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Abstract
In the last four decades, many studies have been dedicated to the theme of my thesis: mathematical modelling

of the macroscopic behaviour of microscopically heterogeneous materials by the homogenization theory methods.
Macroscopic scale analysis of such materials was initiated by Rayleigh, Maxwell, Einstein and continued by J.L.
Lions, E. Sanchez-Palencia, H. I. Ene, L. Tartar, D. Ciorănescu, U. Hornung. Having important implications on
the setting of transport and transmission problems in composite materials, they received attention not only from
the mathematical community, but also from other scientific communities, including engineering, materials science
and physics.
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1 Mathematical background

The first part of Chapter 1 is conceived as an introduction to the basic notions and results that are used
throughout this work. We refer the reader for instance to Ciorănescu and Donato [11], Lukkassen, Nguetseng and
Wall [25], Allaire [3], Polǐsevschi [33] and Girault and Raviart [14].

In the second part of this chapter, two classical homogenization problems are reconsidered. The first one is the
asymptotic behaviour of an elastic structure, containing ε−periodically distributed fissures. Following [36] (Ch.6),
we consider the boundary value problem for a fissured elastic body subject to one-side constraint without friction,
that is, the two lips of the fissure may be open but they cannot overlap and if the fissure is closed at a certain point
then the forces act in the normal direction. We determine the variational formulation of this problem and prove
that it is well posed. Then, the homogenized system is obtained by the formal method of double-scale asymptotic
expansions. Finally, we consider the Dirichlet problem for ε−periodically layered materials. Their foundations
were laid down by Murat and Tartar in [28]. Here, following [11](Ch.5, Sec.5.4), we present the formulae of the
effective coefficients for the ε−periodically layered materials, one of the main achievements of the homogenization
theory, besides the Darcy’s law in fluid mechanics and the modelling of composite materials in elasticity.

2 Heat transfer model for a two-component media with first-order
jump interfaces

In the Chapter 2 we study the asymptotic behaviour (ε→ 0) of the temperature governed by the heat transfer
problem in the ε-periodic structure introduced by [33], which is a realistic periodic structure composed of two
connected components separated by an interface on which the heat flux is continuous and the temperature subjects
to a first-order jump condition, namely the flow of heat is proportional to the jump of the temperature field(see [9]
for a physical justification of the model). The influence of interfacial resistances on the macroscopic conductivity
has been investigated analytically and experimentally in [5] (and the references there). Until that time, thermal
barrier resistances were not explicitly introduced, but the interphase heat transfer was supposed to be proportional
to the temperature difference (see H.S. Carslaw and J.C. Jaeger [9] for a physical justification of the model). Also,
macroscopic heat transfer in periodic composite materials using asymptotic developments (see [7] and [36]) was
studied in [4] with the classical boundary conditions between the constituents (e.g. continuity of the temperature
and normal flux). Therefore, J.L. Auriault and H. Ene (see [5]) presented the case of periodic composite media,
made up of two connected solids with conductivities of the same order of magnitude, separated by a thermal barrier
resistance. In their analysis, the macroscopic description of heat transfer has been shown to strongly depend on
the relative value of the barrier resistance with respect to the resistance of the components. In that paper, using
a method of double-scale asymptotic developments, five different macroscopic models are obtained, for different
values of paramater r: the first there types were one-temperature field models whereas the last two were two-
temperature filed models. A rigorous treatment of a special case of heat conduction in the presence of interfacial
barrier, without any connectivity assumptions, was done by R. Lipton in [22]. The problem of heat conduction in a
composite material containing two components, one connected and the other disconnected, separated by a contact
surface, was treated by P. Donato and S. Monsurro in [12]. For different values of r (r > 1 and −1 < r ≤ 1), the
paper presented the macroscopic equations, using Tartar’s method of oscillating test function (see [38]).

Now, returning to our problem, we set the reference conductor (where the conductivity is of unity order with
respect to ε) in the ambient component, the only one which is reaching the boundary of the domain (in this way, we
avoid the H1

