnx
n

〉
=

w∑
n=0

(−1)n
(
w

n

)−1
anbw−n.

This pairing is symmetric, and PGL2(Z) invariant:

< P |γ,Q|γ >=< P,Q >, for γ ∈ PGL2(Z), P,Q ∈ Vw.
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Taking the Petersson product of the identities in Theorem 1.1 with an arbitrary
cusp form g and rewriting the result in terms of this pairing yields:

Corollary 4.1. If f, g ∈ S2k then:

ck(f, g) = i < r(f), r+(g)|(T − T−1) >
= i < r(f), r−(g)|(T − T−1) >,

(4.1)

where ck = (−1)k · 3 · 22k−1.

The second identity follows from the first, applied to (g, f). Indeed, the modified
pairing

{P,Q} :=< P,Q|(T − T−1) >, P,Q ∈ Vw
is antisymmetric and anti-invariant under the action of η: {P |η,Q|η} = −{P,Q},
therefore {P,Q} vanishes if P,Q are both even or both odd.

Adding the two identities in formula (4.1), we obtain Haberland’s formula (see
the version given in [KZ84, p.243], which is equivalent to the version given here):

(4.2) 2ck(f, g) = i < r(f), r(g)|(T − T−1) > .

Therefore the widely used formula of Haberland is made of two simpler identities.
Notice that in Haberland’s identity both odd and even periods of f and g appear,
while in the right hand sides of Corollary 4.1 only odd periods of f and even period
of g appear (or viceversa).

An application of Corollary 4.1 to a basis of Hecke eigenforms implies that the
pairing {·, ·} is Hecke invariant when restricted to W+

w ×W−
w :

{r+(f)|T̃n, r−(g)} = {r+(f), r−(g)|T̃n}.

Here the action of Hecke operators on period polynomials is defined such that r(f)|T̃n =

r(f |Tn) (see [Za90] for a concrete definition and further properties of T̃n). The Hecke
invariance property is also stated without proof in [GKZ, p.96].

The Hecke invariance property also points to a way of generalizing Theorem
1.1 and Corollary 4.1 to other congruence subgroups. This approach is taken in an
upcoming joint work with V. Pasol.

5. Modular forms with rational coefficients

In this section we show that the main theorem implies a decomposition of Hecke
cusp forms in terms of forms with rational Fourier coefficients. These forms are given
by Rankin-Cohen brackets of Eisenstein series, and we give a brief review of their
properties, following [KZ84, Sec. 1.4].

The transition between forms with rational periods and forms with rational co-
efficients is realized by the linear functionals ρm : S2k → S2k introduced in [KZ84],
defined by

ρm(f) =
rm(f)

im+1
f, f Hecke form.
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By linearity, the functional ρm acts on an arbitrary g ∈ S2k by

ρm(g) = i−m−1
∞∑
l=1

rm(g|Tl)ql

and since the Hecke operators Tl preserve S+
2k and S−2k, it follows that ρm maps S±2k

(with (−1)m = ±1) to the space S0
2k of cusp forms with rational Fourier coefficients.

It follows that if m,n have opposite parity the form

Xm,n := ρm(Rn)

has rational Fourier coefficients. By decomposing Rn with respect to a basis of Hecke
cusp forms, one can also characterize Xm,n as the unique cusp form such that:

(5.1) (f,Xm,n) =
rm(f)rn(f)

im+n+2
, for all f Hecke cusp forms.

This is an identity of Rankin-Selberg type for m = 0, and in that case X0,n is es-
sentially a product of Eisenstein series Gn+1Gñ+1 (up to a constant, and a correcting
factor if n = 1 or n = w − 1). In general, Zagier showed that the previous identity
is satisfied by the Rankin-Cohen bracket of two Eisenstein series [Za77]. We refer
to [KZ84, p.214-215] for the definition of Rankin-Cohen brackets, and here we only
recall, to fix notations, that if f, g are modular forms of weights a, b for any subgroup
of SL2(R), their Rankin-Cohen bracket of index m ≥ 0 is a modular form of weight
a+ b+ 2m given by:

(5.2) [f, g]m = (2πi)−m
m∑
i=0

(−1)m−i
(
m

i

)
Γ(a+m)Γ(b+m)

Γ(a+ i)Γ(b+m− i)
f (i)g(m−i).

