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HABILITATION THESIS

Stochastic Processes, Analysis,
and Applications

Mihai Nicolae Pascu

Specialization: Mathematics

2014





To Bianca, Paul, Luca, Nicolae,
Olivia, Ana and Ştefan





Rezumat

Prezenta Teză de Abilitare prezintă o parte din cele mai recente şi semnificative rezultate ale
autorului ı̂n domeniul Proceselor Stochastice, ı̂n principal legate de construcţia, proprietăţile, şi
aplicaţiile mişcării Browniene, şi Analiza Complexă, ı̂n special ı̂n domeniul Teoriei Geometrice a
Funcţiilor.

Materialul prezentat ı̂n această teză este ı̂mpărţit ı̂n şase capitole, şi reflectă interesul autorului
pentru cele două arii de cercetare distincte menţionate mai sus, şi, atunci când este posibil, a
legăturilor dintre cele două.

Prima parte a tezei reflectă interesul autorului ı̂n domeniul Procelor Stochastice, şi este formată
din trei capitole. Ideea din spatele acestei ı̂mpărţiri este că mişcarea Browniană este invariantă la
trei transformări geometrice: scalare, reflecţie/simetrie, şi translaţie. Corespunzător fiecărei din
aceste proprietăţi de invarianţă autorul a introdus (sau a contribuit la dezvoltarea teoriei cunoscute
a) cuplajelor corespunzătoare de mişcări Browniene, şi le-a folosit ca unelte ı̂n demonstrarea unor
rezultate importante ı̂n Analiză. Astfel, Capitolul 1 prezintă construcţia cuplajului prin scalare
de mişcări Browniene reflectate, Capitolul 2 prezintă contribuţia autorului la construcţia generală
a cuplajului ı̂n oglindă de mişcări Browniene reflectate, iar Capitolul 3 prezintă un rezultat foarte
recent al autorului ı̂n colaborare cu I. Popescu, cu privire la cuplajele de mişcări Browniene
reflectate cu distanţă fixă, cuplaje ce pot fi privite ca o extensie a cuplajului prin translaţie la
domenii generale.

Partea a doua a tezei prezintă câteva din rezultatele autorului ı̂n Teoria geometrică a funcţiilor,
şi conţine trei capitole. Capitolul 4 prezintă o extensie a Principiului maximului modulului din
Analiza Complexă la cazul funcţiilor ne-analitice, şi câteva aplicaţii ale acestuia. Capitolul 5
prezintă o metodă de construcţie a celei mai bune aproximări univalente a unei funcţii analitice ı̂n
anumite subclase de funcţii (stelate, respectiv convexe), iar Capitolul 6 prezintă rezultate referi-
toare la univalenţa perturbărilor funcţiilor analitice şi alte rezultate conexe.

Toate rezultatele demonstrate ı̂n teză aparţin autorului, fiind publicate ı̂n lucrările precizate
mai jos. Structura şi conţinutul tezei sunt următoarele.

Capitolul 1. Cuplaje prin scalare de mişcări Browniene reflectate.

În acest capitol prezentăm construcţia cuplajului prin scalare de mişcări Browniene reflectate,
cuplaj introdus de către autor. Constricţia este dată mai ı̂ntâi ı̂n cazul discului unitate, iar apoi este
extinsă la domenii C1,α netede (0 < α < 1) cu ajutorul transformărilor conforme. Ca o aplicaţie,
obţinem o rezolvare parţială a faimoasei conjecturi a Punctelor Fierbinţi a lui Jeffrey Rauch (1974),
care afirmă că o funcţie proprie Neumann corespunzătoare celei de a doua valori proprii Neumann
a operatorului Laplacian ı̂ntr-un domeniu convex verifică o variantă tare a principiului de maxim.
Mai general, arătăm aici că o a doua funcţie proprie Neumann antisimetrică a unui domeniu cu
o axă de simetrie este de fapt monotonă de-a lungul geodezicelor hiperbolice, şi prezentăm o altă
extensie a acestui rezultat la cazul când linia nodală este un arc de cerc.

Materialul din acest capitol se bazează pe rezultatele obţinute de autor ı̂n [10] (cu R. Bañuelos
şi M. Pang) şi [64].
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Capitolul 2. Cuplajul ı̂n oglindă de mişcări Browniene reflectate.

Cuplajul ı̂n oglindă de mişcări Browniene a fost introdus de W. S. Kendall ı̂n [50] ı̂n cazul
mişcărilor Browniene pe un manifold Riemannian complet având curbură Ricci ne-negativă, şi a
fost considerat de către F. Y. Wang ı̂n [85] ı̂n cazul proceselor reflectate. În [25], şi mai recent
ı̂n [4] şi [5], K. Burdzy et al. au dat o construcţie detaliată a cuplajului ı̂n oglindă de mişcări
Browniene reflectate ı̂ntr-un domeniu neted din Rn (n ≥ 2). În acest capitol prezentăm o extensie
a acestei construcţii, datorată autorului, la cazul general când cele două mişcări Browniene trăiesc
ı̂n domenii diferite. Ca aplicaţii, prezentăm o rezolvare a conjecturii Laugesen-Morpurgo asupra
monotoniei diagonalei nucleului Neumann al căldurii ı̂n bila unitate din Rn (n ≥ 1), o demonstraţie
unitară a două din cele mai importante rezultate referitoare la validitatea conjecturii lui Chavel
privind monotonia ı̂n raport cu domeniul a nucleului Neumann al căldurii (rezultate datorate
lui I. Chavel [29], respectiv lui W. S. Kendall [51]), şi o nouă demonstraţie a acesteia ı̂n cazul
domeniilor ce verifică condiţia intermediară a bilei, astfel ı̂ncât domeniul interior este stelat ı̂n
raport cu centrul bilei.

Materialul din acest capitol se bazează pe rezultatele obţinute de autor ı̂n [65], [66] (cu M. E.
Gageonea), şi [67] (cu M. A. Nicolaie).

Capitolul 3. Cuplaje de mişcări Browniene cu distanţa fixă.

Recent, ı̂mpreună cu I. Popescu (IMAR şi Georgia Tech University), am investigat problema
existenţei cuplajelor de mişcări Browniene cu distanţă fixă pe manifolduri complete. În acest
capitol prezentăm câteva rezultate foarte recente, care arată spre exemplu că ı̂n cazul sferei 2-
dimensionale este posibil să construim un cuplaj având distanţă fixă, precum şi cuplaje pentru
care distanţa dintre cele două mişcări Browniene creşte, respectiv scade, la o rată exponenţială.
Aceste rezultate sunt apoi extinse, mai ı̂ntâi la cazul manifoldurilor Riemanniene având curbură
constantă, iar apoi la cazul general al manifoldurilor Riemanniene având curbură Ricci mărginită
inferior şi curbură secţională mărginită superior.

Ca aplicaţii, prezentăm o soluţie a unei versiuni stochastice a problemei Leul şi Omul a lui
Rado, şi o demonstraţie a principiului de maxim pentru gradientul funcţiilor armonice.

Materialul din acest capitol se bazează pe rezultatele obţinute de autor ı̂n [73] (cu I. Popescu).

Capitolul 4. Un principiu de maxim al modulului pentru funcţii ne-analitice defi-
nite ı̂n discul unitate

Principiul maximului modulului din Analiza Complexă afirmă că maximul modulului unei
funcţii analitice ne-constante definite ı̂ntr-un domeniu simplu conex nu poate fi atins ı̂ntr-un
punct interior al domeniului, şi este uşor de văzut că acest principiu este fals dacă se renunţă la
ipoteza de analiticitate a funcţiei. În acest capitol arătăm că putem extinde principiul maximului
modulului la anumite clase de funcţii ne-analitice definite ı̂n discul unitate. Ca şi consecinţe
obţinem o nouă demonstraţie a principiului clasic al modulului pentru funcţii analitice, condiţii
simple asupra coeficienţilor dezvoltării ı̂n serie pentru care principiul de maxim al modulului are
loc, precum şi aplicaţii la cazul funcţiilor reale de două variabile reale.

Materialul din acest capitol se bazează pe rezultatele obţinute de autor ı̂n [36] (cu M. E.
Gageonea, S. Owa, şi N. R. Pascu) şi [37] (cu M. E. Gageonea şi N. R. Pascu).

Capitolul 5. Aproximări univalente ale funcţiilor analitice

Univalenţa unei funcţii analitice este o problemă importantă a Teoriei geometrice a funcţiilor,
şi există multe condiţii suficiente de univalenţă ı̂n literatură (a se vedea spre exemplu monografiile
[34], [74], sau [75]). Atunci când o funcţie analitică nu este univalentă, ı̂n probleme practice este
deseori de interes să se găsească o “cea mai bună” aproximare a funcţiei printr-o funcţie univalentă.



În acest capitol introducem o măsură a ne-univalenţei unei funcţii analitice, pe care o folosim
pentru a găsi cea mai bună aproximare a unei funcţii analitice normate ı̂n anumite subclase de
funcţii univalente (funcţii stelate, respectiv convexe). Arătăm că problemele corespunzătoare pot
fi reduse la anumite probleme semi-infinite de programare pătratică, pe care le rezolvăm explicit,
conducând astfel la o metodă de găsire a celei mai bune aproximări stelate, respectiv a celei mai
bune aproximări convexe. Rezultatele obţinute conţin algoritmi constructivi pentru determinarea
explicită a măsurilor de (ne)stelaritate, respectiv de (ne)convexitate a unei funcţii analitice, precum
şi pentru găsirea celei mai bune aproximări stelate corespunzătoare, respectiv a celei mai bune
aproximări convexe, fiind adecvate pentru implementare numerică şi pentru aplicaţii practice.

Materialul din acest capitol se bazează pe rezultatele obţinute de autor ı̂n [71] and [72] (ambele
cu N. R. Pascu).

Capitolul 6. Vecinătăţi ale funcţiilor univalente

Continuând studiul funcţiilor univalente, ı̂n acest capitol considerăm problema perturbărilor
funcţiilor univalente. Ca o măsură a (ne)univalenţei unei funcţii introducem constanta K (f,D)
asociată unei funcţii f : D ⊂ C→ C analitice ı̂ntr-un domeniu D, şi o folosim pentru a arăta că o
mică perturbare a unei funcţii univalente este de asemenea o funcţie univalentă. Ca şi consecinţă,
arătăm că o funcţie univalentă are o vecinătate constând ı̂n ı̂ntregime din funcţii univalente.

Ca şi aplicaţii ale rezultatului principal obţinem o consecinţă ce este echivalentă cu criteriul
clasic de univalenţă Noshiro-Warschawski-Wolff, şi prezenăm o aplicaţie ı̂n termeni de serii Taylor.

Materialul din acest capitol se bazează pe rezultatele obţinute de autor ı̂n [70] (cu N. R. Pascu).

Capitolul 7. Realizări şi planuri de dezvoltare a carierei

Ultimul capitol al tezei este ı̂mpărţit ı̂n două secţiuni. Prima secţiune conţine o prezentare a
realizărilor ştiinţifice şi profesionale ale autorului, şi planuri de evoluţie şi de dezvoltare a carierei
profesionale. În a doua secţiune prezentăm câteva probleme deschise legate de cercetările prezen-
tate ı̂n capitolele anterioare, precum şi câteva idei ce pot conduce la o posibilă rezolvare a acestora.

Teza se ı̂ncheie cu o listă de referinţe bibliografice.

Braşov, Mai 2014
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Summary

The present Habilitation Thesis presents a part of the most recent and significant results of
the author in the area of Stochastic Processes, mostly related to the construction, properties, and
applications of couplings of Brownian motions, and Complex Analysis, especially in the area of
Geometric Function Theory.

The material presented in this thesis is divided into six chapters, in accordance with the interest
of the author for the two distinct areas of research mentioned above, and, whenever possible, of
the interplay between the two.

The first part of the thesis, reflecting the interest of the author in Stochastic Processes, contains
three chapters. The underlining idea for this division is that the Brownian motion is invariant un-
der three geometric transformations: scaling, reflection/symmetry, and translation. Corresponding
to each of these invariance properties, the author introduced (or contributed to the development
of the known theory of) corresponding couplings of reflecting Brownian motions, and used them as
tools in proving important results in Analysis. As such, the Chapter 1 presents the construction
of the scaling coupling of reflecting Brownian motions, Chapter 2 presents the contribution of
the author to the general construction of the mirror coupling of reflecting Brownian motion, and
Chapter 3 presents a very recent result of the author with I. Popescu regarding fixed distance
couplings of reflecting Brownian motion, which may be viewed as an extension of the translation
coupling to general domains.

The second part of the thesis presents some of the results of the author in the area of Geomet-
ric function theory, and contains three chapters. Chapter 4 presents an extension of the classic
Maximum modulus principle from Complex Analysis to the case of non-analytic functions, and
some of its applications. Chapter 5 presents a method for constructing the best univalent approxi-
mations of analytic functions in certain subclasses of functions (starlike, respectively convex), and
Chapter 6 presents results related to the univalency of perturbations of analytic functions and
other connected results.

All the results proved in the thesis belong to the author, being published in the papers indi-
cated below. The structure and the contents of the thesis is the following.

Chapter 1. Scaling coupling of reflecting Brownian motions.

In this chapter we present the construction of the scaling coupling of reflecting Brownian mo-
tions, introduced by the author. The construction is first given in the case of the unit disk,
and then extended to smooth C1,α) (0 < α < 1) domains by means of conformal maps. As an
application, we derive a partial resolution of the famous Hot Spots conjecture of Jeffrey Rauch
(1974), which asserts that the second Neumann eigenfunctions of the Laplacian in convex domains
satisfy a strong maximum principle. More generally, we prove here that antisymmetric second
Neumann eigenfunctions of domains with an axis of symmetry are in fact monotone along hyper-
bolic geodesics, and we present another extension of this result to the case when the nodal line is
an arc of a circle.

The material in this chapter is based on the results obtained by the author in [10] (with R.
Bañuelos and M. Pang) and [64].
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Chapter 2. Mirror coupling of reflecting Brownian motions.

The mirror coupling of Brownian motions was introduced W. S. Kendall in [50] in the case
of Brownian motions on a complete Riemannian manifold with nonnegative Ricci curvature, and
was considered by F. Y. Wang in [85] in the case of reflected processes. In [25], and more recently
in [4] and [5], K. Burdzy et al. gave a detailed construction of the mirror coupling of reflecting
Brownian motions in a smooth domain in Rn (n ≥ 2). In this chapter we present an extension this
construction, due to the author, to the general case when the two reflecting Brownian motions live
in different domains. As applications, we present a resolution of the Laugesen-Morpurgo conjecture
on the monotonicity of the diagonal of the Neumann heat kernel in the unit ball in Rn (n ≥ 1), a
unifying proof of the two main results concerning the validity of Chavel’s conjecture on the domain
monotonicity of the Neumann heat kernel (due to I. Chavel [29], respectively W. S. Kendall [51]),
and a new proof of it for domains satisfying the intermediate ball condition, such that the inner
domain is star-shaped with respect to the center of the ball.

The material in this chapter is based on the results obtained by the author in [65], [66] (with
M. E. Gageonea), and [67] (with M. A. Nicolaie).

Chapter 3. Fixed-distance coupling of reflecting Brownian motions.

Recently, with I. Popescu (IMAR and Georgia Tech University), we investigated the problem
of the existence of fixed-distance couplings of reflecting Brownian motions on complete manifolds.
In this chapter we present some very recent results, which show for example that in the case of
the 2-dimensional sphere it is possible to construct a fixed-distance coupling, and also couplings
for which the distance between the two Brownian motions increases, respectively decreases, at an
exponential rate. These results are then extended, first to the case of Riemannian manifolds of
constant curvature, and then to the general case of Riemannian manifolds with Ricci curvature
bounded below and sectional curvature bounded above.

As applications, we present a solution to a stochastic version of the Lion and Man problem of
Rado, and a proof of the maximum principle for the gradient of harmonic functions.

The material in this chapter is based on the results obtained by the author in [73] (with I.
Popescu).

Chapter 4. A maximum modulus principle for non-analytic functions defined in
the unit disk

The maximum modulus principle from Complex Analysis asserts that the maximum modulus
of a non-constant analytic function defined in a simply connected domain cannot be attained at
an interior point of the domain, and it is readily seen to be false if we dispense of the analyticity
of the function. In this chapter we show that we can extend the maximum modulus principle to
certain classes of non-analytic functions defined in the unit disk. As corollaries we obtain a new
proof of the classical maximum modulus principle for analytic functions, simple conditions on the
coefficients of the series development under which the maximum modulus principle holds, as well
as as applications to the case of real-valued functions of two variables.

The material in this chapter is based on the results obtained by the author in [36] (with M. E.
Gageonea, S. Owa, and N. R. Pascu) and [37] (with M. E. Gageonea and N. R. Pascu).

Chapter 5. Univalent approximations of analytic functions

The univalency of an analytic function is an important problem of the Geometric function
theory, and there are many sufficient conditions for univalency in the literature (see for example



the monographs [34], [74] or [75]). When an analytic function is not univalent, in practical problems
it is often of interest to find a “best approximation” of it by a univalent function.

In the present chapter we introduce a measure of the non-univalency of an analytic function,
and we use it in order to find the best approximation of a normed analytic function in certain
subclasses of univalent functions (starlike, respectively convex functions). We show that the
corresponding problems can be reduced to certain semi-infinite quadratic programming problems,
which we solve explicitly, thus leading to a method for finding the best starlike, respectively convex
approximation. Our results provide constructive algorithms for finding explicitly the measures
of the (non)starlikeness, respectively of the (non)convexity of an analytic function, as well as for
finding the corresponding best starlike approximation, respectively the best convex approximation,
being suitable for numeric implementation and practical applications.

The material in this chapter is based on the results obtained by the author in [71] and [72]
(both with N. R. Pascu).

Chapter 6. Neighborhoods of univalent functions

Continuing the study of univalent functions, in this chapter we consider the problem of pertur-
bations of univalent functions. As a measure of the (non)univalency of a function we introduce the
constant K (f,D) associated with a function f : D ⊂ C→ C analytic in a domain D, and we use
it in order to show that a small perturbation of a univalent function is again a univalent function.
As a consequence, we show that a univalent function has a neighborhood consisting entirely of
univalent functions.

As applications of the main result, we derive a corollary which is shown to be equivalent to the
classical Noshiro-Warschawski-Wolff univalence criterion, and we present an application in terms
of Taylor series.

The material in this chapter is based on the results obtained by the author in [70] (with N. R.
Pascu).

Chapter 7. Achievements and plans for further career development

The last chapter of the thesis is divided into two sections. The first section contains a presen-
tation of the scientific and professional achievements of the author, and future plans of evolution
and development of the professional career. In the second section we present some open problems
related to the research presented in the previous chapters, together with some ideas which may
lead to a possible resolution of them.

The thesis concludes with a list of bibliographical references.

Braşov, May 2014
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Chapter 1

Scaling coupling of Reflecting
Brownian motions

In this chapter we present the construction of the scaling coupling of reflecting Brownian mo-
tions in smooth planar domains, coupling introduced by the author in [64]. We first give the
construction in the case of the unit disk in R2, and then we extend the construction to general
C1,α (0 < α < 1) smooth planar domains by using the conformal invariance of Brownian motion.
As applications of this construction, we obtain monotonicity properties of antisymmetric second
Neumann eigenfunctions of smooth symmetric convex domains in R2, which in turn give a res-
olution of the celebrated “Hot Spots” conjecture of Jeffrey Rauch (presented at a conference at
Tulane University in 1974) for a certain class of convex planar domains.

1.1 Introduction

There are mainly known types of coupling of reflecting planar Brownian motions in the literature:
synchronous coupling and mirror coupling (see [25] for a discussion of these couplings). At the core
of the construction of these couplings are the translation invariance of the (free) Brownian motion,
respectively the invariance of Brownian motion under orthogonal transformations (in particular
under reflection in a hyperplane). In the present chapter we use the scaling invariance of free
Brownian motion in order to construct the corresponding coupling of reflecting Brownian motions
in smooth domains, called the scaling coupling.

The structure of this chapter is the following: in Section 1.2 we review some basic facts from
complex analysis needed in the paper and we set the notation needed in the sequel.

Next, in Section 1.3 we give the construction of the scaling coupling in the case of unit disk;
we show that given a reflecting Brownian motion Zt in the unit disk U , starting at z0 ∈ U − {0},
the formula:

1

sup
s≤t
|Zs|

Zs

defines a time change of a reflecting Brownian motion Z̃t in U , starting at z̃0 = 1
|z0|z0 ∈ ∂U .

We define (Z, Z̃) as a coupling of reflecting Brownian motions starting at z0 and z̃0 = 1
|z0|z0,

respectively. By means of automorphisms of the unit disk, the construction is then extended to
any pair of starting points z0, z̃0 ∈ U , not both on the boundary of U . The coupling is uniquely
defined by the choice of an additional point lying on the hyperbolic line in U determined by z0

and z̃0, not separating them, which can be viewed as the parameter of the coupling.
In Section 1.4 the construction is extended to smooth C1,α domains (0 < α < 1) by means of

conformal maps. The restriction to the class of C1,α domains is necessary in order to insure the
conformality at the boundary of U of a mapping from the unit disk onto a C1,α domain, hence to

1
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insure that the image of a reflecting Brownian motion in U under a conformal map is a reflecting
Brownian motion in the image domain.

Scaling coupling of reflecting Brownian motions in C1,α domains is a coupling in the following
generalized sense: there exist a.s. finite stopping times τ and τ̃ (with respect to the filtration

(FZt ), respectively (F Z̃t )) such that

Zt+τ = Z̃t+τ̃ ,

for all t ≥ 0. The usual coupling of diffusions can be viewed as a particular case of the above,

namely the case when τ = τ̃ a.s. and FZt = F Z̃t for all t ≥ 0.
We show that in the case of convex domains, we can choose the coupling so that we have τ ≤ τ̃

a.s., which shows that for t ≥ τ̃ , Z̃t “follows” the path of Zt+τ−τ̃ . Moreover, we show that the
inequality τ̃ ≤ τ is characteristic to the class of convex domains.

The above property of scaling coupling is used to prove strict monotonicity properties of
antisymmetric second Neumann eigenfunctions of the Laplacian of a convex C1,α domain D (0 <
α < 1) having a line of symmetry, along the family of hyperbolic lines in D which intersect this
line of symmetry.

The proof uses the expansion of the function

u(t, x) = P (τx > t)

in terms of the mixed Dirichlet-Neumann eigenfunctions for the Laplacian on D+ = D ∩ {(x, y) :
y > 0}, with Dirichlet conditions on the part of ∂D+ lying on the horizontal axis and Neumann
conditions on the remaining part of the boundary of D+ (τx denotes the lifetime of reflecting
Brownian motion in D+ starting at x ∈ D+, killed on hitting the horizontal axis).

Using the properties of the scaling coupling, we show a monotonicity property of τx (Proposi-
tion 1.5.3) along a certain family of curves (hyperbolic lines in D, defined as conformal images of
diameters in the unit disk), which gives the monotonicity of u(t, x) = P (τx > t) as a function of
x on the indicated family of curves in D+.

Using the fact that an antisymmetric second Neumann eigenfunction ϕ for D is a first mixed
Dirichlet-Neumann eigenfunction for D+ (the nodal domain of ϕ, since the eigenfunction is as-
sumed to be antisymmetric with respect to the horizontal axis), and using the eigenfunction
expansion of u(t, x), the monotonicity of u(t, x) translates into the monotonicity of the second
Neumann eigenfunction ϕ for D, along the same family of curves. In particular this shows that
an antisymmetric second Neumann eigenfunction of a convex C1,α domain attains its maximum
only at the boundary of the domain.

Under our particular setting, this is exactly the object of the hot spots conjecture (due to Jeffrey
Rauch, 1974), which states that a second Neumann eigenfunction of a bounded simply connected
domain (later modified to convex domains) satisfies a strong maximum/minimum principle, that
is, it attains its maximum and minimum over the domain only at the boundary of the domain.

1.2 Preliminaries

We denote the unit disk in R2 by U = {z : |z| < 1}.
A curve Γ ⊂ R2 is said to be of class C1,α (0 < α < 1) if it has a parametrization w(t) that is

continuously differentiable, w′ 6= 0 and w′ is Lipschitz of orderα, that is, for some M > 0 and for
all t, t′ we have:

|w′(t)− w′(t′)| ≤M |t− t′|α

A domain D ⊂ R2 is said to be a C1,α domain (0 < α < 1) if its boundary is a Jordan curve
Γ of class C1,α.

It is known([76], pp. 48–49) that if f : U → D is a conformal map of the unit disk onto the
C1,α domain D (0 < α < 1), then f and f ′ have continuous extensions to U , f ′ is Lipschitz of
order α on U and f ′ 6= 0 on U .

We recall that an analytic function f is called convex in U if it maps U conformally onto a
convex domain.
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For a C1,α domain D (0 < α < 1) we denote by νD the inward unit normal vector field on ∂D,
the boundary of D.

By reflecting Brownian motion in D we mean reflecting Brownian motion with respect to the
normal vector field νD.

Consider an arbitrarily fixed probability space (Ω,F , P ). Whenever a (reflecting) Brownian
motion Bt on (Ω,F , P ) is considered, we denote by (FBt ) the filtration (satisfying the usual
conditions) with respect to which Bt is adapted.

We define reflecting Brownian motion in D as a solution of the stochastic differential equation:

Xt = X0 +Bt +
1

2

t∫
0

νD(Xs)dLs, t ≥ 0. (1.2.1)

Formally we have:

Definition 1.2.1. Xt is a reflecting Brownian motion in D starting at x0 ∈ D if it satisfies
(2.2.1), where:

(a) Bt is a 2-dimensional Brownian motion started at 0,

(b) Lt is a continuous nondecreasing process which increases only when Xt ∈ ∂D,

(c) Xt is (FBt )-adapted, and almost surely X0 = x0 and Xt ∈ D for all t ≥ 0.

Remark 1.2.2. Bass and Hsu ([15]) showed that in C1,α domains there exists exactly one solution
to (2.2.1) for a given Brownian motion Bt. Also, by ([14]) the process Xt corresponds to the

Dirichlet form E(f, f) = 1
2

∫
D

|∇f |2.

1.3 The case of the unit disk

In this section we give the construction of the scaling coupling in the case of the unit disk. The
key of our construction is the following:

Theorem 1.3.1. Let Zt be a reflecting Brownian motion in U starting at z0 ∈ U − {0} and let
|z0| ≤ a ≤ 1 be arbitrarily fixed. The process Z̃t defined by:

Z̃t =
1

Mγt

Zγt , t ≥ 0, (1.3.1)

where:

Mt = a ∨ sup
s≤t
|Zs| ,

Ct =

t∫
0

1

M2
s

ds, (1.3.2)

γt = inf{s > 0 : Cs ≥ t}, t ≥ 0, (1.3.3)

is a (FZγt)-adapted reflecting Brownian motion in U starting at z̃0 = z0
a .

Proof. We apply Itô’s formula to the semimartingale Zt and the nondecreasing process Mt with
f(x, y) = x

y . If

Zt = Z0 +Bt +
1

2

t∫
0

νU (Zs)dLs
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is the semimartingale representation of Zt given by Definition 2.2.1, we have:

Zt
Mt

=
Z0

M0
+

t∫
0

1

Ms
dZs −

t∫
0

1

M2
s

ZsdMs (1.3.4)

=
Z0

M0
+

t∫
0

1

Ms
dBs +

1

2

t∫
0

1

Ms
νU (Zs)dLs −

t∫
0

1

M2
s

ZsdMs.

If τ = inf{s : |Zs| = 1}, note that Ls is constant on [0, τ ] and Ms ≡ 1 on [τ,∞); further,
when Ms is increasing, Zs

Ms
is on ∂U , and therefore − Zs

Ms
= νU ( ZsMs

). The difference of the last two
integrals in the last equality above can thus be written:

1

2

t∫
t∧τ

1

Ms
νU (Zs)dLs −

t∧τ∫
0

1

M2
s

ZsdMs

=
1

2

t∫
t∧τ

νU (
Zs
Ms

)dLs +
1

2

t∧τ∫
0

νU (
Zs
Ms

)d logM2
s

=
1

2

t∫
0

νU (
Zs
Ms

)dLs +
1

2

t∫
0

νU (
Zs
Ms

)d logM2
s

=
1

2

t∫
0

νU (
Zs
Ms

)dL̃s,

where L̃s = Ls+logM2
s is readily seen to be a nondecreasing process which increases only if either

Ls or Ms do; this happens only when Zs
Ms

is on the boundary of U .
Note that since 0 < |z0| ≤Mt ≤ 1 for all t ≥ 0, Ct defined by (1.3.2) is strictly increasing and

Ct →∞ a.s. It follows that γt defined by (1.3.3) is continuous and increasing, and substituting in
(1.3.4) we obtain:

Z̃t =:
Zγt
Mγt

=
Z0

M0
+

γt∫
0

1

Ms
dBs +

1

2

γt∫
0

νU (
Zs
Ms

)dL̃s.

If we set B̃t :=
γt∫
0

1
Ms
dBs, then 〈B̃i, B̃j〉t =

γt∫
0

1
M2
s
d〈B̃i, B̃j〉s = δij

γt∫
0

1
M2
s
ds = δijCγt = δijt,

i, j ∈ {1, 2}, and thus B̃t is a 2-dimensional Brownian motion starting at 0.
We have thus shown:

Z̃t = Z̃0 + B̃t +
1

2

γt∫
0

νD(
Zs
Ms

)dL̃s

= Z̃0 + B̃t +
1

2

t∫
0

νD(
Zγu
Mγu

)dL̃γu

= Z̃0 + B̃t +
1

2

t∫
0

νD(Z̃u)d L̄u,

where Lu := L̃γu is a nondecreasing process which increases only when Z̃u :=
Zγu
Mγu

is at the

boundary of U . This proves the theorem.
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Remark 1.3.2. In R, essentially the same proof shows that if Zt is a 1-dimensional Brownian
motion starting at z0 > 0, and Mt = a∨sup

s≤t
Zs (a ≥ z0), then 1

Mt
Zt is a time change of a reflecting

Brownian motion on (−∞, 1], the time change being given by (1.3.2)–(1.3.3) above.

The above construction also applies to higher dimensions, to give a scaling coupling of reflecting
Brownian motions in the unit sphere in Rn, n ≥ 3. However, since the conformal images of the
unit sphere in Rn (n ≥ 3) are again spheres, we cannot use the conformal mapping arguments
presented in the following section in order to extend the construction to more general domains.

Definition 1.3.3. We call the pair (Zt, Z̃t) constructed above a scaling coupling of reflecting
Brownian motions in U , starting at z0 ∈ U − {0}, respectively at z̃0 := 1

az0 ∈ U .

1.4 The case of smooth domains

In the present section we will extend the construction of the scaling coupling from the case of the
unit disk to the case of smooth C1,α domains (0 < α < 1). We will need the following proposition,
showing that the conformal image of a reflecting Brownian motion in the unit disk is a time change
of a reflecting Brownian motion in the image domain. More precisely, we have:

Proposition 1.4.1. Let Zt be a reflecting Brownian motion in U starting at z0 ∈ U . If f is a
conformal map of U onto the C1,α domain D (0 < α < 1), then Wt = f(Zαt) is a (FZαt)-adapted
reflecting Brownian motion in D starting at f(z0), where:

αt = inf{s : As ≥ t}

and

At =

t∫
0

|f ′(Zs)|2 ds.

Proof. Recall that since D is a C1,α domain, f ∈ C1(D). If

Zt = Z0 +Bt +
1

2

t∫
0

νU (Zs)dLs

is the semimartingale representation of Zt given by Definition 2.2.1, by applying Itô’s formula with
f = (u, v), we have:

f(Zt) = f(Z0) +

t∫
0

(∇u,∇v)(Zs)dBs +
1

2

t∫
0

(∇u · νU ,∇v · νU )(Zs)dLs.

By Levy’s theorem ([11]), the stochastic integral above is a time change of a 2-dimensional

Brownian motion, the increasing process being At =
t∫

0

|f ′(Zs)|2 ds. Replacing t by αt = inf{s :

As ≥ t}, the stochastic integral above becomes a (FZαt)-adapted Brownian motion (note that by
Definition 2.2.1 we have FZt = FBt for all t ≥ 0).

So it suffices to show that when Ls increases, (∇u·νU ,∇v·νU )(Zs) has no tangential component
to the boundary of D.

However this follows since by preliminary remarks, f has a conformal extension to U ; one can
use Cauchy-Riemann equations and the geometric interpretation of the argument of f ′ to show
that whenever Ls increases we have:

(∇u · νU ,∇v · νU )(Zs) = |f ′(Zs)| νD(f(Zs)),

which concludes the proof.
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Before carrying out the general construction of scaling coupling, we introduce the notion of
hyperbolic line in C1,α domains (0 < α < 1), as follows:

Definition 1.4.2. i) We define a hyperbolic line in U as being a line segment or an arc of a
circle contained in U which meets orthogonally the boundary of U . We denote by HU the family
of all hyperbolic lines in U . If z1, z2 are two distinct points on a hyperbolic line l ∈ HU , we define
the hyperbolic segment with endpoints z1 and z2 (denoted by [z1, z2]) as the part of l between (and
including) z1 and z2.

ii) For a C1,α (0 < α < 1) domain D, we define a hyperbolic line/segment in D as the
conformal image of a hyperbolic line/segment in U . We denote by HD the family of all hyperbolic
lines in D.

Simple geometric considerations show the following:

Proposition 1.4.3. Let D be a C1,α (0 < α < 1) domain.
i) Given two distinct points D, there exists a unique hyperbolic line in D passing through them.
ii) For an arbitrarily chosen diameter d of U , we have

HU = {ϕ(d) : ϕ ∈ A},

where A is the family of all automorphisms of U . If f is an arbitrarily chosen conformal map of
U onto D, then

HD = {f ◦ ϕ(d) : ϕ ∈ A}.
Remark 1.4.4. Part i) of the previous proposition shows that given any two distinct points z1 and
z2 in a C1,α domain D (0 < α < 1), the hyperbolic segment [z1, z2] in D is uniquely determined,
hence the notion of hyperbolic segment is well defined in the above definition. We will denote by
z1z2 the unique hyperbolic line passing through z1 and z2.

We give now the construction of scaling coupling for general C1,α domains. Let D be a
C1,α domain (0 < α < 1) and let w0, w̃0 ∈ D distinct, not both on ∂D, be arbitrarily fixed.
By Proposition 1.4.3, there is a unique hyperbolic line w0w̃0 in D, passing through w0 and w̃0.
Consider a point w1 on w0w̃0 − [w0, w̃0], w1 /∈ ∂D. Let f : U → D be the unique conformal map
of U onto D (given by the Riemann mapping theorem) with f(0) = w1 and arg f ′(0) = 0. Let
z0 = f−1(w0) and z̃0 = f−1(w̃0). Note that by definition, f−1(w0w̃0) is a hyperbolic line in U ,
and since 0 = f−1(w1) ∈ f−1(w0w̃0), it follows that f−1(w0w̃0) is in fact a diameter of U . Note
that by the choice of w1, we have 0 /∈ [z0, z̃0], and therefore |z0| 6= |z̃0|. Without loss of generality
we can assume that |z0| < |z̃0|.

Let Zt be a reflecting Brownian motion in U starting at z0. Define processes Wt, W̃t by:

Wt = f(Zαt), t ≥ 0, (1.4.1)

W̃t = f(
1

Mβt

Zβt), t ≥ 0, (1.4.2)

where Mt =
∣∣∣ z0z̃0 ∣∣∣ ∨ sup

s≤t
|Zs|, t ≥ 0 and:

At =

t∫
0

|f ′(Zs)|2 ds, αt = inf{s : As ≥ t}, t ≥ 0, (1.4.3)

Bt =

t∫
0

1

M2
s

∣∣∣∣f ′( ZsMs
)

∣∣∣∣2 ds, βt = inf{s : Bs ≥ t}, t ≥ 0. (1.4.4)

Theorem 1.4.5. Wt, W̃t defined by (1.4.1)–(1.4.4) are (FZαt), respectively (FZβt)-adapted reflecting
Brownian motions in D, starting at w0, respectively w̃0.
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Proof. That Wt is a (FZαt)-adapted reflecting Brownian motion in D follows from Proposition
1.4.1.

To prove that W̃t is a (FZβt)-adapted reflecting Brownian motion, note that by Lemma 1.3.1,
Zt
Mt

is a time change γt (given by (1.3.3)) of a reflecting Brownian motion in U , starting at z̃0.

By Proposition 1.4.1, f(
Zγt
Mγt

) is a time change α̃t of a reflecting Brownian motion in D, starting

at f(z̃0) = w̃0, where

α̃t = inf{s : Ãs ≥ t} and Ãt =

t∫
0

∣∣∣∣f ′( ZγsMγs

)

∣∣∣∣2 ds, t ≥ 0. (1.4.5)

In order to prove the claim it suffices to show that the combined effect of the two time changes
γt and α̃t is the time change βt given by (1.4.4), that is γα̃t = βt for all t ≥ 0.

Cu given by (1.3.3) is a bijection on [0,∞), with inverse C−1 = γ. With the substitution
s = Cu in the definition of Ãt, we obtain:

ÃCt =

Ct∫
0

∣∣∣∣f ′( ZγsMγs

)

∣∣∣∣2 ds =

=

t∫
0

∣∣∣∣f ′( ZuMu
)

∣∣∣∣2 dCudu du =

=

t∫
0

1

M2
u

∣∣∣∣f ′( ZuMu
)

∣∣∣∣2 du =

= Bt,

for all t ≥ 0. This shows that ÃCt = Bt for all t ≥ 0, or equivalently, by taking inverses, we have
γα̃t = βt for all t ≥ 0, as needed.

Definition 1.4.6. For a C1,α domain D (0 < α < 1) and arbitrarily fixed distinct points w0, w̃0 ∈
D (not both on ∂D), w1 ∈ w0w̃0 − [w0, w̃0] (not on ∂D), the pair (Wt, W̃t) defined by (1.4.1)
-(1.4.4) is called a scaling coupling of reflecting Brownian motions in D starting at w0 ∈ D and
w̃0 ∈ D, respectively.

Remark 1.4.7. The above construction of scaling coupling for a C1,α domain with starting points
(w0, w̃0) relied on the choice of a conformal map from the unit disk U onto D. As it is known,
the choice is uniquely determined by the values of f(0) and arg f ′(0). However, the choice of
just w1 = f(0) determines uniquely the conformal map, up to a rotation of the unit disk. By the
angular symmetry of the construction of scaling coupling in the case of the unit disk, it follows
that the construction is invariant under rotations of the unit disk, and therefore the construction
does not depend of the choice of arg f ′(0) (we chose arg f ′(0) = 0 for simplicity).

It follows that given two distinct point in D (not both on the boundary of D), the scaling
coupling with these starting points is uniquely determined once a choice for f(0) (lying on the
hyperbolic line passing through them, and not separating them) has been made. We will therefore
refer to w1 = f(0) as the parameter of the scaling coupling.