loc(Ω) extension constructed in [1]). The second component contains the core material of the structure,
where the conductivity is set of ε2β-order, with β ∈ [0, 1]. Let us remark here that for β > 1 the temperature
becomes singular with respect to ε. On the interface between the reference conductor and the core material we set
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εr to be the order of the transmission coefficient in the jump condition. A counterexample of [18] shows that the
temperature cannot be asymptotically finite for r > 1 (unless one reduces the heat source inside the inclusions);
furthermore, we restrain to r ∈ (−1, 1]. An important property of our structure is the existence of a bounded
extension operator, similar to that introduced in [10] for the case of isolated inclusions. Also, for the a priori
estimates of the temperature on each structures of the regarded domain, we use certain inequalities obtained by
D. Polǐsevski in [33]. In order to derive the macroscopic laws and the effective coefficients in all regular cases we
apply the two-scale convergence technique of the periodic homogenization theory (see [3], [30] and [11]). In the
present framework, it turns out that there are exactly six distinct cases, given by β = 0, β ∈ (0, 1) or β = 1
and r = 1 or r ∈ (−1, 1). We determine in each case the specific local-periodic problems. The solutions of these
specific problems define the effective coefficients which allow the identification of the homogenized systems which
uniquely define the asymptotic behaviour of the temperature. We have to mention that besides heat conduction
there are many other phenomena which lead to asymptotic problems similar to the one studied here; for instance,
the pressure distribution in a partially fractured porous medium, the dispersion of a concentration of solute in a
domain with highly different diffusivities or the diffusion of a dissolved chemical in a fluid flowing through a porous
medium with highly different permeabilities. Thus, in such different frameworks, this problem has already been
treated when the core material is composed of isolated inclusions for β = 0 and r = 0 in [22] and for β = 0 and
various values of r, especially r = 1, which corresponds to the case when the transmission coefficient balance the
total measure of the interface, in [5], [31], [8], [18], [27] and [12]. For our geometry, only the case β = 0 and r = 1
have already been studied in [13].

The results of Chapter 2 can also be found in the paper [34], which has been accepted for publication.

2.1 The heat conduction problem

Let Ω be an open connected bounded set in RN (N ≥ 3), locally located on one side of the boundary ∂Ω, a
Lipschitz manifold composed of a finite number of connected components. Ω consists of two connected components
disposed ε−periodic, with ε ∈ (0, 1). For convenience, the periodicity will be described using the cube Y = (0, 1)N ,
as follows:

Let Ya be a Lipschitz open connected subset of the unit cube Y = (0, 1)N . We assume that Yb = Y \ Y a has
a locally Lipschitz boundary and that the intersections of ∂Yb with ∂Y are reproduced identically on the opposite
faces of the cube, denoted for every i ∈ {1, 2, . . . , N} by

Σ+i = {y ∈ ∂Y : yi = 1} and Σ−i = {y ∈ ∂Y : yi = 0}, (2.1)

with the property that
Y b ∩ Σ±i ⊂⊂ Σ±i, ∀i ∈ {1, 2, ..., N}. (2.2)

We assume that repeating Y by periodicity, the reunion of all the Y a parts is a connected domain in RN with a
locally C2 boundary; we denote it by RN

a and further RN
b = RN \ RN

a . Obviously, the origin of the coordinate
system can be set such that there exists R > 0 with the property B(0, R) ⊆ RN

a .
Now, we define the two components of Ω with the following sets of indices:
For any ε ∈ (0, 1) we denote

Zε = {k ∈ ZN : εk + εY ⊆ Ω}, (2.3)

Iε = {k ∈ Zε : εk ± εei + εY ⊆ Ω, ∀i ∈ {1, ..., N}}, (2.4)

where ei are the unit vectors of the canonical basis in RN .
The core component of our structure is defined by

Ωεb = int

( ∪
k∈Iε

(εk + εY b)

)
(2.5)

and the reference conductor by
Ωεa = Ω \ Ωεb. (2.6)

The interface between the two components is denoted by

Γε = ∂Ωεa ∩ ∂Ωεb = ∂Ωεb. (2.7)

Finally, let us remark that all the boundaries are at least locally Lipschitz, Ωεa is connected and Ωεb can be, in
particular, connected too.

We introduce the Hilbert space

Hε =

{
v ∈ L2(Ω) : v

∣∣∣
Ωεa

∈ H1(Ωεa), v
∣∣∣
Ωεb

∈ H1(Ωεb), v = 0 on ∂Ω

}
(2.8)
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endowed with the scalar product

(u, v)Hε =

∫
Ωεa

∇u∇v + ε2
∫
Ωεb

∇u∇v + ε

∫
Γε

[u][v], (2.9)

where [u] = γεbu− γεau and γεau, γεbu are the traces of u on Γε defined in H1(Ωεa) and H
1(Ωεb), respectively.