It is a cusp form if m > 0, and it can also be defined if one or both of f , g equal the
Eisenstein series G2 [KZ84].

We can now identify the modular form Xm,n ∈ S2k determined by (5.1). If
0 ≤ m < n ≤ k − 1 have opposite parity, then the generalization of the Rankin-
Selberg method due to Zagier yields [KZ84, p.215]:

Xm,n = (−1)k+(n−m+1)/22w+1 (w −m)!

w!
·

·
[
[Gñ−m+1, Gn−m+1]m + δm,0

k

B2k

Bn+1Bñ+1

(n+ 1)(ñ+ 1)
G2k

]
.

For other values m,n ∈ [0, w] of opposite parity, the form Xm,n is determined by the
relations:

Xm,n = Xn,m = (−1)kXm,w−n,

which follow from (5.1)
Applying the maps ρm to the identities in Theorem 1.1 we obtain:
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Theorem 5.1. If f ∈ S2k is a Hecke form and 0 ≤ m ≤ w, one has the following
decomposition of rm(f)f in terms of forms with rational coefficients:

rm(f)f = 3−12−w
w∑
n=0

n6≡m (mod 2)

(
w

n

)
s±n (f)(−1)k+(n−m+1)/2Xm,n,

where the sign of s±n (f) is chosen according as (−1)m = ±1.

By linearity, the identity in the theorem holds for any f ∈ S2k if we replace the
left-hand side by: ∑

l≥1

rm(f |Tl)ql ∈ S2k.

Therefore the theorem can be interpreted as giving explicit formulas for the periods
of f |Tl in terms of the periods of f , divisor functions, and Bernoulli numbers. A
formula for the action of Hecke operators on period polynomials has been previously
obtained by Zagier [Za90, Theorem 2] by a different method.

For m = 0, this is the identity quoted in the introduction. A similar identity was
proved by Manin in [Ma73] (the Coefficients theorem), expressing the coefficients of
r0(f)(G2k−f), for f a Hecke cusp form, in terms of the even periods of f and certain
arithmetic functions. Here the arithmetic functions are explicitly identified in terms
of coefficients of modular forms.

As a consequence of the Coefficients theorem, Manin shows that when S2k is one
dimensional (that is in weights 12, 16, 18, 20, 22, 26) the coefficients an of the unique
Hecke form f satisfy the Ramanujan-type congruences:

an ≡ σ2k−1(n) (mod N2k)

where N2k is the gcd of the numerators of rn(f)/r0(f), 2 ≤ n ≤ w − 2, n even.
Numerically:

N12 = 691; N16 = 3617; N18 = 43867;

N20 = 283 · 617; N22 = 131 · 593; N26 = 657931.

In all six cases, N2k is also a divisor of the numerator of B2k.
The congruences also follow from our formula, after we modify it using the

Kohnen-Zagier relation among even periods. Using the linear combination Fm of
products Gj+1Gj̃+1 defined by (A.2), the identity from the introduction becomes,

after using equation (2.1) to simplify the coefficient of G2k:

r0(f)f =
2

3

− s+w+1

w + 1
G2k −

w∑
n=2
n even

(
w

n

)
rn(f)Fn

 .
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Now we collect all the terms containing r0(f) and rw(f) = −r0(f) on the right-hand
side, using the identity

Fw =
w + 3

2(w + 1)
G2k,

which is the case m = w of the Eisenstein series identity (A.3). We finally obtain

r0(f)(G2k − f) =
2

3

w−2∑
n=2
n even

1

n+ 1

(
w

n

)
rn(f)[(n+ 1)Fn −G2k].