In order to derive the main property of the scaling coupling in the case of convex domains, we
need the following characterization of convexity:

Proposition 1.4.8. Let f : U → D be a conformal map of U onto the simply connected domain
D. The following are equivalent:

D is convex; (1.4.6)∣∣rf ′(reiθ)∣∣ is an increasing function of r ∈ [0, 1), for all 0 ≤ θ < 2π. (1.4.7)
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Proof. Since f ′(0) 6= 0, without loss of generality we can assume that f(0) = f ′(0)− 1 = 0.
Note that the domain D is convex iff the function f is convex, which (under the condition

f(0) = f ′(0)− 1 = 0) is equivalent (see [34], pp.42) to:

Re

(
1 + z

f ′′(z)

f ′(z)

)
> 0, z ∈ U.

In polar coordinates, z = reiθ, we obtain equivalent that

Re

(
1

r
+ eiθ

f ′′(reiθ)

f ′(reiθ)

)
> 0, 0 ≤ θ < 2π, 0 < r < 1.

Note that since

Re

(
1

r
+ eiθ

f ′′(reiθ)

f ′(reiθ)

)
=

1

r
+ Re

(
∂

∂r
log f ′(reiθ)

)
=

1

r
+

∂

∂r
ln
∣∣f ′(reiθ)∣∣

=
∂

∂r
ln
∣∣rf ′(reiθ)∣∣ ,

the previous statement is equivalent to (1.4.7), as needed.

The main feature of the scaling coupling is given by the following:

Proposition 1.4.9. With the notation of Theorem 1.4.5, there exist almost surely finite stopping
times τ1 and τ2 with respect to the filtration (FZαt), respectively (FZβt), such that for all t ≥ 0 we
have:

αt+τ1 = βt+τ2

Moreover, if the domain D is convex, with probability one we have βt ≤ αt, for all t ≥ 0.

Proof. Set τ = inf{s : |Zs| = 1}, τ1 = Aτ and τ2 = Bτ . Obviously τ is an a.s. finite stopping time
with respect to the filtration (FZt ), and we have Ms ≡ 1 for all s ≥ τ .

It follows that τ1 and τ2 are also a.s. finite stopping times with respect to the filtration (FZαt),
respectively (FZβt), and that for all t ≥ τ we have:

At − τ1 =

t∫
τ

|f ′(Zs)|2 ds = Bt − τ2.

Since αt = A−1
t , βt = B−1

t , this implies the first part of the proposition.
For the second part, note that since D is convex, Proposition 1.4.8 shows that:

|Zsf ′(Zs)| ≤
∣∣∣∣ ZsMs

f ′(
Zs
Ms

)

∣∣∣∣ ,
hence we obtain:

At =

t∫
0

|f ′(Zs)|2 ds ≤
t∫

0

1

M2
s

∣∣∣∣f ′( ZsMs
)

∣∣∣∣2 ds = Bt,

and therefore we have αt ≥ βt, for all t ≥ 0.

Remark 1.4.10. The pair (Wt, W̃t) in Definition 1.4.6 is a coupling in the following extended
sense: there exist a.s. finite stopping times τ1 and τ2 with respect to the filtration (FZαt), respectively
(FZβt), such that:

Wt+τ1 = W̃t+τ2 , for all t ≥ 0. (1.4.8)
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The usual coupling of diffusions can be thought as a particular case of the above, namely the case
when τ1 = τ2 a.s. (and the two filtrations coincide).

The scaling coupling is readily seen to satisfy (1.4.8) by using

τ1 =

τ∫
0

|f ′(Zs)|2 ds

τ2 =

τ∫
0

1

M2
s

∣∣∣∣f ′( ZsMs
)

∣∣∣∣2 ds,
where τ = inf{s > 0 : |Zs| = 1}.

Moreover, in the particular case of convex domains, we have τ1 ≤ τ2 a.s., which shows that for
t ≥ τ2, W̃t “follows” the path of Wt+τ1−τ2 .

Remark 1.4.11. Note that by the equivalence in Proposition 1.4.8 and using the support theorem
for Brownian motion, it follows that the class of domains for which the inequality βt ≤ αt holds
almost surely for all t ≥ 0 (and all starting points w0, w̃0), coincides with the class of convex C1,α

domains.

1.5 Hot Spots Conjecture

Results on eigenvalues and eigenfunctions

We will review first some basic facts about eigenfunctions and eigenvalues. We make the remark
that for the convenience of arguments involving Brownian motion, we will be using 1

2∆ instead of
the Laplace operator ∆. The results hold for the Laplacian ∆ by scaling.

Fix an arbitrarily C1,α domain D (0 < α < 1).
We say that λ is an eigenfunction for 1

2∆ in D, if there exists a nontrivial solution ϕ ∈
C2(D) ∩ C1(D) to

1

2
∆ϕ+ λϕ = 0. (1.5.1)

ϕ is then called an eigenfunction corresponding to the eigenvalue λ.
If ∂ϕ

∂νD
= 0 on ∂D, the we will refer to λ and ϕ as being a Neumann eigenvalue and Neumann

eigenfunction, respectively.
If ∂ϕ

∂νD
= 0 only on a nonempty proper open subset of ∂D, and ϕ = 0 on the remaining part

of ∂D, we refer to λ and ϕ as being a mixed Dirichlet-Neumann eigenvalue and eigenfunction,
respectively.

It is known (see [28], pp. 46) that the set of Neumann/mixed Dirichlet-Neumann eigenvalues
forms an unbounded sequence

0 ≤ λ1 < λ2 < λ3 < ...↗∞.

We will refer to λi as the ith Neumann/mixed Dirichlet-Neumann eigenvalue for D and to
the eigenfunctions belonging to the eigenspace corresponding to λi as the ith Neumann/mixed
Dirichlet-Neumann eigenfunctions for D.

Recall that the nodal set of an eigenfunction ϕ is the set ϕ−1({0}) = {x ∈ D : ϕ(x) = 0}, and
a nodal domain of ϕ is a component of D − ϕ−1({0}).

The Courant Nodal Domain theorem ([28], pp. 19) asserts that for each k ≥ 1, the number of
nodal domains of a kth eigenfunction of a simply connected domain is less than or equal to k.

As an immediate consequence we have that a first eigenfunction has constant sign, and a
second eigenfunction has precisely 2 nodal domains. Moreover, λ1 is characterized as being the
only eigenvalue with eigenfunction of constant sign ([28], pp. 20).

It is also known, that in the case of a second Neumann eigenfunction the nodal set is a smooth
(C∞) curve, called the nodal line, and that there are no closed nodal lines ([6], pp.128).
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The hot spots conjecture (due to Jeffrey Rauch, 1974) is a strong maximum principle for second
Neumann eigenfunctions of a simply connected domain D, and it can be formulated as follows:

Conjecture 1.5.1. For every second Neumann eigenfunction ϕ2 of D, and for all y ∈ D, we
have:

min
x∈∂D

ϕ2(x) < ϕ2(y) < max
x∈∂D

ϕ2(x). (1.5.2)

By an abuse of language, if (1.5.2) holds for a second Neumann eigenfunction ϕ2 of D, we say
that the hot spots conjecture holds for ϕ2.

According to Kawohl ([49]), Conjecture 1.5.1 holds for balls, annuli and rectangles in Rd.
Burdzy and Werner constructed a counterexample to Conjecture 1.5.1, in which the maximum of
ϕ2 is attained only in the interior of D and the minimum at the boundary of D. More recently,
Bass and Burdzy constructed a stronger counterexample, in which both the maximum and the
minimum of ϕ2 are attained only in the interior of D. In both counterexamples the domain D
was not convex.

Recent advances in the hot spots problem identified classes of domains for which Conjecture
1.5.1 holds. It is know that Conjecture 1.5.1 holds for bounded convex domains with two orthogonal
axes of symmetry([7], [48]), or just one axis of symmetry and additional hypothesis on the domain
([7]). The question whether Conjecture 1.5.1 holds for bounded convex domains in Rd is still open.

1.5.1 Main results

The main result in this section is Theorem 1.5.6, which shows that the hot spots conjecture holds
for antisymmetric second Neumann eigenfunctions of smooth convex domains having a line of
symmetry.

Let D ⊂ R2 be a convex C1,α domain (0 < α < 1) having a line of symmetry. Without loss of
generality we will assume that D is symmetric with respect to the horizontal axis.

Set D+ = D ∩ {(x, y) : y > 0}, Γ+ = ∂D+ ∩ ∂D, Γ0 = D ∩ {(x, y) : y = 0}. For w0 ∈ D+,
denote by τw0 = inf{s : ImWs = 0}, where Ws is a reflecting Brownian motion in D starting at
w0.

Remark 1.5.2. Let f1 be a conformal map of U+ onto D+, such that the parts of the boundaries
of U+ and D+ lying on the horizontal axis correspond to each other. By the symmetry principle, f1

extends to a conformal map of U onto D. Since Γ0 = f1([−1, 1]), it follows that Γ0 is a hyperbolic
line in D.

The key to the Theorem 1.5.4 is the following lemma, showing a monotonicity property of τw0

(as a function of w0) on the family of hyperbolic lines in D intersecting the horizontal axis:

Lemma 1.5.3. Given w̃0 ∈ D, w1 ∈ D ∩ Γ0 and w0 ∈ [w1, w̃0], there exist filtrations (Ft),

(F̃t) and (Ft), respectively (F̃t)-adapted reflecting Brownian motions Wt, W̃t in D, starting at w0,
respectively w̃0, such that if τw0 , τ w̃0 are the hitting times to the horizontal axis of Wt, respectively
W̃t, then with probability one we have:

τw0 ≤ τ w̃0 .

Proof. The proof is trivial if w0 = w̃0 or w0 = w1, so we can assume that w0, w̃0 and w1 are
distinct.

Let (Wt, W̃t) be a scaling coupling of reflecting Brownian motions in D starting at (w0, w̃0),
with parameter w1, that is a scaling coupling obtained as the image under a conformal map
f : U → D with f(0) = w1 of the scaling coupling (Zt, Z̃t) in U . The filtrations (Ft), (F̃t)
are the corresponding “time changes” of the filtrations (FZt ), respectively (F Z̃t ), as indicated in
Proposition 1.4.1.

Remark 1.5.2 above shows that Γ0 is a hyperbolic line in U , hence f−1(Γ0) is a hyperbolic line
in U . Since 0 = f−1(w1) ∈ f−1(Γ0), it follows that f−1(Γ0) is in fact a diameter of U . By Remark
1.4.7, without loss of generality we can assume that f−1(Γ0) = [−1, 1].
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If s > 0 is such that Im W̃s = 0, by construction of the coupling we have Im f(
Zβs
Mβs

) = 0.

Because under f the parts of the boundaries of U+ and D+ lying on the horizontal axis correspond
to each other, Im

Zβs
Mβs

= 0. Since Mβs is real, it follows that ImZβs = 0.

Since D is convex, by Proposition 1.4.9 it follows that βs ≤ αs. Since αs is increasing (and a
bijection) on [0,∞), there exists s′ ≤ s such that αs′ = βs.

It follows that ImZαs′ = ImZβs = 0, hence Ws′ = f(Zαs′ ) is on the horizontal axis.

We have shown that if Im W̃s = 0, then there exists s′ ≤ s such that ImWs′ = 0, which implies
that τw0 ≤ τ w̃0 a.s., as needed.

We can now prove a first version of our main result:

Theorem 1.5.4. Let D be a convex C1,α domain (0 < α < 1) which is symmetric with respect to
the horizontal axis. If ϕ is a second Neumann eigenfunction for D which is antisymmetric with
respect to the horizontal axis, then ϕ is monotone on the family of hyperbolic lines in D which
intersect the horizontal axis.

In particular, ϕ must attain its maximum and minimum over D on the boundary of D.

Proof. By the assumption, ϕ must be identical zero on the horizontal axis, and therefore the nodal
line for ϕ is Γ0 (the part of the horizontal axis contained in D). It follows that D+ and D− are
the nodal domains of ϕ.

Since ϕ has constant sign on each nodal domain, without loss of generality we will assume that
ϕ is positive on D+. Since ϕ is antisymmetric with respect to the horizontal axis, it suffices to
prove the monotonicity of ϕ in D+ along the indicated family of curves.

Consider an arbitrarily fixed hyperbolic line in D, which intersects the horizontal axis, and
denote by w1 the point of intersection. If w0, w̃0 ∈ D+ are arbitarily chosen points lying on this
hyperbolic line, such that w0 ∈ [w1, w̃0], we will show that ϕ(w0) ≤ ϕ(w̃0).

Since the restriction of a second Neumann eigenfunction for D to one of its nodal domains
has constant sign, by preliminary remarks it follows that it is a first mixed Neuman-Dirichlet
eigenfunction for the corresponding nodal domain. Therefore, the restriction of ϕ to D+ is a first
mixed Dirichlet-Neumann eigenfunction for D+, with Neumann conditions on Γ+ and Dirichlet
conditions on Γ0.

It can be shown ([63], pp. 20) that the transition density pD+(t, x, y) of reflecting Brownian
motion in D+, killed on hitting the horizontal axis, has an eigenfunction expansion in terms of the
mixed Dirichlet-Neumann eigenfunctions for D+, with Dirichlet boundary conditions on Γ0 and
Neumann conditions on Γ+. More precisely, it can be shown that:

pD+(t, x, y) =
∑
i≥1

e−µitϕi(x)ϕi(y),

where 0 < µ1 < µ2 ≤ ... are the mixed Dirichlet-Neumann eigenvalues for D+ repeated according
to the multiplicity, and {ϕi}i≥1 is an orthonormal sequence of eigenfunctions corresponding to the

eigenvalues {µi}i≥1. Moreover, the convergence is uniform and absolute on D+.

Note that since µ1 is simple, the corresponding eigenspace is 1-dimensional, and therefore
ϕ1 = cϕ, for some nonzero constant c. Also note that since µ1 < µi, for all i ≥ 2, we can write:

pD+(t, x, y) = e−µ1tϕ1(x)ϕ1(y) +R(t, x, y) (1.5.3)

= c2e−µ1tϕ(x)ϕ(y) +R(t, x, y),

where lim
t→∞

eµ1tR(t, x, y) = 0, uniformly in x, y ∈ D+.

Consider the function u : (0,∞) × D → R given by u(t, x) = E[1; τx > t], where τx is the
lifetime of reflecting Brownian motion in D+ starting at x, killed on hitting Γ0. Integrating the
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eigenfunction expansion (1.5.3), we obtain:

u(t, x) =

∫
D+

pD+(t, x, y)dy (1.5.4)

= c2e−µ1tϕ(x)

∫
D+

ϕ(y)dy +

∫
D+

R(t, x, y)dy =

= ae−µ1tϕ(x) +R1(t, x),

where, by assumption, a = c2
∫
D+

ϕ(y)dy > 0 and R1(t, x) approaches zero faster than e−µ1t as

t→∞.
Since u(t, x) = P (τx > t), and using the monotonicity property in Lemma 1.5.3, it follows that

for any t ≥ 0 we have:

u(t, w0) = P (τw0 > t)

≤ P (τ w̃0 > t)

= u(t, w̃0).

Using the analytic representation (1.5.4) of u(t, ·) we obtain therefore:

aϕ(w0) + eµ1tR1(t, w0) ≤ aϕ(w̃0) + eµ1tR1(t, w̃0),

for all t ≥ 0. Letting t → ∞, it follows aϕ(w0) ≤ aϕ(w̃0), and since a > 0, we obtain ϕ(w0) ≤
ϕ(w̃0), as needed.

The above theorem leaves open the question whether ϕ can also attain its maximum/minimum
over D inside the domain. We will show that under the hypotheses of the previous theorem this
cannot happen; more generally, we will show that ϕ is strictly monotone on the family of hyperbolic
lines which intersect nontrivially the axis of symmetry of D. We have:

Theorem 1.5.5. Under the hypotheses of the previous theorem, for any a 6= 0, the intersection
between a level set ϕ−1({a}) = {x ∈ D : ϕ(x) = a} of ϕ and a hyperbolic line of D which intersects
the horizontal axis, consists of at most one point.

Proof. Assume there exists distinct points w1, w2 such that ϕ(w1) = ϕ(w2) 6= 0 and the hyperbolic
line w1w2 intersects the horizontal axis, say at w0. Without loss of generality we can assume
ϕ(w1) = ϕ(w2) > 0, and therefore w1, w2 ∈ D+. Also, we may assume that w1 ∈ [w0, w2].

Consider the points z1, z2 ∈ Γ0 such that z1 < w0 < z2.
We will show that [w1, z3] ∩ [z2, w2] 6= ∅, where z3 is the endpoint of the hyperbolic line z1w1

lying on ∂D+ − Γ0.
Note that by Proposition 1.4.3, the intersection of any two hyperbolic lines consists of at most

one point.
Since [w1, z3] ∩ w1w2 = {w1}, it follows that the hyperbolic segment [w1, z3] is contained in

the right (hyperbolic) half plane determined by the hyperbolic line w1w2 (see Figure 1.1). If
[w1, z3]∩ [z2, w2] = ∅, then [w1, z3] is also contained in the left (hyperbolic) half plane determined
by the hyperbolic line z2w2. It follows that z3 ∈ [w1, z3] must be contained in their intersection;
however, since z3 ∈ D+ − Γ0, this is possible only if z3 = w2, contradicting [w1, z3] ∩ [z2, w2] = ∅.

Therefore we must have [w1, z3] ∩ [z2, w2] 6= ∅, and we denote by w3 the point of intersection.
By applying the previous theorem to the hyperbolic lines w1w2, w1w3 and respectively w3w2,

we obtain:

ϕ(w1) ≤ ϕ(z) ≤ ϕ(w2)

ϕ(w1) ≤ ϕ(z′) ≤ ϕ(w3)

ϕ(w3) ≤ ϕ(z′′) ≤ ϕ(w2),
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w2

z3

D

Figure 1.1: Hyperbolic lines in D.

for all z ∈ [w1, w2], z′ ∈ [w1, w3], z′′ ∈ [w3, w2]. Since by hypothesis ϕ(w1) = ϕ(w2), we obtain
that ϕ(z) = ϕ(w1) = ϕ(w2) = ϕ(w3), for all z ∈.[w1, w2] ∪ [w1, w3] ∪ [w3, w2].

Choosing now an arbitrarily fixed z2 ∈ [w1, w3] and applying again the previous theorem to
the hyperbolic line zw2 (which intersects the horizontal axis between w0 and z2), we obtain

ϕ(w2) = ϕ(z) ≤ ϕ(z′) ≤ ϕ(w2),

for all z′ ∈ [z, w2]. Therefore we have that ϕ(z′) = ϕ(w2), for all z′ ∈ [z, w2] where z ∈ [w1, w3].
It follows that ϕ is constant on the interior of the (hyperbolic) triangle with vertices w1, w2

and w3. Since the points w1, w2, w3 do not lie on the same hyperbolic line, the interior of this
triangle is not empty.

However, ϕ, being a nonconstant real analytic function, cannot be constant on a nonempty
open set. The contradiction shows that ϕ is injective on every hyperbolic line (of course, except
Γ0) intersecting the horizontal axis, thus proving the claim.

Using the above theorem, we can strengthen the result in Theorem 1.5.4, and we state:

Theorem 1.5.6. Let D be a convex C1,α domain (0 < α < 1) which is symmetric with respect to
the horizontal axis. If ϕ is a second Neumann eigenfunction for D which is antisymmetric with
respect to the horizontal axis, then ϕ is strictly monotone on the family of hyperbolic lines in D
which intersect nontrivially the horizontal axis.

In particular, ϕ must attain its maximum and minimum over D solely at the boundary of D.

As an immediate consequence, we have:

Corollary 1.5.7. Let D be a convex C1,α domain (0 < α < 1) which is symmetric with respect
to the horizontal axis. If ϕ is a second Neumann eigenfunction for D which is antisymmetric with
respect to the horizontal axis, then the hot spots conjecture holds for ϕ.

As another consequence of Theorem 1.5.6, we obtain the following properties of the level sets of
antisymmetric second Neumann eigenfunctions of convex C1,α domains with a line of symmetry:

Corollary 1.5.8. Let D be a convex C1,α domain (0 < α < 1) which is symmetric with respect
to the horizontal axis. If ϕ is a second Neumann eigenfunction for D which is antisymmetric with
respect to the horizontal axis, then the level curves of ϕ are unions of disjoint simple curves in D
(possibly reduced to a single point). Moreover, no level curve of ϕ can terminate in D.
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1.5.2 Comparisons with known results

The hot spots conjecture is known to be true for relatively small classes of domains (parallelepipeds,
balls and annuli in Rd, obtuse triangles). According to the knowledge of the author, the only papers
in the literature which contain the proof of the hot spots conjecture for general classes of domains
are [7] and [48]. We will refer to these papers for a comparison of our results.

For a bounded planar domain D, we will denote the diameter of D by dD, the length of the
projection of D on the vertical axis by wD, the length of the projection of D on the horizontal
axis by lD, and will refer them as the diameter, the width and respectively the length of D.

In [7], Bañuelos and Burdzy used probabilistic techniques (based on synchronous and mirror
couplings of reflecting Brownian motions in polygonal domains) to prove the following:

Theorem 1.5.9. Suppose that a convex polygonal domain D is symmetric with respect to the
horizontal axis S and the ratio dD/wD is greater than 1.54. Let x and y be the intersection points
of S with ∂D. Make at least one of the following two assumptions:

a) D has another line of symmetry S1 which is perpendicular on S;
b) For every r > 0, the intersection of the circle ∂B(x, r) with D is either empty or is a

connected arc, and the same holds for ∂B(y, r).
Then hot spots conjecture, holds for D.

More recently, Jerison and Nadirashvili used deformation of the domain techniques (see [48])
in order to refine the above result in the case of domains having two orthogonal axes of symmetry.
They showed the following:

Theorem 1.5.10. Let Ω be a bounded convex domain in the plane that is symmetric with respect
to both coordinate axes. Let u be any Neumann eigenfunction with lowest nonzero eigenvalue.
Then, except in the case of a rectangle, u achieves its maximum over Ω on the boundary at exactly
one point, and likewise for its minimum. Furthermore, if x0 ∈ ∂Ω and −x0 ∈ ∂Ω denote the
places where u achieves its maximum and minimum, then u is monotone along the two arcs of the
boundary from −x0 to x0. Let ν be any outer normal to ∂Ω at x0, that is ν · (x− x0) < 0 for all
x ∈ Ω. Then ν · ∇u(x) > 0 for all x ∈ Ω.

As indicated in [48], the uniqueness of the location of the extrema of u may fail for domains
not having two orthogonal axis of symmetry (for example an equilateral triangle has a second
Neumann eigenfunction which attains its maximum at two of its vertices and the minimum at
the third vertex). We make the remark that in the present paper we are concerned with the hot
spots conjecture in the form presented in Conjecture 1.5.1, and we will not attempt to prove that
the extrema are attained at a single point (this may fail for general domains, as showed in the
example above).

Theorem 1.5.9 provides additional hypotheses under which the hot spots conjecture holds, for
the case of convex domains having just one axis of symmetry (additional hypothesis b)).

We will show that our main result in Theorem 1.5.6 gives the hot spots conjecture for smooth
convex domains with two orthogonal axes of symmetry (without any restriction on their diameter
to width ratio), thus obtaining the cited results (Theorem 1.5.9 with the additional hypothesis a)
and Theorem 1.5.10).

Also, we will show that we can apply Theorem 1.5.6 to the case of domains having just one axis
of symmetry and satisfying an additional restriction on their diameter to width ratio, obtaining a
result similar to Theorem 1.5.9 (with additional hypothesis b)), but which is complimentary to it.

We will consider first the case of convex domains having two orthogonal axes of symmetry. We
have:

Theorem 1.5.11. If D is a convex C1,α domain (0 < α < 1), symmetric with respect to both
coordinate axes, then hot spots conjecture holds for D.

Proof. It is known (see [60]) that the eigenspace corresponding to the second Neumann eigenvalue
of a simply connected planar domain is at most 2-dimensional.
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We will consider first the case when the eigenspace corresponding to the second Neumann
eigenvalue for D is 1-dimensional. We will show that in this case we can find a second Neumann
eigenfunction ϕ̃ for D which is antisymmetric with respect to one of the coordinate axes. From
this and using Theorem 1.5.6 the result follows.

Let ϕ be a second Neumann eigenfunction forD. If ϕ is antisymmetric with respect to one of the
coordinate axes, we are done. Otherwise we consider the functions ϕ1(x, y) = ϕ(x, y) − ϕ(x,−y)
and ϕ2(x, y) = ϕ(x, y) − ϕ(−x, y), and note that they are antisymmetric with respect to the
horizontal, respectively vertical axis and that both of them are eigenfunctions (possibly identically
zero) corresponding to the second eigenvalue of D.

Note that ϕ1 and ϕ2 cannot be both identically zero. This is so for otherwise ϕ would be
symmetric with respect to both coordinate axes. However, this cannot happen since the nodal
line of ϕ cannot form a closed loop and since ϕ has exactly two nodal domains.

It follows that we can always find a (not identically zero) second eigenfunction ϕ̃ for D which
is antisymmetric with respect to one of the coordinate axes. It follows that Theorem 1.5.6 applies
to ϕ̃, and therefore the hot spots conjecture holds for ϕ̃. Since the eigenspace corresponding to
the second Neumann eigenvalue for D is 1-dimensional, it follows that the hot spots conjecture
holds for D, ending the proof in this case.

We will consider now the case when the eigenspace corresponding to the second Neumann
eigenvalue is 2-dimensional. We will show that we can find two independent second Neumann
eigenfunctions ϕ̃1 and ϕ̃2 which are antisymmetric with respect to horizontal, respectively vertical
axis.

Consider ϕ1 and ϕ2 two linearly independent second Neumann eigenfunctions for D.

Note that if one of the eigenfunctions is symmetric with respect to one of the axes, then it
has to be antisymmetric with respect to the other axis; conversely, if one of the eigenfunctions is
antisymmetric with respect to one of the axes, then it has to be symmetric with respect to the
other axis. To see this, if for example ϕ1 is antisymmetric with respect to horizontal axis, note
that ϕ1(x, y) = ϕ̃1(x, y)−ϕ̃1(−x, y) is a second Neumann eigenfunction for D, antisymmetric with
respect to both coordinate axes; unless ϕ1 is identically zero, ϕ1 would have at least four nodal
domains, which is impossible by Courant Nodal domain theorem. Hence ϕ1 is identically zero, or
equivalent ϕ1 is symmetric with respect to the horizontal axis. Similar reasoning applies to the
other cases.

It follows that ϕ1 and ϕ2 cannot be symmetric with respect to the same symmetry axis, for they
are independent. Also, neither ϕ1, nor ϕ2 cannot be symmetric with respect to both symmetry
axes.

Without loss of generality we can thus assume that ϕ1 is not symmetric with respect to hor-
izontal, and that ϕ2 is not symmetric with respect to vertical axis. We can therefore choose
ϕ̃1(x, y) = ϕ1(x, y)− ϕ1(x,−y) and ϕ̃2(x, y) = ϕ2(x, y)− ϕ2(−x, y) and note that they are inde-
pendent, not identically zero second Neumann eigenfunctions for D, antisymmetric with respect
to horizontal, respectively vertical axis. Moreover, from the previous part of the proof it follows
that ϕ̃1 is symmetric with respect to the vertical axis, and ϕ̃2 is symmetric with respect to the
horizontal axis.

It follows that Theorem 1.5.6 applies to ϕ̃1 and ϕ̃2, and therefore the hot spots conjecture
holds for them. Moreover, ϕ̃1 is strictly monotone on the family of hyperbolic lines intersecting
the horizontal axis and ϕ̃2 is strictly monotone on the family of hyperbolic lines intersecting the
vertical axis. In particular, both ϕ̃1 and ϕ̃2 are strictly monotone on all hyperbolic lines passing
through the origin.

Consider now an arbitrarily chosen second Neumann eigenfunction ϕ for D. Since ϕ̃1 and
ϕ̃2 are independent and the eigenspace corresponding to the second Neumann eigenvalue is 2-
dimensional, we can find constants a, b such that ϕ = aϕ̃1 + bϕ̃2.

Consider a point z0 = (x0, y0) ∈ D where ϕ attains its maximum over D. We will show that
we must have z0 ∈ ∂D. If aϕ̃1(z0) < 0, since ϕ̃1 is antisymmetric with respect to the horizontal
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axis and ϕ̃2 is symmetric with respect to the horizontal axis, we obtain:

ϕ(z0) = aϕ̃1(x0, y0) + bϕ̃2(x0, y0)

< aϕ̃1(x0,−y0) + bϕ̃2(x0,−y0)

= ϕ(x0,−y0),

a contradiction. It follows that we must have aϕ̃1(z0) ≥ 0, and similarly bϕ̃2(z0) ≥ 0. Since both
ϕ̃1 and ϕ̃2 are strictly monotone on the hyperbolic line through 0 and z0, it follows that ϕ is
strictly increasing on the hyperbolic half line with the endpoint 0 and passing through z0. Since
ϕ attains its maximum at z0, it follows that z0 ∈ ∂D. Similar reasoning shows that if ϕ attains
its minimum at a point, then the point must belong to the boundary ∂D, and therefore the hot
spots conjecture holds for ϕ.

Since ϕ was arbitrarily chosen, it follows that the hot spots conjecture holds for D.

In [7] it is shown that if D is a convex domain symmetric with respect to the horizontal axis, and
the ratio dD/wD is larger than 1.54, then the eigenspace corresponding to the second eigenvalue is
1-dimensional, and there is no second Neumann eigenfunction for D which is antisymmetric with
respect to the horizontal axis, hence and our result in Theorem 1.5.6 does not apply. Rephrasing
this, we can say that if a domain D having the horizontal axis as line of symmetry is “long
enough”, then the second Neumann eigenfunctions for D have to be symmetric with respect to
the horizontal axis. One might expect that if the domain is “wide enough”, then the second
Neumann eigenfunctions have to be antisymmetric with respect to the horizontal axis. This is
true, and we state:

Proposition 1.5.12. Suppose that D is a convex C1,α domain (0 < α < 1) which is symmetric
with respect to the horizontal axis, and the diameter to length ratio dD/lD is larger than 4j0

π ≈ 3.06.
Then the eigenspace corresponding to the second Neumann eigenvalue for D is 1-dimensional and
it is given by a function which is antisymmetric with respect to the horizontal axis.

Proof. The first part follows from Proposition 2.4i) in [7]. To prove the second part of the state-
ment, we will use a modification of an argument found in [7].

Assume there exists a second Neumann eigenfunction ϕ for D which is symmetric with respect
to the horizontal axis. Let D1 be one of the nodal domains of ϕ, with the property that the
horizontal component of the inner pointing normal at the common boundary of D1 and D always
points in the same direction (i.e. either left or right). The existence of D1 with the above property
follows from the convexity of the domain and the fact that the nodal domains of ϕ are symmetric
with respect to the horizontal axis.

We will estimate the first mixed Dirichlet-Neumann eigenvalue for D1 (denoted λ1), which is
the same as the second eigenvalue for D (denoted µ2).

For this, consider a reflecting Brownian motion (Xt, Yt) in D1, killed upon hitting the nodal line
of ϕ. Note that the horizontal component Xt is a Brownian motion plus (or minus) a nondecreasing
process (we are using here the fact that the horizontal component of the inner pointing normal to
the common boundary of D1 and D is always pointing in the same direction).

By a comparison argument, it can be shown that the distribution of the lifetime of Xt is
majorized by the distribution of the lifetime of a one dimensional Brownian motion on a interval
of length lD, killed at one end, and reflected at the other. This latter is majorized by ce−λt,

where λ is the first Dirichlet-Neumann eigenvalue for the given interval, i.e. λ = π2

8l2D
(for it is the

second Neumann eigenvalue of an interval of double length, i.e. π2

2(2lD)2 ). It follows that we have

µ2 = λ1 ≥ λ = π2

8l2D
.

It is also known (see [7]) that for convex domains, we have µ2 ≤ 2j20
l2D

, thus we must have

π2

8l2D
≤ 2j20

d2D
, or equivalent dD

lD
≤ 4j0

π .

It follows that if this inequality doesn’t hold (i.e. for sufficiently “wide” domains, symmetric
with respect to the horizontal axis), there are no second Neumann eigenfunctions for D which are
symmetric with respect to the horizontal axis.
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To conclude the proof, consider an arbitrarily fixed second Neumann eigenfunction ϕ1 for D,
and define ϕ̃(x, y) = ϕ1(x, y)−ϕ1(x,−y). From the previous part of the proof it follows that ϕ̃ is
not identically zero, and hence it is a second Neumann eigenfunction for D, antisymmetric with
respect to the horizontal axis.

Using the above proposition and Corollary 1.5.7 we obtain the proof of the hot spots conjecture
for a new class of domains, as follows:

Corollary 1.5.13. Suppose that D is a C1,α convex domain (0 < α < 1), symmetric with respect
to the horizontal axis and the diameter to width ratio dD/lD is larger than 4j0

π ≈ 3.06. Then the
hot spots conjecture holds for D.

1.5.3 Further developments

We conclude with three remarks.
First, note that because of the ratio diameter to width restriction in Theorem 1.5.9, essentially

the results of Burdzy and Bañuelos apply to convex domains with one axis of symmetry, for
which the eigenspace corresponding to the second Neumann eigenvalue is 1-dimensional, being
given by an eigenfunction which is symmetric with respect to the axis of symmetry. Our result in
Corollary 1.5.13 is complimentary to this, giving the proof of the hot spots conjecture for (smooth)
convex domains with one axis of symmetry, for which the eigenspace corresponding to the second
Neumann eigenvalue is 1-dimensional, being given by an eigenfunction which is antisymmetric
with respect to the axis of symmetry.

In our view, these two results together should give a resolution to the hot spots conjecture
in the case of convex domains with a line of symmetry (and no restrictions on their diameter to
width), but we were not able to implement it.

Secondly, we will discuss how the hypotheses of our main result in Theorem 1.5.6 can be
weakened. There are two main ingredients in the proof: the symmetry and the convexity.

Even though the symmetry of the domain and the antisymmetry of the Neumann eigenfunction
hypotheses are needed in the proof, we can carry the proof with weaker assumptions. A carefull
examination of the proof shows that we can replace these hypotheses as follows:

Theorem 1.5.14. Let D be a convex C1,α (0 < α < 1) domain and let ϕ be a second Neumann
eigenfunction for D. If the nodal line of ϕ is a hyperbolic line in D, then ϕ is strictly monotone
on the family of hyperbolic lines in D which intersect nontrivially the nodal line of ϕ.

In particular the hot spots conjecture holds for ϕ.

The hypothesis on the nodal line ϕ in the above theorem can still be weakened, by requiring
instead that the nodal domains of ϕ are hyperbolically starlike in D ( i.e. starlike with respect
to the hyperbolic lines in D). Geometrically this means that the nodal line of ϕ is “completely
visible” from w along the hyperbolic lines in D. We state:

Theorem 1.5.15. Let D be a convex C1,α (0 < α < 1) domain and let ϕ be a second Neumann
eigenfunction for D, with nodal domains D+ = {x ∈ D : ϕ(x) > 0} and D− = {x ∈ D : ϕ(x) < 0}.
Assume there exists a point w ∈ D− such that D− is hyperbolically starlike with respect to w. Then
ϕ is monotone in D+ along the family of hyperbolic lines in D which pass through w. In particular
ϕ must attain its maximum over D at the boundary of D. Similar statement holds for D−.

The convexity of the domain is a key element in our construction of scaling coupling of reflecting
Brownian motions (see Proposition 1.4.9), needed in order to prove the hot spots conjecture, and
therefore we cannot dispense of it. However, the scaling coupling can be defined in certain annuli-
like domains, and it has the same properties outlined in our construction for convex C1,α domains
(0 < α < 1). This in turn leads to a proof of the hot spots conjecture for certain type of second
Neumann eigenfunctions of doubly connected domains, where almost nothing is known in the
literature. We have:
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Theorem 1.5.16. Let D = {f(z) : a < |z| < 1}, where f : U → C is a conformal map of U onto
a convex C1,α domain (0 < α < 1) and a ∈ (0, 1) is arbitrarily fixed. If ϕ is a second Neumann
eigenfunction for D, for which the nodal line is a part of a hyperbolic line l in f(U), then ϕ is
monotone in D on the family of hyperbolic lines in f(U) passing through f(0). In particular ϕ
attains its maximum and minimum over D at the boundary of D.

1.6 A Hot-Spots property for the Brownian motion with
killing and reflection

In this section we investigate a “hot–spots” property for the survival time probability of Brownian
motion with killing and reflection in planar convex domains whose boundary consists of two
curves, one of which is an arc of a circle, intersecting at acute angles. In turn, this leads to the
“hot–spots” property for the mixed Dirichlet–Neumann eigenvalue problem in the domain with
Neumann conditions on one of the curves and Dirichlet conditions on the other.

The Hot Spots conjecture introduced in Section 1.5 can be formulated in terms of a mixed
Dirichlet–Neumann eigenvalue problem as discussed in [9] and [64]. In this section we explore this
mixed boundary value problem further and in particular we extend the results in [64] and [9].

Briefly, the connection is the following. Assume that D is a planar convex domain for which
the Laplacian with Neumann boundary conditions has discrete spectrum (see Section 1.5 for the
details about eigenfunctions and eigenvalues). Under various conditions on D (see for example
[13]) it can be shown that the second Neumann eigenvalue λ2 for the Laplacian on D is simple
(note that by Courant’s Nodal Line Theorem, the multiplicity of λ2 is at most 2). If ϕ2 is any
Neumann eigenfunction corresponding to λ2, and γ is its corresponding nodal line, and D1,2 are
the corresponding nodal domains, then the restriction of ϕ2 to D1 (or D2) is an eigenfunction
corresponding to the smallest eigenvalue µ1 for the Laplacian in D1 with Dirichlet boundary
conditions on γ and Neumann boundary conditions on ∂D1\γ. In this formulation, the Hot Spots
Conjecture 1.5.1 is equivalent to the assertion that the restrictions of ϕ2 to D1 and D2 attain their
extrema on, and only on, ∂D1, respectively ∂D2.

The results in [64] and [9] can be stated in terms of the above mixed Dirichlet-Neumann
boundary value problem as follows. Suppose that D is planar convex domain whose boundary
consists of the curve γ1 and the line segment γ2. Let µ1 be the lowest eigenvalue for the Laplacian
in D with Neumann boundary conditions on γ1 and Dirichlet boundary conditions on γ2. Let
ψ1 : D → [0,∞) be the ground state eigenfunction (unique up to a multiplicative constant)
corresponding to µ1. Then ψ1 attains its maximum on, and only on, γ1. In fact, the results in
[64], [9] prove more. If Bt is a reflecting Brownian motion in D starting at z ∈ D and killed
on γ2, and τ denote its lifetime (the first time Bt hits γ2), then, for an arbitrarily fixed t > 0,
the function u(z) = P z{τ > t} attains its maximum, as a function of z ∈ D, on, and only on,
γ1. Furthermore, both functions u(z) and ψ1(z) are strictly increasing as z moves toward the
boundary γ1 of D along hyperbolic line segments (see [64] and [9] for the precise definitions of
hyperbolic line segments and for the details of how the result for u implies the result for ψ1.) The
following question, first raised in [9], naturally arises:

Question 1.6.1. Given a bounded simply connected planar domain whose boundary consists of
two smooth curves, what conditions must one impose on these two curves in order for the ground
state eigenfunction of the mixed boundary value problem (Dirichlet conditions on one curve and
Neumann on the other) to attain its maximum on the boundary and only on the boundary?