From now on, let us denote Γ := ∂Ya ∩ ∂Yb. Obviously,∪
k∈Zε

(εk + εΓ) ⊆ Γε (2.10)

and if ν is the normal on Γ(exterior to Ya) and x ∈ (εk + εΓ) for some k ∈ Zε then

νε(x) = ν
({x

ε

})
(2.11)

where
{

x
ε

}
is formed by the fractional parts of the components of ε−1x.

For any ε ∈ (0, 1) we introduce the transmission factor hε(x) = h(x/ε) and the symmetric conductivities
aεij(x) = aij(x/ε) and b

ε
ij(x) = bij(x/ε), where h, aij and bij belong to L∞

per(Y ) and have the property that there
exists δ > 0 such that

h ≥ δ, a.e. on Y, (2.12)

aijξjξi ≥ δξiξi and bijξjξi ≥ δξiξi, ∀ξ ∈ RN , a.e. on Y. (2.13)

Considering that β ∈ [0, 1], r ∈ (−1; 1] and f ∈ L2(Ω) are also given, we look for the temperature uε which satisfies
the heat conduction equations

− ∂

∂xi

(
aεij

∂uε

∂xj

)
= f in Ωεa, (2.14)

−ε2β ∂

∂xi

(
bεij
∂uε

∂xj

)
= f in Ωεb, (2.15)

with the following transmission and boundary conditions

aεij
∂uε

∂xj
νεi = ε2βbεij

∂uε

∂xj
νεi = εrhε (γεbu

ε − γεau
ε) on Γε, (2.16)

uε = 0 on ∂Ω. (2.17)

The variational formulation of the problem (2.14)-(2.17) is the following:
To find uε ∈ Hε such that

aε(u
ε, v) :=

∫
Ωεa

aεij
∂uε

∂xj

∂v

∂xi
+ ε2β

∫
Ωεb

bεij
∂uε

∂xj

∂v

∂xi
+ εr

∫
Γε

hε[uε][v] =

∫
Ω

fv, ∀v ∈ Hε. (2.18)

Theorem 1. By using the Lax-Milgram Theorem in an appropriate way, we prove that, for any ε ∈ (0, 1) there
exists a unique uε ∈ Hε, solution of the problem (2.18).

2.2 A priori estimates of the temperature

Hereafter, for any u ∈ H1(Ωεα), α ∈ {a, b}, we use the notations

ûεα =

{
u in Ωεα,
0 in Ω− Ωεα,

∇̂u
ε

α =

{
∇u in Ωεα,
0 in Ω− Ωεα.

(2.19)

From the a priori estimates of uε, solution of (2.18), for any β ∈ [0, 1] and r ∈ (−1, 1], we obtain the main
compactness result:

Theorem 2. For every β ∈ [0, 1] and r ∈ (−1, 1] there exists ua ∈ H1
0 (Ω), ηa ∈ L2

(
Ω; H̃1

per(Ya)
)

and ub ∈
L2(Ω, L2

per(Yb)) such that the following convergences hold on some subsequence

ûεa
2s−⇀ χaua, ûεb

2s−⇀ χbub, (2.20)

∇̂u
ε

a
2s−⇀ χa (∇xua +∇yηa(·, y)) , (2.21)

where χα : L2(Ω× Yα) → L2(Ω× Y ), α ∈ {a, b}, denotes the straight prolongation with zero; sometimes it can be
identified with the characteristic value of Yα.
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When β = 0 we find that ub is independent of y, with ub ∈ H1(Ω). Moreover, there exists ηb ∈ L2
(
Ω; H̃1

per(Yb)
)

such that it holds
∇̂u

ε

b
2s−⇀ χb (∇xub +∇yηb(·, y)) . (2.22)

When β ∈ (0, 1) we find that ub is independent of y, with ub ∈ L2(Ω).
When β = 1 it holds

ε∇̂u
ε

b
2s−⇀ χb∇yub. (2.23)

Now, for any k ∈ {1, 2, ..., N} , we define ηak ∈ H̃1
per (Ya) as the unique solution of the local-periodic problem

− ∂

∂yi

(
aij

∂ (ηak + yk)

∂yj

)
= 0 in Ya, aij

∂ (ηak + yk)

∂yj
νi = 0 on Γ. (2.24)

The effective conductivity A is given by the classical formula

Aij =

∫
Ya

aij + aik
∂ηaj
∂yk

dy, ∀i, j ∈ {1, 2, ..., N} . (2.25)

Remark 3. The homogenized tensor A is symmetric and positively defined.

Remark 4. Similarly to (2.24), for any k ∈ {1, 2, ..., N} , we consider the local-periodic problem associated to bij
in Yb; its solution is denoted by ηbk ∈ H̃1

per(Yb). Correspondingly, we define the effective conductivity Bij like in
(2.25).