Assuming S2k is one dimensional, the Ramanujan-type congruences now follow as in
Manin’s proof, from the fact that the numbers N2k above divide the numerators of
all the ratios rn(f)/r0(f), 2 ≤ n ≤ w − 2 (n even). Indeed it is easy to check that
the denominators of the coefficients of the forms Fn and G2k are coprime with N2k,
as they involve only fractions of type Bm/m, for m ≤ 2k.

6. Modular forms of half integral weight

In this section we assume k ≥ 2 is even. To prove the decomposition of half
integral forms from the introduction, we consider an explicit version of the Shimura
lift S1 : Sk+1/2 → S2k, defined as follows:

(6.1) S1[
∑
n≥1

c(n)qn] =
∑
n≥1

[
∑
d|n

dk−1c(n2/d2)]qn.

This map commutes with Hecke operators, therefore if g ∈ Sk+1/2 and f ∈ S2k are
eigenforms in Shimura correspondence (f normalized) we have

S1(g) = c(1)f.

It follows that the adjoint of S1 with respect to the Petersson inner product on the
two spaces is the linear map S∗1 : S2k → Sk+1/2 defined by

(6.2) S∗1 (f) =
c(1)(f, f)

(g, g)
g, f Hecke cusp form

with c(1) the first Fourier coefficient of g.
Kohnen and Zagier have computed the image of Rn, n even, under the map

S∗1 . By using Rankin’s method for Rankin-Cohen brackets due to Zagier [Za77], it
is shown in [KZ84, Sec.2.1] that the form of half integral weight S∗1 (Rn), 0 ≤ n ≤ w
even, is a multiple of a Rankin-Cohen bracket of the weight 1/2 theta series and an
Eisenstein series. We use this result in the following form:

(6.3) S∗1 ((−1)n/2Rn) = −(−1)k/223k−1
(
w

n

)−1
θn (0 < n < w, n even),

where θn = −θw−n is given by (1.3). Since there is a typo in the normalization of
formula (6.3) in [KZ84, p.219], in Appendix B we give a different proof. Namely,
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we show that the Shimura lift S1 maps the Rankin-Cohen bracket appearing in the
definition of θn to another Rankin-Cohen bracket of weight 2k.

Applying the map S∗1 to the identity of Theorem 1 proves the following explicit
construction of the adjoint Shimura lift in terms of periods. Formula (1.2) given in
the introduction follows immediately from the theorem and (6.2).

Theorem 6.1. For all f ∈ S2k (k even) we have:

(−1)k/22−kS∗1 (f) =
2

3

w∑
n=2
n even

s−n (f)θn.

The formula is normalized such that the first Fourier coefficient on both sides is the
central period rk−1(f).

To emphasize the explicit nature of the formula in the theorem, we give the
Fourier coefficients ek,n(D) of θn. Denoting by dk,n(a, b, c) the coefficient of xn in
(ax2 + bx + c)k−1, the computation of the Fourier coefficients of the Rankin-Cohen
bracket (1.3) gives

ek,n(D) =
∑
|b|≤
√
D

b≡D mod 2

dk,n

(
D − b2

4
, b,−1

)
σk−1−n

(
D − b2

4

)
−

−Dk/2/k, [if D is square and n = k − 2 ].

(6.4)

where the second line has to be taken into account only if the conditions inside the
bracket are met. In this formula, for D a square we define σN−1(0) = −BN

2N
(the

constant term of the Eisenstein series GN).
We point out that θn can be interpreted as an indefinite theta series. When

viewed as homogeneous polynomials in a, b, c, the functions dk,n(a, b, c) for 0 ≤ n ≤ w
form a basis for the space of spherical polynomials attached to the indefinite quadratic
form b2 − 4ac. One can easily check from the formulas for ek,n(D) that