In this section we prove the following theorem which extends the results in [64] and [9] by
replacing the hypothesis that γ2 is a line segment by the hypothesis that γ2 is an arc of a circle.

Theorem 1.6.2. Suppose D is a bounded convex planar domain whose boundary consists of two
curves γ1 = (γ1(t))t∈[0,1] and γ2 = (γ2(t))t∈[0,1], one of which is an arc of a circle. Further,
suppose that the angle between the curves γ1 and γ2 is less than or equal to π

2 , that is, the angle
formed by the two half-tangents at γ1(0) = γ2(0) and γ1(1) = γ2(1) is less than or equal to π

2 .
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If Bt is a reflecting Brownian motion in D starting at z and killed on γ2, and if τD denote its
lifetime, then for each t > 0 arbitrarily fixed, the function u(z) = P z{τD > t}, z ∈ D, attains it
maximum on, and only on γ1.

As a corollary, we derive the following.

Corollary 1.6.3 (“Hot–spots” for the mixed boundary value problem). Let D be as in Theorem
1.6.2, and let ψ1 be a first mixed Dirichlet-Neumann eigenfunction for the Laplacian in D, with
Neumann boundary conditions on γ1 and Dirichlet boundary conditions on γ2. Then the function
ψ1(z), z ∈ D, attains its maximum on, and only on γ1.

Proof. Follows from Theorem 1.6.2 exactly as in [9] (see [10] for the details).

Remark 1.6.4. Moreover, in the proofs of the above results we show that the functions u(z) and
ψ1(z) are in fact strictly increasing along certain families of curves in D: Euclidean radii contained
in D in the case when γ1 is an arc of a circle, and hyperbolic line segments in D (see Definition
1.4.2), in the case when γ2 is an arc of a circle.

The proof of Theorem 1.6.2 is different depending on which one of the curves γ1 or γ2 is an arc
of a circle. In the case when γ2 is an arc of a circle, the proof rests on several preliminary results,
which we present below.

Proposition 1.6.5. Let D be as in Theorem 1.6.2 and suppose that γ2 is an arc of a circle
C = ∂B(z0, R). Let Ds be the domain which is symmetric to the domain D with respect to the
circle C, that is

Ds = {z0 +
R2

z − z0
: z ∈ D}.

Then D∗ = D ∪ γ2 ∪Ds is a convex domain.

Proof. For a complex number z we will use Rez and Imz to denote the real, respectively the
imaginary part of the complex number z ∈ C.

Without loss of generality we can assume that C = ∂B(0, 1) is the circle centered at the
origin of radius 1 and that γ1(0) and γ1(1) are symmetric with respect to the vertical axis, that is
Imγ1(0) = Imγ2(1). Further, we may assume that γ2 contains the point −i.

We will first show that Imγ1(0) ≤ 0. To see this, note that since the domain D is convex, it
lies below its half-tangent at the point γ1(0), and by the angle restriction this half-line lies below
the line passing through γ1(0) and the origin. If Imγ1(0) > 0 then also Imγ1(1) = Imγ1(0) > 0,
and therefore the point γ1(1) ∈ ∂D does not lie below (or on) the line determined by γ1(0) and 0,
a contradiction. We must therefore have Imγ1(0) = Imγ1(1) ≤ 0.

If Imγ1(0) = Imγ1(1) = 0, by the angle restriction at these points, together with the fact that D
is a convex domain (and hence γ1 is a concave down curve), it follows that the curve γ1 is in this case
the line segment [−1, 1], and therefore D = {z ∈ C : Imz < 0, |z| < 1}. The proof is trivial in this
case since Ds = {z ∈ C : Imz < 0, |z| > 1}, and therefore D∗ = D ∪ γ2 ∪Ds = {z ∈ C : Imz < 0}
which is a convex domain.

A similar argument shows that if 0 ∈ γ1 ⊂ ∂D, then the curve γ1 consists of the union of the
two line segments from γ1(0) to 0, respectively from 0 to γ1(1), hence Dis a sector of the unit disk.
It follows that D∗ = D ∪ γ2 ∪Ds = {z ∈ C− {0} : arg γ1(0) < arg z < arg γ1(1)}, which is again
a convex set. We can therefore assume that Imγ1(0) = Imγ1(1) < 0 and 0 /∈ D ∪ ∂D. It follows
that the domain D is contained in the circular sector {z ∈ C − {0} : |z| < 1, arg γ1(0) < arg z <
arg γ1(1)}, and therefore D∗ = D ∪ γ2 ∪ Ds is contained in {z ∈ C − {0} : arg γ1(0) < arg z <
arg γ1(1)}. It follows that for any points w1, w2 ∈ D∗ = D ∪ γ2 ∪ Ds, the line segment [w1, w2]
may intersect the circle C only on the arc γ2 (and not on C − γ2). Since D is convex domain, it
follows that D∗ = D ∪ γ2 ∪Ds is a convex domain if and only if

w1 ∈ Ds, w2 ∈ γ2 ∪Ds s.t. [w1, w2] ∩ γ2 ∈ {∅, {w2}} ⇒ [w1, w2] ⊂ D∗, (1.6.1)

where [w1, w2] denotes the line segment with endpoints w1 and w2.
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Figure 1.2: The set D∗ = D ∪ γ2 ∪Ds.

Since the set is symmetric to a line with respect to C is a circle passing through the origin,
by letting z1, z2 be the symmetric points of w1, respectively w2 with respect to C, (1.6.1) can be
rewritten equivalently as

z1 ∈ D, z2 ∈ γ2 ∪D s.t. ẑ1z2 ∩ γ2 ∈ {∅, {z2}} ⇒ ẑ1z2 ⊂ γ2 ∪D, (1.6.2)

where ẑ1z2 denotes the arc of the circle C(0, z1, z2) passing through z1, z2 and 0, between (and
including) z1 and z2, and not containing 0. If the points z1, z2 and 0 are collinear, the arc ẑ1z2

becomes the line segment [z1, z2].
To show the claim, we will prove (1.6.2). Let z1 ∈ D, z2 ∈ γ2∪D such that ẑ1z2∩γ2 ∈ {∅, {z2}}.

If the points 0, z1 and z2 are collinear, ẑ1z2 = [z1, z2] ⊂ γ2 ∪D, so we may assume that 0, z1 and
z2 are not collinear.

Assume first that the circle C(0, z1, z2) does not intersect C. Since γ1 bounds the convex
domain D, the intersection γ1 ∩ C(0, z1, z2) consists of exactly two points u1 and u2(see Figure
1.2). It follows that the intersection between D and C(0, z1, z2) is the arc û1u2, and therefore we
have ẑ1z2 ⊂ û1u2 ⊂ D in this case.

If the circle C(0, z1, z2) intersects C, the intersection C(0, z1, z2) ∩ D is either one or two
(connected) arcs c1 and c2. Note that z1 and z2 must lie on the same connected arc ci (i = 1
or i = 2), for otherwise the intersection ẑ1z2 ∩ γ2 would consist of two distinct points (the two
endpoints of c1 and c2 lying on γ2). If z1, z2 ∈ c1, since c1 is a connected arc lying in D, we have
ẑ1z2 ⊂ c1 ∪ γ2 ⊂ D ∪ γ2 and the claim follows. This completes the proof of the Proposition.

As a corollary, we obtain the following.

Corollary 1.6.6. Let D be as in Theorem 1.6.2 and suppose that γ2 is an arc of a circle. Let
U = {z ∈ C : |z| < 1} be the unit disk and U+ = {z ∈ U : Imz > 0} be the upper half-disk. Let
f : U+ → D be a conformal map such that f [−1, 1] = γ2. Then f extends to a conformal map
from U onto the convex domain D∗.

Proof. Follows by using the Schwarz reflection principle and the previous lemma. See [10] for the
details.

In order to prove Theorem 1.6.2 in the case when γ2 is an arc of a circle we also need the
following theorem, which may be of independent interest.
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Theorem 1.6.7. Let Ud = {ζ ∈ Rd : ‖ζ‖ < 1} be the unit ball in Rd, d ≥ 2, and let U+
d = {ζ =

(ζ1, ..., ζd) ∈ Ud : ζd > 0} be the upper hemisphere in Rd.

Suppose that V : U+
d → (0,∞) is a continuous potential for which r2V (rζ) is a nondecreasing

function of r ∈ (0, 1
‖ζ‖ ) for any ζ ∈ U+

d arbitrarily fixed. That is, suppose that

r2
1V (r1ζ) ≤ r2

2V (r2ζ), (1.6.3)

for all ζ ∈ U+
d , 0 < r1 < r2 <

1
‖ζ‖ .

Let Bt be a reflecting Brownian motion in U+
d killed on the hyperplane H = {ζ = (ζ1, ..., ζd) ∈

Rd : ζd = 0}, and let τU+
d

denote its lifetime. Then for any arbitrarily fixed t > 0 and ζ ∈ U+
d ,

P rζ
(∫ τU+

d
0 V (Bs)ds > t

)
is a non-decreasing function of r ∈ (0, 1

‖ζ‖ ), that is

P r1ζ
(∫ τ

U
+
d

0

V (Bs)ds > t

)
≤ P r2ζ

(∫ τ
U

+
d

0

V (Bs)ds > t

)
, (1.6.4)

for all t > 0, ζ ∈ U+
d and 0 < r1 < r2 <

1
‖ζ‖ .

Moreover, if the inequality in (1.6.3) is a strict inequality, so is the one in (1.6.4).

Proof. Fix t > 0, ζ ∈ U+
d and 0 < r1 < r2 <

1
‖ζ‖ .

Consider a scaling coupling of reflecting Brownian motions (Bt, B̃t) in the unit ball Ud starting
at (r1ζ, r2ζ) (see Section 1.3). More precisely, let Bt be reflecting Brownian motion in Ud starting
at r1ζ ∈ Ud, with its natural filtration (Ft), and consider

B̃t =
1

Mαt

Bαt , t ≥ 0, (1.6.5)

where
Mt =

r1

r2
∨ sup
s≤t
‖Bs‖ , (1.6.6)

At =

∫ t

0

1

M2
s

ds, (1.6.7)

and
αt = inf{s > 0 : As ≥ t}. (1.6.8)

Theorem 1.3.1 and Remark 1.3.2 show that B̃t is an (Fαt)-adapted reflecting Brownian in Ud.

Letting τU+
d

, τ̃U+
d

denote the killing times of Bt, respectively B̃t, on the hyperplane H, we have

almost surely τU+
d

= ατ̃
U

+
d

, and therefore we obtain∫ τ
U

+
d

0

V (Bs)ds =

∫ ατ̃
U

+
d

0

V (Bs)ds (1.6.9)

=

∫ τ̃
U

+
d

0

V (Bαu)dαu

=

∫ τ̃
U

+
d

0

V (Bαu)M2
αudu

≤
∫ τ̃

U
+
d

0

V (
1

Mαu

Bαu)du

=

∫ τ̃
U

+
d

0

V (B̃u)du.

The inequality above follows from the assumption that r2V (rζ) is a non-decreasing function
of r for ζ ∈ U+

d arbitrarily fixed:

V (Bαu) = 12V (1Bαu) ≤ 1

M2
αu

V

(
1

Mαu

Bαu

)
,
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since by (1.6.6) we have Mαu ≤ 1 for all u ≥ 0.

By the construction above, (Bt, B̃t) is a pair of reflecting Brownian motions in Ud starting at
(r1ζ, r2ζ), and the inequality (1.6.9) shows that in particular we have

P r1ζ
{∫ τ

U
+
d

0

V (Bs)ds > t

}
≤ P r2ζ

{∫ τ̃
U

+
d

0

V (B̃s)ds > t

}
,

which proves the first part of the Theorem 1.6.7.
To prove the strict increasing part of the theorem, we will use the following support lemma for

the d-dimensional Brownian motion (see [80], page 374).

Lemma 1.6.8. Given an d-dimensional Brownian motion Bt starting at x and a continuous
function f : [0, 1]→ Rd with f(0) = x and ε > 0, we have

P x
(

sup
t≤1
‖Bt − f(t)‖ < ε

)
> 0.

Assume now that we have strict inequality in (1.6.3). By the continuity of the potential

V : U+
d → (0,∞) and the strict monotonicity of r2V (rζ) for 0 < r < 1

‖ζ‖ , we have∫ 1

0

V ((1− u)r1ζ)du <

∫ 1

0

(
r2

r1

)2

V

(
r2

r1
(1− u)r1ζ

)
du,

and therefore we can choose T > 0 such that

T

∫ 1

0

V ((1− u)r1ζ)du < t < T

∫ 1

0

(
r2

r1

)2

V

(
r2

r1
(1− u)r1ζ

)
du,

and we may further choose ε > 0 and δ > 0 small enough so that

T

1 + δ

∫ 1+ ε
r1

0

V ((1− u)r1ζ)du < t <
T

1 + δ

∫ 1− ε
r1

0

(
r2

r1

)2

V

(
r2

r1
(1− u)r1ζ

)
du. (1.6.10)

Consider the function f : R→ Rd defined by

f(s) =

(
1− (1 + δ)

T
s

)
r1ζ.

With the change of variable u = 1+δ
T s, the double inequality in (1.6.10) can be rewritten as

∫ 1+ ε
r1

1+δ T

0

V (f(s))ds < t <

∫ 1− ε
r1

1+δ T

0

(
r2

r1

)2

V

(
r2

r1
f(s)

)
ds.

By eventually choosing a smaller ε > 0, and by the uniform continuity of V on U+, we also
have ∫ 1+ ε

r1
1+δ T

0

V (b(s))ds < t <

∫ 1− ε
r1

1+δ T

0

(
r2

r1

)2

V

(
r2

r1
b(s)

)
ds, (1.6.11)

for any continuous functions b : [0, T
1+δ ]→ Rn such that

sup
s≤ T

1+δ

‖b(s)− f(s)‖ < ε.

Let Bt and B̃t be the reflecting Brownian motions in Udstarting at r1ζ, respectively r2ζ, as
constructed above. By Lemma 1.6.8, Bt lies in the ε-tube about f(t) for 0 < t < T with positive
probability, that is,

P

(
sup
s≤T
|Bs − f(s)| < ε

)
> 0.
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We may assume that ε > 0 is chosen small enough so that this tube does not intersect ∂U ,
and therefore on a set Q of positive probability, the coupled Brownian motion B̃s does not reach
∂Ud, hence the process Ms is constant on this set.

Thus, on the set Q we have

Ms =
r1

r2
, (1.6.12)

As =

∫ s

0

1

M2
u

du =

(
r2

r1

)2

s, (1.6.13)

αs = A−1
s =

(
r1

r2

)2

s, (1.6.14)

and τ̃U+
d

= Aτ
U

+
d

=
(
r2
r1

)2

τU+
d

. Therefore on Q we have

∫ τ̃
U

+
d

0

V (B̃s)ds =

∫ (
r2
r1

)2
τ
U

+
d

0

V

(
1

Mαs

Bαs

)
ds (1.6.15)

=

∫ τ
U

+
d

0

(
r2

r1

)2

V

(
r2

r1
Bu

)
du

>

∫ τ
U

+
d

0

V (Bs)ds.

Also, by the construction of the set Q we have
1− ε

r1

1+δ T < τU+
d
<

1+ ε
r1

1+δ T on Q, and combining

with (1.6.11) and (1.6.15), we obtain the strict inequality

∫ τ
U

+
d

0

V (Bs)ds ≤
∫ T

1+ ε
r1

1+δ

0

V (Bs)ds < t (1.6.16)

<

∫ T
1− ε

r1
1+δ

0

(
r2

r1

)2

V

(
r2

r1
Bs

)
ds

≤
∫ τ

U
+
d

0

(
r2

r1

)2

V

(
r2

r1
Bs

)
ds

=

∫ τ̃
U

+
d

0

V (B̃s)ds,

almost surely on Q.
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Therefore we have:

P r1ζ
{∫ τ

U
+
d

0

V (Bs)ds > t

}
= P r1ζ

{∫ τ
U

+
d

0

V (Bs)ds > t,Q

}
+ P r1ζ

{∫ τ
U

+
d

0

V (Bs)ds > t,Qc
}

= 0 + P r1ζ
{∫ τ

U
+
d

0

V (Bs)ds > t,Qc
}

≤ P r2ζ

{∫ τ̃
U

+
d

0

V (B̃s)ds > t,Qc

}

< P r2ζ {Q}+ P r2ζ

{∫ τ̃
U

+
d

0

V (B̃s)ds > t,Qc

}

= P r2ζ

{∫ τ̃
U

+
d

0

V (B̃s)ds > t,Q

}

+ P r2ζ

{∫ τ̃
U

+
d

0

V (B̃s)ds > t,Qc

}

= P r2ζ

{∫ τ̃
U

+
d

0

V (B̃s)ds > t

}
,

which proves the strict inequality in (1.6.4) in the case when the r2V (rζ) is a strictly increasing
function of r, ending the proof of Theorem 1.6.7.

With this preparation we can now proceed with the proof of Theorem 1.6.2.

Proof of Theorem 1.6.2. We distinguish the following cases.

Case 1. γ2 is an arc of a circle.

Let f a the conformal mapping given by Corollary 1.6.6, and let Bt be a reflecting Brownian
motion in U+ killed on hitting [−1, 1], and denote its lifetime by τU+ .

By Proposition 1.4.8, the potential V : U+ → R defined by V (z) = |f ′(z)|2 satisfies the hy-
pothesis of Theorem 1.6.7, and therefore we have

P z1
{∫ τU+

0

|f ′(Bs)|2ds > t

}
≤ P z2

{∫ τU+

0

|f ′(Bs)|2ds > t

}
, (1.6.17)

for all t > 0 and z1 = r1e
iθ, z2 = r2e

iθ with 0 < r1 < r2 < 1 and 0 < θ < π. By Lévy’s conformal
invariance of the Brownian motion, this is exactly the same as

P f(z1) {τD > t} ≤ P f(z2) {τD > t} , (1.6.18)

where τD is as in Theorem 1.6.2. From this it follows that the function u(z) = P z{τD > t} is
nondecreasing as z moves toward γ1 along the curve γθ = f{reiθ : 0 < r < 1}, for any θ ∈ (0, π)
arbitrarily fixed. This together with the real analyticity of the function u(z) implies that u(z) is
in is in fact strictly increasing along the family of curves {γθ : 0 < θ < π}, which completes the
proof of Theorem 1.6.2 when γ2 is an arc of a circle.

Case 2. γ1 is an arc of a circle.

Without loss of generality we may assume that γ1 is an arc of the unit circle centered at the
origin. An argument similar to the one in Proposition 1.6.5 shows that 0 /∈ D, and if 0 ∈ ∂D then
the domain D is a sector of the unit disk. It either case, the origin belongs to U\D.
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We claim that U\D is starlike with respect to the origin. If 0 ∈ ∂D, the set D is a sector of the
unit disk U and the claim follows. We can assume therefore that 0 /∈ D.By the angle restriction
in the hypothesis of our theorem, together with the convexity of the domain, it follows that D
is contained in a sector of the unit disk U , which without loss of generality may be assumed to
be symmetric with respect to the imaginary axis. That is, D ⊂ {z ∈ U : α < arg z < π − α},
where α = min{arg γ1(0), arg γ1(1)} ∈ (0, π2 ). Let z ∈ U\D and t ∈ [0, 1] be arbitrarily fixed. If
arg z /∈ (α, π − α) then tz ∈ U\{z ∈ U : α < arg z < π − α} ⊂ U\D. Thus tz ∈ U\D in this case.
If arg z ∈ (α, π − α) and tz /∈ U\D, then, since 1

|z|z ∈ γ1 ⊂ D, we obtain by the convexity of D

that the line segment with endpoints tz and 1
|z|z is contained in D, and in particular it follows

that z ∈ D, a contradiction. In both cases we obtained that tz ∈ U\D, which proves that U\D is
starlike with respect to the origin.

We now follow the proof of Theorem 1.6.7 in the case d = 2. For arbitrarily fixed t > 0 and
r1e

iθ, r2e
iθ ∈ D withr1 < r2, let (Bt, B̃t) be a scaling coupling of reflecting Brownian motions in

the unit disk U starting at(r1e
iθ, r2e

iθ), as in the case of Theorem 1.6.2. We note that that if for
s > 0 we have 1

Ms
Bs ∈ γ2 ⊂ U\D, then by the starlikeness of the set U\D also Bs ∈ U\D. That

is,
1

Ms
Bs /∈ D ⇒ Bs′ /∈ D for some 0 < s′ ≤ s. (1.6.19)

Recalling that B̃s = 1
Mαs

Bαs and that αs ≤ s for all s > 0, we can rewrite (1.6.19) as follows

B̃s /∈ D ⇒ Bs′ /∈ D for some 0 < s′ ≤ αs ≤ s, (1.6.20)

which in turn is equivalent to
τγ2 ≤ ατ̃γ2 ≤ τ̃γ2 , (1.6.21)

where τγ2 and τ̃γ2 denote the killing times of Bt, respectively B̃t, on the curve γ2. From this, it
follows that we have

P r1e
iθ {τγ2 > t} ≤ P r2eiθ {τ̃γ2 > t} , (1.6.22)

and thus the function u(z) = P z {τD > t} is nondecreasing on the part of the radii rθ = {reiθ, 0 <
r < 1} which is contained in the domain D. As before, this together with the real analyticity of
the function u shows that it is in fact strictly increasing, completing the proof of the theorem.

We end with some other remarks related to Theorem 1.6.7. Consider the Schrödinger operator
1
2∆u− V u in U+

d with Dirichlet boundary conditions on the part of ∂U+
d lying in the hyperplane

H = {(ζ1, ..., ζd) ∈ Rd : ζn = 0}, and Neumann boundary conditions on the “top” portion of the
sphere. If we let PVt (ξ, ζ), ξ, ζ ∈ U+

d be the heat kernel for this problem, then

u(ξ) = Eξ
{
e−
∫ t
0
V (Bs)ds ; τU+

d
> t
}

=

∫
U+
d

PVt (ξ, ζ)dζ.

1.7 Open Problems

Even though there is a rich literature containing many positive results on the validity of Hot Spots
Conjecture (see [49], [7], [26], [13], [25], [48], [63], [3], [64], [10], [20], [42], [43], [58], [86], [77], [59],
[78], etc), at the present moment the conjecture is still open in its full generality.

It is known that the Hot Spots conjecture holds for balls, parallelepipeds and annuli in Rn ([49]),
smooth convex domains with two orthogonal axes of symmetry (by the results in [64], [7], or [48]),
with just one axis of symmetry and an additional hypothesis (if the second Neumann eigenfunction
is antisymmetric one can use the results in [64], and the results in [7] in the eigenfunction is
symmetric), for nearly circular domains ([58]), for a certain class of doubly connected domains
([20]), etc.

Strikingly, one of the simplest cases for which the Hot Spots conjecture is still open is the case
of acute triangles (except for particular acute triangles, such as equilateral or isosceles triangles).
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It is also interesting to note that the conjecture holds for obtuse triangles by the results in [7]),
but this method fails for acute triangles. This indicates that one needs new tools in approaching
this famous conjecture, which drew the attention of many famous mathematicians over the last
30 years since it was formulated, such as J. Rauch, D. Jerisson, N. Nadirashvili, W. Werner, K,
Burdzy, R. Bass, R. Bañuelos, and others.



Chapter 2

Mirror coupling of Reflecting
Brownian motions

The notion of mirror coupling was introduced by W. S. Kendall in [50] in the case of Brownian
motions on a complete Riemannian manifold with nonnegative Ricci curvature, and was considered
in [85] in the case of reflected processes. In [25], and more recently in [4] and [5], K. Burdzy et
al. gave a detailed construction of the mirror coupling of reflecting Brownian motions in a smooth
domain in Rn (n ≥ 2), and used it in order to derive various properties related to Neumann
eigenvalues and eigenfunctions of the Laplacian on D.

Using a detailed analysis of the mirror coupling of reflecting Brownian motions in the case of
the unit ball in Rn, in the present chapter we settle a conjecture of R. Laugesen and C. Morpurgo
which asserts that the diagonal of the Neumann heat kernel of the unit ball U ⊂ Rn is a strictly
increasing radial function, and we prove some other inequalities for the Neumann heat kernel in
the ball which are of independent interest.

Next, we present an extension of the mirror coupling, recently obtained by the author in [65], in
the case when the two reflecting Brownian motions live in different smooth domains D1, D2 ⊂ Rn
satisfying an additional assumption (this condition is satisfied in particular if D1, D2 have non-
tangential boundaries and D1 ∩D2 is a convex domain). As applications of this construction, we
derive a unifying proof of the two main results concerning the validity of Chavel’s conjecture on
the domain monotonicity of the Neumann heat kernel, due to I. Chavel ([29]), respectively W. S.
Kendall ([51]), and a new proof of Chavel’s conjecture for domains satisfying the ball condition,
such that the inner domain is star-shaped with respect to the center of the ball.

The results in this chapter are based on [65], [66] and [67].

2.1 Introduction

The technique of coupling of reflecting Brownian motions is a useful tool, used by several authors
in connection to the study of the Neumann heat kernel of the corresponding domain (see [5], [7],
[21], [27], [51], [50], [85], [64], etc).

In a series of paper, Krzysztof Burdzy et al. ( [4], [5], [7], [21], [25]) introduced the mirror
coupling of reflecting Brownian motions in a smooth domain D ⊂ Rd and used it in order to derive
properties of eigenvalues and eigenfunctions of the Neumann Laplaceian on D.

In this chapter we present a detailed analysis of the mirror coupling of reflecting Brownian
motions in the unit ball in Rn (n ≥ 2), and we show that in this case the hyperplane of symmetry
between the two reflecting Brownian motions (the mirror of the coupling) moves towards the
origin. This allows us to obtain a double inequality for the Neumann heat kernel of the unit ball,
and as a corollary we conclude with a short proof of Laugesen-Morpurgo conjecture.

We also show that the mirror coupling can be extended to the case when the two reflecting
Brownian motions live in different domains D1, D2 ⊂ Rd.

27



28 CH. 2. MIRROR COUPLING OF REFLECTING BROWNIAN MOTIONS.

The main difficulty in the extending the construction of the mirror coupling comes from the
fact that the stochastic differential equation(s) describing the mirror coupling has a singularity
at the times when coupling occurs. In the case D1 = D2 = D considered by Burdzy et al. this
problem is not a major problem (although the technical details are quite involved, see [5]), since
after the coupling time the processes move together. In the case D1 6= D2 however, this is a major
problem: after the processes have coupled, it is possible for them to decouple (for example in the
case when the processes are coupled and they hit the boundary of one of the domains).

It is worth mentioning that the method used for proving the existence of the solution is new,
and it relies on the additional hypothesis that the smaller domain D2 (or more generally D1∩D2)
is a convex domain. This hypothesis allows us to construct an explicit set of solutions in a sequence
of approximating polygonal domains for D2, which converge to the desired solution.

As applications of the extended mirror coupling, we derive a unifying proof of the two most
important results on the challenging Chavel’s conjecture on the domain monotonicity of the Neu-
mann heat kernel ([29], [51]), and a new proof of Chavel’s conjecture for domains satisfying the
ball condition, such that the inner domain is star-shaped with respect to the center of the ball.
This is also a possible new line of approach for Chavel’s conjecture (note that by the results in
[12], Chavel’s conjecture does not hold in its full generality, but the additional hypotheses under
which this conjecture holds are not known at the present moment).

The structure of the chapter is as follows: in Section 2.2 we briefly describe the construction
of Burdzy et al. of the mirror coupling in a smooth bounded domain D ⊂ Rd and we establish
the notation.

In Section 2.3, we begin with a detailed analysis of mirror coupling of reflecting Brownian
motions in the unit ball, which shows that the hyperplane of symmetry between the two reflecting
Brownian motions (the mirror of the coupling) moves towards the origin (Lemma 2.3.16). From
this we obtain a comparison result for the transition probabilities of reflecting Brownian motion
in the unit ball (Theorem 2.3.17), which is the key for our proof of the Laugesen-Morpurgo
conjecture. Using this result, we obtain a double inequality for Neumann heat kernel of the unit
ball (the double inequality in Theorem 6.2.4), and as a corollary we conclude with a short proof
of Laugesen-Morpurgo conjecture (Theorem 2.3.20).

In Section 2.4, in Theorem 2.4.1, we give the main result which shows that the mirror coupling
can be extended to the case when D2 ⊂ D1 are smooth bounded domains in Rd and D2 is convex
(some extensions of the theorem are presented in Section 2.6).

Before proceeding with the proof of theorem, in Remark 2.4.4 we show that the proof can be
reduced to the case when D1 = Rd. Next, in Section 2.4.1, we show that in the case D2 = (0,∞) ⊂
D1 = R the solution is essentially given by Tanaka’s formula (Remark 2.4.5), and then we give
the proof of the main theorem in the 1-dimensional case (Proposition 2.4.6).

In Section 2.4.2, we first prove the existence of the mirror coupling in the case when D2 is a
half-space in Rd and D1 = Rd (Lemma 2.4.8), and then we use this result in order to prove the
existence of the mirror coupling in the case when D2 is a polygonal domain in Rd and D1 = Rd
(Theorem 2.4.9). In Proposition 2.4.10 we present some of the properties of the mirror coupling
in the particular case when D2 is a convex polygonal domain and D1 = Rd, which are essential
for the construction of the general mirror coupling.

In Section 2.5 we give the proof of the main Theorem 2.4.1. The idea of the proof is to
construct a sequence (Y nt , Xt) of mirror couplings in

(
Dn,Rd

)
, where Dn ↗ D2 is a sequence

of convex polygonal domains in Rd. Then, using the properties of the mirror coupling in convex
polygonal domains (Proposition 2.4.10), we show that the sequence Y nt converges to a process Yt,
which gives the desired solution to the problem.

The last section (Section 2.6) is devoted to the applications and the extensions of the mirror
coupling constructed in Theorem 2.4.1.

First, in Theorem 2.6.3 we use the mirror coupling in order to give a simple, unifying proof
of the results of I. Chavel and W. S. Kendall on the domain monotonicity of the Neumann heat
kernel (Chavel’s Conjecture 2.6.1). The proof is probabilistic in spirit, relying on the geometric
properties of the mirror coupling.

Next, in Theorem 2.6.4 we show that Chavel’s conjecture also holds in the more general case
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when one can interpose a ball between the two domains, and the inner domain is star-shaped with
respect to the center of the ball (instead of being convex). The analytic proof given here is parallel
to the geometric proof of the previous theorem, and it can also serve as an alternate proof of it.

Without giving all the technical details, we discuss the extension of the mirror coupling to the
case of smooth bounded domains D1,2 ⊂ Rd with non-tangential boundaries, such that D1 ∩D2

is a convex domain.
The section concludes with a discussion of the non-uniqueness of the mirror coupling. The lack

of uniqueness is due to the fact that after coupling the processes may decouple, not only on the
boundary of the domain, but also when they are inside the domain.

The two basic solutions give rise to the sticky, respectively non-sticky mirror coupling, and there
is a whole range of intermediate possibilities. The stickiness refers to the fact that after coupling
the processes “stick” to each other as long as possible (“sticky” mirror coupling, constructed in
Theorem 2.4.1), or they can immediately split apart after coupling (“non-sticky” mirror coupling),
the general case (weak/mild mirror coupling) being a mixture of these two basic behaviors.

We developed the extension of the mirror coupling having in mind the application to Chavel’s
conjecture, for which the sticky mirror coupling is the “right” tool, but perhaps the other mirror
couplings (the non-sticky and the mild mirror couplings) might prove useful in other applications.
To be re-read - perhaps shortened

2.2 Mirror couplings of reflecting Brownian motions

We denote by U =
{
z ∈ Rd : ‖z‖ < 1

}
the open unit ball in Rd (d ≥ 1) and by ν(z) = −z, z ∈ ∂U,

the inward unit vector field on the boundary of U.
Given a hyperplane H ⊂ Rd, we say that the points x, y ∈ Rd are separated by H if x and y

lie in different components of Rd −H, and we say that they are not separated by H otherwise.
Reflecting Brownian motion in a smooth domain D ⊂ Rd can be defined as a solution of the

stochastic differential equation

Xt = X0 +Bt +

t∫
0

νD(Xs)dLs, t ≥ 0, (2.2.1)

where Bt is a d-dimensional Brownian motion, νD is the inward unit normal vector field on ∂D
and LXt is the boundary local time of Xt (the continuous non-decreasing process which increases
only when Xt ∈ ∂D).

Formally we have:

Definition 2.2.1. Xt is a reflecting Brownian motion in D starting at x0 ∈ D if it satisfies
(2.2.1), where:

(a) Bt is a d-dimensional Brownian motion started at 0,
(b) Lt is a continuous nondecreasing process which increases only when Xt ∈ ∂D,
(c) Xt is (FBt )-adapted, and almost surely X0 = x0 and Xt ∈ D for all t ≥ 0.

Remark 2.2.2. For pathwise existence and uniqueness of reflecting Brownian motion in the sense
of the above definition see for example [14].

In [4], the authors introduced the mirror coupling of reflecting Brownian motion in a smooth
domain D ⊂ Rd (piecewise C2 domain in R2 with a finite number of convex corners or a C2

domain in Rd, d ≥ 3).
The idea of the mirror coupling is that the two processes (Xt)t≥0 and (Yt)t≥0 behave like

ordinary Brownian motions (symmetric with respect to a hyperplane, called the mirror of the
coupling) when both of them are inside the domain D. When one of the processes hits the
boundary, the mirrorMt gets a minimal push towards the inward unit normal at the corresponding
point at the boundary, needed in order to keep both processes in D. Considering the coupling
time τ = inf {t > 0 : Xt = Yt}, the mirror coupling evolves as described above for t ≤ τ , and we
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let Xt = Yt for t ≥ τ (the two processes move together after the coupling time). For definiteness,
for t ≥ τ we define the mirror Mt as the hyperplane parallel to Mτ passing through Xt = Yt.

The formal construction of the mirror coupling is the following. Consider the system of stochas-
tic differential equations:

Xt = x+Wt +

∫ t

0

νD (Xs) dL
X
s (2.2.2)

Yt = y + Zt +

∫ t

0

νD (Xs) dL
Y
s (2.2.3)

Zt = Wt − 2

∫ t

0

Ys −Xs

||Ys −Xs||2
(Ys −Xs) · dWs (2.2.4)

for t < ξ, where ξ = inf {s > 0 : Xs = Ys} is the coupling time of the processes, after which the
processes X and Y evolve together, i.e. Xt = Yt and Zt = Wt + Zξ −Wξ for t ≥ ξ.

Following [4], and considering the Skorokhod map Γ : C
(
[0,∞) : Rd

)
→ C

(
[0,∞) : D

)
, we

have X = Γ (x+W ), Y = Γ (y + Z), and therefore the above system is equivalent to

Zt =

∫ t∧ξ

0

G (Γ (y + Z)s − Γ (x+W )s) dWs + 1t≥ξ (Wt −Wξ) , (2.2.5)

where ξ = inf {s > 0 : Γ (x+W )s = Γ (y + Z)s}. In [4] the authors proved the pathwise unique-
ness and the strong existence of the process Zt in (2.2.5) (given the Brownian motion Wt).

In the above G : Rd →Md×d denotes the function defined by

G (z) =

{
H
(

z
‖z‖

)
, if z 6= 0

0, if z = 0
, (2.2.6)

where for a unitary vector m ∈ Rd, H (m) represents the linear transformation given by the d× d
matrix

H (m) = I − 2m m′, (2.2.7)

that is

H (m) v = v − 2 (m · v)m (2.2.8)

is the mirror image of v ∈ Rd with respect to the hyperplane through the origin perpendicular to
m (m′ denotes the transpose of the vector m, vectors being considered as column vectors).

The pair (Xt, Yt)t≥0 constructed above is called a mirror coupling of reflecting Brownian mo-

tions in D starting at (x, y) ∈ D ×D.

Remark 2.2.3. The relation (2.2.4) can be written in the equivalent form

dZt = G (Xt − Yt) dWt,

which shows that for t < ξ the increments of Zt are mirror images of the increments of Wt with
respect to the hyperplane Mt of symmetry between Xt and Yt, justifying the name of mirror
coupling.

In the particular case of the unit ball D = U ⊂ Rd, for arbitrarily fixed points x, y ∈ U, the
mirror coupling of reflecting Brownian motions in the unit ball U ⊂ Rd starting at (x, y) is the
pair (Xt, Yt)t≥0 of stochastic processes defined by{

Xt = x+Wt +
∫ t

0
ν (Xs) dL

X
s

Yt = y + Zt +
∫ t

0
ν (Ys) dL

Y
s

, (2.2.9)
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where Wt is a d-dimensional Brownian motion starting at W0 = 0, Zt is the mirror image of the
Brownian motion Wt with respect to the hyperplaneMt of symmetry between Xt and Yt, that is

Zt = Wt − 2

∫ t

0

Xs − Ys
‖Xs − Ys‖2

(Xs − Ys) · dWs, (2.2.10)

and LXt and LYt denote the boundary local times of the reflecting Brownian motions Xt and
respectively Yt.

The processes Xt and Yt evolve according to (2.2.9) above for t ≤ τ , where τ is the coupling
time

τ = inf {t > 0 : Xt = Yt} ∈ R ∪ {∞} ,

and they evolve together after the coupling time (i.e. Xt = Yt for t ≥ τ).

2.3 Laugesen-Morpurgo Conjecture

The Laugesen-Morpurgo conjecture appeared, as we learned from Rodrigo Bañuelos, in connection
with their work on conformal extremals of the Riemann zeta function of eigenvalues (see [53]).
The conjecture states the diagonal element of the Neumann heat kernel of the Laplacian in the
unit disk U =

{
x ∈ R2 : |x| < 1

}
in R2 is a radially increasing function, that is

pU (t, x, x) < pU (t, y, y) , t ≥ 0, (2.3.1)

for all x, y ∈ U with 0 ≤ |x| < |y| ≤ 1, where pU (t, x, y) denotes the heat kernel for the Laplacian
with Neumann boundary conditions (or, equivalently, the transition density for the Brownian
motion with normal reflection on the boundary) in the unit disk U . The conjecture extends
naturally to the Neumann heat kernel of the Laplacian in the unit ball U =

{
x ∈ Rd : ||x|| < 1

}
in Rd, d ≥ 1, as follows.

Conjecture 2.3.1 (Laugesen-Morpurgo Conjecture). Let pU(t, x, y) denote the heat kernel for
the Laplacian with Neumann boundary conditions on the unit ball U =

{
z ∈ Rd : ‖z‖ < 1

}
in Rd

(d ≥ 1).

For any t > 0 we have

pU(t, x, x) < pU(t, y, y), (2.3.2)

for all x, y ∈ U with ‖x‖ < ‖y‖.

The probabilistic interpretation of the conjecture is that a reflecting Brownian motion starting
closer to the boundary is more likely to return to its starting position (after t units of time), than
a reflecting Brownian motion starting further away from the boundary (after the same t units of
time).

The physical interpretation is that introducing an atom of heat in a circular room with ther-
mally insulated boundary, the closer this point to the boundary, the warmer we feel at this point,
after any fixed number of units of time.

Despite the seemingly simple nature of this conjecture and the fact that it seems to have been
well known since 1994, until 2011 (when we settled this conjecture in [66]) only some partial results
were known (see [8], [62], [67] and [68]).