Next, we introduce the functions w0 and w1, which are the only solutions in H1
per(Yb) of the following two

problems:

− ∂

∂yi

(
bij
∂w0

∂yj

)
= 1 in Yb, w0 = 0 on Γ (2.26)

− ∂

∂yi

(
bij
∂w1

∂yj

)
= 1 in Yb, −bij

∂w1

∂yj
νi + hw1 = 0 on Γ. (2.27)

Due to the existence of the first-order jump interface Γε, there are two effective coefficients describing the micro-
scopic transfer:

h̃ =

∫
Γ

h(y)ds, (2.28)

w̃1h =

∫
Γ

w1(y)h(y)ds. (2.29)

2.3 The homogenization process for β = 0 and r = 1

Using density arguments it follows that

((ua, ub), (ηa, ηb)) ∈ V1 :=
[
H1

0 (Ω)×H1(Ω)
]
×
[
L2(Ω, H̃1

per(Yα))
]

α ∈ {a, b}, is solution of the problem: To find ((ua, ub), (ηa, ηb)) ∈ V1 satisfying∑
α∈{a,b}

∫
Ω×Yα

αij

(
∂uα
∂xj

+
∂ηα
∂yj

)(
∂Φα

∂xi
+
∂φα

∂yi

)
+ h̃

∫
Ω

(ub − ua)(Φb − Φa) =

=

∫
Ω×Y

(χaΦa + χbΦb) f, ∀ ((Φa,Φb), (φa, φb)) ∈ V1. (2.30)

Theorem 5. If uε is the solution of (2.18) then

uε
2s−⇀ χaua + χbub (2.31)

where (ua, ub) ∈ H1
0 (Ω)×H1(Ω) is the unique solution of∫

Ω

Aij
∂ua
∂xj

∂Φa

∂xi
+

∫
Ω

Bij
∂ub
∂xj

∂Φb

∂xi
+ h̃

∫
Ω

(ub − ua)(Φb − Φa) =

=

∫
Ω

(|Ya|Φa + |Yb|Φb) f, ∀ (Φa,Φb) ∈ H1
0 (Ω)×H1(Ω). (2.32)
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2.4 The homogenization process for β = 0 and r ∈ (−1, 1)

Due to the a priori estimates specific for this case, the compactness result is completed by:

Lemma 6. There exists ub ∈ H1(Ω) and ηb ∈ L2
(
Ω; H̃1

per(Yb)
)
such that:

∇̂u
ε

b
2s−⇀ χb (∇xub +∇yηb(·, y)) . (2.33)

Moreover, there exists u ∈ H1
0 (Ω) such that

ua = ub = u in Ω. (2.34)

Using density arguments it follows that

(u, ηa, ηb) ∈ V2 := H1
0 (Ω)× L2(Ω, H̃1

per(Ya))× L2(Ω, H̃1
per(Yb))

is solution of the problem: To find (u, ηa, ηb) ∈ V2 satisfying∑
α∈{a,b}

∫
Ω×Yα

αij

(
∂u

∂xj
+
∂ηα
∂yj

)(
∂Φ

∂xi
+
∂φα

∂yi

)
dxdy =

∫
Ω

fΦ dx, ∀ (Φ, φa, φb) ∈ V2. (2.35)

In this case the homogenization process is summarized by:

Theorem 7. If uε is the solution of the problem (2.18) then

uε
2s−⇀ u (2.36)

where u ∈ H1
0 (Ω) is the unique solution of the homogenized problem∫

Ω

(A+B)∇u∇Φ =

∫
Ω

fΦ, ∀Φ ∈ H1
0 (Ω), (2.37)

and A, B are the effective positive matrices defined by (2.25).

2.5 The homogenization process for β ∈ (0, 1) and r = 1

Using density arguments it follows that

(ua, ub, ηa) ∈ V3 := H1
0 (Ω)× L2(Ω)× L2(Ω, H̃1

per(Ya))

is solution of the problem: To find (ua, ub, ηa) ∈ V3 satisfying∫
Ω×Ya

aij

(
∂ua
∂xj

+
∂ηa
∂yj

)(
∂Φa

∂xi
+
∂φa

∂yi

)
+ h̃

∫
Ω

(ub − ua)(Φb − Φa) =

=

∫
Ω×Y

(χaΦa + χbΦb) f, ∀ (Φa,Φb, φa) ∈ V3. (2.38)