θn(z) =
∑
a,b,c∈Z
a>0>c

dk,n(a, b, c)qb
2−4ac + (correction for b2 − 4ac a square),

where the correction term is explicit, and can be viewed as a contribution due to
the boundary of the cone determined by a > 0 > c. This formula is analogous to
the usual construction of theta series with spherical polynomials attached to positive
definite quadratic forms, with the difference that the usual summation over a lattice
has to be truncated in order to make the series converge. For a general theory of
indefinite theta series that includes the present example as a special case, see [Zw02].
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Remark 6.2. Using the map S1, we obtain a simple formula for the coefficient a(p)
of a Hecke form f ∈ S2k, when p is prime. Assuming rk−1(f) 6= 0 we have

a(p) = pk−1 +
4

3

k−2∑
n=2
n even

s−n (f)

rk−1(f)
ek,n(p2).

Remark 6.3. According to a conjecture of Zagier, the central period rk−1(f) is
nonzero for all Hecke forms f (recall that k is even, and that rk−1(f) is proportional
to the central value L(f, k)). Zagier’s conjecture is equivalent to the statement that
S∗1 (or S1) is an isomorphism. Theorem 6.1 and relation (6.2) show that a failure of
Zagier’s conjecture would imply an explicit linear relation among the Rankin-Cohen
brackets θn.

The nonvanishing of L(f, k) is implied by the conjecture that the Hecke cusp
forms in S2k form a single Galois orbit. For k ≤ 1000, the latter statement was checked
in [CFW], by checking Maeda’s conjecture on the irreducibility of the characteristic
polynomial of the Hecke operator T2 .

7. Numerical examples

We have checked numerically the identities in Theorems 5.1 and 6.1 (and im-
plicitly in Theorem 1.1), when the spaces S2k or Sk+1/2 have small dimension (≤ 3).
The Fourier coefficients of Hecke forms in S2k are available in the computer algebra
systems MAGMA or SAGE, as well as on the webpage of William Stein.

For the convenience of the reader who would like to reproduce the computations,
we give the values of s−n /rk−1, n even, in the one dimensional cases k = 6, 8, 10, and
in the two dimensional case k = 12. Since s−w−n = −s−n , we restrict to the range
2 ≤ n ≤ k − 2, n even.

k s−2 /rk−1 s−4 /rk−1 s−6 /rk−1 s−8 /rk−1 s−10/rk−1

6 24/5 23/5
8 −936/35 −1382/35 −652/35

10 408 4181/6 27835/42 273

12
77a− 893568

55

11729a− 136025472

4620

1131a− 13094944

385

4643a− 53630808

1980

1034a− 11920026

1155

When k = 12, we denote by a a fixed root of the characteristic polynomial
x2 − 1080x − 20468736 of T2 acting on S24. It is the periods of the Hecke form
q + aq2 + ... that are listed for k = 12 (the other Hecke form in S24 is conjugate to
this one, and has conjugate period ratios).

When S2k is one dimensional, the period ratios are given in [Ma73]. In general,
we computed the period ratios by the method described in the last section of [Za91],
using the coefficients of the Rankin-Cohen brackets Xm,n, and the known coefficients
of Hecke forms f ∈ S2k. The latter form a single Galois orbit for k ≤ 1000, so only
one check is needed for each weight.
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Appendix A

Here we prove the relations satisfied by periods of Eisenstein series, which yield
interesting Bernoulli number identities. The method used is sketched in [Sk93] and
[Za93], but the resulting identities are simpler to state in terms of the sums s−n , s

+
n

already introduced in Section 2.
To define periods of Eisenstein series, we use the connection with special values

of L-functions mentioned in Remark 2.1. Since L(G2k, s) = ζ(s)ζ(s − 2k + 1), one
easily finds:

rj(G2k) =
1

2

Bj+1

j + 1

Bj̃+1

j̃ + 1
, for 0 < j < w, j odd ;

rn(G2k) = 0 if 0 < n < w, n even; r0(G2k) = −rw(G2k) = − w!

(2πi)w+1
ζ(w + 1).