In 2009 Bañuelos et al. ([8]) proved the following result related to the Laugesen-Morpurgo
conjecture:

Theorem 2.3.2. The diagonal element pBU (t, x, x) of the transition probabilities for the d-dimensional
Bessel processes on (0; 1], reflected at 1, is an increasing function of x ∈ (0, 1] for d > 2 and this
is false for d = 2.
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Remark 2.3.3. Since the norm of a d-dimensional Brownian motion is a Bessel process of order
d, the above result is equivalent to the monotonicity with respect to r ∈ (0, 1) (for any t > 0
arbitrarily fixed) of the integral mean

rd−1

∫
∂U
pU (t, re1, ru) dσ(u),

where e1 = (1, 0, . . . , 0) ∈ Rd and σ is the normalized surface measure on ∂U.

The fact that the Laugesen-Morpurgo conjecture is true in the 1-dimensional case is known
(see for example [8], Remark 5.4 for an analytic proof, or [68] for a probabilistic proof). In [67] we
obtained a discrete version of the Laugesen-Morpurgo conjecture, and as a corollary we derived a
new probabilistic proof of the Laugesen-Morpurgo conjecture in the 1-dimensional case, which we
will present next.

2.3.1 A discrete version of the conjecture

In this section we will prove a discrete 1-dimensional version of the Laugesen-Morpurgo conjecture,
as follows: if Xn is a simple random walk on {−s, . . . , s} with reflecting barriers at ±s, then for
any n ∈ N arbitrarily fixed, P i (Xn = i) is a strictly increasing function of |i|, that is:

P i (Xn = i) ≤ P j (Xn = j) , (2.3.3)

for any i, j ∈ {−s+ 1, . . . , s− 1} with |i| < |j| and any n ∈ N.
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Figure 2.1: The graph of the probabilities P i (Xn = i), i = −s, . . . , s for s = 25 and n = 500.

It is interesting to note that the inequality (2.3.3) does not hold for j = s, as it can be seen
from the Figure 2.3.1 above. Also note that when n is odd, (2.3.3) is trivial, since in this case
P i (Xn = i) = 0 for any i ∈ {−s, . . . , s}.

Let S = {−s,−s+ 1, ..., s− 1, s}, where s ∈ N − {0}. Define new states s+ = s− = s,
(−s)+ = (−s)− = −s and let i±, i ∈ {−s+ 1, . . . , s− 1} be distinct, such that

S+ ∩ S− :=
{
i+ | i ∈ S

}
∩
{
i− | i ∈ S

}
= {−s, s} .

Setting S± = S+ ∪ S− and Si = {i+, i−}, i ∈ S,

S± = S−s ∪ S−s+1 ∪ . . . ∪ Ss−1 ∪ Ss (2.3.4)

is a decomposition of S± in disjoint sets.
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By a finite cyclic random walk on S± (or simply a random walk on S±), we understand a
random walk (X±n )n∈N with state space S± and transition matrix P± = (P±ij )i,j∈S± given by

P±i+,(i+1)+ = P±i+,(i−1)+ = P±i−,(i+1)− = P±i−,(i−1)− =
1

2
, (2.3.5)

for i ∈ {−s+ 1, . . . , s− 1}, and

P±−s,(−s+1)+ = P±−s,(−s+1)− = P±s,(s−1)+ = P±s,(s−1)− =
1

2
. (2.3.6)

Given the random walk (X±n )n∈N on S±, we define a new sequence of random variable (Xn)n∈N
with state space S by setting

Xn = i if and only if X±n ∈
{
i+, i−

}
, (2.3.7)

where i ∈ S and n ∈ N.

Remark 2.3.4. It can be shown (see for example [41], p. 166) that (X±n )n∈N is groupable with
respect to the partition (2.3.4) and that (Xn)n∈N is the corresponding grouped Markov chain, with
transition probability matrix P given by

Pi,i−1 = Pi,i+1 =
1

2
, (2.3.8)

for i ∈ {−s+ 1, . . . , s− 1} , and
P−s,−s+1 = Ps,s−1 = 1. (2.3.9)

Remark 2.3.5. Defining the projection function pr : S± → S by

pr(i+) = pr
(
i−
)

= i,

for i ∈ {−s+ 1, . . . , s− 1} , and

pr(−s) = −s and pr (s) = s,

it can be seen that
Xn = pr(X±n ), n ∈ N.

0 s− 1−s+ 1

0− s−(−s+ 1)−

(−s+ 1)+ −1+ s+

−1−

0+ 1+

1−

1−1

S

S±

pr

· · ·

· · ·· · ·

· · ·

s

(s− 1)+

(s− 1)−

· · ·(−s)+

(−s)−

· · ·−s

Figure 2.2: The projection of a random walk on S± onto a reflecting random walk on S.

Remark 2.3.6. From (2.3.8) and (2.3.9), it can be seen that (Xn)n∈N is a random walk on
S = {−s, . . . , s}, with reflecting barriers at −s and s. We will refer to (Xn)n∈N as the reflecting
random walk on S corresponding to the random walk (X±n )n∈N.
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For an arbitrary fixed starting point X±0 = x ∈ S±, we denote by Px the probability measure
associated with the random walk (X±n )n∈N and by Ppr(x) the probability measure associated with
the corresponding reflecting random walk (Xn)n∈N.

The relationship between the transition probabilities of a random walk on S± and those of the
corresponding reflecting random walk on S is given by the following.

Proposition 2.3.7. For any i ∈ S − {−s, s} and n ∈ N we have

Pi(Xn = i) = Pi+(X±n = i+) + Pi+(X±n = i−),

where (X±n )n∈N is a random walk on S± and (Xn)n∈N is the corresponding reflecting random walk
on S.

Proof. See [67].

Remark 2.3.8. Alternately, letting U4s = {exp( ikπ2s ) : k ∈ {0, 1, ..., 4s− 1}} denote the vertices of
a regular polygon with 4s sides and defining the bijection f : S± → U4s by

f(k+) = exp

(
(s− k)

iπ

2s

)
, k ∈ S,

and

f(k−) = exp

(
(3s+ k)

iπ

2s

)
, k ∈ S,

we can view a random walk on S± = {−s, . . . , s} as a rotationally invariant random walk on the
vertices of the polygon U4s (see Figure 2.3).

0− s−(−s)−

(−s)+ −1+ s+

−1−

0+ 1+

1−

1

e
2iπ
2s

eiπ

e
(4s−2)iπ

2s

e
iπ
2s

e
(4s−1)iπ

2s

S±

U4s

ff−1

· · ·

· · · · · ·

· · ·

Figure 2.3: The bijective correspondence between random walks on S± and U4s.

We introduce two couplings of random walks on S±: the translation coupling and the mirror
coupling.

A translation coupling of random walks on S± with starting points (x, y) ∈ S± ×S± (without
loss of generality we may assume that pr(x) < pr(y)) is a pair (X±n , Y

±
n )n∈N, where (X±n )n∈N is

a random walk on S± with starting point x ∈ S±, and (Y ±n )n∈N is the random walk on S± with
starting point y ∈ S± defined by

Y ±n = trpr(y)−pr(x)(X
±
n ), n ∈ N,
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where for a ∈ Z, tra : S± → S± is the translation function on S± defined by

tra(t) = f−1
(
f (t) exp

(
−iaπ

2s

))
, t ∈ S±, (2.3.10)

and f is the bijection defined in Remark 2.3.8 (see Figure 2.4).

s+ = s−

(s− 1)−(s− 1)+

x−

y−

0−0+

(−s)+ = (−s)−

(−s+ 1)−(−s+ 1)+

Y ±
n

X±
n

Figure 2.4: Sample paths of random walks on S± coupled by translation.

A mirror coupling of random walks on S± with starting points (x, y) ∈ S− × S− chosen such
that pr(x)+pr(y) is an even number (without loss of generality we may assume that pr(x) < pr(y))
is the pair (X±n , Y

±
n )n∈N, where (X±n )n∈N is a random walk on S± with starting point x ∈ S±,

and (Y ±n )n∈N is the random walk on S± with starting point y ∈ S± defined by

Y ±n =

{
sym

(
pr(x)+pr(y)

2 )−
(X±n ) , n ≤ τ

X±n , n > τ
,

where for a ∈ S±, syma : S± → S± is the symmetry function on S± with respect to the line
passing through the origin and the point f (a), defined by

syma(t) = f−1
(
f (t)f2 (a)

)
, t ∈ S±, (2.3.11)

τ is the coupling time defined by

τ = inf

{
n ≥ 0 : X±n =

(
pr(x) + pr(y)

2

)−
or X±n =

(
−pr(x) + pr(y)

2

)+
}
,

and f is the bijection defined in Remark 2.3.8 (see Figure 2.5).
As an application of the translation coupling, we obtain the following.

Proposition 2.3.9. For any i, j ∈ S with 0 ≤ i ≤ j and any n ∈ N we have

Pi+(X±n = i+) + Pi+(X±n = i−) = Pj+(X±n = j+) + Pj+(X±n = (2i− j)−), (2.3.12)

where X±n is a random walk on S±.

Proof. See [67].

As an application of the mirror coupling we obtain the following.
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s+ = s−

(s− 1)−(s− 1)+

y−

x−

(−s)+ = (−s)−

0−0+

(−s+ 1)−(−s+ 1)+

Y ±
n

X±
n

Figure 2.5: Sample paths of random walks on S± coupled by mirror coupling.

Proposition 2.3.10. For any i, j ∈ S with 0 ≤ i < j such that i+ j is an even number and any
n ∈ N, we have

Pi−(X±n = j+) < Pj−(X±n = j+),

where X±n is a random walk on S±.

Proof. See [67].

With this preparation, we are now ready to prove the main result of this section, as follows.

Theorem 2.3.11. For any s ∈ N − {0} and n ∈ N, P i (Xn = i) is a strictly increasing function
of i ∈ {0, . . . , s− 1} , that is, for any i, j ∈ {0, . . . , s− 1} , with i < j and any n ∈ N, we have

Pi(Xn = i) < Pj(Xn = j),

where Xn is a reflecting random walk on S with reflecting barriers at ±s.

Proof. Let X±n be a random walk on S± and let Xn = pr (X±n ). By Proposition 2.3.7, for
i ∈ S − {−s, s} and n ∈ N we have

Pi(Xn = i) = Pi+(X±n = i+) + Pi+(X±n = i−).

Consider first the case i ∈ {1, ..., s− 2}. Using Proposition 2.3.9 with j replaced by i+ 1, we have

Pi(Xn = i) = Pi+(X±n = i+) + Pi+(X±n = i−)

= P(i+1)+(X±n = (i+ 1)+) + P(i+1)+(X±n = (i− 1)−)

< P(i+1)+(X±n = (i+ 1)+) + P(i+1)+(X±n = (i+ 1)−),

for any n ∈ N, where the last inequality follows from the symmetry of the transition matrix of a
random walk on S± and Proposition 2.3.10 with j replaced by i+ 1 and i replaced by i− 1. Using
again Proposition 2.3.7 we obtain

Pi(Xn = i) < Pi+1(Xn = i+ 1),

for any n ∈ N and i ∈ {1, ..., s− 2}.
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To conclude the proof, we need to show that the previous inequality also holds for i = 0. In
this case, using an argument similar to the one in the proofs of Proposition 2.3.9 and Proposition
2.3.10 it can be shown that we have

P0+

(X±n = 0+) + P0+

(X±n = 0−) = P1+

(X±n = 1+) + P1+

(X±n = (−1)−)

< P1+

(X±n = 1+) + P1+

(X±n = 1−),

which by Proposition 2.3.7 shows that

P0(Xn = 0) < P1(Xn = 1),

for any n ∈ N, concluding the proof.

Using similar techniques, we can generalize the result in Theorem 2.3.11 as follows.

Theorem 2.3.12. For any s, n ∈ N − {0}, i, j ∈ {0, . . . , s− 1} with i < j and any k ∈ S with
|i+ k| < s, |j + k| < s and k > −min{i+ j, 2i− j + s}, we have

Pi(Xn = i+ k) < Pj(Xn = j + k),

where Xn is a reflecting random walk on S = {−s, . . . , s} with reflecting barriers at ±s.

Proof. See [67].

From the previous theorem we obtain the following.

Corollary 2.3.13. For any s, n ∈ N−{0}, i, j ∈ {0, . . . , s− 1} with i < j and any k ∈ {1, . . . , s}
with k ≤ min {s− j, i+ j}, we have

Pi(|Xn − i| < k) < Pj(|Xn − j| < k),

where Xn is a reflecting random walk on S = {−s, . . . , s} with reflecting barriers at ±s.

Proof. Follows from the previous theorem by summing over k.

Using the above corollary and the fact that the reflecting Brownian motion can be approximated
by random walks (see for example [24]), we obtain the following.

Corollary 2.3.14. For any x, y, ε ∈ (0, 1) with x < y and ε < min{1− y, x+ y}, we have

Px (Bt ∈ (x− ε, x+ ε)) ≤ Py (Bt ∈ (y − ε, y + ε)) , t > 0,

where Bt is a 1-dimensional reflecting Brownian motion on [−1, 1].

Proof. In the case when both x and y are dyadic rationals in [0, 1], the proof follows from the
previous corollary by using the fact that a reflecting Brownian motion Bt on [−1, 1] starting at
B0 = k

2l
(k, l ∈ Z, l > 0) can be approximated by a reflecting random walk (Xn

m)m≥0, more
precisely it can be shown (see for example [24]) that we have

Xn
[22nt] →n→∞ Bt, t ≥ 0,

where (Xn
m)m≥0 is a (simple) reflecting random walk on{

−1,−2n − 1

2n
,−2n − 2

2n
, . . . ,

2n − 2

2n
,

2n − 1

2n
, 1

}
with reflecting barriers at ±1 and starting at Xn

0 = k
2l

.
The general case follows by approximating x and y by dyadic rationals and using the previous

part of the proof.
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As a corollary, we obtain the proof of the Laugesen-Morpurgo conjecture in the 1-dimensional
case, as follows.

Corollary 2.3.15. For any x, y ∈ (0, 1) with x < y , we have

p (t, x, x) < p (t, y, y) , t > 0,

where p(t, x, y) denotes the transition probabilities of the 1-dimensional reflecting Brownian motion
on [−1, 1].

Proof. The fact that p (t, x, x) is increasing in x ∈ (0, 1) follows from the previous corollary, using
the fact that by the continuity of p (t, x, y) in the second variable we have

p (t, x, x) = lim
ε↘0

1

2ε

∫ x+ε

x−ε
p (t, x, y) dy = lim

ε↘0

1

2ε
P x (|Bt − x| < ε) .

To show that p (t, x, x) is in fact strictly increasing, note that since p (t, x, x) is a real analytic
function of x ∈ (−1, 1) for any t > 0 arbitrarily fixed (it is the diagonal of the heat kernel of
an operator with real analytic coefficients), it cannot be constant on a nonempty open subset of
[−1, 1] unless it is identically constant on the entire interval [−1, 1].

It can be shown (see for example [8]) that for any t > 0 arbitrarily fixed we have

p (t, x, x) + p̃ (t, x, x) = c, x ∈ (−1, 1) ,

where c is a constant depending on t > 0 and p̃ (t, x, y) denotes the transition density of Brownian
motion on (−1, 1) killed on hitting the boundary of the interval.

If p (t, x, x) were constant in x ∈ (−1, 1) for an arbitrarily fixed t > 0, then p̃ (t, x, x) would
also be constant in x ∈ (−1, 1). However, this leads to a contradiction, since

lim
x↗1

p̃ (t, x, x) = 0 < p̃ (t, 0, 0) .

This, together with the fact that p (t, x, x) is increasing in x ∈ (0, 1) for any t > 0 arbitrarily
fixed, shows that p (t, x, x) is in fact strictly increasing in x ∈ (0, 1), concluding the proof.

2.3.2 The resolution of the conjecture

Our proof of Laugesen-Morpurgo conjecture relies on a certain property of the mirror coupling of
reflecting Brownian motions in the unit disk and a representation of the Neumann heat kernel as
an occupation time density of reflecting Brownian motion. We begin with a presentation of these
results.

The key for proving the Laugesen-Morpurgo conjecture (Conjecture 2.3.1) is the double in-
equality (2.3.22) in Theorem 6.2.4, which in turn relies on proving the following inequality:

pU(t, y, z) ≤ pU(t, x, z), t > 0, (2.3.13)

for all x, y, z ∈ U satisfying ‖x− z‖ ≤ ‖y − z‖ and ‖y‖ ≤ ‖x‖.
Consider a mirror coupling Xt, Yt of reflecting Brownian motions in U given by (2.2.9) –

(2.2.10), with starting points X0 = x, Y0 = y ∈ U.
For t < τ = inf{t > 0 : Xt = Yt}, the mirror Mt of the coupling (the hyperplane of symmetry

between Xt and Yt) is given by

Mt =

{
z ∈ Rn :

(
z − Xt + Yt

2

)
· (Xt − Yt) = 0

}
. (2.3.14)

The idea for proving the inequality (2.3.13) is that the mirror Mt moves towards the origin,
in the sense of Lemma 2.3.16 below. This property is a rigorous version of Example 4.5 in [25],
used by the authors to prove the efficiency of the mirror coupling in the case of the unit disk.
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Lemma 2.3.16. Let Xt, Yt be a mirror coupling of reflecting Brownian motions in U with starting
points X0 = x, Y0 = y ∈ U, and let τ = inf{t > 0 : Xt = Yt} be the coupling time and
τ1 = inf{t > 0 : 0 ∈Mt}.

For all times t < τ ∧ τ1, the mirror Mt moves towards the origin, in such a way that if a point
P ∈ U and the origin are separated by Mt1 for some t1 ∈ [0, τ ∧ τ1), then the point P and the
origin are separated by Mt2 for all t2 ∈ [t1, τ ∧ τ1) (see Figure 2.6).

0

Yt

Xt

x
y

Mt M0

At

Bt

P

Figure 2.6: Mirror coupling of reflecting Brownian motions in the unit disk (the case d = 2).

Proof. If ‖x‖ = ‖y‖, then τ1 = 0 and there is nothing to prove in this case (the mirrorM0 passes
through the origin). Without loss of generality we may therefore assume that ‖x‖ > ‖y‖.

Setting {
Ut = Xt − Yt
Vt = Xt + Yt

, t ≥ 0, (2.3.15)

from the definition (2.2.9) – (2.2.10) of the mirror coupling we obtain:{
U it = xi − yi +W i

t − Zit −
∫ t

0
Xi
sdL

X
s +

∫ t
0
Y is dL

Y
s

V it = xi + yi +W i
t + Zit −

∫ t
0
Xi
sdL

X
s −

∫ t
0
Y is dL

Y
s

, i = 1, . . . , d,

for all t ≤ τ , where the superscript i indicates the ith cartesian coordinate of the given point.
Using the definition (2.2.10) of Zt, we have U it = xi − yi + 2

∫ t
0

Uis
‖Us‖2

Us · dWs −
∫ t

0
Xi
sdL

X
s +

∫ t
0
Y is dL

Y
s

V it = xi + yi + 2W i
t − 2

∫ t
0

Uis
‖Us‖2

Us · dWs −
∫ t

0
Xi
sdL

X
s −

∫ t
0
Y is dL

Y
s

, (2.3.16)

for all i = 1, . . . , d and t < τ , and therefore we obtain the following formulae for the quadratic
variation of the processes U and V :

〈U i, U j〉t = 4
∫ t

0
UisU

j
s

‖Us‖2
ds

〈V i, V j〉t = 4
∫ t

0
δij − UisU

j
s

‖Us‖2
ds

〈U i, V j〉t = 0

, i, j,= 1, . . . , d. (2.3.17)



40 CH. 2. MIRROR COUPLING OF REFLECTING BROWNIAN MOTIONS.

Note that since ‖X0‖ = ‖x‖ > ‖y‖ = ‖Y0‖, it follows that for all t < τ ∧ τ1 we have

Ut · Vt = (Xt − Yt) · (Xt + Yt) = ‖Xt‖2 − ‖Yt‖2 > 0, (2.3.18)

and therefore for t < τ ∧ τ1 we may define the process At by

At =
2

Ut · Vt
Ut. (2.3.19)

We will first show that for t < τ∧τ1 the components of the process At are processes of bounded
variation, satisfying

dAit =
2

Ut · Vt

(
Ait −

U it + V it
2

)
dLXt , i = 1, . . . , d. (2.3.20)

Applying the Itô formula to the C2 function f (u, v) = ui

u·v and to the processes Ut and Vt, we
have:

1

2
dAit = d

(
U it

Ut · Vt

)
=

1

(Ut · Vt)2

d∑
j=1

((
δij Ut · Vt − U itV jt

)
dU jt − U itU jt dV jt

)

+
1

2(Ut · Vt)3

d∑
j,k=1

(
2U itV

j
t V

k
t − δijV kt Ut · Vt − δikV jt Ut · Vt

)
d〈U j , Uk〉t

+
1

2(Ut · Vt)3

d∑
j,k=1

(
2U itU

j
t U

k
t

)
d〈V j , V k〉t

+
1

(Ut · Vt)3

d∑
j,k=1

(
2U itU

k
t V

j
t − δijUkt Ut · Vt − δjkU itUt · Vt

)
d〈U j , V k〉t.

Using the relations in (2.3.16) it can be seen that the martingale part in the above expression
reduces to zero, and combining with (2.3.17) we obtain

1

2
dAit =

1

(Ut · Vt)2

d∑
j=1

((
δij Ut · Vt − U itV jt

)(
−Xj

t dL
X
t + Y jt dL

Y
t

))

− 1

(Ut · Vt)2

d∑
j=1

(
U itU

j
t

(
−Xj

t dL
X
t − Y jt dLYt

))

+
1

2(Ut · Vt)3

d∑
j,k=1

(
2U itV

j
t V

k
t − δijV kt Ut · Vt − δikV jt Ut · Vt

)
4
U jt U

k
t

‖Ut‖2
dt

+
1

2(Ut · Vt)3

d∑
j,k=1

(
2U itU

j
t U

k
t

)
4

(
δjk −

U jt U
k
t

‖Ut‖2

)
dt

=
1

(Ut · Vt)2

d∑
j=1

(
U itU

j
t + U itV

j
t − δij Ut · Vt

)
Xj
t dL

X
t

+
1

(Ut · Vt)2

d∑
j=1

(
U itU

j
t − U itV jt + δij Ut · Vt

)
Y jt dL

Y
t .

Using the fact that LYt ≡ 0 on the time interval [0, τ ∧ τ1) (the process Yt cannot reach the
boundary ∂U before either coupling first with Xt or before the first time when ‖Xt‖ = ‖Yt‖ = 1,
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that is before 0 ∈ Mt), and that LXt increases only when Xt ∈ ∂U, that is only when ‖Xt‖ =
‖Ut+Vt2 ‖ = 1, we obtain:

1

2
dAit =

1

(Ut · Vt)2

d∑
j=1

(
U itU

j
t + U itV

j
t − δij Ut · Vt

)
Xj
t dL

X
t

=
U it

2(Ut · Vt)2

d∑
j=1

(
U jt + V jt

)2

dLXt −
U it + V it
2Ut · Vt

dLXt

=
U it

2(Ut · Vt)2
‖Ut + Vt‖2dLXt −

U it + V it
2Ut · Vt

dLXt

=
2U it

(Ut · Vt)2
dLXt −

U it + V it
2Ut · Vt

dLXt

=
1

Ut · Vt

(
Ait −

U it + V it
2

)
dLXt ,

thus proving the claim (2.3.20).
To prove the claim of the lemma, assume by contradiction that there exists a point P ∈ U and

times 0 < t1 < t2 < τ ∧ τ1 such that the point P and the origin are separated byMt1 , but are not
separated byMt2 . By eventually changing the point P , without loss of generality we may assume
that P /∈Mt2 , and using (2.3.14) and (2.3.15) we obtain:

P · Ut2 −
1

2
Ut2 · Vt2 < 0 < P · Ut1 −

1

2
Ut1 · Vt1 ,

or equivalently (recall the definition (2.3.19) of the process At and that Ut ·Vt > 0 for t ∈ [0, τ∧τ1))

P ·At2 < 1 < P ·At1 .

Setting t0 = inf {t > t1 : P ·At < 1} ∈ (t1, t2) and using (2.3.20), we obtain:

P ·At0 = P ·At1 +

∫ t0

t1

P · dAt

= P ·At1 +

∫ t0

t1

2

Ut · Vt

(
P ·At −

1

2
P · (Ut + Vt)

)
dLXt

≥ P ·At1
> 1,

since P ·At ≥ 1 for t ∈ [t1, t0] and∣∣∣∣12P · (Ut + Vt)

∣∣∣∣ = |P ·Xt| ≤ ‖P‖ ‖Xt‖ ≤ 1.

By the continuity of the process At and the choice of t0 we must also have P · At0 = 1,
contradiction which concludes the proof of the lemma.

From the previous lemma we obtain the following:

Theorem 2.3.17. For any points x, y ∈ U with ‖y‖ ≤ ‖x‖ and any z ∈ U such that ‖x − z‖ ≤
‖y − z‖, we have:

P y (‖Yt − z‖ < ε) ≤ P x (‖Xt − z‖ < ε) , (2.3.21)

for any t ≥ 0 and ε ∈ (0,min {‖z‖, 1− ‖z‖}), where Xt and Yt are reflecting Brownian motions
in U starting at x, respectively y, and P x, P y denote the corresponding probability measures.
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Proof. Without loss of generality we may assume that x and y are distinct points.
Let Xt, Yt be a mirror coupling of reflecting Brownian motions in U with starting points X0 = x

and Y0 = y, and let τ be the coupling time and τ1 = inf{t > 0 : 0 ∈Mt}.
If Mt separates Xt and z for some t < τ ∧ τ1, there exists a point P ∈ U such that the origin

and the point P are separated byM0, but are not separated byMt, contradicting Lemma 2.3.16.
It follows that the mirrorMt does not separate the points Xt and z for all t < τ ∧τ1, and therefore
the distance from Xt to z is not greater than the distance from Yt to z in this case.

Since for t ≥ τ ∧ τ1, either the processes Xt and Yt are symmetric with respect to the (fixed)
hyperplane Mτ∧τ1 passing through the origin (for t ∈ (τ ∧ τ1, τ)), or they have coupled (for
t ∈ (τ,∞)), it follows that the distance from Xt to z is also not greater than the distance from Yt
to z.

In all cases we obtained that the distance from Xt to z is not greater than the distance from
Yt to z, and the claim follows.

Denoting by pU(t, x, y) the heat kernel for the Laplacian with Neumann boundary conditions
on the unit ball U ⊂ Rd (or equivalently, the transition density of reflecting Brownian motion in
U), we can now prove the following double inequality:

Theorem 2.3.18. For any x ∈ U− {0}, r ∈ (0,min {‖x‖, 1− ‖x‖}) and t > 0 we have:∫
∂U
pU (t, x+ ru, x) dσ(u) ≤ pU(t, x+ r x

‖x‖ , x) ≤ pU(t, x+ r x
‖x‖ , x+ r x

‖x‖ ), (2.3.22)

where σ is the normalized surface measure on ∂U.

Proof. Using the continuity of the transition density pU(t, x, y) of reflecting Brownian motion in
the space variable, it follows pU(t, x, y) can be written as

pU(t, x, y) = lim
ε↘0

1

cdεd

∫
‖y−z‖<ε

pU(t, x, z)dz = lim
ε↘0

1

cdεd
P x (‖Wt − y‖ < ε) , (2.3.23)

where Wt is a reflecting Brownian motion in the unit ball U ⊂ Rd starting at W0 = x, P x denotes

the corresponding probability measure and cd = πd/2

Γ( d2 +1)
is the volume of the unit ball U ⊂ Rd.

For u ∈ U fixed, it is easy to see that the hypotheses of Theorem 2.3.17 are verified if we
replace x, y and z respectively by x+ r x

‖x‖ , x+ ru and x. From this theorem, and combining with

the above representation, we obtain

pU (t, x+ ru, x) ≤ pU(t, x+ r x
‖x‖ , x), u ∈ U, (2.3.24)

and integrating with respect to u ∈ U we obtain the left inequality in (2.3.22).
The right inequality in (2.3.22) can be proved similarly, replacing x, y and z in Theorem 2.3.17

respectively by x+ r x
‖x‖ , x and x+ r x

‖x‖ , and using the symmetry of pU(t, x, y) in x, y ∈ U.

Remark 2.3.19. The inequality (2.3.24) obtained in the previous proof might be of independent
interest, and can be interpreted as an extremal property of reflecting Brownian motion in the unit
ball U, as follows:

max
y∈U : ‖y−x‖=r

pU (t, x, y) = pU(t, x, x+ r x
‖x‖ ),

that is, among all reflecting Brownian motions in the unit ball U with starting points on the sphere
{y ∈ Rn : ‖y− x‖ = r}, the reflecting Brownian motion starting closest to the boundary of U (i.e.
at the point x+ r x

‖x‖) is most likely to return to (a neighborhood of) x. This extremal property of

reflecting Brownian motion is the key of our proof of the Laugesen-Morpurgo conjecture.

As a corollary of the above theorem, we obtain the following resolution of the Laugesen-
Morpurgo conjecture:
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Theorem 2.3.20. Let pU(t, x, y) denote the heat kernel for the Laplacian with Neumann boundary
conditions on the unit ball U =

{
z ∈ Rd : ‖z‖ < 1

}
in Rd (d ≥ 1).

For any t > 0 we have
pU(t, x, x) < pU(t, y, y), (2.3.25)

for all x, y ∈ U with ‖x‖ < ‖y‖.

Proof. First note that for t > 0 fixed, by the radial symmetry of the problem it follows that
pU(t, x, x) is a function of ‖x‖ ∈ [0, 1].

For an arbitrarily fixed x ∈ U− {0}, from Theorem 6.2.4 we obtain

pU(t, x+ r x
‖x‖ , x+ r x

‖x‖ )− pU (t, x, x)

≥
∫
∂U
pU (t, x+ ru, x) dσ(u)− pU (t, x, x)

=

∫
∂U

(pU (t, x+ ru, x)− pU (t, x, x)) dσ(u),

for any r ∈ (0,min {‖x‖, 1− ‖x‖}). Dividing by r and passing to the limit with r ↘ 0, we obtain:

d

d‖x‖pU (t, x, x) = lim
r↘0

pU(t, x+ r x
‖x‖ , x+ r x

‖x‖ )− pU (t, x, x)

r

≥ lim
r↘0

∫
∂U

pU (t, x+ ru, x)− pU (t, x, x)

r
dσ(u).

By bounded convergence theorem (pU (t, ·, x) is a C2 function in the second variable, hence
∇pU (t, ·, x) is bounded in a neighborhood of x), we obtain

d

d‖x‖pU (t, x, x) ≥
∫
∂U
∇pU (t, x, x) · u dσ(u) = 0,

where we denoted by ∇pU the gradient of ∇pU (t, ·, x) in the second variable.
Since x ∈ U− {0} was arbitrarily fixed, we have

d

d‖x‖pU(t, x, x) ≥ 0, x ∈ (0, 1) ,

which shows that pU (t, x, x) is a non-decreasing function of ‖x‖ ∈ (0, 1), and by continuity this
also holds for ‖x‖ ∈ [0, 1].

Since pU (t, x, x) is the diagonal of a heat kernel of an operator with real analytic coefficients,
pU (t, x, x) is a real analytic function. If pU (t, x, x) were constant on a non-empty open subset
of U, then it would be identically constant in U, which is impossible (it can be shown that
pU(t, 0, 0) < pU(t, 1, 1) for any t > 0). This, together with the fact that pU (t, x, x) is a non-
decreasing radial function shows that pU (t, x, x) is in fact a strictly increasing radial function for
any t > 0, concluding the proof.

We conclude with the remark that the Laugesen-Morpurgo conjecture implies the famous Hot
Spots conjecture of J. Rauch (see for example [7], [48], [64]) in the case of the unit ball U ⊂ Rd,
and that extending the Laugesen-Morpurgo conjecture to more general domains would also give
a resolution of the Hot Spots conjecture for the corresponding domains (the Hot Spots conjecture
is only partially solved at the present moment).

2.4 Extension of the mirror coupling

In [65] we showed that the mirror coupling introduced in Section 2.2 above can be extended to
the case when the two reflecting Brownian motion have different state spaces, that is when Xt is
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a reflecting Brownian motion in a domain D1 and Yt is a reflecting Brownian motion in a domain
D2. Although the construction can be carried out in a more general setup (see the concluding
remarks in Section 2.6), in the present section we will consider the case when one of the domains
is strictly contained in the other.

The main result is the following:

Theorem 2.4.1. Let D1,2 ⊂ Rd be smooth bounded domains (piecewise C2-smooth boundary with
convex corners in R2, or C2-smooth boundary in Rd, d ≥ 3 will suffice) with D2 ⊂ D1 and D2

convex domain, and let x ∈ D1 and y ∈ D2 be arbitrarily fixed points.

Given a d-dimensional Brownian motion (Wt)t≥0 starting at 0 on a probability space (Ω,F , P ),
there exists a strong solution of the following system of stochastic differential equations

Xt = x+Wt +

∫ t

0

νD1
(Xs) dL

X
s (2.4.1)

Yt = y + Zt +

∫ t

0

νD2
(Ys) dL

Y
s (2.4.2)

Zt =

∫ t

0

G (Ys −Xs) dWs (2.4.3)

or equivalent

Zt =

∫ t

0

G
(

Γ̃ (y + Z)s − Γ (x+W )s

)
dWs, (2.4.4)

where Γ and Γ̃ denote the corresponding Skorokhod maps which define the reflecting Brownian
motion X = Γ (x+W ) in D1, respectively Y = Γ̃ (y + Z) in D2, and G : Rd → Md×d denotes
the following modification of the function G defined in the previous section:

G (z) =

{
H
(

z
‖z‖

)
, if z 6= 0

I, if z = 0
. (2.4.5)

Remark 2.4.2. As it will follow from the proof of the theorem, with the choice of G above, the
solution of the equation (2.4.4) in the case D1 = D2 = D is the same as the solution of the
equation (2.2.5) considered by the authors in [4] (as also pointed out by the authors, the choice of
G (0) is irrelevant in this case).

Therefore, the above theorem is a natural generalization of the mirror coupling to the case
when the two processes live in different spaces. We will refer to a solution (Xt, Yt) given by the
above theorem as a mirror coupling of reflecting Brownian motions in (D1, D2) starting from
(x, y) ∈ D1 ×D2, with driving Brownian motion Wt.

As indicated in Section 2.6, the solution of (2.4.4) is not pathwise unique, due to the fact that
the stochastic differential equation has a singularity at the times when coupling occurs. The general
mirror coupling can be thought as depending on a parameter which is a measure of the stickiness
of the coupling: once the processes Xt and Yt have coupled, they can either move together until one
of them hits the boundary ( sticky mirror coupling - this is in fact the solution constructed in the
above theorem), or they can immediately split apart after coupling ( non-sticky mirror coupling),
and there is a whole range of intermediate possibilities (see the discussion at the end of Section
2.6).

As an application, in Section 2.6 we will use the former mirror coupling to give a unifying
proof of Chavel’s conjecture on the domain monotonicity of the Neumann heat kernel for domains
D1,2 satisfying the ball condition, although the other possible choices for the mirror coupling might
prove useful in other contexts.

Before carrying out the proof, we begin with some preliminary remarks which will allow us to
reduce the proof of the above theorem to the case D1 = Rd.
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Remark 2.4.3. The main difference from the case when D1 = D2 = D considered by the authors
in [4] is that after the coupling time ξ the processes Xt and Yt may decouple. For example, if t ≥ ξ
is a time when Xt = Yt ∈ ∂D2, the process Yt (reflecting Brownian motion in D2) receives a push
in the direction of the inward unit normal to the boundary of D2, while the process Xt behaves
like a free Brownian motion near this point (we assumed that D2 is strictly contained in D1),
and therefore the processes X and Y will drift apart, that is they will decouple. Also, as shown
in Section 2.6, because the function G has a discontinuity at the origin, it is possible that the
solutions decouple even when they are inside the domain D2. This shows that without additional
assumptions, the mirror coupling is not uniquely determined (there is no pathwise uniqueness of
(2.4.4)).

Remark 2.4.4. To fix ideas, for an arbitrarily fixed ε > 0 chosen small enough such that ε <
dist (∂D1, ∂D2), we consider the sequence (ξn)n≥1 of coupling times and the sequence (τn)n≥0 of
times when the processes are ε-decoupled (ε-decoupling times, or simply decoupling times by an
abuse of language) defined inductively by

ξn = inf {t > τn−1 : Xt = Yt} , n ≥ 1,

τn = inf {t > ξn : ‖Xt − Yt‖ > ε} , n ≥ 1,

where τ0 = 0 and ξ1 = ξ is the first coupling time.

To construct the general mirror coupling (that is, to prove the existence of a solution to (2.4.1)
– (2.4.3) above, or equivalent to (2.4.4)), we proceed as follows.

First note that on the time interval [0, ξ], the arguments used in the proof of Theorem 2 in [4]
(pathwise uniqueness and the existence of a strong solution Z of (2.4.4)) do not rely on the fact
that D1 = D2, hence the same arguments can be used to prove the existence of a strong solution of
(2.4.4) on the time interval [0, ξ1] = [0, ξ]. Indeed, given Wt, (2.4.1) has a strong solution which
is pathwise unique (the reflecting Brownian motion Xt in D1), and therefore the proof of pathwise
uniqueness and the existence of a strong solution of (2.4.4) is the same as in [4] considering
D = D2. Also note that as also pointed out by the authors, the value G (0) is irrelevant in their
proof, since the problem is constructing the processes until they meet, that is for Yt −Xt 6= 0, for
which their definition of G is the same as in (2.4.5).

We obtain therefore the existence of a strong solution Zt to (2.4.4) on the time interval [0, ξ1].
By this we understand that the process Z verifies (2.4.4) for all t ≤ ξ1 and Zt is Ft measurable
for t ≤ ξ1, where (Ft)t≥0 denotes the corresponding filtration of the driving Brownian motion Wt.

For an arbitrarily fixed T > 0, if ξ1 < T , we can extend Z to a solution of (2.4.4) on the time
interval [0, T ] as follows. Consider ξT1 = ξ1 ∧ T , and note that if Z solves (2.4.4), then

ZξT1 +t − ZξT1 =

∫ ξT1 +t

ξT1

G
(

Γ̃ (y + Z)s − Γ (x+W )s

)
dWs

=

∫ t

0

G
(

Γ̃ (y + Z)ξT1 +s − Γ (x+W )ξT1 +s

)
dWξT1 +s.

By the uniqueness results on the Skorokhod map (in the deterministic sense), we have

Γ̃ (y + Z)ξT1 +s = Γ̃
(

Γ̃(y + Z)ξT1 − ZξT1 + ZξT1 +·

)
s

and

Γ (x+W )ξT1 +s = Γ
(

Γ(x+W )ξT1 −WξT1
+WξT1 +·

)
s

for s ≥ 0.

It is known that W̃s = WξT1 +s −WξT1
is a Brownian motion starting at the origin, with corre-

sponding filtration F̃s = σ
(
BξT1 +u −BξT1 : 0 ≤ u ≤ s

)
independent of FξT1 .
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Setting Z̃t = ZξT1 +t − ZξT1 and combining the above equations we obtain

Z̃t =

∫ t

0

G
(

Γ̃
(

Γ̃ (y + Z)ξT1
+ Z̃

)
s
− Γ

(
Γ (x+W )ξT1

+ W̃
)
s

)
dW̃s, (2.4.6)

which is the same as the equation (2.4.4) for Z̃, with the initial points x, y of the coupling replaced

by YξT1 = Γ̃(y + Z)ξT1 , respectively XξT1
= Γ(x + W )ξT1 , and the Brownian motion W replaced by

W̃ .