Theorem 8. If uε is the solution of the problem (2.18) then

uε
2s−⇀ u+

|Yb|
h̃
χbf, (2.39)

where u ∈ H1
0 (Ω) is the unique solution of the Dirichlet problem∫

Ω

A∇u∇Φ =

∫
Ω

fΦ, ∀Φ ∈ H1
0 (Ω). (2.40)

2.6 The homogenization process for β ∈ (0, 1) and r ∈ (−1, 1)

Here it is the preliminary result specific to this case:

Lemma 9. There exists u ∈ H1
0 (Ω) such that

ua = ub = u in Ω. (2.41)

Moreover, for any Φ ∈ D(Ω) and φa ∈ D(Ω;C∞
per(Ya)), it holds∫

Ω×Ya

aij

(
∂u

∂xj
+
∂ηa
∂yj

)(
∂Φ

∂xi
+
∂φa

∂yi

)
dxdy =

∫
Ω

fΦ dx. (2.42)
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By density arguments we remark that

(u, ηa) ∈ V4 := H1
0 (Ω)× L2(Ω, H̃1

per(Ya))

is solution of the problem: To find (u, ηa) ∈ V4 satisfying∫
Ω×Ya

aij

(
∂u

∂xj
+
∂ηa
∂yj

)(
∂Φ

∂xi
+
∂φa

∂yi

)
dxdy =

∫
Ω

fΦdx, ∀ (Φ, φa) ∈ V4. (2.43)

Theorem 10. If uε is the solution of the problem (2.18) then,

uε
2s−⇀ u, (2.44)

where u ∈ H1
0 (Ω) is the unique solution of (2.40).

2.7 The homogenization process for β = 1 and r = 1

Using density arguments it follows that

(ua, ub, ηa) ∈ V5 := H1
0 (Ω)× L2(Ω;H1

per(Yb))× L2(Ω, H̃1
per(Ya))

is solution of the problem: To find (ua, ub, ηa) ∈ V5 satisfying∫
Ω×Ya

aij

(
∂ua
∂xj

+
∂ηa
∂yj

)(
∂Φ

∂xi
+
∂φa

∂yi

)
+

∫
Ω×Yb

bij
∂ub
∂yj

∂φb

∂yi
+

+

∫
Ω×Γ

h (ub − ua) (φb − Φ) =

∫
Ω×Ya

fΦ+

∫
Ω×Yb

fφb, ∀ (Φ, φb, φa) ∈ V5. (2.45)

Theorem 11. If uε is the solution of (2.18) then

uε
2s−⇀
(
| Ya | +w̃1h

)
u+ w1χbf (2.46)

where u ∈ H1
0 (Ω) is the unique solution of the homogenized problem (2.40).

2.8 The homogenization process for β = 1 and r ∈ (−1, 1)

Lemma 12. The limits ua and ub satisfy:
ua = ub on Ω× Γ. (2.47)

Moreover, for any Φ ∈ D(Ω) and φα ∈ D(Ω;C∞
per(Yα)), α ∈ {a, b} such that

φb(x, y) = Φ(x), ∀(x, y) ∈ Ω× Γ, (2.48)

we have: ∫
Ω×Ya

aij

(
∂ua
∂xj

+
∂ηa
∂yj

)(
∂Φ

∂xi
+
∂φa

∂yi

)
+

∫
Ω×Yb

bij
∂ub
∂yj

∂φb

∂yi
=

∫
Ω×Ya

fΦ+

∫
Ω×Yb

fφb. (2.49)

Using density arguments it follows that

((ua, ub), ηa) ∈ V6 := V × L2(Ω; H̃1
per(Ya)),

V :=
{
(Φ, φ) ∈ H1

0 (Ω)× L2(Ω;H1
per(Yb)), φ = Φ on Ω× Γ

}
. (2.50)

is solution of the problem: To find ((ua, ub), ηa) ∈ V6 satisfying∫
Ω×Ya

aij

(
∂ua
∂xj

+
∂ηa
∂yj

)(
∂Φ

∂xi
+
∂φa

∂yi

)
+

∫
Ω×Yb

bij
∂ub
∂yj

∂φb

∂yi
=

=

∫
Ω×Ya

fΦ+

∫
Ω×Yb

fφb, ∀ ((Φ, φb), φa) ∈ V × L2(Ω; H̃1
per(Ya)). (2.51)

Theorem 13. If uε is the solution of the problem (2.18) then,

uε
2s−⇀ |Ya|u+ w0χbf, (2.52)

where u ∈ H1
0 (Ω) is the unique solution of (2.40).
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3 The effective permeability of fractured porous media subject to the
Beavers-Joseph contact law