For Eisenstein series, only the sums s−n (G2k) are interesting, and the ‘Eichler-Shimura
relations’ for Eisenstein series are, for 0 ≤ n ≤ w:
(A.1)

s−n (G2k) + s−ñ (G2k) = (1− δn,0 − δn,w)rn(G2k)−
B2k

4k

(
(−1)nn!ñ!

(w + 1)!
+

2k

(n+ 1)(ñ+ 1)

)
.

This is the content of the Proposition in Sec. 2 of [Za91]; another proof is given in
[Kr87, p. 69] (the formula has a typo there, but it is corrected in the proof).

Following an idea sketched in [Sk93] and [Za93], we show that (A.1) extends to
an identity relating products of Eisenstein series Gj+1Gj̃+1 and G2k. This Eisenstein
series identity, which we will use again in Section 5, follows from the Eichler-Shimura
relations for cusp forms via an identity of Rankin. Set

Hj = Gj+1Gj̃+1 +
δj,1 + δj̃,1

4wπi
G′w, 1 ≤ j ≤ w − 1, j odd,

and let also He = 0 for e even. These products appear in the formula for r0(f)f

from the introduction, where the presence of the second term when j = 1 or j̃ = 1 is
explained. Rankin’s identity, also proved in [KZ84], states that for f ∈ S2k a Hecke
form:

(f,Hj) = cwrw(f)rj(f), 0 < j < w, j odd,

with cw a nonzero constant depending only on w. As rw(f) 6= 0 for f a Hecke form
(see Remark 2.1), from this and the Eichler-Shimura relations (ES.odd) we deduce
that Fm + Fm̃ − Hm (0 ≤ m ≤ w) is orthogonal to all Hecke cusp forms, where we
denote by Fm the linear combination:

(A.2) Fm =
m∑
j=1
j odd

(
m

j

)
Hj.

Therefore the modular form Fm +Fm̃−Hm is a multiple of the Eisenstein series G2k.
The exact multiple can be found by looking at the coefficient of q on both sides,
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and using two Bernoulli number identities that we prove below. Hence we have the
following Eisenstein series identity:

(A.3) Fm + Fm̃ −Hm =

(
k

(m+ 1)(m̃+ 1)
+ (−1)m

m!m̃!

2(w + 1)!

)
G2k,

for 0 ≤ m ≤ w. The constant term of this identity gives relation (A.1), therefore the
identity is equivalent–via Rankin’s identity–to the Eichler-Shimura relations for odd
periods of cusp forms and G2k.

Coming back to the equality of the coefficients of q on both sides of (A.3), it
reduces to two Bernoulli number identities (the first is identity (3.2)):

N∑
n=0
n even

(
N

n

)
Bn =

N

2
+BN + δ1,N

(recall BN = 0 if N > 1 is odd and B1 = −1/2) and

m∑
j=1
j odd

(
m

j

)
Bj̃+1

j̃ + 1
+

m̃∑
j=1
j odd

(
m̃

j

)
Bj̃+1

j̃ + 1
=

(−1)m+1m!m̃!

(w + 1)!
+

1

2
(δ0,m + δw,m)

for 0 ≤ m ≤ w (w ≥ 2 even). Both identities follow from the well-known property
Bn(1− x) = (−1)nBn(x) of the Bernoulli polynomials Bn(x) =

∑n
i=0

(
n
i

)
Bix

n−i. The
first identity is obtained by setting x = 1, while to prove the second we write it as:

w∑
j=m

(
w + 1

j + 1

)(
j

m

)
Bj+1 +

w∑
j=m̃

(
w + 1

j + 1

)(
j

m̃

)
Bj+1 = (−1)m+1

where we included the terms involving B1 to get rid of the delta functions. Denoting
by Cw(m) the left-hand side, we easily sum:

w∑
m=0

Cw(m)XmY w−m = (X+Y )w
[
Bw+1

(
X

X + Y

)
+Bw+1

(
Y

X + Y

)]
−X

w+1 + Y w+1

X + Y
.