If we assume the existence of a strong solution Z̃t of (2.4.6) until the first ε-decoupling time,

by patching Z and Z̃ we obtain that

Zt1t≤ξT1 + Z̃t−ξT1 1ξT1 ≤t≤τT1

is a strong solution to (2.4.4) on the time interval [0, τT1 ], where τT1 = τ1 ∧ T .

If τT1 = T , we are done. Otherwise, since at time τT1 the processes X and Y are ε units apart,
we can apply again the results in [4] (with the Brownian motion WτT1 +t−WτT1

instead of Wt, and

the starting points of the coupling XτT1
and YτT1 instead of x and y) in order to obtain a strong

solution of (2.4.4) until the first coupling time. By patching we obtain the existence of a strong
solution of (2.4.4) on the time interval

[
0, ξT2

]
.

Proceeding inductively as indicated above, since only a finite number of coupling/decoupling
times ξn and τn can occur in the time interval [0, T ], we can construct a strong solution Z to
(2.4.4) on the time interval [0, T ] for any T > 0 (and therefore on [0,∞)), provided we show the
existence of strong solutions of equations of type (2.4.6) until the first ε-decoupling time.

In order to prove this claim, since Γ̃(y + Z)ξT1 and Γ (x+W )ξT1
are FξT1 measurable and the

σ-algebra FξT1 is independent of the filtration F̃ = (F̃t)t≥0 of the driving Brownian motion W̃t,

it suffices to show that for any starting points x = y ∈ D2 of the mirror coupling, there exists
a strong solution of (2.4.4) until the first ε-decoupling time τ1. Since ε < dist (∂D1, ∂D2), it
follows that the process Xt cannot reach the boundary ∂D1 before the first ε-decoupling time τ1,
and therefore we can consider that Xt is a free Brownian motion in Rd, that is, we can reduce the
proof of Theorem 2.4.1 to the case when D1 = Rd.

We will give the proof of the Theorem 2.4.1 first in the 1-dimensional case, then we will extend
it to the case of polygonal domains in Rd, and we will conclude with the proof in the general case.

2.4.1 The 1-dimensional case

From Remark 2.4.4 it follows that in order to construct the mirror coupling in the 1-dimensional
case, it suffices to consider D1 = R and D2 = (0, a), and to show that for an arbitrary choice
x ∈ [0, a] of the starting point of the mirror coupling, ε ∈ (0, a) sufficiently small and (Wt)t≥0 a
1-dimensional Brownian motion starting at W0 = 0, we can construct a strong solution on [0, τ1]
of the following system

Xt = x+Wt (2.4.7)

Yt = x+ Zt + LYt (2.4.8)

Zt =

∫ t

0

G (Ys −Xs) dWs (2.4.9)

where τ1 = inf {s > 0 : |Xs − Ys| > ε} is the first ε-decoupling time and the functionG : R→M1×1 ≡
R is given in this case by

G (x) =

{
−1, if x 6= 0
+1, if x = 0

. (2.4.10)
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Remark 2.4.5. Before proceeding with the proof, it is worth mentioning that the heart of the
construction is Tanaka’s formula. To see this, consider for the moment a = ∞, and note that
Tanaka formula

|x+Wt| = x+

∫ t

0

sgn (x+Ws) dWs + L0
t (x+W )

gives a representation of the reflecting Brownian motion |x+Wt| in which the increments of the
martingale part of |x+Wt| are the increments of Wt when x + Wt ∈ [0,∞), respectively the
opposite (minus) of the increments of Wt in the other case (L0

t (x+W ) denotes here the local
time at 0 of x+Wt).

Since x+Wt ∈ [0,∞) is the same as |x+Wt| = x+Wt, from the definition of the function G
it follows that the above can be written in the form

|x+Wt| = x+

∫ t

0

G (|x+Ws| − (x+Ws)) dWs + Lx+W
t ,

which shows that a strong solution to (2.4.7) – (2.4.9) above (in the case a =∞) is given explicitly

by Xt = x+Wt, Yt = |x+Wt| and Zt =
∫ t

0
sgn (x+Ws) dWs.

We have the following:

Proposition 2.4.6. Given a 1-dimensional Brownian motion (Wt)t≥0 starting at W0 = 0, a
strong solution on [0, τ1] of the system (2.4.7) – (2.4.9) is given by

Xt = x+Wt

Yt = |a− |x+Wt − a||
Zt =

∫ t
0

sgn (Ws) sgn (a−Ws) dWs

,

where τ1 = inf {s > 0 : |Xs − Ys| > ε} and

sgn (x) =

{
+1, if x ≥ 0
−1, if x < 0

.

Proof. Since ε < a, it follows that for t ≤ τ1 we have Xt = x+Wt ∈ (−a, 2a), and therefore

Yt = |a− |x+Wt − a|| =

 − (x+Wt) , x+Wt ∈ (−a, 0)
x+Wt, x+Wt ∈ [0, a]
2a− x−Wt, x+Wt ∈ (a, 2a)

. (2.4.11)

Applying the Tanaka-Itô formula to the function f (z) = |a− |z − a|| and to the Brownian
motion Xt = x+Wt, for t ≤ τ1 we obtain

Yt = x+

∫ t

0

sgn (x+Ws) sgn (a− x−Ws) d (x+Ws) + L0
t − Lat

= x+

∫ t

0

sgn (x+Ws) sgn (a− x−Ws) dWs +

∫ t

0

νD2
(Ys) d

(
L0
s + Las

)
,

where L0
t = sups≤t (x+Ws)

−
and Lat = sups≤t (x+Ws − a)

+
are the local times of x+Wt at 0,

respectively at a, and νD2 (0) = +1, νD2 (a) = −1.
From (2.4.11) and the definition (2.4.10) of the function G we obtain

sgn (x+Ws) sgn (a− x−Ws) =

 −1, x+Ws ∈ (−a, 0)
+1, x+Ws ∈ [0, a]
−1, x+Ws ∈ (a, 2a)

=

{
+1, Xs = Ys
−1, Xs 6= Ys

= G (Ys −Xs) ,
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and therefore the previous formula can be written equivalently

Yt = x+ Zt +

∫ t

0

νD2
(Ys) dL

Y
s ,

where

Zt =

∫ t

0

G (Ys −Xs) dWs

and LYt = L0
t+Lat is a continuous nondecreasing process which increases only when x+Wt ∈ {0, a},

that is only when Yt ∈ ∂D2.

2.4.2 The case of polygonal domains

In this section we will consider the case when D2 ⊂ D1 ⊂ Rd are polygonal domains (domains
bounded by hyperplanes in Rd). From Remark 2.4.4 it follows that we can consider D1 = Rd and
therefore it suffices to prove the existence of a strong solution of the following system

Xt = X0 +Wt (2.4.12)

Yt = Y0 + Zt +

∫ t

0

νD2
(Ys) dL

Y
s (2.4.13)

Zt =

∫ t

0

G (Ys −Xs) dWs (2.4.14)

or equivalently of the equation

Zt =

∫ t

0

G
(

Γ̃ (Y0 + Z)s −X0 −Ws

)
dWs, (2.4.15)

where Wt is a d-dimensional Brownian motion starting at W0 = 0 and X0 = Y0 ∈ D2.
The construction relies on the following skew product representation of Brownian motion in

spherical coordinates:
Xt = RtΘσt , (2.4.16)

where Rt = ‖Xt‖ ∈ BES (d) is a Bessel process of order d and Θt ∈ BM
(
Sd−1

)
is an independent

Brownian motion on the unit sphere Sd−1 in Rd, run at speed

σt =

∫ t

0

1

R2
s

ds, (2.4.17)

which depends only on Rt.

Remark 2.4.7. One way to construct the Brownian motion Θt = Θd−1
t on the unit sphere Sd−1 ⊂

Rd is to proceed inductively on d ≥ 2, using the following skew product representation of Brownian
motion on the sphere Θd−1

t ∈ Sd−1 (see [45]):

Θd−1
t =

(
cos θ1

t , sin θ
1
tΘ

d−2
αt

)
,

where θ1 ∈ LEG (d− 1) is a Legendre process of order d − 1 on [0, π], and Θd−2
t ∈ Sd−2 is an

independent Brownian motion on Sd−2, run at speed

αt =

∫ t

0

1

sin2 θ1
s

ds.

Therefore, if θ1
t , . . . θ

d−1
t are independent processes, with θi ∈ LEG (d− i) on [0, π] for i =

1, . . . , d − 2, and θd−1
t is a 1-dimensional Brownian (note that Θ1

t =
(
cos θ1

t , sin θ
1
t

)
∈ S1 is a

Brownian motion on S1), Brownian motion Θd−1
t on the unit sphere Sd−1 ⊂ Rd is given by

Θd−1
t =

(
cos θ1

t , sin θ
1
t cos θ2

t , sin θ
1
t sin θ2

t cos θ3
t , . . . , sin θ

1
t · . . . · sin θd−1

t sin θd−1
t

)
,



2.4. EXTENSION OF THE MIRROR COUPLING. 49

or by
Θd−1
t =

(
θ1
t , . . . , θ

d−2
t , θd−1

t

)
(2.4.18)

in spherical coordinates.

To construct the solution of (2.4.12) – (2.4.14), we first consider the case when D2 is a half-space
H+
d =

{(
z1, . . . , zd

)
∈ Rd : zd > 0

}
.

Given an angle ϕ ∈ R, we introduce the rotation matrix R (ϕ) ∈Md×d which leaves invariant
the first d− 2 coordinates and rotates clockwise by the angle α the remaining 2 coordinates, that
is

R (α) =


1 0 0 0

. . . · · · · · ·
0 1 0 0
0 · · · 0 cosϕ − sinϕ
0 · · · 0 sinϕ cosϕ

 . (2.4.19)

We have the following:

Lemma 2.4.8. Let D2 = H+
d =

{(
z1, . . . , zd

)
∈ Rd : zd > 0

}
and assume that

Y0 = R (ϕ0)X0 (2.4.20)

for some ϕ0 ∈ R.
Consider the reflecting Brownian motion θ̃d−1

t on [0, π] with driving Brownian motion θd−1
t ,

where θd−1
t is the (d− 1) spherical coordinate of G (Y0 −X0)Xt, given by (2.4.16) – (2.4.18)

above, that is:

θ̃d−1
t = θd−1

t + L0
t

(
θ̃d−1

)
− Lπt

(
θ̃d−1

)
, t ≥ 0,

and L0
t

(
θ̃d−1

)
, Lπt

(
θ̃d−1

)
represent the local times of θ̃d−1 at 0, respectively at π.

A strong solution of the system (2.4.12) – (2.4.14) is explicitly given by

Yt =

{
R (ϕt)G (Y0 −X0)Xt, t < ξ
|Xt|d , t ≥ ξ (2.4.21)

where ξ = inf {t > 0 : Xt = Yt} is the coupling time, the rotation angle ϕt is given by

ϕt = L0
t

(
θ̃d−1

)
− Lπt

(
θ̃d−1

)
, t ≥ 0,

and for z =
(
z1, z2 . . . , zd

)
∈ Rd we denoted by |z|d =

(
z1, z2, . . . ,

∣∣zd∣∣).
Proof. Recall that for m ∈ Rd − {0}, G (m) v denotes the mirror image of v ∈ Rd with respect to
the hyperplane through the origin perpendicular to m.

By Itô formula, we have

Yt∧ξ = Y0 +

∫ t∧ξ

0

R (ϕs)G (Y0 −X0) dXs +

∫ t∧ξ

0

R
(
ϕs +

π

2

)
G (Y0 −X0) dLs. (2.4.22)

Note that the composition R◦G (a symmetry followed by a rotation) is a symmetry, and since
‖Yt‖ = ‖Xt‖ for all t ≥ 0, it follows that Xt and Yt are symmetric with respect to a hyperplane
passing through the origin for all t ≤ ξ. Therefore, from the definition (2.4.5) of the function G it
follows that we have Yt = G (Yt −Xt)Xt for all t ≤ ξ.

Also note that when L0
s

(
θ̃d−1

)
increases, Ys ∈ ∂D2 and we have

R
(
ϕs +

π

2

)
G (Y0 −X0)Xs = R

(π
2

)
Ys = νD2

(Ys) ,
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Xt

Yt = R(ϕt)G(Y0 −X0)Xt

M0

Mt

X0

Y0

G(Y0 −X0)Xt

H+
d

νH+
d

m0

mt

R(ϕt)

Figure 2.7: The mirror coupling of a free Brownian motion Xt and a reflecting Brownian motion
Yt in the half-space H+

d .

and if Lπs

(
θ̃d−1

)
increases, Ys ∈ ∂D2 and we have

R
(
ϕs +

π

2

)
G (Y0 −X0)Xs = R

(π
2

)
Ys = −νD2

(Ys) .

It follows that the relation (2.4.22) can be written in the equivalent form

Yt∧ξ = Y0 +

∫ t∧ξ

0

G (Ys −Xs) dXs +

∫ t∧ξ

0

νD2 (Ys) dL
Y
s ,

where LYt = L0
t

(
θ̃d−1

)
+ Lπt

(
θ̃d−1

)
is a continuous non-decreasing process which increases only

when Yt ∈ ∂D2, and therefore Yt given by (2.4.21) is a strong solution of the system (2.4.12) –
(2.4.14) for t ≤ ξ.

For t ≥ ξ, we have Yt = |Xt|d =
(
X1
t , X

2
t , . . . ,

∣∣Xd
t

∣∣), and proceeding similarly to the 1-
dimensional case, by Tanaka formula we obtain:

Yt∨ξ = Yξ +

∫ t∨ξ

ξ

(
1, . . . , 1, sgn

(
Xd
s

))
dXs +

∫ t∨ξ

ξ

(0, . . . , 0, 1)L0
t

(
Xd
)

(2.4.23)

= Yξ +

∫ t∨ξ

ξ

G (Ys −Xs) dXs +

∫ t∨ξ

ξ

νD2 (Ys)L
Y
t ,

since in this case

G (Ys −Xs) =

{
(1, . . . , 1,+1) , Xs = Ys
(1, . . . , 1,−1) , Xs 6= Ys

=

{
(1, . . . , 1,+1) , Xd

s ≥ 0
(1, . . . , 1,−1) , Xd

s < 0

=
(
1, . . . , 1, sgn

(
Xd
s

))
.

The process LYt = L0
t

(
Xd
)

in (2.4.23) is a continuous non-decreasing process which increases

only when Yt ∈ ∂D2 (L0
t

(
Xd
)

represents the local time at 0 of the last cartesian coordinate Xd

of X), which shows that Yt also solves (2.4.12) – (2.4.14) for t ≥ ξ, and therefore Yt is a strong
solution of (2.4.12) – (2.4.14) for t ≥ 0, concluding the proof.
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Consider now the case of a general polygonal domain D2 ⊂ Rd. We will show that a strong
solution of the system (2.4.12) – (2.4.14) can be constructed from the previous lemma by choosing
the appropriate coordinate system.

Consider the times (σn)n≥0 at which the solution Yt hits different bounding hyperplanes of
∂D2, that is σ0 = inf {s ≥ 0 : Ys ∈ ∂D2} and inductively

σn+1 = inf

{
t ≥ σn :

Yt ∈ ∂D2 and Yt,Yσn belong to different1

bounding hyperplanes of ∂D2

}
, n ≥ 0. (2.4.24)

If X0 = Y0 ∈ ∂D2 belong to a certain bounding hyperplane of D2, we can chose the coordinate
system so that this hyperplane is Hd =

{(
z1, . . . , zd

)
∈ Rd : zd = 0

}
and D2 ⊂ H+

d , and we let Hd
be any bounding hyperplane of D2 otherwise.

By Lemma 2.4.8 it follows that on the time interval [σ0, σ1), the strong solution of (2.4.12) –
(2.4.14) is given explicitly by (2.4.21).

If σ1 < ∞, we distinguish two cases: Xσ1
= Yσ1

and Xσ1
6= Yσ1

. Let H denote the bounding
hyperplane of D which contains Yσ1 , and let νH denote the unit normal to H pointing inside D2.

If Xσ1 = Yσ1 ∈ H, choosing again the coordinate system conveniently, we may assume that
H is the hyperplane is Hd =

{(
z1, . . . , zd

)
∈ Rd : zd = 0

}
, and on the time interval [σ1, σ2) the

coupling (Xσ1+t, Yσ1+t)t∈[0,σ2−σ1) is given again by Lemma 2.4.8.
If Xσ1

6= Yσ1
∈ H, in order to apply Lemma 2.4.8 we have to show that we can choose the

coordinate system so that the condition (2.4.20) holds. If Yσ1−Xσ1 is a vector perpendicular to H,
by choosing the coordinate system so that H = Hd =

{(
z1, . . . , zd

)
∈ Rd : zd = 0

}
, the problem

reduces to the 1-dimensional case (the first d − 1 coordinates of X and Y are the same), and it
can be handled as in Proposition 2.4.6 by the Tanaka formula. The proof being similar, we omit
it.

If Xσ1
6= Yσ1

∈ H and Yσ1
− Xσ1

is not orthogonal to H, consider X̃σ1
= prHXσ1

the

projection of Xσ1
onto H, and therefore X̃σ1

6= Yσ1
. The plane of symmetry of Xσ1

and Yσ1

intersects the line determined by X̃σ1
and Yσ1

at a point, and we consider this point as the origin
of the coordinate system (note that the intersection cannot be empty, for otherwise the vectors

Yσ1
−Xσ1

and Yσ1
− X̃σ1

were parallel, which is impossible since then Yσ1
−Xσ1

, Yσ1
− X̃σ1

and

Yσ1 − X̃σ1 , Xσ1 − X̃σ1 were perpendicular pairs of vectors, contradicting X̃σ1 6= Yσ1 – see Figure
2.8).

Yσ1

Xσ1

X̃σ1

H
0

Mσ1

ed = νH

ed−1{e1, . . . , ed−2}

Figure 2.8: Construction of the appropriate coordinate system.

Choose an orthonormal basis {e1, . . . , ed} in Rd such that ed = νH is the normal vector to H
pointing inside D2, ed−1 = 1

‖Yσ1−Xσ1‖
(Yσ1

−Xσ1
) is a unit vector lying in the 2-dimensional plane

determined by the origin and the vectors ed and Yσ1 −Xσ1 , and {e1, . . . , ed−2} is a completion of
{ed−1, ed} to an orthonormal basis in Rd (see Figure 2.8).

1Since 2-dimensional Brownian motion does not hit points a.s., the d-dimensional Brownian motion Yt does not
hit the edges of D2 ((d− 2)-dimensional hyperplanes in Rd) a.s., thus there is no ambiguity in the definition.
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Note that by the construction, the vectors e1, . . . , ed−2 are orthogonal to the 2-dimensional
hyperplane containing the origin and the points Xσ1

and Yσ1
, and therefore Xσ1

and Yσ1
have

the same (zero) first d− 2 coordinates; also, since Xσ1
and Yσ1

are at the same distance from the
origin, it follows that Yσ1

can be obtained from Xσ1
by a rotation which leaves invariant the first

d− 2 coordinates, which shows that the condition (2.4.20) of Lemma 2.4.8 is satisfied.
Since by construction the bounding hyperplane H of D2 at Yσ1 is given by

Hd =
{(
z1, . . . , zd

)
∈ Rd : zd = 0

}
and D2 ⊂ H+

d =
{(
z1, . . . , zd

)
∈ Rd : zd > 0

}
, we can apply Lemma 2.4.8 to deduce that on the

time interval [σ1, σ2) a solution of (2.4.12) – (2.4.14) is given by (Xσ1+t, Yσ1+t)t∈[0,σ2−σ1).

Repeating the above argument we can construct inductively (in the appropriate coordinate
systems) the solution of (2.4.12) – (2.4.14) on any time interval [σn, σn+1), n ≥ 1, and therefore
we obtain a strong solution of (2.4.12) – (2.4.14) defined for t ≥ 0.

We summarize the above discussion in the following:

Theorem 2.4.9. If D2 ⊂ Rd is a polygonal domain, for any X0 = Y0 ∈ D2, there exists a strong
solution of the system (2.4.12) - (2.4.14).

Moreover, between successive hits of different bounding hyperplanes of D2 (i.e. on each time
interval [σn, σn+1) in the notation above), the solution is given by Lemma 2.4.8 in the appropriately
chosen coordinate system.

We will refer to the solution (Xt, Yt)t≥0 constructed in the previous theorem as a mirror

coupling of reflecting Brownian motions in
(
Rd, D2

)
with starting point X0 = Y0 ∈ D2.

If Xt 6= Yt, the hyperplane Mt of symmetry between Xt and Yt (the hyperplane passing through
Xt+Yt

2 with normal mt = 1
‖Yt−Xt‖ (Yt −Xt)) will be referred to as the mirror of the coupling. For

definiteness, when Xt = Yt we let Mt denote any hyperplane passing through Xt = Yt, for example
we can choose Mt such that it is a left continuous function with respect to t.

In the particular case of a convex polygonal domain D2, some of the properties of the mirror
coupling are contained in the following:

Proposition 2.4.10. If D2 ⊂ Rd is a convex polygonal domain, for any X0 = Y0 ∈ D2, the
mirror coupling given by the previous theorem has the following properties:

i) If the reflection takes place in the bounding hyperplane H of D2 with inward unitary normal
νH, then the angle ∠(mt; νH) decreases monotonically to zero.

ii) When processes are not coupled, the mirror Mt lies outside D2.

iii) Coupling can take place precisely when Xt ∈ ∂D2. Moreover, if Xt ∈ D2, then Xt = Yt.

iv) If Dα ⊂ Dβ are two polygonal domains and (Y αt ;Xt), (Y βt ;Xt) are the corresponding mirror
coupling starting from x ∈ Dα, for any t > 0 we have

sup
s≤t
‖Y αs − Y βs ‖ ≤ Dist

(
Dα, Dβ

)
:= max

xα∈∂Dα,xβ∈∂Dβ
(xβ−xα)·νDα (xα)≤0

‖xα − xβ‖. (2.4.25)

Proof. i) In the notation of Theorem 2.4.9, on the time interval [σ0, σ1) we have Yt = Xt, so
∠ (mt, νH) = 0 and therefore the claim is verified in this case.

On an arbitrary time interval [σn, σn+1), in the appropriately chosen coordinate system, Yt is
given by Lemma 2.4.8. For t < ξ, Yt is given by the rotation R (ϕt) of G (Y0 −X0)Xt which leaves
invariant the first (d− 2) coordinates, and therefore

∠ (mt, νH) = ∠ (m0, νH) +
L0
t − Lπt

2
,



2.5. THE PROOF OF THEOREM 2.4.1. 53

which proves the claim in this case (note that before the coupling time ξ only one of the non-
decreasing processes L0

t and Lπt is not identically zero).
Since for t ≥ ξ we have Yt =

(
X1
t , . . . ,

∣∣Xd
t

∣∣), we have ∠ (mt, νH) = 0 which concludes the
proof of the claim.

ii) On the time interval [σ0, σ1) the processes are coupled, so there is nothing to prove in this
case.

On the time interval [σ1, σ2), in the appropriately chosen coordinate system we have Yt =(
X1
t , . . . ,

∣∣Xd
t

∣∣), thus the mirror Mt coincides with the boundary hyperplane

Hd =
{(
z1, . . . , zd

)
∈ Rd : zd = 0

}
of D2 where the reflection takes place, and therefore Mt ∩D2 = ∅ in this case.

Inductively, assume the claim is true for t < σn. By continuity, Mσn ∩D2 = ∅, thus D2 lies
on one side of Mσn . By the previous proof, the angle ∠ (mt, νH) between mt and the inward unit
normal νH to bounding hyperplane H of D2 where the reflection takes place decreases to zero.
Since D2 is a convex domain, it follows that on the time interval [σn, σn+1) we have Mt∩D2 = ∅,
concluding the proof.

iii) The first part of the claim follows from the previous proof (when the processes are not
coupled, the mirror (hence Xt) lies outside D2; by continuity, it follows that at the coupling time
ξ we must have Xξ = Yξ ∈ ∂D2).

To prove the second part of the claim, consider an arbitrary time interval [σn, σn+1) between
two successive hits of Yt to different bounding hyperplanes of D2. In the appropriately chosen
coordinate system, Yt is given by Lemma 2.4.8. After the coupling time ξ, Yt is given by Yt =(
X1
t , . . . ,

∣∣Xd
t

∣∣), and therefore if Xt ∈ D2 (thus Xd
t ≥ 0) we have Yt =

(
X1
t , . . . , X

d
t

)
= Xt,

concluding the proof.
iv) Let Mα

t and Mβ
t denote the mirrors of the coupling in Dα, respectively Dβ , with the same

driving Brownian motion Xt.
Since Y αt and Xt are symmetric with respect to Mα

t , and Y βt and Xt are symmetric with

respect to Mβ
t , it follows that Y βt is obtained from Y βt by a rotation which leaves invariant the

hyperplane Mα
t ∩Mβ

t , or by a translation by a vector orthogonal to Mα
t (in the case when Mα

t

and Mβ
t are parallel).

The angle of rotation (respectively the vector of translation) is altered only when either Y αt or

Y βt are on the boundary of Dα, respectively Dβ . Since Dα ⊂ Dβ are convex domains, the angle

of rotation (respectively the vector of translation) decreases when Y βt ∈ Dβ or when Y αt ∈ ∂Dα

and
(
Y βt − Y αt

)
· νDα (Y αt ) > 0 (in these cases Y βt and Y αt receive a push such that the distance

‖Y αt −Y βt ‖ is decreased), thus the maximum distance ‖Y αt −Y βt ‖ is attained when Y αt ∈ ∂Dα and(
Y βt − Y αt

)
· νDα (Y αt ) ≤ 0, and the formula follows.

2.5 The proof of Theorem 2.4.1

By Remark 2.4.4, it suffices to consider the case when D1 = Rd and D2 ⊂ Rd is a convex bounded
domain with smooth boundary. To simplify the notation, we will drop the index and write D for
D2 in the sequel.

Let (Dn)n≥1 be an increasing sequence of convex polygonal domains in Rd with Dn ⊂ Dn+1

and ∪n≥1Dn = D.
Consider (Y nt , Xt)t≥0 a sequence of mirror couplings in

(
Dn,Rd

)
with starting point x ∈ D1

and driving Brownian motion (Wt)t≥0 with W0 = 0, given by Theorem 2.4.9.
By Proposition 2.4.10, for any t > 0 we have

sup
s≤t
|Y ms − Y ns | ≤ Dist (Dn, Dm) = max

xn∈∂Dn,xm∈∂Dm
(xm−xn)·νDn (xn)≤0

|xn − xm| →
n,m→∞

0,

hence Y nt converges a.s. in the uniform topology to a continuous process Yt.
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Since (Y n)n≥1 are reflecting Brownian motions in (Dn)n≥1 and Dn ↗ D, the law of Yt is that
of a reflecting Brownian motion in D, that is Yt is a reflecting Brownian motion in D starting at
x ∈ D (see [22]). Also note that since Y nt are adapted to the filtration FW = (Ft)t≥0 generated
by the Brownian motion Wt, so is Yt.

By construction, the driving Brownian motion Znt of Y nt satisfies

Znt =

∫ t

0

G (Y nt −Xt) dWt, t ≥ 0.

Consider the process

Zt =

∫ t

0

G (Ys −Xs) dWs,

and note that since Y is FW -adapted and ||G|| = 1, by Lévy’s characterization of Brownian
motion, Zt is a free d-dimensional Brownian motion starting at Z0 = 0, also adapted to the
filtration FW .

We will show that Z is the driving process of the reflecting Brownian motion Yt, that is, we
will show that

Yt = x+ Zt + LYt = x+

∫ t

0

G (Ys −Xs) dWs + LYt , t ≥ 0.

Note that the mapping z 7−→ G (z) is continuous with respect to the norm ||A|| = ||(aij)|| =∑d
i,j=1 a

2
ij of d × d matrices at all points z ∈ Rd − {0}, hence G (Y ns −Xs) →

n→∞
G (Ys −Xs) if

Ys −Xs 6= 0. If Ys −Xs = 0, then either Ys = Xs ∈ D or Ys = Xs ∈ ∂D.
If Ys = Xs ∈ D, since Dn ↗ D, there exists N ≥ 1 such that Xs ∈ DN , hence Xs ∈ Dn for all

n ≥ N . By Proposition 2.4.10, it follows that Y ns = Xs for all n ≥ N , hence in this case we also
have G (Y ns −Xs) = G (0) →

n→∞
G (0) = G (Ys −Xs).

If Ys = Xs ∈ ∂D, since Dn ⊂ D we have Y ns −Xs 6= 0, and therefore by the definition (2.4.5)
of G we have: ∫ t

0

||G (Y ns −Xs)−G (Ys −Xs)||2 1Ys=Xs∈∂Dds

=

∫ t

0

∣∣∣∣∣∣∣∣H ( Y ns −Xs

||Y ns −Xs||

)
− I
∣∣∣∣∣∣∣∣2 1Ys=Xs∈∂Dds

=

∫ t

0

∣∣∣∣∣
∣∣∣∣∣I − 2

Y ns −Xs

||Y ns −Xs||

(
Y ns −Xs

||Y ns −Xs||

)′
− I
∣∣∣∣∣
∣∣∣∣∣
2

1Ys=Xs∈∂Dds

=

∫ t

0

∣∣∣∣∣
∣∣∣∣∣2 Y ns −Xs

||Y ns −Xs||

(
Y ns −Xs

||Y ns −Xs||

)′∣∣∣∣∣
∣∣∣∣∣
2

1Ys=Xs∈∂Dds

= 4

∫ t

0

1Ys=Xs∈∂Dds

≤ 4

∫ t

0

1∂D (Ys) ds

= 0,

since Yt is a reflecting Brownian motion in D, and therefore it spends zero Lebesgue time on the
boundary of D.

Since ||G|| = 1, using the above and the bounded convergence theorem we obtain

lim
n→∞

∫ t

0

||G (Y ns −Xs)−G (Ys −Xs)||2 ds = 0,
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and therefore by Doob’s inequality it follows that

E sup
s≤t
‖Zns − Zs‖2 ≤ cE‖Znt − Zt‖2 ≤ cE

∫ t

0

‖G (Y ns −Xs)−G (Ys −Xs) ‖2ds →
n→∞

0,

for any t ≥ 0, which shows that Znt converges uniformly on compact sets to Zt =
∫ t

0
G (Ys −Xs) dWs.

By construction, Znt is the driving Brownian motion for Y nt , that is

Y nt = x+ Znt +

∫ t

0

νDn (Y ns ) dLYns ,

and passing to the limit with n→∞ we obtain

Yt = x+ Zt +At = x+

∫ t

0

G (Ys −Xs) dWs +At, t ≥ 0,

where At = limn→∞
∫ t

0
νDn (Y ns ) dLYns .

It remains to show that At is a process of bounded variation. For an arbitrary partition
0 = t0 < t1 < . . . tl = t of [0, t] we have

E

l∑
i=1

‖Ati −Ati−1‖ = lim
n→∞

E

l∑
i=1

∥∥∥∥∥
∫ ti

ti−1

νDn (Y ns ) dLYns

∥∥∥∥∥
≤ lim supE LYnt

= lim sup

∫ t

0

∫
∂Dn

pDn (s, x, y)σn (dy) ds

≤ c
√
t,

where σn is the surface measure on ∂Dn, and the last inequality above follows from the estimates
in [15] on the Neumann heat kernels pDn (t, x, y) (see the remarks preceding Theorem 2.1 and the
proof of Theorem 2.4 in [23]).

From the above it follows that At = Yt − x − Zt is a continuous, FW -adapted process (since
Yt, Zt are continuous, FW -adapted processes) of bounded variation.

By the uniqueness in the Doob-Meyer semimartingale decomposition of the reflecting Brownian
motion Yt in D, it follows that

At =

∫ t

0

νD (Ys) dL
Y
s , t ≥ 0,

where LY is the local time of Y on the boundary ∂D. It follows that the reflecting Brownian
motion Yt in D constructed above is a strong solution to

Yt = x+

∫ t

0

G (Ys −Xs) dWs +

∫ t

0

νD (Ys) dL
Y
s , t ≥ 0,

or equivalent, the driving Brownian motion Zt =
∫ t

0
G (Ys −Xs) dWs of Yt is a strong solution to

Zt =

∫ t

0

G
(

Γ̃ (y + Z)s −Xs

)
dWs, t ≥ 0,

concluding the proof of Theorem 2.4.1.
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2.6 Extensions and applications

As an application of the construction of mirror coupling, we will present a unifying proof of the
two most important results on Chavel’s conjecture.

It is not difficult to prove that the Dirichlet heat kernel is an increasing function with respect to
the domain. Since for the Neumann heat kernel pD (t, x, y) of a smooth bounded domain D ⊂ Rd
we have

lim
t→∞

pD (t, x, y) =
1

vol (D)
,

the monotonicity in the case of the Neumann heat kernel should be reversed.
The above observation was conjectured by Isaac Chavel ([29]), as follows:

Conjecture 2.6.1 (Chavel’s conjecture, [29]). Let D1,2 ⊂ Rd be smooth bounded convex domains
in Rd, d ≥ 1, and let pD1 (t, x, y), pD2 (t, x, y) denote the Neumann heat kernels in D1, respectively
D2. If D2 ⊂ D1, then

pD1
(t, x, y) ≤ pD2

(t, x, y) , (2.6.1)

for any t ≥ 0 and x, y ∈ D1.

Remark 2.6.2. The smoothness assumption in the above conjecture is meant to insure the a.e.
existence of the inward unit normal to the boundaries of D1 and D2, that is the boundaries should
have a locally differentiable parametrization. Requiring that the boundary of the domain is of class
C1,α (0 < α < 1) is a convenient hypothesis on the smoothness of the domains D1,2.

In order to simplify the proof, we will assume that D1,2 are smooth C2 domains (the proof can
be extended to a more general setup, by approximating D1,2 by less smooth domains).

Among the positive results on Chavel conjecture, the most general known results (and perhaps
the easiest to use in practice) are due to I. Chavel ([29]) and W. Kendall ([51]), and they show
that if there exists a ball B centered at either x or y such that D2 ⊂ B ⊂ D1, then the inequality
(2.6.1) in Chavel’s conjecture holds for any t > 0.

While there are also other positive results which suggest that Chavel’s conjecture is true for
certain classes of domains (see for example [27], [39]), in [12] R. Bass and K. Burdzy showed that
Chavel’s conjecture does not hold in its full generality (i.e. without additional hypotheses).

We note that both the proof of Chavel (the case when D1 is a ball centered at either x or y)
and Kendall (the case when D2 is a ball centered at either x or y) relies in an essential way that
one of the domains is a ball: the first uses an integration by parts technique, while the later uses
a coupling argument of the radial parts of Brownian motion, and none of these proofs seem to be
easily applicable to the other case.

Using the mirror coupling, we can derive a simple, unifying proof of these two important
results, as follows:

Theorem 2.6.3. Let D2 ⊂ D1 ⊂ Rd be smooth bounded domains and assume that D2 is convex.
If for x, y ∈ D2 there exists a ball B centered at either x or y such that D2 ⊂ B ⊂ D1, then for
all t ≥ 0 we have

pD1
(t, x, y) ≤ pD2

(t, x, y) . (2.6.2)

Proof. Consider x, y ∈ D2 arbitrarily fixed and assume that D2 ⊂ B = B (y,R) ⊂ D1 for some
R > 0.

By eventually approximating the convex domain D2 by convex polygonal domains, it suffices
to prove the claim in the case when D2 is a convex polygonal domain.

Let (Xt, Yt) be a mirror coupling of reflecting Brownian motions in (D1, D2) starting at x ∈ D2.
The idea of the proof is to show that for all times t ≥ 0, Yt is at a distance from y is no greater
than the distance from Xt to y.

Let t0 ≥ 0 be a time when the processes are at the same distance from y, and let t1 ≥ t0 be
the first time after t0 when the process Xt hits the boundary of D1.

Note that by the ball condition we have ‖Xt − y‖ = R > ‖Yt − y‖ for any t ≥ 0, and in
particular this holds for t = t1. Since the processes Xt and Yt are continuous, the distances from
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Xt and Yt to y are continuous functions of t, and therefore in order to prove the claim it suffices
to show that ‖Yt− y‖ ≤ ‖Xt− y‖ for all t ∈ [t0, t1]. Also note that on the time interval [t0, t1] the
process Xt behaves like a free Brownian motion.

We distinguish the following cases:
i) The processes are coupled at time t0 (i.e. Xt0 = Yt0);
In this case, the distances from Xt and Yt to y will remain equal until the first time when the

processes hit the boundary of D2. Since on the time interval [t0, t1] the process Xt behaves like a
free Brownian motion, by Proposition 2.4.10 ii) it follows that when processes are not coupled, the
mirror Mt of the coupling lies outside the domain D2. Since the domain D2 is assumed convex,
this shows in particular that the mirror Mt of the coupling cannot separate the points Yt and y,
and therefore the distance from Yt to y is smaller than or equal to the distance from Xt to y, for
all t ∈ [t0, t1].

ii) The processes are decoupled at time t0;
In this case, since |Yt0 − y| = |Xt0 − y| and Xt0 6= Yt0 , the hyperplane Mt0 of symmetry

between Xt0 and Yt0 passes through the point y, so Mt0 does not separate the points Yt0 and y.
The processes Xt and Yt will remain at the same distance from y until the first time when

Yt ∈ ∂D2. Since on the time interval [t0, t1] the process Xt behaves like a free Brownian motion,
by Theorem 2.4.9, it follows that between successive hits of different boundary hyperplanes of D2,
the mirror Mt of the coupling describes a rotation which leaves invariant d − 2 coordinate axes.
Moreover, by Proposition 2.4.10 the rotation is directed in such a way that the angle ∠(mt, νH)
between the normal mt = 1

‖Yt−Xt‖ (Yt −Xt) of Mt and the inner normal νH of the bounding

hyperplane H of D2 where the reflection takes place decreases monotonically to zero (see Figure
2.7).

Since the hyperplane Mt0 does not separate the points Yt0 and y, simple geometric consid-
erations show that Mt will not separate the points Yt and y for all t ∈ [t0, t1], and therefore
‖Yt − y‖ ≤ ‖Xt − y‖ for all t ∈ [t0, t1], concluding the proof of the claim.

We showed that for any t ≥ 0 we have ‖Yt − y‖ ≤ ‖Xt − y‖, and therefore

P x (‖Xt − y‖ < ε) ≤ P x (‖Yt − y‖ < ε) ,

for any ε > 0 and t ≥ 0.
Dividing the above inequality by the volume of the ball B (y, ε) and passing to the limit with

ε↘ 0, from the continuity of the transition density of the reflecting Brownian motion in the space
variable we obtain

pD1
(t, x, y) ≤ pD2

(t, x, y) , t ≥ 0,

concluding the proof of the theorem.