In Chapter 3 we study the asymptotic behaviour of an incompressible Stokes fluid flow contained in an
ε−periodic distribution of fractures perturbating a porous medium where the Darcy’s law is valid and the coupling
is modeled by the Beavers-Joseph interface condition. The first region represents the system of fractures, which is
connected and where the flow is governed by the Stokes system. The second region, which is also connected, stands
for the system of porous blocks, which have a certain permeability and where the flow is governed by Darcy’s law.
These two flows are coupled on the interface by the Saffman’s variant [35] of the Beavers-Joseph condition ([6] and
[24]), which was confirmed by [19] as the limit of a homogenization process. Besides the continuity of the normal
component of the velocity, it imposes the proportionality of the tangential velocity with the tangential component
of the viscous stress on the fluid-side of the interface. We prove the existence and uniqueness of the solution of this
model in our ε-periodic framework.

Proper rescaling of the fractures shows that the Beavers-Joseph condition influences the asymptotic behaviour of
the system as long as the permeability coefficients obey one of two alternatives. As one of them was studied in [15], in
Chapter 3 we consider the case where permeability is of the same order of magnitude as ε2. Under this assumption,
we find the asymptotic behaviour of the fractured porous medium using arguments of the homogenization theory.
The present framework may be seen as a further development of the periodic homogenization in percolation. It
does not deal with the formal method of asymptotic expansions [20], [21], [36] but rather extends the first rigorous
proof based on the construction of a pressure extension due to [37] and followed by contextual variants [2], [23],
[26], with the restriction that, unlike previous works [2], [17], [37] relying on specific constructions, the velocity and
pressure of the fluid have natural bounded extensions in the porous medium. Homogenization of phenomena in
fractured media were studied later in [32], [2] and [33], when the connectedness of both regions could be assumed.
Obviously, ε-periodicity allows the use of the homogenization theory procedure. It is initiated in Section 3.2
thanks to a priori estimates and compacity arguments of the two-scale convergence theory, identifying the limit
by constructing special test functions (see [3], [25] and [30]). We find the homogenized problem verified by the
two-scale limit of the couple velocity-pressure. It is well-posed and can be decoupled. The asymptotic pressure is
purely macroscopic, unlike the velocity field which still depends on the microscopic variable.

The results of Chapter 3 can also be found in the paper [16], which has been accepted for publication.

3.1 The flow through the ε-periodic structure

Let Ω be an open connected bounded set in RN (N ≥ 2), locally located on one side of the boundary ∂Ω, a
Lipschitz manifold composed of a finite number of connected components.

Let Yf be a Lipschitz open connected subset of the unit cube Y = (0, 1)N , such that the intersections of ∂Yf
with ∂Y are reproduced identically on the opposite faces of the cube and 0 /∈ Y f . The outward normal on ∂Yf is
denoted by ν. Repeating Y by periodicity, we assume that the reunion of all the Ȳf parts, denoted by RN

f , is a

connected domain in RN with a boundary of class C2. Defining Ys = Y \ Y f , we assume also that the reunion of
all the Ȳs parts is a connected domain in RN .

For any ε ∈ (0, 1) we denote
Zε = {k ∈ ZN , εk + εY ⊆ Ω} (3.1)

Iε = {k ∈ Zε, εk ± εei + εY ⊆ Ω, ∀i ∈ 1, N} (3.2)

where ei are the unit vectors of the canonical basis in RN .
Finally, we define the system of fractures by

Ωεf = int

( ∪
k∈Iε

(εk + εȲf )

)
(3.3)

and the porous matrix of our structure by Ωεs = Ω\Ω̄εf . The interface between the porous blocks and the fluid is
denoted by Γε = ∂Ωεf . Its normal is:

νε(x) = ν
(x
ε

)
, x ∈ Γε (3.4)

where ν has been periodically extended to RN . Let us remark that Ωεs and Ωεf are connected and that the fracture
ratio of this structure is given by

m = |Yf | ∈]0, 1[, as
|Ωεf |
|Ω|

→ m when ε→ 0. (3.5)

To the previous structure we associate a model of fluid flow through a fractured porous medium by assuming
that there is a filtration flow in Ωεs obeying the Darcy’s law and that there is a viscous flow in Ωεf governed by
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the Stokes system. These two flows are coupled by a Saffman’s variant [35] of the Beavers-Joseph condition [6],
[24]. This system is completed by an impermeability condition on ∂Ω:

divvεs = 0 in Ωεs (3.6)

