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ABSTRACT

The subject of this thesis is analytic pseudoconvexity and it is devoted to
problems concerning Stein spaces, q-convexity and integral representations.

The first part of the thesis, represented by the first two chapters, in-
cludes general notions about complex spaces, normal spaces, Stein spaces, q-
convexity and q-convexity with corners. It also contains some definitions and
results needed for the second part of the thesis: Colţoiu-Diederich theorem
which relates the Levi problem to the existence of the envelope of holomor-
phy, Skoda’s theorem, Colţoiu’s theorem concerning the finite dimension of
certain cohomology groups and, in the end, Grauert and Lieb’s theorem on
the construction of a Ramı́rez kernel which yields the existence of bounded
solutions to the ∂-equation on bounded, strictly pseudoconvex domains.

The second part, consisting of the last three chapters (3,4, and 5), contains
the original results of the thesis. These theorems are included in author’s
papers [19], [20], and [21].

The main theorem from chapter 3 generalizes a theorem of Fornæss and
Narasimhan, related to the Levi problem in normal spaces, by showing that
it remains valid even without the assumption of relative compactness. It is
then applied to prove a result concerning the Serre problem, which says that
a necessary and sufficient condition for a locally trivial fiber bundle X, with
Stein base and bounded domain of holomorphy in Cn as fiber, to be Stein is
the existence of the envelope of holomorphy for X. A proof of this theorem,
in a particular case only and with a much more difficult proof was given by
Zaffran, using Inoue-Hirzebruch surfaces.

The central theorem from chapter 4 is a result about the cohomological
properties of the intersection of (n − 1)-complete open subsets in Cn: the
transversal intersection of finitely many (n − 1)-complete, bounded open
subsets with C2 boundary in Cn is cohomologically (n− 1)-complete.

In the last chapter it is proved a result which gives a positive answer to
the Corona problem on strictly pseudoconvex, bounded domains in Cn, when
an extra condition is verified by the corona data f1, . . . , fk: it is assumed that
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there exist i 6= j such that the sublevel sets {|fi| < α} and {|fj| < α} are
separated near the boundary.

Further on, these main new results of the thesis will be presented with
more details.

The following theorem is the main result of chapter 3:

Theorem 1. Let X be a normal Stein space and Ω ⊂ X an open, locally
Stein subset of X. Then, for every sequence of points (xn)n in Ω which tends
to a limit x ∈ ∂Ω \Xsing, there exists a holomorphic function on Ω which is
unbounded on (xn)n.

This theorem generalizes a result by Fornæss and Narasimhan [10], by
dropping the assumption of relative compactness of Ω. The proof follows
the same steps as the one given by Fornæss and Narasimhan, but each step
is proven using different arguments, which carefully avoid using the relative
compactness of Ω.

The strategy for the proof is the following: we choose a point p ∈ ∂Ω\Xsing

and h1, . . . , hm holomorphic functions on X with p the only common zero.
We define the function f : X → C by f(x) = det((viΦj(x))i,j=1,...,n), where
(Φ1, . . . ,Φn) are the components of a holomorphic map Φ : X −→ Cn with
branch locus Z ′, such that Φ has discrete fibers and p 6∈ Z ′, and v1, . . . , vn
are holomorphic vector fields on X, generating the tangent space of X at p.
Z = {f = 0} is a hypersurface of X which does not contain p.

Then, a modified version of a theorem by Henri Skoda [25, Thm.1] pro-
vides us with m holomorphic functions g1, . . . , gm on Ω \ Z with the sum of
their modules going to infinity near p. Using the normality of the space and
the good properties of the holomorphic function f , the functions fgi will be
extended to holomorphic functions on Ω. Then, given a sequence of points
in Ω converging to p, at least one of these functions is unbounded on this
sequence, which ends the proof.

This generalized theorem can be applied to obtain a characterization the-
orem for a particular case of the Serre problem, which (in the general case)
asks whether a locally trivial holomorphic fiber bundle with Stein base and
Stein fiber, is Stein. Since Serre proposed this problem in 1953, various
counterexamples and special cases have been proved.