As also pointed out by Kendall in [51], we note that in the above theorem the convexity of
the larger domain D1 is not needed in order to derive the validity of condition (2.6.1) in Chavel’s
conjecture. We can also replace the hypothesis on the convexity of the smaller domain D2 by the
weaker hypothesis that D2 is a star-shaped domain with respect to either x or y, as follows:

Theorem 2.6.4. Let D2 ⊂ D1 ⊂ Rd be smooth bounded domains. If for x, y ∈ D2 there exists a
ball B centered at either x or y such that D2 ⊂ B ⊂ D1 and D2 is star-shaped with respect to the
center of the ball, then for all t ≥ 0 we have

pD1
(t, x, y) ≤ pD2

(t, x, y) . (2.6.3)

Proof. We will present an analytic proof which parallels the geometric proof of the previous the-
orem.

Consider x, y ∈ D2 arbitrarily fixed and assume that D2 ⊂ B = B (y,R) ⊂ D1 for some R > 0
and D2 is a star-shaped domain with respect to y.

By eventually approximating D2 with star-shaped polygonal domains, it suffices to prove the
claim in the case when D2 is a polygonal star-shaped domain.
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Let (Xt, Yt) be a mirror coupling of reflecting Brownian motions in (D1, D2) starting at x ∈ D2.
The idea of the proof is to show that for all times t ≥ 0, Yt is at a distance from y is no greater
than the distance from Xt to y.

We can reduce the proof to the case when D1 = Rd as follows. Consider the sequences of
stopping times (ξn)n≥1 and (τn)n≥1 defined inductively by

τ0 = 0,

ξn = inf {t > τn−1 : Xt ∈ ∂D1} , n ≥ 1,

τn = inf {t > ξn : ‖Xt − y‖ = ‖Yt − y‖} , n ≥ 1.

Note that by the ball condition we have ‖Xξn − y‖ > ‖Yξn − y‖ for any n ≥ 1, and therefore
‖Xt− y‖ ≥ ‖Yt− y‖ for any n ≥ 1 and any t ∈ [ξn, τn]. In order to prove that the same inequality
holds on the intervals [τn, ξn+1] for n ≥ 0, we proceed as follows.

On the set {τn <∞}, the pair (X̃t, Ỹt) = (Xτn+t, Yτn+t) defined for t ≤ ξn+1 − τn is a mirror

coupling in (Rd, D2) with driving Brownian motion W̃t = Wτn+t −Wτn (and Z̃t = Zτn+t − Zτn),

and starting points (X̃0, Ỹ0) = (Xτn , Yτn) independent of the filtration of B̃t (see Remark 2.4.4).
In order to prove the claim it suffices therefore to show that for any points u ∈ Rd and v ∈ D2 with
‖u− y‖ = ‖v − y‖, the mirror coupling (Xt, Yt) in (Rd, D2) with starting points (X0, Y0) = (u, v)
verifies

‖Xt − y‖ ≥ ‖Yt − y‖, t ≥ 0. (2.6.4)

Consider therefore a mirror coupling (Xt, Yt) in (Rd, D2) with starting points (X0, Y0) =
(u, v) ∈ Rd ×D2 satisfying ‖u− y‖ = ‖v − y‖.

If u = v, from the construction of the mirror coupling it follows that Xt = Yt until the process
Yt hits the boundary of D2, and therefore the inequality in (2.6.4) holds for these values of t. After
the process Yt hits a bounding hyperplane of D2, by Lemma 2.4.8 it follows that in an appropriate
coordinate system Yt is given by Yt = (X1

t , . . . , X
d−1
t , |Xd

t |), until the time σ when the process Y
hits a different bounding hyperplane of D2, and therefore the inequality in (2.6.4) is again verified
for the corresponding values of t (in the chosen coordinate system we must have y = (y1, . . . , yd)
with yd > 0, and therefore ‖Xt − y‖2 − ‖Yt − y‖2 = 2yd

(
|Xd

t | −Xd
t

)
≥ 0). If at time σ the

processes are coupled (i.e. Xσ = Yσ ∈ ∂D2), we can apply the above argument inductively, and
find a time σ1 when the processes are decoupled and ‖Xt − y‖ ≥ ‖Yt − y‖ for all t ≤ σ1.

The above discussion shows that without loss of generality we may further reduce the proof
of the claim to the case when (u, v) ∈ Rd × D2 with u 6= v and ‖u − y‖ ≥ ‖v − y‖. Also,
the above discussion shows that it is enough to prove (2.6.4) for all values of t ≤ ζ, where
ζ = inf{s > 0 : Xs = Ys} is the first coupling time.

The mirror coupling defined by (2.4.1) – (2.4.3) becomes in the case

Xt = u+Wt (2.6.5)

Yt = v + Zt +

∫ t

0

νD2 (Ys) dL
Y
s (2.6.6)

Zt =

∫ t

0

G (Ys −Xs) dWs (2.6.7)

where G is given by (2.4.5). In order to prove the claim we will show that

Rt = ‖Xt − y‖2 − ‖Yt − y‖2 ≥ 0, t ≤ ζ, (2.6.8)

where ζ is the first coupling time.
Using the Itô formula it can be shown that the process Rt verifies the stochastic differential

equation

Rt = R0 − 2

∫ t

0

Rs
Ys −Xs

‖Ys −Xs‖2
· dWs − 2

∫ t

0

(Ys − y) · νD2
(Ys) dL

Y
s , t ≤ ζ. (2.6.9)
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The process Bt = −2
∫ t

0
Ys−Xs
‖Ys−Xs‖2 ·dWs is a continuous local martingale on [0, ζ), with quadratic

variation

At = 4

d∑
i=1

∫ t∧ζ

0

(Y is −Xi
s)

2

‖Ys −Xs‖4
ds =

∫ t∧ζ

0

4

‖Ys −Xs‖2
ds, t ≥ 0, (2.6.10)

and therefore by Lévy’s characterization of Brownian motion it follows that B̃t = Bαt∧ζ is a 1-
dimensional Brownian motion (possibly stopped at time ζ, if Aζ < ∞), where the time change
αt = inf{s ≥ 0 : As > t} is the inverse of the nondecreasing process At.

Setting X̃t = Xαt∧ζ , Ỹt = Yαt∧ζ , R̃t = Rαt∧ζ and L̃Yt = LYαt∧ζ , from (2.6.9) we obtain

R̃t = R̃0 +

∫ t

0

R̃sdB̃s −
∫ t

0

(Ỹs − y) · νD2

(
Ỹs

)
dL̃Ys , t ≥ 0. (2.6.11)

Since the polygonal domain D2 is assumed star-shaped with respect to the point y, geometric
considerations show that

(z − y) · νD2
(z) ≤ 0, (2.6.12)

for all the points z ∈ ∂D2 for which the inside pointing normal νD2
(z) at the boundary point

z of D2 is defined, that is for all points z ∈ ∂D2 not lying on the intersection of two bounding
hyperplanes of D2. Since the reflecting Brownian motion Yt does not hit the set of these exceptional
points with positive probability, we may assume that the above condition is satisfied for all points,
and therefore

(Ỹs − y) · νD2
(Ỹs) ≤ 0 a.s, (2.6.13)

for all times s ≥ 0 when Ỹs ∈ ∂D2.
Since L̃Yt is a nondecreasing process of t ≥ 0, a standard comparison argument for solutions

of stochastic differential equations shows that the solution R̃t of (2.6.11) satisfies R̃t ≥ ρt for all
t ≥ 0, where ρt is the solution of the stochastic differential equation

ρt = R̃0 +

∫ t

0

ρsdB̃s, t ≥ 0. (2.6.14)

The last equation has the explicit solution ρt = R0e
B̃t− 1

2 t, and since by hypothesis R0 =
‖u− y‖2 − ‖v − y‖2 ≥ 0, we obtain

Rαt∧ζ = R̃t ≥ ρt = R̃0e
B̃t− 1

2 t ≥ 0, t ≥ 0, (2.6.15)

and therefore Rt = ‖Xt − y‖2 − ‖Yt − y‖2 ≥ 0 for all t ≤ ζ, concluding the proof of the claim.
By the initial remarks, it follows that if (Xt, Yt) is a mirror coupling in (D1, D2) with starting

point X0 = Y0 = x, then
‖Xt − y‖ ≥ ‖Yt − y‖, t ≥ 0. (2.6.16)

As in the proof of the last theorem, this shows that pD1 (t, x, y) ≤ pD2 (t, x, y) for all t ≥ 0,
concluding the proof.

We have chosen to carry out the construction of the mirror coupling in the case of smooth
domains with D2 ⊂ D1 and D2 convex, having in mind the application to Chavel’s conjecture.
However, although the technical details can be considerably longer, it is possible to construct the
mirror coupling in a more general setup.

For example, in the case when D1 and D2 are disjoint domains, none of the difficulties encoun-
tered in the construction of the mirror coupling occur (the possibility of coupling/decoupling), so
the constructions extends immediately to this case.

The two key ingredients in our construction of the mirror coupling were the hypothesis D2 ⊂ D1

(needed in order to reduce by a localization argument the construction to the case D1 = Rd) and
the hypothesis on the convexity of the inner domain D2 (which allowed us to construct a solution
of the equation of the mirror coupling in the case D1 = Rd).
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Replacing the first hypothesis by the condition that the boundaries ∂D1 and ∂D2 are not
tangential (needed for the localization of the construction of the mirror coupling) and the second
one by condition that D1 ∩D2 is a convex domain, the arguments in the present construction can
be modified in order to give rise to a mirror coupling of reflecting Brownian motion in (D1, D2)
(see Figure 2.9).

D1

D2

Figure 2.9: Generic smooth domains D1,2 ⊂ Rd for the mirror coupling: D1, D2 have non-
tangential boundaries and D1 ∩D2 is a convex domain.

Remark 2.6.5. Even though the construction of the mirror coupling was carried out without the
additional assumption on the convexity of the inner domain D2 in the case when D2 is a polygonal
domain (see Theorem 2.4.9), we cannot extend the construction of the mirror coupling to the
general case of smooth domains D2 ⊂ D1.

This is due to the fact that the stochastic differential equation which defines the mirror coupling
has a singularity (discontinuity) when the processes couple, and we cannot prove the convergence
of solutions in the approximating domains (as in the proof of Theorem 2.4.1). The convexity of the
inner domain is an essential argument for this proof, which allowed us to handle the discontinuity
of the stochastic differential equation which defines the mirror coupling: considering an increasing
sequence of approximating domains Dn ↗ D2, the convexity of D2 was used to show that if the
coupling occurred in the case of the mirror coupling in (Rd, DN ), then coupling also occurred in
the case of the mirror coupling in (Rd, Dn), for all n ≥ N .

It is easy to construct an example of a non-convex domain D2 and a sequence of approximating
domains Dn ↗ D2 such that the mirror coupling (Xt, Y

n
t ) in (Rd, Dn) does not have the above-

mentioned property, and therefore we cannot prove the existence of the mirror coupling using the
same ideas as in Theorem 2.4.1. However, this does not imply that the mirror coupling cannot be
constructed by other methods in a more general setup.

We conclude with some remarks on the non-uniqueness of the mirror coupling in general
domains. To simplify the ideas, we will restrict to the 1-dimensional case when D2 = (0,∞) ⊂
D1 = R.

Fixing x ∈ (0,∞) as starting point of the mirror coupling (Xt, Yt) in (D1, D2), the equations
of the mirror coupling are

Xt = x+Wt (2.6.17)

Yt = x+ Zt + LYt (2.6.18)

Zt =

∫ t

0

G (Ys −Xs) dWs (2.6.19)

where in this case

G (z) =

{
−1, if z 6= 0
+1, if z = 0

.
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Until the hitting time τ = {s > 0 : Ys ∈ ∂D2} of the boundary of ∂D2 we have LYt ≡ 0, and
with the substitution Ut = − 1

2 (Yt −Xt), the stochastic differential for Yt becomes

Ut =

∫ t

0

1−G (Ys −Xs)

2
dWs =

∫ t

0

σ (Us) dWs, (2.6.20)

where

σ (z) =
1−G (z)

2
=

{
1, if z 6= 0
0, if z = 0

.

By a result of Engelbert and Schmidt ([35]) the solution of the above problem is not even
weakly unique, for in this case the set of zeroes of the function σ is N = {0} and σ−2 is locally
integrable on R.

In fact, more can be said about the solutions of (2.6.20) in this case. It is immediate that both
Ut ≡ 0 and Ut = Wt are solutions to 2.6.20, and it can be shown that an arbitrary solution can be
obtained from Wt by delaying it when it reaches the origin (sticky Brownian motion with sticky
point the origin).

Therefore, until the hitting time τ of the boundary, we obtain as solutions

Yt = Xt = x+Wt (2.6.21)

and
Yt = Xt − 2Wt = x−Wt, (2.6.22)

and an intermediate range of solutions, which agree with (2.6.21) for some time, then switch to
(2.6.22) (see [69]).

Correspondingly, this gives rise to mirror couplings of reflecting Brownian motions for which
the solutions stick to each other after they have coupled (as in (2.6.21)), or they immediately split
apart after coupling (as in (2.6.22)), and there is a whole range of intermediate possibilities. The
first case can be referred to as sticky mirror coupling, the second as non-sticky mirror coupling,
and the intermediate possibilities as weak/mild sticky mirror coupling.

The same situation occurs in the general setup in Rd, and it is the cause of lack uniqueness
of the stochastic differential equations which defines the mirror coupling. In the present chapter
we detailed the construction of the sticky mirror coupling, which we considered to be the most
interesting, both from the point of view of the construction and of the applications, although the
other types of mirror coupling might prove useful in other applications.

2.7 Open problems
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Chapter 3

Fixed-distance coupling of
Reflecting Brownian motions

In this paper we introduce three Markovian couplings of Brownian motions on smooth Riemannian
manifolds without boundary which sit at the crossroad of two concepts. The first concept is the
one of shy coupling put forward in [16] and the second concept is the lower bound on the Ricci
curvature and the connection with couplings made in [84].

The first construction is the shy coupling, the second one is a fixed-distance coupling and the
third is a coupling in which the distance between the processes is a deterministic exponentially
function of time.

The simplest nontrivial manifold is the 2-dimensional sphere in R3, and in this case we give
the explicit construction of all three types of couplings mentioned above and at first we use an
extrinsic approach. Next, we construct part of these couplings on manifolds of constant curvature,
this time using the intrinsic geometry.

Then we prove a full result which shows that an arbitrary Riemannian manifold satisfying
some technical conditions supports shy couplings. Moreover, if in addition the Ricci curvature is
non-negative, there exist fixed-distance couplings. Furthermore, if the Ricci curvature is bounded
below by a positive constant, then there exists a coupling of Brownian motions for which the
distance between the processes is deterministic and exponentially decaying. The constructions use
the intrinsic geometry, and relies on an extension of the notion of frames which plays an important
role for even dimensional manifolds.

As an application of the fixed-distance coupling we derive a maximum principle for the gradient
of harmonic functions on manifolds with non-negative Ricci curvature.

3.1 Introduction

A first motivation of the study in the present chapter was the interest in the following (stochastic)
modification of the classical Lion and Man problem of Rado ([56]) on manifolds. Consider a
Brownian Lion Xt and a Brownian Man Yt running on a d-dimensional Riemannian manifold M ,
for example the unit sphere in R3.

Problem 3.1.1 (Finite coupling time). Can the Lion capture the Man?
More precisely, given two distinct starting points x, y ∈ M and a Brownian motion Yt on M

starting at y, can one find a Brownian motion Xt on M starting at x such thatthe coupling time
τ = inf {t ≥ 0 : Xt = Yt} is almost surely finite (or almost surely bounded)? A weaker version of
this problem is whether for a given ε > 0 and a given Brownian motion Yt on M starting at y
one can find a Brownian motion Xt on M starting at x such that τ = inf {t ≥ 0 : d(Xt, Yt) = ε} is
almost surely finite (or almost surely bounded). Here d(x, y) stands for the Riemannian distance
on M .

63
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Problem 3.1.2 (ε-shy coupling). Can the Man avoid being eaten by the Lion indefinitely?
More precisely, given two distinct starting points x, y ∈ M and a Brownian motion Xt on M

starting at x, can one find a Brownian motion Yt on M starting at y such that almost surely
Xt 6= Yt for all t ≥ 0? A stronger version of the question is whether the Brownian motion Yt can
be chosen in such a way that there exists an ε > 0 such that almost surely d (Xt, Yt) ≥ ε for all
t ≥ 0.

A second motivation of the present work is related to the notion of shy coupling of Brownian
motions introduced in [16] and subsequently studied in [17] and [52]. A shy coupling is a coupling
for which, with positive probability, the distance between the two processes stays positive for all
times. A stronger version of shyness (ε-shyness, ε > 0), which we will use in this chapter, asserts
that with positive probability the distance between the processes is greater than ε for all times.

We note that on the unit sphere S2, there is an immediate affirmative answer to Problem 3.1.1:
one can define Xt as the symmetric of Yt with respect to the plane of symmetry of x and y. Since
the Brownian motion Yt hits this plane in finite time, τ is finite almost surely, so the Lion is sure
to capture the Man in finite time.

The above mentioned coupling is known in the literature as the mirror coupling (see Chapter
2 for its construction in the case of smooth Euclidean domains), and it was introduced by Lindvall
and Rogers [55] for processes defined on Euclidean spaces, and by Cranston in [32] and Kendall
[50] in the case of processes defined on manifolds, the so-called Cranston-Kendall mirror coupling.
As an application of this coupling, it can be shown ([50]) that in the case of manifolds with Ricci
curvature bounded uniformly from below by a positive constant, the Man and the Lion must meet
in finite time. Other related results regarding couplings of Brownian moptions can be found in
[1], [2], and [81].

A synthetic notion of a lower bound on the Ricci curvature was settled in [57, 82, 83] and is a
very useful tool in analysis on measure metric spaces. On the other hand, the notion of couplings
and lower bound on Ricci curvature was pioneered in [61] and is particularly good for defining
lower bounds on Ricci curvature in discrete spaces as it is for instance pointed out in [31, 54].

In this spirit, a third motivation of our work comes from [84, Corollary 1.4] which states the
following.

Corollary 3.1.3. On a complete Riemannian manifold M the Ricci tensor satisfies Ric ≥ k if and
only if there exits a conservative Markov process (Ω,A,Pz, Zt)z∈M×M,t≥0 with values in M ×M
such that the coordinate processes (Xt)t≥0 and (Yt)t≥0 are Brownian motions on M and such that
for all z = (x, y) and all t ≥ 0,

d(Xt, Yt) ≤ e−kt/2d(x, y), Pz − a.s. (3.1.1)

A natural question, and one of our interests in the present chapter, is to see if one can find
couplings of Brownian motions Xt, Yt for which the equality in the inequality (3.1.1) is attained.
For instance, in the case k = 0 this amounts to finding a fixed-distance coupling (a particular case
of the strong version of shy coupling).

The structure of this chapter is the following. In Section 3.2 we introduce the notations and
the basic results needed in the sequel. Next, in Section 3.3, we present a result about the existence
of fixed-distance couplings on Rn. Here we show that the only fixed-distance coupling in Rn case is
the trivial one, namely the translation coupling, and that there is no distance-decreasing coupling
in this case. This is to be contrasted to the fact that in the case of 2-dimensional sphere S2

(presented in the following section) it is possible to construct distance-decreasing couplings.
In Section 3.4 we focus on the case of the 2-dimensional sphere S2, and we prove that in this case

it is possible to construct a fixed-distance coupling, a distance-decreasing coupling, and a distance-
increasing coupling. The construction is carried out by using two main ingredients: Stroock’s rep-
resentation of spherical Brownian motion and Kendall’s characterization of co-adapted couplings
of Brownian motions in Euclidean spaces (see [52]). From a differential geometric perspective this
construction is extrinsic, in the sense that the sphere S2 is seen as a submanifold of R3, and we
take advantage of this in order to reduce the problem at hand to that of finding unitary matrices
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in R3 satisfying certain conditions. The intriguing part about this construction is that the same
argument does not extend to higher dimensional spheres.

In the last section of this chapter (Section 3.5) we present two general results. The first is in
the case of manifolds of constant curvature in any dimension (Theorem 3.5.1), in which we prove
the existence of fixed distance / fast approaching / fast repelling Brownian couplings depending
on the sign of the curvature, and the second is in the case of complete d-dimensional Riemannian
manifolds M with positive injectivity radius, for which the Ricci curvature is uniformly bounded
from below and the sectional curvature uniformly bounded from above (Theorem 3.5.3), in which
we prove the existence of shy couplings. Moreover, in this last case we also show that if the
Ricci curvature is in addition non-negative, we can also construct fixed-distance couplings, and
if the Ricci curvature is bounded from below by a positive constant, then we can also construct
fast approaching couplings, for which the distance between processes decays exponentially fast to
0. We conclude with some applications of the couplings constructed in this chapter, by giving a
resolution of the two problems presented in the beginning of this section, and a maximum principle
for the gradient of harmonic functions on manifolds.

3.2 Preliminaries

We identify the vectors in R3 with the corresponding 3 × 1 column matrices, and for a vector
x ∈ R3 we denote by x′ the transpose of x. The dot product of two vectors x, y ∈ R3 can be
written in terms of matrix multiplication as x · y = x′y. The Euclidian length of a vector x ∈ R3

is ‖x‖ =
√
x′x.

We denote by S 2 =
{
x ∈ R3 : ‖x‖ = 1

}
the unit sphere in R3, and for x, y ∈ S 2 we let d (x, y)

be the length of the geodesic joining x and y on S 2 (the length of the smaller of the two arcs of a

great circle containing x and y, that is d (x, y) = arcsin

√
1− (x′y)

2
= 2 arcsin

(
1
2‖x− y‖

)
).

There are various ways of describing the spherical Brownian motion on S 2, that is the Brownian
motion on S2 (see for example [19]). In what follows we exploit the Stroock’s representation of
spherical Brownian motion ([79]), as the solution Xt of the Itô stochastic differential equation

Xt = X0 +

∫ t

0

(I −XsX
′
s) dBs −

∫ t

0

Xsds, (3.2.1)

where Bt is a 3-dimensional Brownian motion. The last term above may be thought as the pull
needed in order to keep Xt on the surface of S 2.

Given two non-parallel vectors x, y ∈ S2 (i.e. y 6= ±x), we denote by Rx,y the 3 × 3 rotation
matrix with axis u = x×y (the cross product of the vectors x and y) and angle θ ∈ (0, π) equal to
the angle between the vectors x and y, so in particular Rx,yu = u and Rx,yx = y. It is known that
Rx,y is an orthogonal matrix (R−1 = R′) and the following (Rodrigues’ rotation) formula holds

Rx,y = cos θI + [u]× +
1

1 + cos θ
u⊗ u, (3.2.2)

where [u]× = yx′ − xy′ is the cross-product matrix of u = x × y, ⊗ denotes the tensor product
(u⊗u = uu′) and I denotes the 3× 3 identity matrix. Note that the above formula differs slightly
from the usual one, due to the fact that we do not require the axis u to be a unit vector.

When y = ±x, the cross product u = x× y is the zero vector, so the rotation matrix Rx,±x is
not well defined in this case. However, if we define Rx,±x = ±I we see that the Rx,±x is still a
unitary matrix and satisfies Rx,±xx = ±x. Moreover, taking the limit as θ → 0 (or π, depending
on whether y = x or y = −x), we see that (3.2.2) still holds.

By M we denote Riemannian manifold. In this paper all Riemannian manifolds are assumed to
be complete. For a given d-dimensional Riemannian manifold M , we use the standard notations
from [40] or [81] to denote by O(M) the orthonormal frame bundle. For a given orthonormal frame
U at a point x ∈M and ξ ∈ Rd, Hξ(U) is the horizontal lift of Uξ ∈ TxM at the point U ∈ O(M).
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We will use the simpler notation of Hi for Hei , with {ei}i=1,...,n denoting the standard basis of
Rd.

We collect here some notions from differential geometry which will be used in the sequel. The
reader is referred to [33] or [30] for basic notions and results. The curvature tensor Rx at x is
Rx(X,Y ) = ∇X∇Y − ∇Y∇X − ∇[X,Y ] and the Ricci tensor is the contraction Ricx(X,Y ) =∑d
i=1〈Rx(X,Ei)Ei, Y 〉, where {Ei}i=1,...,d is any orthonormal basis at x and X,Y ∈ TxM . This

definition of the Ricci tensor does not depend on the choice of orthonormal basis, and in the
particular case of surfaces it simplifies to Ricx(X,Y ) = Kx〈X,Y 〉, where K is the Gauss curvature.

We denote by d(x, y) the Riemannian distance between x and y.
A geodesic on M is a smooth curve γ : [a, b]→M such that γ̈(s) = 0 for each s ∈ [a, b], where

the dot represents the covariant derivative along γ. Throughout the paper we assume that the
geodesics are running at unit speed. For a point x ∈M , we define Cx to be the cutlocus of x, that
is the set of points y ∈M for which there is more then one minimizing geodesic between x and y.
We will also use the notation Cut ⊂ M ×M , defined as the set of all points (x, y) which are at
each other’s cut-locus. For points x, y ∈M which are not at each other’s cut-locus, we define γx,y
to be the unique unit speed minimizing curve joining x and y.

The injectivity radius is the smallest number i(M) such that any point x ∈M , the exponential
map at x is a diffeomorphism on the ball of radius i(M) in the tangent space TxM .

Given a geodesic γ, a Jacobi field along γ is a vector field J(s) such that

J̈(s) +Rγ(s)(J(s), γ̇(s))γ̇(s) = 0, (3.2.3)

where the dot represents the derivative along γ.
Given a vector field V along a geodesic γ defined on [a, b], the index form I associated to it is

defined as

I(V, V ) =

∫ b

a

(|V̇ (s)|2 − 〈Rγ(s)(V (s), γ̇(s))γ̇(s), V (s)〉)ds, (3.2.4)

and using polarization I can be extended to a bilinear form on the space of vector fields along the
geodesic γ. In the particular case when J is a Jacobi field, an integration by parts formula shows
that

I(J, J) = 〈J̇(b), J(b)〉 − 〈J̇(a), J(a)〉 (3.2.5)

where [a, b] is the definition interval of γ.
A manifold has constant curvature r if the sectional curvature is r for all choices of the two

dimensional plane, that is 〈Rx(X,Y )Y,X〉 = r for any x ∈ M and any ortogonal unit vectors
X,Y ∈ TxM . In this case the Ricci curvature simplifies as well as the Jacobi field equation
(3.2.3). We record here the calculation, as it will be used later on. Assume that γx,y is the
minimal geodesic between the points x, y ∈M which are not at each other’s cut-locus, ρ = d(x, y)
and let ξ ∈ TxM and η ∈ TyM be two unit vectors. Consider ξ(s) the extension of ξ by parallel
transport along γ from x to y, and similarly let η(s) be the extension of η by parallel transport
from y to x. The Jacobi field Jξ,η whose value at x is ξ and η at y can be computed as follows

Jξ,η(s) = w1(s)ξ(s) + w2(s)η(s) (3.2.6)

where w1, w2 solve the boundary value problems
ẅ1 + rw1 = 0

w1(0) = 1

w1(ρ) = 0

and


ẅ2 + rw2 = 0

w2(0) = 0

w2(ρ) = 1

,

whose solutions are

w1(s) =

{
sin(
√
r(ρ−s))

sin(
√
rρ)

, r 6= 0
ρ−s
ρ , r = 0

and w2(s) =

{
sin(
√
rs)

sin(
√
rρ)
, r 6= 0

s
ρ , r = 0

. (3.2.7)
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Next, we introduce the main notions regarding couplings. Recall that in general by a cou-
pling we understand a pair of processes (Xt, Yt) defined on the same probability space, which are
separately Markov, that is

P (Xs+t ∈ A|Xs = z,Xu : 0 ≤ u ≤ s) = P z (Xt ∈ A)

P (Ys+t ∈ A|Ys = z, Yu : 0 ≤ u ≤ s) = P z (Yt ∈ A)

for any measurable set A in the state space of the processes.
The notion of Markovian coupling as used in [16] requires that in addition to the above, the

joint process (Xt, Yt) is Markov and

P (Xs+t ∈ A|Xs = z,Xu, Yu : 0 ≤ u ≤ s) = P z (Xt ∈ A)

P (Ys+t ∈ A|Ys = z,Xu, Yu : 0 ≤ u ≤ s) = P z (Yt ∈ A)
(3.2.8)

for any measurable set A in the state space of the processes.
The notion of co-adapted coupling (introduced by Kendall, [52]) is the same as the above but

without the Markov property of (Xt, Yt).
The Markovian couplings are easily obtained for instance in the case when the process (Xt, Yt)

is actually a diffusion on the manifold. This would be the ideal case, but we still get a Markovian
coupling if we patch together diffusion process in a nice way. For example this will be the case
of the main construction on manifolds, where we start the coupling following a diffusion up to
a certain stopping time, then, from the point it stopped we run it independently according to
another diffusion and then stop this at another stopping time and so on. We do this quietly
without further details.

3.3 Distance-decreasing couplings in Rd

In this section we first examine the distance-decreasing couplings in the Euclidean space Rd. To
be precise, we want to find all possible co-adapted couplings (Xt, Yt) of d -dimensional Brownian
motions, for which the distance ‖Xt − Yt‖ is a (deterministic) non-increasing function of t ≥ 0.

By a result on co-adapted couplings (Lemma 6 in [52]), a co-adapted coupling (Xt, Yt) of
Brownian motions in Rd can be represented as

Yt = Y0 +

∫ t

0

JtdXt +

∫ t

0

KtdZt,

where Z is a d-dimensional Brownian motion independent of X (on a possibly larger filtration),
and J,K ∈Md×d are matrix-valued predictable random processes, satisfying the identity

JtJ
′
t +KtK

′
t = I, (3.3.1)

with I denoting the d× d identity matrix.
Setting Wt = Xt − Yt and using Itô’s formula we obtain

d ‖Wt‖2 = 2W ′tdWt +

d∑
i=1

d〈W i〉t = 2 (Xt − Yt)′ (I − Jt) dXt − 2 (Xt − Yt)′KtdZt +

d∑
i=1

d〈W i〉t.

Using the independence of X and Z, and the relation 3.3.1 we obtain

d∑
i=1

d〈W i〉t = tr
(
(I − Jt)′ (I − Jt) +K ′tKt

)
dt

= tr (I − Jt − J ′t + J ′tJt +K ′tKt) dt

= 2 (tr (I)− tr (Jt)) dt

= 2 (d− tr (Jt)) dt.
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From the last two equations we arrive at

d ‖Wt‖2 = 2 (Xt − Yt)′ (I − Jt) dXt − 2 (Xt − Yt)′KtdZt + 2 (d− tr (Jt)) dt,

so the differential of the quadratic variation of the martingale part of ‖Wt‖2 is given by((
2 (Xt − Yt)′ (I − Jt)

) (
2 (Xt − Yt)′ (I − Jt)

)′
+
(
2 (Xt − Yt)′Kt

) (
2 (Xt − Yt)′Kt

)′)
dt

= 4 (Xt − Yt)′ (I − Jt − J ′t + JtJ
′
t +KtK

′
t) (Xt − Yt) dt

= 4 (Xt − Yt)′ (2I − Jt − J ′t) (Xt − Yt) dt
= 8 (Xt − Yt)′ (I − Jt) (Xt − Yt) dt,

and the differential of the bounded variation part of ‖Wt‖2 is given by

2 (d− tr (Jt)) dt.

If ‖Wt‖ is a (deterministic) non-increasing function of t, we must have

tr (Jt) ≥ d and (Xt − Yt)′ (I − Jt) (Xt − Yt) = 0

for all t ≥ 0.
Denoting by aij = aij (t) the entries of Jt, observe that

tr (JtJ
′
t) =

d∑
i,j=1

a2
ij ≥

d∑
i=1

a2
ii ≥

(∑d
i=1 aii

)2

d
=

tr2 (Jt)

d
≥ d,

with equality if and only if Jt = I.
On the other hand, from (3.3.1) it follows that 0 ≤ x′J ′tJtx ≤ x′x for all x ∈ Rd, so the eigen-

values λi = λi (t) of JtJ
′
t satisfy 0 ≤ λi ≤ 1, and therefore tr (J ′tJt) =

∑d
i=1 λi ≤ d. Combining

with the above we conclude that tr (J ′tJt) = d, and therefore Jt = I for all t ≥ 0. Equivalently,
this shows that dYt = dXt for all t ≥ 0, or Yt = Y0 −X0 +Xt, and we arrive at the following.

Theorem 3.3.1. In the Euclidean space Rd, d ≥ 1, the only co-adapted coupling of Brownian
motions with deterministic non-increasing distance is the translation coupling.

As we will see later on in Theorem 3.5.1 there are distance increasing couplings on Rd.

3.4 The 2-dimensional sphere case, the extrinsic approach

In this section we study the couplings of Brownian motions on the unit sphere S2. The primary
interest is the construction of couplings for which the distance between the processes is deter-
ministic. Using Stroock’s representation of the spherical Brownian motion, we construct three
different couplings, as mentioned in the introduction. In the first one the distance is decaying at
an exponential rate, in the second one the distance is increasing to the diameter of the sphere
S2 at an exponential rate, and in the third one, which is the most interesting and intriguing, the
distance is constant in time.

We collect the results on the first two couplings mentioned above in the following result, and
then treat separately the latter one.

Theorem 3.4.1. Fix two points x, y ∈ S 2 with y 6= ±x, and consider the spherical Brownian
motion Xt on S2 given by (3.2.1) with X0 = x.

a) Let Yt be the solution to

Yt = y +

∫ t

0

RsdXs (3.4.1)
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where Rs = RXs,Ys is the rotation matrix with axis us = Xs × Ys and angle θs equal to the
angle between Xs and Ys (and Rs = ±I if Ys = ±Xs). Then Yt is a spherical Brownian
motion on S2, and

‖Xt − Yt‖ = ‖y − x‖ e−t/2, t ≥ 0. (3.4.2)

In particular, d (Xt, Yt) = 2 arcsin
(

1
2 ‖y − x‖ e−t/2

)
decreases exponentially fast to 0 as t→

∞.

b) Let Ỹt be the solution to

Ỹt = y −
∫ t

0

RsdXs (3.4.3)

where Rs = RXs,−Ỹs is the rotation matrix with axis us = −Xs× Ỹs and angle θs equal to the

angle between Xs and −Ỹs (and Rs = ∓I if Ỹs = ±Xs). Then Ỹt is a spherical Brownian
motion on S2, and ∥∥∥Xt − Ỹt

∥∥∥ =

√
4− ‖y + x‖2 e−t, t ≥ 0. (3.4.4)

In particular, d
(
Xt, Ỹt

)
= π− 2 arcsin

(
1
2 ‖y + x‖ e−t/2

)
increases exponentially fast to π as

t→∞.

Notice that both (Xt, Yt) and
(
Xt, Ỹt

)
are both Markovian couplings. In fact they are diffusions

on S2 × S2.

Proof. Using (3.2.1), we first write

dYt = RtdXt = Rt (I −XtX
′
t) dBt −RtXtdt.

By definition, Rt is a unitary matrix and RtXt = Yt all t ≥ 0, from which we obtain

dYt = (Rt −RtXtX
′
t) dBt −RtXtdt

=
(
I − (RtXt) (RtXt)

′)
RtdBt −RtXtdt

= (I − YtY ′t )RtdBt − Ytdt
= (I − YtY ′t ) dB̃t − Ytdt,

where B̃t =
∫ t

0
RsdBs is readily seen to be a 3-dimensional Brownian motion. Using again Stroock’s

characterization of spherical Brownian motion, the first claim follows.
To prove the second claim, we apply the Itô formula to the function f (z) = z′z and to the

process Zt = Yt −Xt. We get

d ‖Zt‖2 = 2Z ′tdZt +

3∑
i=1

d〈Zi〉t.

Next, we’ll show that ‖Zt‖2 is a process of bounded variation. To do this, we write

dZt = d (Yt −Xt) (3.4.5)

= (Rt − I) dXt

= (Rt − I) (I −XtX
′
t) dBt − (Rt − I)Xtdt

= (Rt −RtXtX
′
t − I +XtX

′
t) dBt − (Yt −Xt) dt = MtdBt − Ztdt,

where Mt = Rt −RtXtX
′
t − I +XtX

′
t. Combining with the above, we get

d ‖Zt‖2 = 2Z ′tMtdBt − 2Z ′tZtdt+

3∑
i=1

d〈Zi〉t, (3.4.6)
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and in order to prove the claim it suffices to show that Z ′tMt ≡ 0. Notice that

Z ′tMt = (RtXt −Xt)
′
(Rt −RtXtX

′
t − I +XtX

′
t)

= X ′tR
′
tRt −X ′tR′tRtXtX

′
t −X ′tR′t +X ′tR

′
tXtX

′
t −X ′tRt +X ′tRtXtX

′
t +X ′t −X ′tXtX

′
t

= X ′t −X ′t −X ′tR′t +X ′tR
′
tXtX

′
t −X ′tRt +X ′tRtXtX

′
t +X ′t −X ′t

= X ′t (Rt +R′t) (XtX
′
t − I) .

Using the representation in (3.2.2) for Rt, since
(
[ut]×

)′
= (YtX

′
t −XtY

′
t )
′

= − [ut]× and

(ut ⊗ ut)′ = (utu
′
t)
′

= ut ⊗ ut, we obtain:

Z ′tMt = 2X ′t

(
cos θtI +

1

1 + cos θt
(Xt × Yt) (Xt × Yt)′

)
(XtX

′
t − I)

= 2 cos θt (X ′tXtX
′
t −X ′t) +

2

1 + cos θt
X ′t (Xt × Yt) (Xt × Yt)′ (XtX

′
t − I) = 0,

where in the last equality we used X ′tXt = ‖Xt‖2 = 1 and X ′t (Xt × Yt) ≡ 0 (the vector Xt × Yt
being orthogonal to Xt). It thus follows that Z ′tMt ≡ 0 as we claimed, and therefore ‖Zt‖2 is a
process of bounded variation, given by

d ‖Zt‖2 = −2 ‖Zt‖2 dt+

3∑
i=1

d〈Zi〉t. (3.4.7)

Finally, note that by using (3.4.5) we can write the last term in the above equation as

3∑
i=1

d〈Zi〉t = tr (MtM
′
t) dt,

and since Xt is on the unit sphere (so X ′tXt = 1 and (I −XtX
′
t)

2 = I −XtX
′
t), we can continue

with

tr(MtM
′
t) = tr((Rt − I)(I −XtX

′
t)

2(R′t − I)) = tr((R′t − I)(Rt − I)(I −XtX
′
t))

= tr((2I −R′t −Rt)(I −XtX
′
t)) = 2tr(I −XtX

′
t)− tr((R′t +Rt)(I −XtX

′
t))

= 6− 2X ′tXt − 2tr(Rt(I −XtX
′
t)) = 4− 2tr(Rt) + 2tr(RtXtX

′
t) = 4− 2tr(Rt) + 2Y ′tXt,

(3.4.8)

where in passing to the last line we used that RtXt = Yt. Using the fact that the trace of the
rotation matrix Rt equals the sum 1 + 2 cos θt of its eigenvalues (recall that by construction the
angle θt of rotation of Rt is the angle between Xt and Yt), we can conclude that

tr(MtM
′
t) = 4− 2(1 + 2Y ′tXt) + 2Y ′tXt = 2− 2Y ′tXt = ‖Xt − Yt‖2 = ‖Zt‖2.

Wrapping things up, we obtained

d ‖Zt‖2 = −‖Zt‖2 dt, t ≥ 0.