µεv
εs = Kε(gε −∇pεs) in Ωεs, (3.7)

divvεf = 0 in Ωεf , (3.8)

σε
ij = −pεfδij + 2µεeij(v

εf ) in Ωεf (3.9)

− ∂

∂xj
σε
ij = gεi in Ωεf (3.10)

vεs · νε = vεf · νε on Γε, (3.11)

−pεsνεi − σε
ijν

ε
j = αεµεβ

−1
ε (vεfi − (vεf · νε)νεi ) on Γε, (3.12)

vεs · n = 0 on ∂Ω, n the outward normal on Ω, (3.13)

where vεs, vεf and pεs, pεf stand for the corresponding velocities and pressures, µε > 0 is the viscosity of the fluid,
αε ∈ L∞(Ω) is the positive non-dimensional Beavers-Joseph number, gε ∈ L2(Ω)N is the exterior force and e(v)

denotes the symmetric tensor of the velocity gradient defined by eij(v) =
1
2

(
∂vi

∂xj
+

∂vj

∂xi

)
.

Finally, the positive tensor of permeability is defined by:

Kε(x) = β2
εK

(x
ε

)
, (3.14)

where K ∈ L∞(Y )N×N and βε > 0 stands for the magnitude of (TrKε)1/2 with respect to ε → 0. As usual, we
use the notations:

H0(div,Ω) = {v ∈ H(div,Ω), v · ν = 0 on ∂Ω} (3.15)

L2
0(Ω) = {p ∈ L2(Ω),

∫
Ω

p = 0} (3.16)

V0(div,Ω) = {v ∈ H0(div,Ω), divv = 0 in Ω} (3.17)

Next, we define
Hε = {v ∈ H0(div,Ω), v ∈ H1(Ωεf )

N}, (3.18)

the Hilbert space endowed with the scalar product

(u, v)Hε =

∫
Ωεs

uv +

∫
Ωεs

divu divv + ε2
∫
Ωεf

e(u)e(v) + ε

∫
Γε

(γεu− (γενu)ν
ε)γεv (3.19)

where γε and γεν denote respectively the trace and the normal trace operators on Γε with respect to Ωεf . Its
corresponding subspace of divergence free velocities is

Vε = {v ∈ V0(div,Ω), v ∈ H1(Ωεf )
N}. (3.20)

A straightforward consequence, via the corresponding Korn’s inequality, is

Lemma 14. There exists some constant C > 0, independent of ε, such that

|u|L2(Ωεf ) + ε|∇u|L2(Ωεf ) ≤ C|u|Hε , ∀u ∈ Hε. (3.21)

Denoting
Aε = (Kε)−1 (3.22)

and using the positivity of Kε, we can assume without loss of generality that

∃a0 > 0 such that Aε
ij(·) ξiξj ≥ a0|ξ|2, ∀ξ ∈ RN , a.e. in Ω. (3.23)

Rescaling the velocity by

uε =

 uεs in Ωεs

uεf in Ωεf

=
µε

β2
ε

 vεs in Ωεs

vεf in Ωεf

(3.24)
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then, for any u, v ∈ Hε and q ∈ L2
0(Ω), we define

aε(u, v) =

∫
Ωεs

Aεuv + 2β2
ε

∫
Ωεf

e(u)e(v) + βε

∫
Γε

αε(γ
εu− (γενu)ν

ε)γεv (3.25)

bε(q, v) = −
∫
Ω

q divv. (3.26)

We see that if the pair (uε, pε) is a smooth solution of the problem (3.6)–(3.13), then it is also a solution of the
following problem: To find (uε, pε) ∈ Hε × L2

0(Ω) such that

aε(u
ε, v) + bε(p

ε, v) =

∫
Ω

gεv, ∀v ∈ Hε (3.27)

bε(q, u
ε) = 0, ∀q ∈ L2

0(Ω) (3.28)

Theorem 15. There exists a unique pair (uε, pε) ∈ Hε × L2
0(Ω) solution of (3.27)–(3.28).