Since w is even, the above property of Bernoulli polynomials implies that the expres-
sion inside the bracket vanishes. The coefficient of XmY w−m in the remaining part is
(−1)m+1, thus proving the claim.

Remark A.1. Another version of the Eisenstein series identities (A.3) was proved
in [Pa06], using a different method.

Appendix B

In the appendix we assume that k is even. As mentioned in the introduction, it
is shown in [KZ84] that

S∗1 (Rn) = ck,n[θ(τ), Gk−n(4τ)]n/2, 2 ≤ n ≤ k − 2, n even,
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where θ(z) =
∑

n∈Z q
n2

is the weight 1/2 theta series. We check here that the constant
is

ck,n = (−1)k/2+n/223k−1
(
w

n

)−1
(w/2− n/2)!−1

thus checking, via (1.3), the constant in formula (6.3).
The following proposition could also be extracted from the computations in [Co76]

(see Lemma 4.2 there). Since the proof is simpler in the present situation, we give it
below.

Proposition B.1. If 2 ≤ n ≤ k − 2 is even, then

1

(w/2− n/2)!
S1
(
[θ(τ), Gk−n(4τ)]n/2

)
=

1

n!
[Gk−n, Gk−n]n.

Before giving the proof, we show how the proposition implies the formula for ck,n.
By acting with S1 ◦ S∗1 on Hecke cusp forms, and using the identity [KZ81]

c(1)2(f, f)

(g, g)(−1)k/22k
= rk−1(f),

it follows that
S1 ◦ S∗1 = 2kρk−1,

where the map ρk−1 has been defined in Section 5. Applying this identity to Rn for
2 ≤ n ≤ k − 2, n even, and taking into account formula (5.1) for ρk−1(Rn) = Xn,k−1,
and the Proposition, we find the value ck,n above. Note that this argument proves
the formula for S∗1 (Rn) without assuming it to be proportional to the Rankin-Cohen
bracket, in case that S∗1 is an isomorphism (see Remark 6.3).

From the proof it will be clear that the Proposition holds if Gk−n is replaced by
any Hecke form of full level and weight k − n.
Proof of Proposition. We use the definition of S1 in (6.1) to show that the Fourier
coefficients of the left-hand side match those of the right-hand side. The prototype
of this calculation is already present in [KZ81, p.186], where it is shown that

S1[θ(τ)Gk(4τ)] = G2
k,

after extending the map S1 to the whole of Mk+1/2. This identity can be interpreted
as the case n = 0 of the proposition.

First we assume that n 6= k − 2, so that the Rankin-Cohen bracket is given by
equation (5.2). For m ≥ 1, the mth Fourier coefficient CR(m) of the right-hand side
of the formula to prove is:

CR(m) =
∑

m1+m2=m

n∑
i=0

(−1)n−i
(
k − 1

i

)(
k − 1

n− i

)
mi

1m
n−i
2 σk−1−n(m1)σk−1−n(m2),

where m1,m2 take nonnegative values, and σk−1−n(0) has been defined following equa-
tion (6.4).
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The Dth Fourier coefficient of [θ,Gk−n(4·)]n/2/(w/2−n/2)! is equal to −ek,n(D),
given in equation (6.4). By the definition (6.1) of S1, the mth Fourier coefficient
CL(m) of the left-hand side of the formula to prove is given by:

CL(m) = −
∑
d|m

dk−1
∑
|b|≤m/d

b≡m/d mod 2

dk,n

(
m2 − b2d2

4d2
, b,−1

)
σk−1−n

(
m2 − b2d2

4d2

)

We replace the sum over b by making the change of variables:

m1 =
m− bd

2
, m2 =

m+ bd

2
.

Using that d|m if and only if d|(m1,m2), and that

dk,n(a/d2, b/d, c) = d−ndk,n(a, b, c)

we have:

CL(m) = −
∑

m1+m2=m

dk,n(m1m2,m2 −m1,−1)
∑

d|(m1,m2)

dk−1−nσk−1−n

(m1m2

d2

)
.