Setting τ = inf {t ≥ 0 : Zt = 0}, the above can be solved as an ordinary differential equation
for t < τ = τ (ω) for any path ω ∈ Ω, and we obtain the solution

‖Zt‖ = ‖Yt −Xt‖ = ‖y − x‖ e−t/2, t < τ. (3.4.9)

In particular we see that for any x 6= y we have Zt 6= 0 a.s. for all t ≥ 0, and therefore τ =∞
a.s. This shows that

‖Yt −Xt‖ = ‖y − x‖ e−t/2, t ≥ 0,

which concludes the proof of the first part of the theorem.
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To prove the second part of the theorem, note that if Ỹt solves (3.4.3), then Yt := −Ỹt solves
(3.4.1) with y replaced by −y (the process Yt starts at −y instead of y). If Ct denotes the circle
on S 2 of radius 1 and passing through Xt and Yt (since x 6= −y, by the previous proof we have

that Xt 6= Yt for all t ≥ 0, and thus Ct is well defined), it follows that Ỹt = −Yt ∈ Ct for all
t ≥ 0. The second part of the theorem follows now easily from the first part using simple geometric
considerations.

We now proceed to showing the existence of a fixed-distance coupling of Brownian motions on
S2, that is a Markovian coupling (Xt, Yt) of spherical Brownian motions for which the distance
d(Xt, Yt) is constant for all times t ≥ 0.

Assume such a coupling exists, and that Xt and Yt are given by

dXt = (I −XtX
′
t) dBt −Xtdt and dYt = (I − YtY ′t ) dWt − Ytdt, (3.4.10)

where Bt and Wt are the driving 3-dimensional Brownian motions, and X0 = x, Y0 = y ∈ S2.
By a result on co-adapted couplings of free Brownian motions (assuming that the coupling is

co-adapted, see Lemma 6 in [52]), there exist 3× 3 matrices Jt and Kt with

JtJ
′
t +KtK

′
t = I (3.4.11)

and a 3-dimensional Brownian motion Ct independent of Bt such that

dWt = JtdBt +KtdCt. (3.4.12)

The idea is now very simple. We want to find the matrix-valued processes Jt and Kt such that
the distance between Xt and Yt does not change with time. The theorem below shows that such
a construction is possible, and that in fact the resulting coupling is not only co-adapted, but also
a Markovian coupling.

Theorem 3.4.2. For any points x, y ∈ S2, there exists a fixed-distance Markovian coupling of
Brownian motions on the 2-dimensional unit sphere S2 starting at x and y. As it turns out, the
process (Xt, Yt) is actually a diffusion on S2 × S2.

Proof. The claim is trivial if x = ±y, so we may assume x 6= ±y.
Denoting Zt = Xt − Yt, Ut = I −XtX

′
t and Vt = I − YtY ′t (note that Ut and Vt are symmetric

matrices, with U2
t = Ut and V 2

t = Vt), and using the above equations we obtain

dZt = UtdBt − VtdWt − Ztdt = (Ut − VtJt) dBt − VtKtdCt − Ztdt. (3.4.13)

Itô’s formula gives after expansion and rearrangements that

d ‖Zt‖2 = 2Z ′tdZt +

3∑
i=1

d〈Zi〉t = 2MtdBt + 2NtdCt − 2 ‖Xt − Yt‖2 dt+

3∑
i=1

d〈Zi〉t,

with Mt = −X ′tVtJt − Y ′tUt and Nt = −X ′tVtKt.
The fact that Bt and Ct are independent Brownian motions allows us to compute the quadratic

variation of ‖Zt‖2 as follows:

1

4
d
〈
‖Z‖2

〉
t

= (MtM
′
t +NtN

′
t) dt

= (X ′tVt (JtJ
′
t +KtK

′
t)V

′
tXt +X ′tVtJtU

′
tYt + Y ′tUtJ

′
tV
′
tXt + Y ′tUtYt) dt

= (X ′tVtXt +X ′tVtJtUtYt + Y ′tUtJ
′
tVtXt + Y ′tUtYt) dt.

Note that X ′tVtXt = X ′t(I − YtY ′t )Xt = X ′tXt − X ′tYtY ′tXt = 1 − c2t , where ct = Y ′tXt, and
similarly Y ′t VtYt = 1 − c2t . Since X ′tVtJtUtYt is a real number, it equals its transpose which is
Y ′tUtJ

′
tVtXt. Keeping in mind that X ′tYt = Y ′tXt = ct, we also get

X ′tVtJtUtYt = X ′t(I − YtY ′t )Jt(I −XtX
′
t)Yt = (X ′t − ctY ′t )Jt(Yt − ctXt)

= X ′tJtYt − ctX ′tJtXt − ctY ′t JtYt + c2tY
′
t JtXt,



72 CH. 3. FIXED-DISTANCE COUPLING OF REFLECTING BROWNIAN MOTIONS.

and therefore

1

4
d
〈
‖Z‖2

〉
t

= 2(1− c2t +X ′tJtYt − ctX ′tJtXt − ctY ′t JtYt + c2tY
′
t JtXt)dt.

If ‖Zt‖2 is to be a constant process, then its quadratic variation must be identically zero, or

1− c2t +X ′tJtYt − ctX ′tJtXt − ctY ′t JtYt + c2tY
′
t JtXt = 0, (3.4.14)

and its bounded variation part must also be identically zero. To see what the latter equation is,
from (3.4.13) we gain

−2 ‖Xt − Yt‖2 dt+

3∑
i=1

d〈Zi〉t =

=
(
−2 ‖Xt − Yt‖2 + tr

(
(Ut − VtJt) (Ut − VtJt)′ + (VtKt) (VtKt)

′))
dt

= (−4 (1− ct) + tr (Ut − UtJ ′tV ′t − VtJtU ′t + Vt (JtJ
′
t +KtK

′
t)V

′
t )) dt

= (4ct − 2tr (VtJtUt)) dt,

which continues with

tr (VtJtUt) = tr (JtUtVt)

= tr (Jt (I −XtX
′
t) (I − YtY ′t ))

= tr (Jt − JtXtX
′
t − JtYtY ′t + ctJtXtY

′
t )

= tr (Jt)− tr (JtXtX
′
t)− tr (JtYtY

′
t ) + cttr (JtXtY

′
t )

= tr (Jt)−X ′tJtXt − Y ′t JtYt + ctY
′
t JtXt,

finally arriving at
X ′tJtXt + Y ′t JtYt − ctY ′t JtXt = tr (Jt)− 2ct. (3.4.15)

The above shows that we can construct a co-adapted fixed-distance coupling of Brownian
motions on S2 iff we can find matrices satisfying (3.4.11), (3.4.14) and (3.4.15).

We can go one step further and simplify (3.4.14). Indeed, because of (3.4.15), it is easy to see
that equation (3.4.14) is equivalent to

1− c2t +X ′tJtYt − ct (tr (Jt)− 2ct) = 0.

Consequently, the existence of a fixed-distance co-adapted coupling of Brownian motions on S2 is
equivalent to solving for Jt and Kt from the following system X ′tJtYt = −c2t + cttr (Jt)− 1 (or X ′tVtJtUtYt = c2t − 1)

X ′tJtXt + Y ′t JtYt − ctY ′t JtXt = tr (Jt)− 2ct (or tr (VtJtUt) = 2ct)
JtJ
′
t +KtK

′
t = I.

To find a solution of this system, we are easing a little bit the notations by dropping for the
moment the dependence on t. Hence, given two vectors X,Y on the unit sphere we want to find
two 3× 3 matrices J and K such that

X ′JY = c tr(J)− 1− c2
X ′JX + Y ′JY − cY ′JX = tr(J)− 2c

JJ ′ +KK ′ = I

(3.4.16)

where c = X ′Y . The first two equations above involve only J . Assuming that we can determine
J which satisfies these equations, from the third equation of the system we can find the matrix K
such that KK ′ = I − JJ ′ if and only if JJ ′ ≤ I in the operator sense, i.e. ξ′JJ ′ξ ≤ 1 for any unit
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vector ξ ∈ R3, or equivalently ‖J ′ξ‖ ≤ 1. The latter condition is the same as the operator norm
of J ′ is less than 1, or ‖J‖ ≤ 1, since the operator norm of J and J ′ are the same.

Assume now that X,Y ∈ S2 with X 6= ±Y are fixed. We can find an orthogonal matrix OX,Y
such that

OX,Y e1 = X and OX,Y (ce1 +
√

1− c2e2) = Y

where here (ei)i=1,2,3 is the standard basis in R3,

e1 =

 1
0
0

 , e2 =

 0
1
0

 , and e3 =

 0
0
1

 .
One way of choosing such a matrix OX,Y is for example by taking

OX,Y [e1, ce1 +
√

1− c2e2,
√

1− c2e3] = [X,Y,X × Y ],

where [X,Y, Z] denotes the matrix whose columns are the vectors X,Y, Z. It is worth mentioning
that if the matrix OX,Y is to be orthogonal, then it has to map e3 into an unitary vector which is
collinear to X × Y , which in this case gives OX,Y e3 = ± 1√

1−c2X × Y , so there are essentially two

choices for the matrix OX,Y .
Computing the inverse

[e1, ce1 +
√

1− c2e2,
√

1− c2e3]−1 =

 1 − c√
1−c2 0

0 1√
1−c2 0

0 0 1√
1−c2

 ,
we obtain an explicit formula for OX,Y

OX,Y =

 x1 y1 x2y3 − y2x3

x2 y2 x3y1 − y3x1

x3 y3 x1y2 − y1x2


 1 − c√

1−c2 0

0 1√
1−c2 0

0 0 1√
1−c2

 =

 x1
−cx1+y1√

1−c2
x2y3−y2x3√

1−c2
x2

−cx2+y2√
1−c2

x3y1−y3x1√
1−c2

x3
−cx3+y3√

1−c2
x1y2−y1x2√

1−c2

 .
(3.4.17)

Note that since X 6= ±Y , c 6= ±1, so the matrix OX,Y is well defined.
Finding a solution J to the system (3.4.16) is equivalent to finding a solution

J̃ = O′X,Y JOX,Y and K̃ = O′X,YKOX,Y

to the system obtained from (3.4.16) by replacing X by e1, and Y by ce1 +
√

1− c2e2, which
becomes 

ce′1J̃e1 +
√

1− c2e′1J̃e2 = c tr(J̃)− 1− c2
e′1J̃e1 + c

√
1− c2e′1J̃e2 + (1− c2)e′2J̃e2 = tr(J̃)− 2c

J̃ J̃ ′ + K̃K̃ ′ = I.

Now let

J̃ =

 α1 α2 α3

β1 β2 β3

γ1 γ2 γ3

 ,
which turns the first two equations of the above system into{√

1− c2α2 − cβ2 − cγ3 = −1− c2
c
√

1− c2α2 − c2β2 − γ3 = −2c.
(3.4.18)

This is a system of two equations with three unknown which can be reduced to{
β2 =

√
1−c2α2+1

c

γ3 = c.



74 CH. 3. FIXED-DISTANCE COUPLING OF REFLECTING BROWNIAN MOTIONS.

Of course the case c = 0 needs to be treated separately, in which case, it is obvious that α2 = −1
and γ3 = 0.

In the case c 6= 0, the simplest matrix J̃ which satisfies the above conditions is the one whose
entries are all 0 except for α2, β2, and γ3, so we may try

J̃ =

 0 α2 0

0
√

1−c2α2+1
c 0

0 0 c

 .
The main restriction now is that we want the operator norm of J̃ to be at most 1. Because of the
block diagonal structure, this is equivalent to

α2
2 +

(
√

1− c2α2 + 1)2

c2
≤ 1

or
(α2 +

√
1− c2)2 ≤ 0,

whose solution is α2 = −
√

1− c2, and consequently

J̃ =

 0 −
√

1− c2 0
0 c 0
0 0 c

 .
This matrix now is well defined also for c = 0 and is consistent with the solutions provided by the
system (3.4.18).

For the above choice of J̃ we need to find K̃ such that

J̃ J̃ ′ + K̃K̃ ′ = I,

which reduces to

K̃K̃ ′ =

 c2 c
√

1− c2 0

c
√

1− c2 1− c2 0
0 0 1− c2

 .
There are several possible choices here, one of them being

K̃ =

 0 c 0

0
√

1− c2 0

0 0
√

1− c2

 .
Going back to initial problem, we obtain the solution

J = OX,Y J̃O
′
X,Y and K = OX,Y K̃O

′
X,Y .

The only possible problem with this choice of the matrices J and K is that when the particles
X and Y get close or antipodal (X = ±Y ), the above matrices are undefined because OX,Y does
not. However, this does not happen, since by hypothesis x 6= ±y, and with the above choices of J
and K the Brownian motions Xt and Yt are at a fixed-distance (the initial distance).

Finally, since (Xt, Yt) solves a stochastic differential equation and the matrices Jt and Kt are
actually functions of (Xt, Yt), this means that the process (Xt, Yt) is in fact a diffusion on S2×S2.
This is in fact stronger than mere Markovianity.

Remark 3.4.3. It is tempting to extend this argument to higher dimensional spheres. If we
follow the same argument we do not have to change anything up to (3.4.16). The attempt on
solving (3.4.16) was based on arranging the vectors X,Y in a certain position, in other words,
make X for instance to be e1 and Y a linear combination of e1 and e2. Since there is essentially
(up to a sign choice) a unique perpendicular unit vector to both X and Y , the condition that OX,Y
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sends this into e3 determines the matrix OX,Y perfectly well. In higher dimensions this becomes
an issue because there is no canonical choice of the matrix OX,Y . Indeed, given two vectors X,Y
it is not clear that one can produce a number of vectors which depend smoothly on X,Y and be
a basis of the orthogonal complement of the span of X,Y . In more abstract terms, if Vk,n is the
Stiefel manifold of k orthogonal frames (k ≥ 2) in Rn, then our problem becomes equivalent to
the problem of finding a cross section of the projection Vk,n → V2,n. The projection used here is
sending the frame f1, f2, . . . , fk into f1, f2. It is know that this is possible (cf. [46, Theorem 1.7])
if and only if n = 3 and k = 3, and this shows that the proof above works essentially only for the
2-dimensional sphere.

For the higher dimensional spheres, we are going to use a different approach. So far, we have
only used the extrinsic approach which is very versatile in the present context, but could become a
weakness when one wants to extend it to other manifolds.

Remark 3.4.4. Without much extra work one can refine the result in Theorem 3.4.2 and show
that for any 0 ≤ k ≤ 1 and x, y ∈ S2, there is a Markovian coupling (Xt, Yt) starting at (x, y)
such that ‖Xt − Yt‖ = e−kt/2‖x− y‖ for all t ≥ 0.

If k < 0, then there is a coupling (Xt, Yt) initiated at (x, y) such that ‖Xt−Yt‖ = e−kt/2‖x−y‖
but only for 0 ≤ t ≤ δ where δ is a constant determined by k and ‖x− y‖. Notice that the distance
increases exponentially fast in the case k < 0, and because of the compactness of S2 this coupling
exists only for short time.

The proof is just a straightforward refinement of the one of Theorem 3.4.2 and is left to the
reader. An interesting feature of the proof is that the upper limit of k for which we can get the
exponential distance is k = 1. This is perhaps a reflection of the fact that the curvature of S2 is
actually 1.

3.5 Extensions and applications

From the geometric point of view, the construction in the previous section is extrinsic, in the sense
that we considered the manifold in discussion (the S2 sphere) imbedded into another manifold
(R3). Since Brownian motion on a manifold is essentially an intrinsic object, it is natural to try
to find couplings which are defined in terms of the intrinsic structure of the manifold, that is in
terms of its own Riemannian structure, and without embedding it into another manifold.

In [73] we obtained a general intrinsic proof of the existence of couplings in case of manifolds
of constant curvature, which present below.

We start with a d-dimensional Riemannian manifold M and we will use the notations in-
troduced in Section 3.4. On M , one can construct the Brownian motion as the solution to a
martingale problem associated to the Laplacian (for more details, see [40] or [81]).

Following [40, Section 6.5], we want to define the coupling as a solution to a certain stochastic
differential system at the level of orthonormal frame bundle. If U0 is a given orthonormal frame
bundle at x0 and V0 = Ox0,y0U0 is an orthonormal frame bundle at y0, the system we consider is

dUt =
∑d
i=1Hi(Ut) ◦ dW i

t

dVt =
∑d
i=1Hi(Vt) ◦ dBit

dBt = V −1
t OXtYtUtdWt

Xt = πUt

Yt = πVt

(3.5.1)

where Ox,y is an isometry from TxM into TyM .

Among the candidates to the role of the isometry Ox,y one is the parallel transport along the
minimizing geodesic from x to y, and the resulting coupling is called synchronous coupling. The
other choice which fits into the picture is the one when Ox,y preserves the tangential component
of the geodesic from x to y, but changes the sign of the vertical component after performing the
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parallel transport. Geometrically this is a version of perverse coupling and we will refer it so.
With this choice, perpendicular to the geodesic the particles move in opposite directions.

To be precise, let τx,y be the parallel transport of TxM into TyM along the minimizing geodesic
γ and let TxM = Rγ̇(0)+T⊥xy be the orthogonal decomposition of TxM into the geodesic direction

and the perpendicular direction. Similarly let Ty = Rγ̇(ρ) +T⊥yx with ρ = d(x, y). The two choices
described above are given by

Ox,yγ̇(0) = γ̇(ρ) and Ox,yξ = τx,yξ, (3.5.2)

respectively by
Ox,yγ̇(0) = γ̇(ρ) and Ox,yξ = −τx,yξ, (3.5.3)

for any ξ ∈ T⊥xy.
In [73] we obtained the following result which summarizes the main properties of the coupling

in the case of constant curvature manifolds.

Theorem 3.5.1. Let M be a complete d-dimensional Riemannian manifold of constant sectional
curvature r. For simplicity consider only the cases r = −1, 0 or 1, the general case following by
a scaling argument.

If the starting points x0, y0 are chosen such that ρ0 < i(M)/2, then the following hold.

a) For the choice of Ox,y as in (3.5.2), the coupling of the Brownian motions satisfies the
property that

if r = −1, ρt ≥ ρ0 for all t ≥ 0

if r = 0, ρt = ρ0 for all t ≥ 0

if r = 1, 0 < ρt ≤ Ce−(d−1)t/2 for all t ≥ 0 and some constant C > 0.

(3.5.4)

b) For the choice of Ox,y as in (3.5.3), in all cases,

ρt ≥ ρ0 for all t ≥ 0. (3.5.5)

Moreover, in the case of the model spaces, namely the hyperbolic space (r = −1), the sphere
(r = 1), and the plane (r = 0), for any starting points x0 6= y0 which are not at each other’s
cut-locus, the following hold true.

c) For the choice of Ox,y as in (3.5.2),
if r = −1, ρt = 2arcsinh(e(d−1)/2 sinh(ρ0/2)) for all t ≥ 0

if r = 0, ρt = ρ0 for all t ≥ 0

if r = 1, ρt = 2 arcsin(e−(d−1)t/2 sin(ρ0/2)) for all t ≥ 0.

(3.5.6)

d) For the choice of Ox,y as in (3.5.3),
if r = −1, ρt = 2arccosh(e(d−1)t/2 cosh(ρ0/2)) for all t ≥ 0

if r = 0, ρt =
√
ρ2

0 + 4(d− 1)t for all t ≥ 0

if r = 1, ρt = 2 arccos(e−(d−1)t/2 cos(ρ0/2)) for all t ≥ 0.

(3.5.7)

Proof. See [73].

Remark 3.5.2. In the case of the sphere S2, the construction in the above theorem matches the
one in Theorem 3.4.1, but also covers the case of spheres in all dimensions, and has the virtue of
being intrinsic.

In [73] we also proved the following general result about the existence of shy coupling on
Riemannian manifolds.
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Theorem 3.5.3. Let M be a complete d-dimensional Riemannian manifold with positive injec-
tivity radius and such that for some real number k:

k ≤ Ricx for all x ∈M and sup
x∈M

Kx <∞, (3.5.8)

where Ric is the Ricci tensor and Kx stands for the maximum of the sectional curvatures at x ∈M .

1. For k < 0, there exists ε, δ > 0 such that for any points x0, y0 ∈ M with d(x0, y0) < ε
we can find a Markovian coupling of Brownian motions Xt, Yt starting at x0, y0 such that
d(Xt, Yt) ≥ d(x0, y0) for all t ≥ 0 and d(Xt, Yt) = e−kt/2d(x0, y0) for 0 ≤ t ≤ δ.

2. If k ≥ 0, then there exists ε > 0 such that for any x0, y0 ∈M with d(x0, y0) < ε, there exists a
Markovian coupling of Brownian motions Xt, Yt starting at x0, y0 with d(Xt, Yt) = d(x0, y0)
for all t ≥ 0.

3. Moreover, if k > 0, then there exists ε > 0 such that for any x0, y0 ∈ M with d(x0, y0) <
ε, there exists a Markovian coupling of Brownian motions Xt, Yt starting at x0, y0 with
d(Xt, Yt) = d(x0, y0)e−kt/2 for all t ≥ 0.

Proof. See [73].

As a first application of our results, we give a resolution of Problem 3.1.1 and Problem 3.1.2
presented in Section 3.1. Assume M is a Riemannian manifold satisfying the condition in Theo-
rem 3.5.3. According to the theorem it follows that given a Brownian Lion running on M , there
is a strategy for the Brownian Man which keeps him at the safe positive distance from the Lion
for all times, thus giving an affirmative answer to Problem 3.1.2. Moreover, if the Ricci curvature
of M is non-negative, then the Brownian Man can choose a strategy which keeps him at fixed
distance from the Brownian Lion.

Theorem 3.5.3 also shows that if the Ricci curvature is bounded below by a positive constant,
then given a Brownian Man running on M , the Brownian Lion has a strategy which will bring
him arbitrarily close to its meal, thus giving an affirmative answer to Problem 3.1.1.

As another application, we obtain a proof of the following maximum principle for the gradient
of harmonic functions.

Theorem 3.5.4. Let M be a Riemannian manifold with non-negative Ricci curvature and let
u : M → R be a harmonic function on M . Then, for any relatively compact open set D with
smooth boundary we have

max
x∈D
|∇u(x)| = max

x∈∂D
|∇u(x)|. (3.5.9)

Proof. Fix an arbitrary point x ∈ D. Then there is a geodesic γ such that γ(0) = x and

v(x) := |∇u(x)| = lim
h→0

u(γ(h))− u(x)

h
.

In particular, for a small enough h > 0, we can consider a fixed distance coupling started at γ(h)
and x, and run it up until the stopping time ζ, defined as the first time when either of the processes
Xt or Yt hit the boundary of D. On the other hand, since the function u is harmonic, u(Xt) and
u(Yt) are local martingales, and in fact, since u is bounded on D, we can write

u(γ(h))− u(x) = E[u(Xζ)− u(Yζ)].

In particular, the above equality shows that there must be an ω in the probability space where
the processes Xt and Yt are defined, such that

u(γ(h))− u(x) ≤ u(Xζ(ω))− u(Yζ(ω))

Since d(Xζ , Yζ) = d(γ(h), x) = h, we can find a point ξ on the geodesic joining Xζ with Yζ
such that

u(γ(h))− u(x) ≤ u(Xζ(ω))− u(Yζ(ω)) ≤ |∇u(ξ)|h.
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Since either Xt or Yt are on the boundary of D, we conclude that ξ is distance h or less from the
boundary ∂D.

Thus, as h goes to 0, from the compactness of ∂D, we can find a point α ∈ ∂D such that

v(x) = |∇u(x)| ≤ |∇u(α)| ≤ max
x∈∂D

v(x),

which concludes the proof.

For other applications of the couplings constructed in this chapter, see [73].



Chapter 4

A maximum modulus principle for
non-analytic functions defined in
the unit disk

In the present chapter we present some extensions of the classical maximum modulus principle for
analytic functions to certain classes of non-analytic function defined on the unit disk, obtained by
the author in [36] and [37]. As corollaries we obtain a new proof of the classical maximum modulus
principle for analytic functions, simple conditions on the coefficients of the series development
under which the maximum modulus principle holds, as well as as applications to the case of
real-valued functions of two variables.

4.1 Introduction

Maximum principles are important tools in many areas of mathematics, such as Differential equa-
tions, Potential theory, Complex analysis, Harmonic analysis, and so on.

The classical maximum modulus principle in Complex analysis states that the maximum mod-
ulus of a non-constant analytic function defined on a simply connected domain cannot be attained
at an interior point of the domain. Maximum modulus principle does not apply without the
assumption that the function is analytic, as it can be easily seen by considering the function
f(z, z̄) = 1

2 −zz̄ defined for z ∈ U = {z ∈ C : |z| < 1} (this function attains its maximum modulus
at z = 0 without being constant in U). Therefore, by removing the hypothesis on the analyticity
of the function, one needs to add supplementary hypotheses in order to insure that the maximum
modulus principle holds.

In the present chapter we are concerned with extending the maximum modulus principle to
the class of non-analytic functions f defined on the open unit disk U ⊂ C which have a series
expansion of the form

f(z, z̄) =

∞∑
n=1

fn(z, z̄), z ∈ U, (4.1.1)

where fn = fn(z, z̄) are complex functions defined for z = x+ iy ∈ U , (real positive) homogeneous
of degree n and satisfying a certain inequality on the boundary ∂U .

In Theorem 4.3.1 we show that the maximum modulus principle holds for the functions of this
class, and moreover that |f(z, z̄)| is a radially increasing function in the open unit disk U .

As a consequence (Corollary 4.3.2), by considering the functions fn(z, z̄) = anz
n in Theorem

4.3.1, we obtain a new proof of the maximum modulus principle for analytic functions (with an
additional hypothesis on the coefficients of the corresponding Taylor series).

79
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More generally, considering functions of the form

fn(z, z̄) =

n∑
k=0

anz
kn z̄n−kn (kn ∈ {0, 1, 2, . . . , n})

and using Theorem 4.3.1, we obtain a simple sufficient condition on the coefficients an under
which the function f(z, z̄) defined by (4.1.1) satisfies a maximum modulus principle (see Corollary
4.3.2). Finally, by means of a counterexample, we show that the condition found in Corollary
4.3.2 is sharp, and we conclude with a weaker version of Theorem 4.3.1 (Theorem 4.3.5), but more
useful in applications.

In the present paper we give sufficient conditions for a non-analytic function defined in the
unit disk to satisfy a maximum modulus principle. We consider the class of non-analytic functions
having a power series expansion of the form

f(z, z̄) =

∞∑
n=1

n∑
k=0

aknz
n−kz̄k, z ∈ U. (4.1.2)

In Theorem 4.4.1 we show that under certain conditions on the coefficients akn the maximum
modulus principle holds for f(z, z̄); moreover, we show that |f(z, z̄)| is an increasing function of
|z|. The proof uses a result in [36] on the maximum principle for non-analytic functions.

Our choice of the class of functions in 4.1.2 is motivated by the fact that it is a large enough
class of functions which includes some important classes of functions. In particular, it includes
the class of real-valued functions of two variables having a Taylor series expansion in the whole
unit disk (see Theorem 4.4.5).

4.2 Preliminaries

We denote by U = {z ∈ C : |z| < 1} the open unit disk in C, and for a complex number z =

x + iy ∈ C, we denote by z̄ = x − iy, |z| =
√
x2 + y2 the complex conjugate, respectively the

modulus of z.
Recall that a function f : U → C analytic in U is called convex if f is univalent in U and it

maps U onto a convex domain in C. The following result gives a sufficient condition for convexity
(see for example [74] or [38]).

Lemma 4.2.1. If f : U → C is analytic in U and it has a Taylor series expansion

f(z) =

∞∑
n=1

anz
n, z ∈ U,

where a1 6= 0 and the coefficients an ∈ C satisfy the inequality

∞∑
n=2

n2 |an| ≤ |a1| , (4.2.1)

then f is a convex function.

We also need the following property, which shows that for a convex function f , |zf ′(z)| is an
increasing function of |z|.

Lemma 4.2.2. If f : U → C is a convex function then for any θ ∈ [0, 2π) arbitrarily fixed,∣∣rf ′(reiθ)∣∣ is an increasing function of r ∈ (0, 1), that is

r1

∣∣f ′(r1e
iθ)
∣∣ < r2

∣∣f ′(r2e
iθ)
∣∣ ,

for any 0 < r1 < r2 < 1.
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Proof. For θ ∈ [0, 2π) arbitrarily fixed, consider the function ϕ : (0, 1) → R defined by ϕ(r) =
ln
∣∣rf ′(reiθ)∣∣.
The function ϕ is differentiable on (0, 1), and we have

d

dr
ϕ(r) =

∂

∂r

(
ln r + ln

∣∣f ′(reiθ)∣∣)
=

1

r
+

∂

∂r
Re
(
log f ′(reiθ)

)
=

1

r
+ Re

(
f ′′(reiθ)

f ′(reiθ)
eiθ
)

=
1

r

(
1 + reiθ

f ′′(reiθ)

f ′(reiθ)

)
> 0,

for all r ∈ (0, 1), since f is a convex function in U , and therefore it satisfies

Re

(
1 + z

f ′′(z)

f ′(z)

)
> 0, z ∈ U.

Since ϕ′ > 0 on (0, 1), it follows that ϕ is an increasing function on (0, 1), and therefore∣∣rf ′(reiθ)∣∣ is also an increasing function of r ∈ (0, 1), concluding the proof.

4.3 An extended maximum modulus principle

We are now ready to prove the main result, as follows.

Theorem 4.3.1. Let f(z, z̄) defined for z ∈ U have a series expansion of the form

f(z, z̄) =

∞∑
n=1

fn(z, z̄), z ∈ U, (4.3.1)

where fn(z, z̄) are functions of z ∈ U satisfying

fn(rz, rz̄) = rnfn(z, z̄), (4.3.2)

for all z ∈ U and real numbers r > 0 for which rz ∈ U , n = 1, 2, 3, . . ..
If for some θ ∈ [0, 2π) we have

∞∑
n=2

n
∣∣fn(eiθ, e−iθ)

∣∣ ≤ ∣∣f1(eiθ, e−iθ)
∣∣ 6= 0, (4.3.3)

then f(z, z̄) is an increasing function of |z| on arg z = θ, that is

|f(z1, z1)| < |f(z2, z2)| , (4.3.4)

for any z1 = r1e
iθ, z2 = r2e

iθ ∈ U with 0 < r1 < r2 < 1.
In particular, if the condition (4.3.3) holds for all θ ∈ [0, 2π), then |f | is radially increasing in

the whole open unit disk U , and it cannot therefore attain its maximum at an interior point of U .

Proof. Consider z = reiθ ∈ U − {0} arbitrarily fixed, where r ∈ (0, 1) and θ ∈ [0, 2π).
The series

∞∑
n=1

fn(z, z̄)

nzn
un
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has a radius R of convergence given by

R =
1

lim sup
n→∞

n

√∣∣∣∣fn(z, z̄)

nzn

∣∣∣∣
=

1

lim sup
n→∞

n

√∣∣∣∣fn(eiθ, e−iθ) |z|n
nzn

∣∣∣∣
=

1

lim sup
n→∞

n

√∣∣∣∣fn(eiθ, e−iθ)

n

∣∣∣∣
.

From the hypothesis (4.3.3) it follows that
∣∣fn(eiθ, e−iθ)

∣∣ ≤ 1

n

∣∣f1(eiθ, e−iθ)
∣∣ for all n =

1, 2, 3, . . ., and therefore we obtain:

R ≥ 1

lim sup
n→∞

n

√
1

n2
|f1(eiθ, e−iθ)|

=
1

lim sup
n→∞

1

(n+ 1)2

∣∣f1(eiθ, e−iθ)
∣∣

1

n2
|f1(eiθ, e−iθ)|

= 1.

It follows that the function Fz : U → C defined by

Fz(u) =

∞∑
n=1

fn(z, z̄)

nzn
un, u ∈ U,

is analytic in U .
Moreover, using the hypothesis (4.3.3) and the homogeneity of functions fn(z, z̄), we obtain

∞∑
n=2

n2

∣∣∣∣fn(z, z̄)

nzn

∣∣∣∣ =

∞∑
n=2

n

∣∣∣∣fn(z, z̄)

zn

∣∣∣∣
=

∞∑
n=2

n

∣∣∣∣fn(
z

|z| ,
z̄

|z| )
∣∣∣∣

=

∞∑
n=2

n
∣∣fn(eiθ, e−iθ)

∣∣
≤
∣∣f1(eiθ, e−iθ)

∣∣
=

∣∣∣∣f1(z, z̄)

z

∣∣∣∣ ,
which shows that the coefficients of the Taylor series expansion of Fz(u) satisfy the hypothesis
(4.2.1) of Lemma 1, and therefore Fz(u) is a convex function.

By Lemma 2, it follows that |uF ′z(u)| is an increasing function of |u| ∈ (0, 1), that is

|u1F
′
z(u1)| < |u2F

′
z(u2)| ,

for any u1 = ρ1e
iϕ and u2 = ρ2e

iϕ with 0 < ρ1 < ρ2 < 1 and ϕ ∈ [0, 2π).

In particular, for u1 = z and u2 = rz with 1 < r <
1

|z| , we obtain

|zF ′z(z)| < |rzF ′z(rz)| ,
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or equivalent ∣∣∣∣∣z
∞∑
n=1

fn(z, z̄)

nzn
nzn−1

∣∣∣∣∣ <
∣∣∣∣∣rz

∞∑
n=1

fn(z, z̄)

nzn
nrn−1zn−1

∣∣∣∣∣ .
By hypothesis (4.3.2) we have an(z, z̄)rn = an(rz, rz̄) for all n = 1, 2, 3, . . ., and the relation above
becomes ∣∣∣∣∣

∞∑
n=1

fn(z, z̄)

∣∣∣∣∣ <
∣∣∣∣∣
∞∑
n=1

fn(rz, rz̄)

∣∣∣∣∣ ,
or equivalent

|f(z, z̄)| < |f(rz, rz̄)| ,

for any r ∈
(

1,
1

|z|

)
. Since z ∈ U −{0} was arbitrarily chosen, this completes the first part of the

proof.
The last part of the proof follows from the strict monotonicity of |f(z, z̄)| in the radial direction.

As a first consequence of the above theorem, we obtain a new proof of the maximum modulus
principle for (a class) of analytic functions in the unit disk, as follows:

Corollary 4.3.2 (Maximum modulus principle for analytic functions). If f : U → C is analytic
in the open unit disk U having a Taylor series expansion

f(z) =

∞∑
n=1

anz
n, z ∈ U,

where a1 6= 0 and the coefficients an satisfy the inequality

∞∑
n=2

n |an| ≤ |a1| (4.3.5)

then |f(z)| is an increasing function of |z|.
In particular |f(z)| cannot be attained at an interior point of U .

Proof. The claim follows from Theorem 4.3.1 by considering the functions fn(z, z̄) = anz
n.

More generally, we can obtain a maximum modulus principle for a class of non-analytic func-
tions as follows:

Corollary 4.3.3. If f(z, z̄) defined for z ∈ U has a series expansion of he form

f(z, z̄) =

∞∑
n=1

anz
kn z̄n−kn , z ∈ U,

where kn ∈ {0, 1, . . . , n}, a1 6= 0 and the coefficients an ∈ C satisfy the inequality

∞∑
n=2

n |an| ≤ |a1| , (4.3.6)

then |f(z, z̄)| is an increasing function of |z|.
In particular, |f | cannot attain its maximum at an interior point of U .

Proof. Follows from Theorem 4.3.1 by considering the functions fn(z, z̄) = anz
kn z̄n−kn with kn ∈

{0, 1, 2, . . . , n}, n ≥ 1.
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Example 4.3.4. For a ∈ R, consider the function fa(z, z̄) = z − azz̄2 = z − az |z|2 defined for
z ∈ U .

Note that we have a1 = 1, a3 = a and an = 0 for n ∈ N∗ − {1, 3} in the notation of the above

corollary, and therefore fa satisfies the hypothesis (4.3.6) of the previous corollary iff |a| ≤ 1

3
. For

these values of a it follows that fa does not attain its maximum modulus inside U (the maximum
value of |fa(z, z̄)| for z ∈ U is 1 − a, and it is attained only on the boundary ∂U of U , as it can
easily be checked).

However, for
1

3
< a <

4

3
, the maximum modulus principle fails for the function fa(z, z̄) (the

maximum value of the modulus of fa is attained inside the unit disk, on the circle |z| = 1√
3a

).

The above example shows that the inequality (4.3.6) cannot be relaxed (it is sharp), in the sense
that if we replace the constant 1 in the hypothesis∑∞

n=2 n |an|
|a1|

≤ 1

of Corollary 4.3.3 by a larger constant, then there exists functions for which the conclusion of the
corollary fails.

We conclude with a weaker version of Theorem 4.3.1, more convenient for applications.

Using the fact that the series

ζ(a) =

∞∑
n=1

1

na
< +∞

converges for a > 0 and using Theorem 4.3.1, we obtain the following.

Theorem 4.3.5. Let f(z, z̄) defined for z ∈ U have a series expansion of the form

f(z, z̄) =

∞∑
n=1

fn(z, z̄), z ∈ U, (4.3.7)

where fn(z, z̄) are functions of z ∈ U satisfying

fn(rz, rz̄) = rnfn(z, z̄), (4.3.8)

for all z ∈ U and real numbers r > 0 for which rz ∈ U , n = 1, 2, 3, . . . and

f1(z, z̄) 6= 0

for all z ∈ U .

If for some θ ∈ [0, 2π) we have

∣∣fn(eiθ, e−iθ)
∣∣ ≤ 1

n2+α

minθ∈[0,2π)

∣∣f1(eiθ, e−iθ)
∣∣

ζ(1 + a)− 1
, n = 2, 3, 4, . . . , (4.3.9)

then f(z, z̄) is an increasing function of |z| on arg z = θ, that is

|f(z1, z1| < |f(z2, z2| , (4.3.10)

for any z1 = r1e
iθ, z2 = r2e

iθ ∈ U with 0 < r1 < r2 < 1.

In particular, if (4.3.9) holds for all θ ∈ [0, 2π), then |f | is radially increasing in the whole
open unit disk U , and it cannot therefore attain its maximum at an interior point of U .
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4.4 A maximum modulus principle for a class of non-analytic
functions defined in the unit disk

In this section we present a maximum modulus principle for a large class of non-analytic functions
defined in the unit disk. The main result is the following.

Theorem 4.4.1. If the function f(z, z̄) defined for z ∈ U has a series expansion of the form:

f(z, z̄) =

∞∑
n=1

n∑
k=0

aknz
n−kz̄k, z ∈ U, (4.4.1)

where the coefficients akn ∈ C satisfy the inequality

∞∑
n=2

n

n∑
k=0

|akn| ≤ ||a01| − |a11|| 6= 0, (4.4.2)

then |f(z, z̄)| is a radially increasing function in the unit disk, that is

|f(z1, z̄1)| < |f(z2, z̄2)| ,

for any z1 = r1e
iθ, z2 = r2e

iθ ∈ U with 0 < r1 < r2 < 1.
In particular, f(z, z̄) cannot attain its maximum modulus at an interior point of U .