3.2 The homogenization process

In this section for any function φ defined on Ω× Y we shall use the notations

φh = φ|Ω×Yh
, φ̃h =

1

|Yh|

∫
Yh

φ(·, y)dy, h ∈ {s, f}, (3.29)

φ̃ =

∫
Y

φ(·, y)dy, that is φ̃ = (1−m)φ̃s +mφ̃f . (3.30)

Applying the Vε-ellipticity of aε, from the a priori estimates we find that ∃u ∈ L2(Ω × Y )N such that, on some
subsequence

uε
2
⇀ u (3.31)

uε ⇀

∫
Y

u(·, y)dy ∈ V0(div,Ω) weakly in L2(Ω)N . (3.32)

Denoting χεf (x) = χf

(x
ε

)
and χεs(x) = χs

(x
ε

)
, where χf and χs are the characteristic functions of Yf and Ys

in Y , we see that (χεsu
ε)ε, (χεfu

ε)ε and

(
εχεf

∂uε

∂xi

)
ε

are bounded in (L2(Ω))N , ∀i ∈ {1, 2, · · · , N}.

Lemma 16. Denoting

H̃1
per(Yf ) = {φ ∈ H1

loc(RN
f ), φ is Y -periodic,

∫
Yf

φ = 0},

then uf ∈ L2(Ω, (H̃1
per(Yf ))

N ) satisfies

εχεf∇uεi
2
⇀ χf∇yu

f
i . (3.33)

Moreover,
divũ = 0 in Ω, (3.34)

γnũ = 0 on ∂Ω, (3.35)

divyu = 0 in Ω× Y. (3.36)

Proposition 17. There exists a constant C > 0 independent of ε such that

|pε|L2(Ω) + |∇pε|L2(Ωεs) ≤ C. (3.37)

Lemma 18. There exists p ∈ L2
0(Ω × Y ) with ps = p̃s ∈ H1(Ω) and pf = p̃f ∈ L2(Ω) such that, up to some

subsequence, we have:

pε
2
⇀ p. (3.38)

Moreover: ps = pf = p and thus p ∈ H̃1(Ω).
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3.3 The homogenized problem

Consider the Hilbert space:

X = {u ∈ L2(Ω× Y ), uf ∈ L2(Ω, H̃1
per(Yf )), (ũ

s, ũf ) ∈ H0(div,Ω)
2, divyu = 0}

endowed with the scalar product:

(u, v)X =

∫
Ω×Ys

u v +

∫
Ω

divũdivṽ +

∫
Ω×Yf

ey(u)ey(v) +

∫
Ω×Γ

α(y)(γuγv − γνuγνv)

and set:
X0 = {u ∈ X, divũ = 0}, M = L2

0(Ω).

We can present our first homogenization result:

Proposition 19. The limit problem reads: Find (v, q) ∈ X ×M such that

a(v, φ) + b(q, φ) =

∫
Ω

gφ̃, ∀φ ∈ X (3.39)

b(π, v) = 0, ∀π ∈M (3.40)

where we set

a(v, φ) =

∫
Ω×Ys

Avφ+ 2β

∫
Ω×Yf

ey(v)ey(φ) +

∫
Ω×Γ

α(y)(γv − (γνv)ν)γφ (3.41)

b(π, v) = −
∫
Ω

πdivṽ. (3.42)

Proposition 20. Using the ”inf-sup” condition we see that the problem (3.39)–(3.40) is well-posed.

Proposition 21. The problem (3.39)–(3.40) equivalently reads: Find u ∈ X0 such that

a(u, φ) =

∫
Ω

(g −∇p)φ̃, ∀φ ∈ X0. (3.43)

Remark 22. In this case, we can decouple the problem (3.43) as follows: an homogenized problem and a local
one. For this purpose, we define

W = {w ∈ L2(Y ), wf ∈ H̃1
per(Yf ), divyw = 0 in Y }

and we find that the solution of the homogenized problem reads:

u(x, y) = wi(y)

(
gi(x)−

∂p

∂xi

)
, (3.44)

where for every i ∈ {1, · · · , N}, wi ∈W is the solution of the local problem:∫
Ys

Awiψ + 2β

∫
Yf

ey(w
i)ey(ψ) +

∫
Γ

α(γwi − (γνw
i)ν)ψ =

∫
Y

ψei, ∀ψ ∈W (3.45)

and ei are the unit vectors of the canonical basis in RN .

Now, we set

Kji =

∫
Y

wi
j . (3.46)

Proposition 23. The effective permeability tensor K is symmetric and positively defined.

From (3.44) we get the Darcy’s law
ũ = K(g −∇p), (3.47)

where ũ ∈ H0(div,Ω) and p ∈ H̃1(Ω) is the unique solution of the following boundary value problem:

div(K∇p) = div(Kg) in Ω, (3.48)

K∇p · n = Kg · n on ∂Ω, (3.49)

where obviously div(Kg) ∈ H−1(Ω).

Proposition 24. The problem (3.48)–(3.49) is well-posed.
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