The inner sum equals σk−1−n(m1)σk−1−n(m2), by the multiplicativity of the divisor
function σk−1−n. The equality of CL(m) and CR(m) is now a consequence of the
combinatorial identity:

dk,n(m1m2,m2 −m1,−1) =
n∑
i=0

(−1)i+1

(
k − 1

i

)(
k − 1

n− i

)
mi

1m
n−i
2 ,

which follows from the definition of dk,n(m1m2,m2 −m1,−1) as the coefficient of xn

in

[m1m2x
2 + (m2 −m1)x− 1]k−1 = (m1x+ 1)k−1(m2x− 1)k−1.

This finishes the proof of the proposition if n 6= k − 2. For n = k − 2, it is easy to
check that the correction terms needed to define the Rankin-Cohen brackets involving
G2 match on the two sides of the identity in the proposition. �

References

[CZ93] Choie, YJ., Zagier, D., Rational period functions for PSL(2,Z). Contemporary Math. 143
(1993), 89–108.

[Co76] Cohen, H., A lifting of modular forms in one variable to Hilbert modular forms in two
variables. Modular functions of one variable, VI (Proc. Second Internat. Conf., Univ. Bonn,
Bonn, 1976), pp. 175–196. Lecture Notes in Math., Vol. 627, Springer, Berlin, 1977.

[Co77] Cohen, H., Sums involving the values at negative integers of L-functions of quadratic char-
acters. Math. Ann. 217 (1977), 81–94.

[CFW] Conrey, J.B., Farmer, D.W., Wallace, P.J., Factoring Hecke polynomials modulo a prime.
Pacific. J. of Math. 196 (2000), no. 1, 123–130.

[GKZ] Gangl, H., Kaneko, M., Zagier, D., Double zeta values and modular forms. Automorphic
forms and zeta functions, 71–106, World Sci. Publ., Hackensack, NJ, 2006.



RATIONAL DECOMPOSITION OF MODULAR FORMS 17

[KZ81] Kohnen, W., Zagier, D., Values of L-series of modular forms at the center of the critical
strip. Invent. Math. 64 (1981), no. 2, 175–198.

[KZ84] Kohnen, W., Zagier, D., Modular forms with rational periods. in Modular forms, R.A. Rankin
editor, Ellis Horwood series in math. and its applications, 1984.

[Kr87] Kramer, D., On the values at integers of the Dedekind zeta function of a real quadratic field.
Trans. of the AMS 299 (1987), no. 1, 59–79.

[La76] Lang, S., Introduction to modular forms. Springer-Verlag (1976).
[Ma73] Manin, Ju. I., Periods of parabolic forms and p-adic Hecke series. MAth. USSR Sbornik Vol.

21 (1973), no.1, 371–393.
[Pa06] Pasol, V., A modular symbol with values in cusp forms. arXiv:math/0611704v1.
[Sk93] Skoruppa, N.-P., A quick combinatorial proof of Eisenstein series identities. J. of Number

Theory 43 (1993), 68–73.
[Za77] Zagier, D., Modular forms whose Fourier coefficients involve zeta-functions of quadratic fields.

Modular functions of one variable, VI (Proc. Second Internat. Conf., Univ. Bonn, Bonn, 1976),
pp. 175–196. Lecture Notes in Math., Vol. 627, Springer, Berlin, 1977.

[Za90] Zagier, D., Hecke operators and periods of modular forms. Israel Mathematical Conference
Proceedings 3, 321-336 (1990).

[Za91] Zagier, D., Periods of modular forms and Jacobi theta functions. Invent. Math. 104 (1991),
449–465.

[Za93] Zagier, D., Periods of modular forms, traces of Hecke operators, and multiple zeta
values. Research into automorphic forms and L functions (Japanese) (Kyoto, 1992).
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