For the particular case of bounded Stein domain in Cn as fiber, and with
an additional assumption on the fiber, Siu [24] proved that the problem
has positive answer. The first counterexample to the Serre problem was
given in 1977 by Skoda [26], who constructed a holomorphic fiber bundle



Abstract 3

which is not Stein, with C2 as fiber and a domain of C as base. Later,
Demailly [8] improved this counterexample by showing that one can choose
the base of the fiber to be the complex plane C or the unit disc D ⊂ C.
Another counterexample was given in 1985 by G.Coeuré and J.J.Loeb [4]:
they solved negatively the Serre problem for the particular case of a locally
trivial bundle with Stein base and bounded Stein domain in Cn as fiber.
Studying the example of Coeuré and Loeb, Pflug and Zwonek [18] gave a
characterization of hyperbolic Reinhardt domains in C2 which can be used
as fibers for a counterexample to the Serre problem. In 2001, D.Zaffran [27]
proved, using Hirzebruch-Inoue surfaces, that the counterexample of Coeuré
and Loeb does not admit envelope of holomorphy. Related to this, as an
application of Theorem 1, we prove the following characterization theorem:

Theorem 2. Let p : S −→ B a localy trivial bundle with Stein base B and
bounded domain of holomorphy F ⊂ Cn as fiber. Then, S is Stein iff S has
envelope of holomorphy.

This theorem has a very nice and short proof, which uses Theorem 1:
Denote by Z the envelope of holomorphy of S. By a result of Siu [24], global
functions on S separate points and give local coordinates. Hence, S is open
in Z. Since B is Stein, it can be embedded as a closed submanifold of Ck

defined by global holomorphic functions. Consequently, p can be holomor-
phically extended to p1 : Z −→ B. For every sufficiently small Stein open
subset U of B such that on U the bundle is trivial, p−1

1 (U) is an open subset
and p−1

1 (U) ∩ S = U × F , where F is a bounded Stein domain in Cn. More-
over, every boundary point x ∈ ∂S is contained in one of the sets p−1

1 (U)
above. Thus, S is locally Stein in Z. Now, using a generalized version of the
theorem of Colţoiu and Diederich [7] (by dropping the assumption of relative
compactness from the hypothesis, which is possible, thanks to Theorem 1),
we may conclude that S is Stein. The reversed implication is trivial. In this
way, a more general result than Zaffran’s theorem was obtained, with a much
simpler proof.

In chapter 4, the coomologic properties of finite intersections of (n− 1)-
complete open subsets of Cn are investigated.

Diederich and Fornæss [9] showed that any q-convex function with cor-
ners on a complex manifold can be uniformly approximated with q̃-convex
functions, where q̃ = n − bn

q
c + 1. Combining this with the results in [1],

one obtains, in particular, that every finite intersection of q-complete open
subsets of a complex manifold is cohomologically q̃-complete. A partially
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improved result was obtained by Matsumoto [17], who introduced the inte-
ger q̂ = n − bn−1

q
c, which verifies q̂ = q̃ if q|n and q̂ = q̃ − 1 if q 6 |n and

proved that for every finite intersection ∩tj=1Dj of q-complete open subsets of
a non-compact complex manifold M , we have H i(∩tj=1Dj,F) = 0, for every
F ∈ Coh(M) and every i ≥ q̂.

However, for q = n− 1 theorems from [9] are of no use, since q̃ = n and
we already know from the Greene-Wu [14] theorem that any noncompact
complex n-dimensional manifold is n-complete.

Also, for q = n − 1, Matsumoto’s integer q̂ = n − 1, but hers theorem
does not prove cohomologic (n−1)-completeness, since it requires the seaf F
to be coherent on the whole space M and not only on the intersection ∩Dj.

In the survey [6], Colţoiu states the following problem: If D is a (n− 1)-
complete with corners, open subset of Cn, does it follow that D is (n − 1)-
complete? A weaker version of this problem is to study whether or not every
(n− 1)-complete with corners, open subset of Cn is cohomologically (n− 1)-
complete. A particular case of (n − 1)-complete with corners, open subsets
of Cn is represented by finite intersections of (n− 1)-complete open subsets
of Cn. In the chapter 4 of the thesis, it is shown that, under additional
assumptions for the boundaries of the open sets which form the intersection,
this particular problem has affirmative answer.

The proof uses the method developed by Colţoiu for proving the W.Barth
conjecture [5]. Firstly, the follwing lemma concerning topological properties
is proved:

Lemma 3. Consider Dj ⊂ Cn, j = 1, . . . , r, bounded, open and with C2-
boundary such that every two boundaries intersect transversally.

Then, there exists constants d0 > 0 and η0 > 0 sufficiently small with
the following property: for any τ1, . . . , τr ∈ C∞0 (∩rj=1Dj), τ1 ≥ 0, . . . , τr ≥ 0,
there is a sufficiently small constant λ0 = λ0(τ1, . . . , τr) > 0 such that for
any constants 0 ≤ µj ≤ λ0, j = 1, . . . , r, the set

Bij(d) = (Di ∪Dj) \

\
(
{δ∂Di

(x)e−η0‖x‖
2−µiτi(x) > d} ∪ {δ∂Dj

(x)e−η0‖x‖
2−µjτj(x) > d}

)
has no compact, connected components for any 1 ≤ i, j ≤ r and for any
0 < d < d0.

Although its statement is similar to [5, Lemma 2.4], the proof is different.
It uses the strong deformation retractions given by the Collar Neighborhood



Abstract 5

Theorem for manifolds with boundary, for three different subsets of Bij(d),
which are then glued together to obtain a global strong deformation retrac-
tion of Bij(d) into ∂(D1 ∪ D2), which implies that Bij(d) has no compact,
connected components.

The next lemma is an adaptation of [5, Lemma 3.5] to the context and
notations of the problem stated above. It uses the approximation result
[1, p.250], with the difficult part being to prove the approximation of the
(n − 2)-cohomology groups, needed for applying Lemma [1, p.250]. This
approximation holds only for d sufficiently small, given by Lemma 3.

Lemma 4. Let Dj ⊂⊂ Cn, 1 ≤ j ≤ r, be (n−1)-complete open subsets with
C2 boundary, such that every two boundaries intersect transversally.

Then, there exist a constant c0 > 0 and (n− 1)-convex, exhaustion func-
tions ϕj : Dj → R, such that, denoting ϕ = max(ϕ1, . . . , ϕr), for every
F ∈ Coh(∩rj=1Dj) and any c > c0, the restriction map

Hn−1(∩rj=1Dj,F)→ Hn−1({ϕ < c},F)

is bijective. In particular, ∩rj=1Dj is cohomologically (n− 1)-convex.

It is a simple exercise to prove that in a Stein space, and in particular in
Cn, q-convexity and q-completeness are equivalent. The next lemma, inspired
from Ballico’s article [2], shows, using induction on the dimension of the space
and an argument by contradiction, that in holomorphically separate complex
spaces, and in particular in Cn, cohomological q-convexity and cohomological
q-completeness are equivalent.

Lemma 5. In a holomorphically separate complex space X with dim(X) <
∞, every cohomologically q-convex open subset U ⊂ X is cohomologically
q-complete.

As a direct consequence of the last two lemmas, the main theorem of
chapter 4 is obtained:

Theorem 6. Let Dj ⊂⊂ Cn, 1 ≤ j ≤ r, be (n−1)-complete open subsets with
C2 boundary such that every two boundaries intersect transversally. Then,
∩rj=1Dj is cohomologically (n− 1)-complete.

The chapter ends with a proof which shows that the example of domain
in Cn given by Diederich and Fornæss in [9] for proving the optimality of q̃
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verifies the conditions in our theorem when q = n−1, therefore it is a cohomo-
logically (n−1)-complete domain on which there exists an (n−1)-convex with
corners, exhaustion function which cannot be approximated by (n−1)-convex
functions. In view of the reversed implication for the Andreotti-Grauert the-
orem [1], which is an open problem, it is worth studying if this example given
by Diederich and Fornæss is (n− 1)-complete.

The last chapter of the thesis, chapter 5, is devoted to studying a partic-
ular case of the Corona problem in strongly pseudoconvex domains in Cn.

The commutative Banach algebra and Hardy space H∞(D) consists of
the bounded holomorphic functions on the open unit disk D. Its spectrum S
contains D, because for any z ∈ D, there is a maximal ideal which consists of
all functions f ∈ H∞(D) with f(z) = 0. The subspace D cannot make up the
entire spectrum S, essentially because the spectrum is a compact space and
D is not. It was conjectured by S. Kakutani in 1941 that the complement
of the closure of D, called the corona, is empty (this is known as the corona
problem). It turns out that this is equivalent to a more elementary statement:
Suppose that f1, . . . , fk are bounded, holomorphic functions on the unit disk
D, with the property that

|f1(ζ)|+ |f2(ζ)|+ . . .+ |fk(ζ)| > δ > 0

for some positive constant δ and all ζ ∈ D (we call f1, . . . , fk a set of corona
data on D). Then, there exist bounded, holomorphic gj, j = 1, . . . , k, on D
such that

f1(ζ)g1(ζ) + f2(ζ)g2(ζ) + . . .+ fk(ζ)gk(ζ) ≡ 1

for all ζ ∈ D.

Lennart Carleson [3] solved affirmatively the corona problem on the unit
disc D in C in 1962. Since then, the problem has been studied on arbitrary
domains in C and also in several variables. It has been proved to have
positive solution for various domains in C (see, for example, [12]). Fornæss
and Sibony [11] and [23] have investigated the corona problem in several
variables and constructed some pseudoconvex domains for which the problem
does not hold true, one example being a bounded domain with strongly
pseudoconvex boundary, except for one point. However, for domains with
strongly pseudoconvex boundary, such an example has not been found and
even for simple domains, such as the unit ball in Cn, the problem is still open.
Until now, there is no domain in the complex plane on which the problem is
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known to fail, and no pseudoconvex domain in Cn on which the problem is
known to hold.

In this last chapter, the Corona problem on bounded, strongly pseudo-
convex domains in Cn is studied, when an extra condition is satisfied by the
corona data. The goal is to generalize in some way the results of Krantz [16]
to an arbitrary number of pieces of corona data, using the same method and
obtain, in this setting, a solution to the problem. Chapter 5 ends with some
remarks about the necessity of a stronger extra condition than the one used
in [16], even for two pieces of data.

The main result is the following:

Theorem 7. Let Ω ⊂⊂ Cn be a bounded, strongly pseudoconvex domain and
f1, f2, . . . , fk corona data on Ω. Let Vj(α) = {z ∈ Ω : |fj(z)| < α}. Assume
that there exist α > 0 and i, j ∈ {1, . . . , k} such that

Vi(α) ∩ Vj(α) ∩ ∂Ω = ∅,

where the closures are taken in Cn.
Then, there exist bounded, holomorphic g1, g2, . . . , gk on Ω such that∑

j

fjgj ≡ 1.

The strategy for the proof is the following: If f1, f2, . . . , fk are given
corona data on Ω, we define Uj(α) = {ζ ∈ Ω : |fj(ζ)| > α}. Then, it is clear
that Uj(α) are open and

⋃
j Uj(α) ⊇ Ω for any α < δ/2k, where δ is the

constant from the corona condition. Let (ϕj)j be an arbitrary partition of
unity subordinated to the covering (Uj(α))j. Now set

gj =
ϕj
fj

+
∑
i

vjifi,

where vji are functions to be determined later in the proof, with the properties
vij = −vji and vii = 0. Then, a simple formal verification shows that gj are
well-defined and

∑
j fjgj ≡ 1. Because ϕj are real functions, the functions gj

so defined are not necessarily holomorphic, but it can be choosen a convenient
partition of unity (ϕj)j for which it is possible to choose vji such that each
gj will be holomorphic and bounded.

The holomorphicity of gj is equivalent to ∂gj =
∂ϕj

fj
+∂ (

∑
i vjifi) ≡ 0, and

we denote by S(k) = S(k;ϕ1, . . . , ϕk) this system of k equations. Inductively,
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it can be proved that it has bounded solutions vij, by extending at every
step, at a larger domain, the bounded solutions from the previous step. For
the induction step, the existence of bounded solutions for the ∂-equation
with bounded coefficients on strongly pseudoconvex domain with piecewise
smooth boundary, proved by [15], is used. The only different step is the
one next to the last, where a lemma based on the construction by Grauert
and Lieb [13] of a Ramı́rez integral kernel [22] is used instead: if D is a
bounded, strongly pseudoconvex open subset of Cn and W (α′) = {z ∈ D :
γ(z) < α′}, where γ is a strongly plurisubharmonic function, and f is a ∂-
closed (0, 1)-form in W (α′) with supp(f) relatively compact in D and with
bounded coefficients, then the equation ∂u = f has bounded solutions on
W (α) = {z ∈ D : γ(z) < α}, where α < α′.

The extra condition that is assumed in the theorem, for two pieces of
data, says that the sublevel sets V1(α) and V2(α) must be separated for a
small positive constant α.

A more general case of this extra condition would be to consider func-
tions f1, f2 for the corona data for which their zeroes are separated. Unfor-
tunately, this is not enough for the existence of a partition of unity (ϕj)j
subordinated to the covering (Uj(α))j, which has the (even weaker) property
|∇ϕj(z)| ≤ Cd∂Ω(z)−1/m, where C > 0 is a constant, d∂Ω(z) is the euclidean
distance from z to ∂Ω and m > 2n + 3, as it is assumed in [16]. In fact, for
m > 2, this is no longer possible, so the method used in [16] for proving the
existence of bounded solutions to the ∂-equation fails. A simple counterex-
ample constructed using infinite Blaschke products on a disk in C proves
this, in last section of Chapter 5.
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