Proof. Consider the functions fn(z, z̄) =
∑n
k=0 aknz

n−kz̄k defined for z ∈ U , where n = 1, 2, . . ..
We will show that with this choice the hypotheses of Theorem 4.3.1 are satisfied, and therefore

the claim of the theorem will follow.
Let us note first that from the definition of the functions fn(z, z̄), they are (positive real)

homogeneous of degree n, that is:

fn(rz, rz̄) =

n∑
k=0

akn (rz)
n−k

(rz)
k

= rn
n∑
k=0

aknz
n−kzk

= rnfn(z, z̄),

for all z ∈ U and r > 0 for which rz ∈ U , and all n = 1, 2, . . ., and therefore the hypothesis (4.3.2)
of Theorem 4.3.1 is satisfied.

To verify condition (4.3.3), let us note that from the hypothesis (4.4.2), we have

∣∣fn(eiθ, e−iθ)
∣∣ =

∣∣∣∣∣
n∑
k=0

akne
i(n−k)θe−ikθ

∣∣∣∣∣ ≤
n∑
k=0

∣∣∣aknei(n−k)θe−ikθ
∣∣∣ =

n∑
k=0

|akn| ,

for all n = 1, 2, . . . and θ ∈ [0, 2π), and also∣∣f1(eiθ, e−iθ)
∣∣ =

∣∣a01e
iθ + a11e

−iθ∣∣ ≥ ∣∣∣∣a01e
iθ
∣∣− ∣∣a11e

−iθ∣∣∣∣ = ||a01| − |a11|| ,

for all θ ∈ [0, 2π).
We obtain therefore

∞∑
n=2

n
∣∣fn(eiθ, e−iθ)

∣∣ ≤ ∞∑
n=2

n∑
k=0

|akn| ≤ ||a01| − |a11|| ≤
∣∣f1(eiθ, e−iθ)

∣∣ ,
for all θ ∈ [0, 2π), which shows that the hypothesis (4.3.3) of Theorem 4.3.1 is also verified.

The claim of the theorem follows now by using Theorem 4.3.1, concluding the proof.
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Remark 4.4.2. Let us note that the maximum modulus principle in the previous theorem also
holds in the case |a01| = |a11|, provided f(z, z̄) is not identically zero in U .

To see this, note that if |a01| = |a11|, by using the hypotheses (4.4.1) and (4.4.2) it follows that
akn = 0 for all n = 2, 3, . . . and k ∈ {0, 1, . . . , n}, and therefore we have

f(z, z̄) = a01z + a11z̄, z ∈ U .

Also note that since f(z, z̄) is not identically zero in U , we have |a01| = |a11| 6= 0. Letting
a01 = ρeiα and a11 = ρeiβ with ρ ∈ (0, 1) and α, β ∈ [0, 2π), we obtain:

|f(z, z̄)|2 =
∣∣ρeiαz + ρeiβ z̄

∣∣2
= ρr2

∣∣∣ei(α+θ) + ei(β−θ)
∣∣∣2

= ρ2r2(2 + 2 cos (α+ θ) cos (β − θ) + 2 sin (α+ θ) sin (β − θ))
= ρ2r2(2 + 2 cos (α− β + 2θ))

= 4ρ2r2 cos2

(
θ +

α− β
2

)
,

for all z = reiθ ∈ U , which shows that |f(z, z̄)| is an increasing function of |z| = r ∈ (0, 1), for all

θ ∈ [0, 2π) for which cos
(
θ + α−β

2

)
6= 0.

However, for the values of θ for which cos
(
θ + α−β

2

)
= 0, we have

∣∣f(reiθ, e−iθ)
∣∣ = 0, and

since f(z, z̄) is not identically constant, it follows that the maximum modulus principle still holds
for f(z, z̄) in this case.

Using the fact that the series ζ(a) =
∑∞
n=1

1
na converges for a > 1, we can obtain a maximum

principle for functions having a series expansion of the form (4.4.1) for which the coefficients satisfy
a simple inequality, as follows:

Corollary 4.4.3. If the function f(z, z̄) defined for z ∈ U has a series expansion of the form:

f(z, z̄) =

∞∑
n=1

n∑
k=0

aknz
n−kz̄k, z ∈ U, (4.4.3)

where for some real number a > 0 the coefficients akn ∈ C satisfy the inequality

max
0≤k≤n

|ak| ≤
1

(n+ 1)n2+a

||a01| − |a11||
ζ(1 + a)− 1

6= 0, n = 2, 3, . . . (4.4.4)

then |f(z, z̄)| is a radially increasing function in U , that is

|f(z1, z̄1)| < |f(z2, z̄2)| , (4.4.5)

for any z1 = r1e
iθ, z2 = r2e

iθ ∈ U with 0 < r1 < r2 < 1.
In particular f(z, z̄), cannot attain its maximum modulus at an interior point of U .

Remark 4.4.4. The inequalities (4.4.4) show essentially that the coefficients akn converge in
absolute value to zero faster than 1

n3 as n→∞, and it provides therefore a large class of functions
f(z, z̄) for which the maximum principle holds (note that by Remark 4.4.2, the maximum principle
still holds in the case |a01| = |a11|, provided f(z, z̄) is not identically zero in U).

For the convenience of the reader, in Table 4.1 we listed some approximate values of the Rie-
mann zeta function ζ(a).

As an application of the previous corollary, we derive a maximum modulus principle for a class
of real-valued functions of two real variables defined in the unit disk, as follows.
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a 1.1 1.2 1.3 1.4 1.5 2.0

ζ(a) 10.5844 5.9158 3.93195 3.10555 2.61238 π2

6 ≈ 1.64493

Table 4.1: Table of values of Riemann zeta function ζ(a) for some values of a.

Theorem 4.4.5. If the real-valued function of two real variables f = f(x, y) : U ⊂ R→ R can be
represented by a Taylor series

f(x, y) =

∞∑
n=1

1

n!

n∑
k=0

Ckn
∂nf

∂xn−k∂yk
(0, 0)xn−kyk, (x, y) ∈ U, (4.4.6)

where for some positive real number a > 0 we have:

max
0≤k≤n

Ckn

∣∣∣∣ ∂nf

∂xn−k∂yk
(0, 0)

∣∣∣∣ ≤ n!

(n+ 1)n2+a

∣∣∣∣∣∣∂f∂x (0, 0)
∣∣∣− ∣∣∣∂f∂y (0, 0)

∣∣∣∣∣∣
ζ(1 + a)− 1

6= 0,

for all n = 2, 3, . . ., then |f(x, y)| is a radially increasing function in U , that is

|f(r1 cos θ, r1 sin θ)| < |f(r2 cos θ, r2 sin θ)| , (4.4.7)

for any 0 < r1 < r2 < 1 and θ ∈ [0, 2π).
In particular, f(x, y) cannot attain its maximum modulus at an interior point of U .
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Chapter 5

Univalent approximations of
analytic functions

When an analytic function is not univalent, it is often of interest to approximate it by univalent
functions. In this chapter we introduce a measure of the non-univalency of a function and we
derive a method for constructing the best starlike and convex univalent approximations of analytic
functions with respect to it, suitable for both practical problems and numerical implementation.

5.1 Introduction

The univalency of an analytic function is an important problem of the Geometric function theory,
and there are many sufficient conditions for univalency in the literature (see for example the
monographs [34], [74] or [75]). If a function is not univalent, then, in practical problems, it is of
interest to find a “best approximation” of it by a univalent function.

In the present chapter we introduce a measure of the non-univalency of an analytic function,
and we use it in order to find the best approximation of a normed analytic function in certain
subclasses of univalent functions (starlike, respectively convex functions), in the sense of L2 (U)
norm. We show that the corresponding problems can be reduced to certain semi-infinite quadratic
programming problems, which we solve explicitly in Theorem 5.3.1 and Theorem 5.3.5, thus leading
to a method for finding the best starlike, respectively convex approximation: our main results
in Theorem 5.4.1 and Theorem 5.5.1 provide constructive algorithms for finding explicitly the
measures dist(f,S∗) and dist(f,K∗) of the (non)starlikeness, respectively (non)convexity of an
analytic function (see also Theorem 5.2.3), as well as for finding the corresponding best starlike
approximation, respectively the best convex approximation.

The structure of the paper is the following. In Section 5.2 we introduce the measures dist (f,U),
dist (f,S), and dist (f,K), which show how far is the function f from being univalent, starlike,
respectively convex. In Lemma 5.2.2 we find a convenient representation of dist (f,U) in terms of
the coefficients of the Taylor series of f . Although dist (·,U) it is not a norm, in Theorem 5.2.3
we show that dist (f,U) = 0 iff f is a univalent function, so dist (f,U) is a measure showing how
far is the function f from being univalent (the same holds for dist (f,S) and dist (f,K)).

In Section 5.3, we first present some basic results about the quadratic programming (the
Karush-Kuhn-Tucker conditions). In Subsection 5.3.2 we consider a particular quadratic pro-
gramming problem with an infinite number of variables, for which we show (see Remark 5.3.2)
that the Karush-Kuhn-Tucker conditions can be applied. Next, in Theorem 5.3.1 we show that
the particular quadratic problem can be solved explicitly: we determine the minimum value of
the problem, as well as the extremal function. In Subsection 5.3.3 we consider another particular
quadratic problem, for which we also determine explicitly the minimum value of the objective
function and the extremum point (Theorem 5.3.5).

89
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In Section 5.4 we apply the results in the previous section in order to find the best starlike
approximation of a normed analytic function. The main result is contained in Theorem 5.4.1,
which gives an explicit method for constructing the starlike approximation of an analytic func-
tion, suitable for numerical implementation and applications. The section concludes with some
examples, which show how to construct the starlike approximations for some particular functions.
For the values of the parameters involved for which dist (f,S∗) is not too large, the numerical
results show that the images of the unit disk under the two maps (the original analytic function
and its starlike approximation) are close to each other, so the method produces good numerical
results.

As an application of Theorem 5.3.5, in the last section we obtain (Theorem 5.5.1) the best
convex approximation of a normed analytic function defined in the unit disk. The result gives
explicitly the value of dist (f,K∗) and of the extremal convex function, so it is again suitable for
both numerical implementation and applications. The section concludes with two examples, which
show that when dist (f,K∗) is not too large, the method of Theorem 5.5.1 produces a good convex
approximation of a given analytic function f ∈ A as shown in Figure 5.2.

5.2 Univalent approximation of analytic functions

Let A denote the class of analytic functions f : U → C satisfying the normalization condition
f(0) = f ′ (0) − 1 = 0, and let U denote the subclass of A consisting of univalent functions.
Further, let S, K denote the subclasses of U consisting of starlike univalent, respectively convex
univalent functions in the unit disk U (functions which map the unit disk U univalently onto a
starlike, respectively a convex domain).

It is known (see for example [38]) that if f ∈ A has the series expansion

f (z) = z +

∞∑
n=2

anz
n, z ∈ C, (5.2.1)

and the coefficients an satisfy the inequality

∞∑
n=2

n |an| ≤ 1 (5.2.2)

then f ∈ S, and if the coefficients an satisfy the inequality

∞∑
n=2

n2 |an| ≤ 1, (5.2.3)

then f ∈ K. We denote by S∗ and K∗ the subclasses of S and K defined by (5.2.2), respectively
by (5.2.3).

As a measure of the non-univalency of a function we introduce the following.

Definition 5.2.1. For f ∈ A we define

dist (f,U) = inf
g∈U

(∫
U

|f (x+ iy)− g (x+ iy)|2 dxdy
)1/2

, (5.2.4)

with similar definitions for dist (f,S), dist (f,S∗), dist (f,K), and dist (f,K∗).

Although dist (·,U) is not a norm in A (see Theorem 5.2.3), dist (f,U) is a measure showing
how “far” is the function f from being univalent. Similarly, dist (f,S), dist (f,K), dist (f,S∗),
and dist (f,S∗) measure how far is the function f from being starlike, convex, in the class S∗,
respectively in the class K∗.

A first preliminary result is the following.
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Lemma 5.2.2. If f : U → C is analytic in U and has series expansion

f (z) =

∞∑
n=0

anz
n, z ∈ U, (5.2.5)

then ∫
U

|f (x+ iy)|2 dxdy = π

∞∑
n=0

|an|2
n+ 1

.

Proof. ForR ∈ (0, 1) arbitrarily fixed, the series in (5.2.5) converges uniformly on UR = {z ∈ C : |z| < R}.
Passing to polar coordinates and using Fubini’s theorem, we obtain:

∫
UR

|f (x+ iy)|2 dxdy =

∫ R

0

∫ 2π

0

∣∣∣∣∣
∞∑
n=0

anr
neinθ

∣∣∣∣∣
2

rdrdθ


=

∫ R

0

(∫ 2π

0

( ∞∑
n=0

anr
neinθ

)( ∞∑
m=0

amr
me−imθ

)
rdrdθ

)

=

∫ R

0

( ∞∑
m,n=0

∫ 2π

0

anamr
m+n+1ei(n−m)θdθ

)
dr

=

∫ R

0

( ∞∑
m,n=0

2πanamδmnr
m+n+1

)
dr

= π

∞∑
n=0

|an|2
n+ 1

R2n+2.

Letting R↗ 1 and using the monotone convergence theorem the result follows.

If f ∈ U is then obviously dist (f,U) = 0. The following theorem shows that the converse is
also true.

Theorem 5.2.3. For f ∈ A, dist (f,U) = 0 iff f ∈ U .

Proof. The converse implication is obvious. To prove the direct implication we will show that if
dist (f,U) = 0, we can find a sequence of univalent functions fn ∈ U such that fn → f uniformly
on compact subsets of U , and therefore either f is identically constant in U or f ∈ U (the first
possibility is however ruled out by the normalization condition).

Since dist (f,U) = 0, we can find a sequence (fn)n≥1 ⊂ U such that∫
U

|f (x+ iy)− fn (x+ iy)|2 dxdy < π

n
, n ≥ 1.

If f and fn have series expansions given by

f (z) =

∞∑
m=1

amz
m and fn (z) =

∞∑
m=1

an,mz
m, z ∈ U,

with a1 = an,1 = 1, using Lemma 5.2.2 we obtain

∞∑
m=2

|am − an,m|2
m+ 1

<
1

n
, n ≥ 1.
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For arbitrarily fixed r ∈ (0, 1) and z0 ∈ Ur, we obtain

|f (z0)− fn (z0)| ≤
∞∑
m=0

|am − an,m| |z0|m

≤
∞∑
m=0

|am − an,m| rm

≤
( ∞∑
m=0

|am − an,m|2
m+ 1

)1/2( ∞∑
m=0

(m+ 1) r2m

)1/2

≤ 1√
n

( ∞∑
m=0

(m+ 1) r2m

)1/2

.

Since the series
∑∞
m=0 (m+ 1) r2m converges for any r ∈ (0, 1), the above inequality shows

that the sequence fn converges uniformly to f on Ur for any r ∈ (0, 1), so fn converges to f
uniformly on compact subsets of U . Since the functions fn are univalent in U , the limit function f
is either univalent or it is identically constant in U (impossible, by the normalization condition),
concluding the proof.

5.3 Quadratic programming

In this section we recall the Karush-Kuhn-Tucker conditions, specialized for the case of quadratic
programming problems, and we use them to solve two particular quadratic programming problems.

5.3.1 The Karush-Kuhn-Tucker conditions

Consider the problem of minimizing

f (x) = xTQx+ cx (5.3.1)

under the conditions

Ax ≤ b and x ≥ 0, (5.3.2)

where x ∈ Rn are column vectors, Q ∈ Mn×n is a symmetric matrix, A ∈ Mm×n, b ∈ Mm×1

and c ∈ M1×n. Further, assume that a feasible solution exists and that the constraint region is
bounded.

The above is a particular case of quadratic programming, and it is known that when the
objective function f(x) is strictly convex for all feasible points the problem has a unique local
minimum which is also the global minimum (a sufficient condition which guarantees the strict
convexity of the objective function f is that Q is a positive definite matrix).

The Karush-Kuhn-Tucker conditions below (specialized for the case of the above quadratic
programming problem, see [47]) are necessary conditions for a global minimum. If Q is positive
definite, they are also sufficient for a global minimum.

Consider the Lagrangian function L for the above quadratic programming problem:

L = xTQx+ cx+ µ (Ax− b) .
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The Karush-Kuhn-Tucker conditions are the following:

∂L

∂xi
≥ 0, i = 1, . . . , n

∂L

∂µj
≤ 0, j = 1, . . . ,m

xi
∂L

∂xi
= 0, i = 1, . . . , n

µ (Ax− b) = 0

xi ≥ 0, i = 1, . . . , n

µj ≥ 0, j = 1, . . . ,m

5.3.2 A particular quadratic programming problem

Consider the problem of finding

inf

∞∑
n=2

(xn − an)
2

n+ 1
(5.3.3)

where (an)n≥2 is a given non-negative sequence of real numbers, and the infimum is taken over all
non-negative sequences (xn)n≥2 of real numbers satisfying

∞∑
n=2

nxn ≤ 1. (5.3.4)

In this case the objective function f (x) =
∑∞
n=2

(xn−an)2

n+1 is a quadratic function and we have
the only constrained inequality Ax ≤ 1 (m = 1 in the Karush-Kuhn-Tucker conditions), where
A =

(
2 3 4 . . .

)
, and the Lagrangian is given in this case by

L =

∞∑
n=2

(xn − an)
2

n+ 1
+ µ

( ∞∑
n=2

nxn − 1

)
.

The Karush-Kuhn-Tucker conditions (assuming the same conditions can be applied to infinite
instead of finite number of variables xi – see Remark 5.3.2 following the proof of Theorem 5.3.1)
are in this case

2
xn − an
n+ 1

+ nµ ≥ 0, n ≥ 2 (5.3.5)

∞∑
n=2

nxn − 1 ≤ 0 (5.3.6)

xn

(
2
xn − an
n+ 1

+ nµ

)
= 0, n ≥ 2 (5.3.7)

µ

( ∞∑
n=2

nxn − 1

)
= 0 (5.3.8)

xn ≥ 0, n ≥ 2 (5.3.9)

µ ≥ 0 (5.3.10)

From (5.3.8) it can be seen that either µ = 0 or
∑∞
n=2 nxn = 1, and we distinguish the following

cases.
If
∑∞
n=2 nan ≤ 1, the infimum in (5.3.3) is readily seen to be 0, attained for µ = 0 and xn = an

for all n ≥ 2.
If
∑∞
n=2 nan > 1, we first note that in this case we must have µ 6= 0. This is so for otherwise

from (5.3.7) we obtain xn = 0 or xn = an, and since from condition (5.3.5) we have xn ≥ an,
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it follows that xn = an for all n ≥ 2. However, this contradicts (5.3.6), since
∑∞
n=2 nxn =∑∞

n=2 nan > 1.
The above system becomes in this case

2
xn − an
n+ 1

+ nµ ≥ 0, n ≥ 2 (5.3.11)

xn

(
2
xn − an
n+ 1

+ nµ

)
= 0, n ≥ 2 (5.3.12)

∞∑
n=2

nxn = 1 (5.3.13)

xn ≥ 0, n ≥ 2 (5.3.14)

µ > 0 (5.3.15)

The second equation shows that either xn = 0 or xn = an − 1
2µn (n+ 1). Denote by I the set

of indices n ≥ 2 for which xn = an − 1
2µn (n+ 1), so xn = 0 for n ∈ Ic = {2, 3, 4, . . .}−I.

From (5.3.11) it follows that µ ≥ 2 an
n(n+1) for n ∈ Ic and from (5.3.14) it follows that µ ≤

2 an
n(n+1) for n ∈ I.

From (5.3.13) we obtain

1 =

∞∑
n=2

nxn =
∑
n∈I

n

(
an −

1

2
µn (n+ 1)

)
=
∑
n∈I

nan −
µ

2

∑
n∈I

n2 (n+ 1) ,

so we must have

µ = 2

∑
n∈I nan − 1∑
n∈I n

2 (n+ 1)
> 0. (5.3.16)

In particular, the above shows that the set of indices I must be finite (otherwise, since the
series

∑
n∈I n

2 (n+ 1) =∞ diverges, we obtain µ = 0, contradicting (5.3.15)).
In order to find the value of xn, it remains to find the set of indices I (the last equality gives

then the value xn = an − 1
2µn (n+ 1) for n ∈ I and xn = 0 for n ∈ Ic).

To do this, recall that µ given by (5.3.16) must satisfy

µ ≤ 2an
n (n+ 1)

, n ∈ I (5.3.17)

and

µ ≥ 2an
n (n+ 1)

, n ∈ Ic. (5.3.18)

Assuming the series
∑∞
n=2 nan <∞ converges, it follows that the sequence (nan)n≥2 converges

to 0, so the sequence
(

2an
n(n+1)

)
n≥2

also converges to 0. There exists therefore a non-increasing

rearrangement of the sequence
(

2an
n(n+1)

)
n≥2

, that is, there exists a permutation i2 < i3 < . . . of

{2, 3, . . .} so that so that
(

2ain
in(in+1)

)
n≥2

is a non-increasing sequence (also convergent to 0).

We will prove the following.

Theorem 5.3.1. If
∑∞
n=2 nan > 1 is a convergent series, there exists an integer N ≥ 2 such that

the minimum of the quadratic problem (5.3.3) – (5.3.4) is attained for the sequence (xn)n≥2 given
by

xn =

{
an − 1

2µNn (n+ 1) , n ∈ I
0, n ∈ Ic ,

where µN = 2
∑
n∈I nan−1∑
n∈I n

2(n+1) , I = {i2, . . . , iN} and i2 < i3 < . . . is a permutation of {2, 3, . . .} such

that
(

2an
n(n+1)

)
n≥2

is a non-increasing sequence.



5.3. QUADRATIC PROGRAMMING. 95

Moreover, N can be taken to be equal to

N = inf
{
n ≥ 2 : αin+1

≤ µn ≤ αin
}
,

where αn = 2an
n(n+1) and µn = 2

∑n
m=2 imaim−1∑k
m=2 i

2
m(im+1)

, n ≥ 2.

Proof. Since
∑∞
n=2 inain =

∑∞
n=2 nan > 1, there exists an integer n0 ≥ 2 such that

∑n0

n=2 inain >
1, and assume that n0 ≥ 2 is the smallest index with this property.

Note that if n0 = 2, then µ2 = 2
i2ai2−1

i22·(i2+1)
≤ αi2 .

Also note that if n0 > 2, then by the choice of n0 we have µn0−1 = 2
∑n0−1
n=2 inain−1∑n0−1
n=2 i2n(in+1)

< 0 ≤ αn0 ,

so µn0
=

2(
∑n0−1
n=2 inain−1)+2in0ain0∑n0−1

n=2 i2n(in+1)+i2n0
(in0

+1)
≤ 2in0ain0

i2n0
(in0+1)

= αn0
(we are using here the fact that if a

b ≤ c
d

with b, d > 0, then a
b ≤ a+b

c+d ≤ c
d ).

So in both cases above we obtained µin0
≤ αn0

.
We distinguish now the following cases.

i) µn0
≥ αin0+1

Since the sequence (αin)n≥2 is non-increasing, we have

µn0
≤ αin0

≤ αin , n ∈ {2, . . . , n0}

and
µn0 ≥ αin0+1 ≥ αin , n ∈ {n0 + 1, n0 + 2, . . .} ,

so we can chose N = n0 and I = {i2, . . . , in0
}, concluding the proof in this case.

ii) µn0 < αin0+1

In this case, using again the above observation we have

µn0
≤ µn0+1 ≤ αin0+1

.

Either µn0+1 ≥ αin0+2 or µn0+1 < αin0+2 .

If µn0+1 ≥ αin0+2
, proceeding as in part i) above, it follows that we can chose N = in0+1, so

the claim holds in this case.

If µn0+1 < αin0+2
, we obtain

µn0
≤ µn0+1 ≤ µn0+2 ≤ αin0+2

.

Proceeding inductively, either at some step we can find an integer N = n0 + k for which the
claim holds, or

0 < µn0
≤ µn0+1 ≤ µn0+2 ≤ · · · ≤ µn0+k ≤ αin0+k

, k ≥ 0. (5.3.19)

However, since (αin)n≥2 is a non-increasing sequence of non-negative real numbers with
limn→∞ αin = 0, the inequalities in (5.3.19) cannot hold, and therefore we can always find
an integer N = n0 + k for which the claim holds, concluding the proof of the theorem.

Remark 5.3.2. In the argument above we have used the Karush-Kuhn-Tucker conditions for an
infinite instead of a finite number of variables xi in order to find the minimum value of the objective
function in (5.3.3). The reason for which the Karush-Kuhn-Tucker can be applied to the particular
quadratic programming problem (5.3.3) in this infinite-dimensional setting is the following.
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Note that for an arbitrarily fixed sequence of non-negative numbers (an)n≥2 and any integer
m ≥ 2 we have

inf

∞∑
n=2

(xn − an)
2

n+ 1
≥ inf

m∑
n=2

(xn − an)
2

n+ 1
, (5.3.20)

where both infimum are taken over all non-negative sequences (xn)n≥2 with
∑∞
n=2 nxn ≤ 1. Since

xm+1, xm+2, . . . do not appear in the expression in the second infimum, the second infimum is the
same when taken over all finite sequences of non-negative numbers x2, . . . , xm with

∑m
n=2 nxn ≤ 1.

Solving the Karush-Kuhn-Tucker conditions for this finite-dimensional problem (same calcula-
tions as above) and using the notation of Theorem 5.3.1, it follows that for m ≥ iN the second
infimum in (5.3.20) is attained for the sequence x2, . . . , xm given by

xn =

{
an − 1

2µNn (n+ 1) , n ∈ I
0, n ∈ Ic ∩ {2, . . . ,m} ,

so

inf

∞∑
n=2

(xn − an)
2

n+ 1
≥ inf

m∑
n=2

(xn − an)
2

n+ 1
≥ π

∑
n∈Icm

a2
n

n+ 1
+ π

(∑
n∈I nan − 1

)2∑
n∈I n

2 (n+ 1)
,

where Icm = {2, . . .m} − I (note that for m ≥ iN we have I = {i2, . . . , iN} ⊂ {2, . . . ,m}).
Since the above inequality holds for any m ≥ iN , passing to the limit with m→∞ we obtain

inf

∞∑
n=2

(xn − an)
2

n+ 1
≥ lim

m→∞
π
∑
n∈Icm

a2
n

n+ 1
+ π

(∑
n∈I nan − 1

)2∑
n∈I n

2 (n+ 1)

= π
∑
n∈Ic

a2
n

n+ 1
+ π

(∑
n∈I nan − 1

)2∑
n∈I n

2 (n+ 1)
.

The last expression above is just the value of the on the objective function
∑∞
n=2

(xn−an)2

n+1
for the sequence (xn)n≥2 defined in Theorem 5.3.1, so the infimum of the infinite-dimensional
quadratic problem (5.3.3) is attained for the sequence in the statement of Theorem 5.3.1.

This justifies the use of the Karush-Kuhn-Tucker conditions in the infinite-dimensional quadratic
problem (5.3.3), completing the argument.

5.3.3 A second quadratic programming problem

Consider the problem of finding

inf

∞∑
n=2

(xn − an)
2

n+ 1
(5.3.21)

where (an)n≥2 is a given sequence of non-negative real numbers, and the infimum is taken over all
non-negative sequences (xn)n≥2 of real numbers satisfying

∞∑
n=2

n2xn ≤ 1. (5.3.22)

Remark 5.3.3. Note that without loss of generality we can reduce the above problem to the case
when an > 0 for all n ≥ 2. This is so for if we consider the set of indices P = {n ≥ 2 : an > 0},
then

inf

∞∑
n=2

(xn − an)
2

n+ 1
= 0 ∧ inf

∑
n∈P

(xn − an)
2

n+ 1
,

where the second infimum is taken over all sequences (xn)n∈P with
∑
n∈P n

2xn ≤ 1, and we can
consider xn = an = 0 for n ∈ {2, 3, . . .} − P (recall the usual convention inf ∅ = +∞).
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The above problem is a particular case of a semi-infinite quadratic problem, with objec-

tive function f (x) =
∑∞
n=2

(xn−an)2

n+1 and only one constrained inequality Ax ≤ 1, where x =(
x2 x3 x4 . . .

)′
and A =

(
22 32 42 . . .

)
. The corresponding Lagrangian is in this

case given by

L =

∞∑
n=2

(xn − an)
2

n+ 1
+ µ

( ∞∑
n=2

n2xn − 1

)
.

The Karush-Kuhn-Tucker conditions (see [47] or [71]) are necessary conditions for a global
minimum of a quadratic programming problem, and it is known that if in addition the objective
function is strictly convex, they are also sufficient for a global minimum. Assuming for the moment
that the same conditions can be applied to infinite, instead of finite number of variables xn (see
Remark 5.3.6 below), the solution of the quadratic problem (5.5.1) – (5.5.2) above is given by the
Karush-Kuhn-Tucker conditions specialized for this case, that is

2
xn − an
n+ 1

+ n2µ ≥ 0, n ≥ 2 (5.3.23)

∞∑
n=2

n2xn − 1 ≤ 0 (5.3.24)

xn

(
2
xn − an
n+ 1

+ n2µ

)
= 0, n ≥ 2 (5.3.25)

µ

( ∞∑
n=2

n2xn − 1

)
= 0 (5.3.26)

xn ≥ 0, n ≥ 2 (5.3.27)

µ ≥ 0 (5.3.28)

From (5.3.26) it can be seen that either µ = 0 or
∑∞
n=2 n

2xn = 1, and we distinguish the
following cases.

If
∑∞
n=2 n

2an ≤ 1, the infimum in (5.5.1) is readily seen to be 0, attained for µ = 0 and
xn = an for all n ≥ 2.

If
∑∞
n=2 n

2an > 1, we first note that in this case we must have µ 6= 0. This is so for otherwise
from (5.3.25) we obtain xn = 0 or xn = an, and since from condition (5.3.23) we have xn ≥ an,
it follows that xn = an for all n ≥ 2. However, this contradicts (5.3.24), since

∑∞
n=2 n

2xn =∑∞
n=2 n

2an > 1.
The above system becomes in this case

2
xn − an
n+ 1

+ n2µ ≥ 0, n ≥ 2 (5.3.29)

xn

(
2
xn − an
n+ 1

+ n2µ

)
= 0, n ≥ 2 (5.3.30)

∞∑
n=2

n2xn = 1 (5.3.31)

xn ≥ 0, n ≥ 2 (5.3.32)

µ > 0 (5.3.33)

The second equation shows that either xn = 0 or xn = an − 1
2µn

2 (n+ 1). Denote by I the
set of indices n ≥ 2 for which xn = an − 1

2µn
2 (n+ 1), so xn = 0 for n ∈ Ic = {2, 3, 4, . . .}−I.

From (5.3.29) it follows that µ ≥ 2 an
n2(n+1) for n ∈ Ic and from (5.3.32) it follows that µ ≤

2 an
n2(n+1) for n ∈ I.

From (5.3.31) we obtain

1 =

∞∑
n=2

n2xn =
∑
n∈I

n2

(
an −

1

2
µn2 (n+ 1)

)
=
∑
n∈I

n2an −
µ

2

∑
n∈I

n4 (n+ 1) ,
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so we must have

µ = 2

∑
n∈I n

2an − 1∑
n∈I n

4 (n+ 1)
> 0. (5.3.34)

In particular, the above shows that the set of indices I must be finite (otherwise, since the
series

∑
n∈I n

4 (n+ 1) =∞ diverges, we obtain µ = 0, contradicting (5.3.33)).
In order to find the value of xn, it remains to find the set of indices I (the last equality gives

then the value xn = an − 1
2µn

2 (n+ 1) for n ∈ I and xn = 0 for n ∈ Ic).
To do this, recall that µ given by (5.3.34) must satisfy

µ ≤ 2an
n2 (n+ 1)

, n ∈ I (5.3.35)

and

µ ≥ 2an
n2 (n+ 1)

, n ∈ Ic. (5.3.36)

Remark 5.3.4. Note that if (αn)n≥2 is a sequence of positive numbers with limn→∞ αn = 0, then
each of the intervals [1,+∞) and [1/(m + 1), 1/m), m ≥ 1, can contain only a finite number of
the terms of the sequence. We can therefore find a permutation (in)n≥2 of the indices in {2, 3, . . .}
such that (αin)n≥2 is a non-increasing sequence and limn→∞ αin = 0.

With this preparation we can now prove the following.

Theorem 5.3.5. If (an)n≥2 is a sequence of non-negative real numbers with

∞∑
n=2

n2an > 1 (5.3.37)

and
lim
n→∞

an
n3

= 0, (5.3.38)

there exists an integer N ≥ 2 such that the minimum of the quadratic problem (5.5.1) – (5.5.2) is

∑
n∈Ic

a2
n

n+ 1
+

(∑
n∈I(n2an)− 1

)2∑
n∈I (n4 (n+ 1))

,

attained for the sequence (xn)n≥2 given by

xn =

{
an − 1

2µNn
2 (n+ 1) , n ∈ I

0, n ∈ Ic ,

where µN = 2
∑
n∈I(n

2an)−1∑
n∈I(n4(n+1)) , I = {i2, . . . , iN}, and (in)n=2...,|P|+1 is a permutation of the indices

in P = {n ≥ 2 : an > 0} such that αn =
2ain

i2n(in+1) , n = 2, . . . , |P|+ 1, is a non-increasing sequence.

Moreover, N can be taken to be equal to

N = min {n ≥ 2 : αn+1 ≤ µn ≤ αn} ,

where µn = 2
∑n
m=2(i

2
maim)−1∑n

m=2(i4m(im+1)) , n = 2, . . . , |P|+ 1.

Proof. The discussion preceding the statement of the theorem shows that in order to prove the
claim, it suffices to show that we can chose the set of indices I such that the relations (5.3.35)
and (5.3.36) hold true (the relation (5.3.34) gives then the value of µ, and the minimum of the
quadratic problem in the statement of the theorem is attained for the sequence (xn)n≥2 with
xn = an − 1

2µn
2(n+ 1) for n ∈ I and xn = 0 otherwise).
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Consider first the case when the terms of the sequence (an)n≥2 are positive real numbers,
so P = {2, 3, . . .}. Remark 5.3.4 above and the hypothesis (5.3.38) show that we can chose a
permutation (in)n≥2 of the indices in P such that (αn)n≥2 is a non-increasing sequence.

Since
∑∞
n=2 i

2
nain =

∑∞
n=2 n

2an > 1, there exists an integer n0 ≥ 2 such that
∑n0

n=2 i
2
nain > 1,

and assume that n0 ≥ 2 is the smallest index with this property.
First note that we must have 0 < µn0

≤ αn0
. This is so for if n0 = 2, then

µ2 = 2
i22ai2 − 1

i42 · (i2 + 1)
≤ 2ai2
i22 · (i2 + 1)

= α2,

so the claim holds in this case. If n0 > 2, by the choice of n0 we have

µn0−1 = 2

∑n0−1
n=2

(
i2nain

)
− 1∑n0−1

n=2 (i4n (in + 1))
≤ 0 ≤

2i2n0
ain0

i4n0
(in0

+ 1)
= αn0

,

and using the observation that a
b ≤ c

d with b, d > 0 implies a+c
b+d ≤ c

d , we obtain

µn0
= 2

∑n0−1
n=2

(
i2nain

)
− 1 + i2n0

ain0∑n0−1
n=2 (i4n (in + 1)) + i4n0

(in0
+ 1)

≤
2i2n0

ain0

i4n0
(in0

+ 1)
= αn0

,

concluding the proof of the claim.
We distinguish now the following cases.
Case 1: µn0

≥ αn0+1.
Since the sequence (αin)n≥2 is non-increasing, we have

µn0
≤ α

n0
≤ α

n
, n ∈ {2, . . . , n0}

and
µn0
≥ α

n0+1
≥ αn, n ∈ {n0 + 1, n0 + 2, . . .} ,

so we can chose N = n0 and I = {i2, . . . , in0}, concluding the proof in this case.
Case 2: µn0

< αn0+1.
In this case, using again the above observation we have

µn0 ≤ µn0+1 ≤ αn0+1,

and either µn0+1 ≥ αn0+2 or µn0+1 < αn0+2.
If µn0+1 ≥ αn0+2, proceeding as in Case 1 above, we can choose N = n0 + 1, so the claim

holds in this case.
If µn0+1 < αn0+2, we obtain

µn0 ≤ µn0+1 ≤ µn0+2 ≤ αn0+2 .

Proceeding inductively, either at some step we can find an integer N = n0 + k for which the
claim holds, or

0 < µn0
≤ µn0+1 ≤ µn0+2 ≤ · · · ≤ µn0+k ≤ αn0+k, k ≥ 0. (5.3.39)

However, since (αn)n≥2 is a non-increasing sequence of positive real numbers with limn→∞ αn =
0, the inequalities in (5.3.39) cannot hold for every k ≥ 0. Therefore we can always find an integer
N = n0 + k for which the claim holds, concluding the proof of the theorem in the case when
(an)n≥2 is a sequence of positive real numbers.

Consider now the general case, when (an)n≥2 is a sequence of non-negative real numbers.
If the set P is infinite, applying the proof above to the sequence (an)n∈P of positive real

numbers (note that
∑
n∈P n

2an =
∑
n≥2 n

2an > 1 and limP3n→∞
an
n3 = limn→∞

an
n3 = 0) and

using Remark 5.3.3, it follows that the claim holds in this case (for n ∈ {2, 3, . . .} − P ⊂ Ic we
have xn = an = 0).
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If the set P is finite, by the hypothesis (5.3.37) it follows that P cannot be empty, so |P| = p for

some p ≥ 1. If (in)p+1
n=2 is a permutation of the indices in P such that αn =

2ain
i2n(in+1) , n = 2, . . . , p+1,

is a non-increasing sequence, proceeding as in the proof above, either we can find an index N for
which the claim holds, or

0 < µn0 ≤ µn0+1 ≤ · · · ≤ µp+1 ≤ αp+1.

In the later case we can chose N = p+ 1 and I = {i2, . . . , ip+1}, and obtain

µN ≤
2an

n2 (n+ 1)
, n ∈ I, (5.3.40)

and

µN ≥
2an

n2 (n+ 1)
= 0, n ∈ Ic, (5.3.41)

so the claim also holds in this case, concluding the proof of the theorem.

Remark 5.3.6. In the argument above we have used the Karush-Kuhn-Tucker conditions for
an infinite instead of a finite number of variables xn in order to find the minimum value of the
objective function in (5.5.1). The reason for which the Karush-Kuhn-Tucker can be applied to the
particular quadratic programming problem (5.5.1) – (5.5.2) is the following.

Note that for an arbitrarily fixed sequence of non-negative numbers (an)n≥2 and any integer
m ≥ 2 we have

inf

∞∑
n=2

(xn − an)
2

n+ 1
≥ inf

m∑
n=2

(xn − an)
2

n+ 1
, (5.3.42)

where both infima are taken over all non-negative sequences (xn)n≥2 of real numbers with
∑∞
n=2 n

2xn ≤
1. Since xm+1, xm+2, . . . do not appear in the expression in the second infimum, the second in-
fimum is the same when taken over all finite sequences of non-negative numbers x2, . . . , xm with∑m
n=2 n

2xn ≤ 1.
Solving the Karush-Kuhn-Tucker conditions for this finite-dimensional problem (the calcula-

tions are the same as in the proof above) and using the notation of Theorem 5.3.5, it follows that
for m ≥ max{i2, . . . , iN} the second infimum in (5.3.42) is attained for the sequence x2, . . . , xm
given by

xn =

{
an − 1

2µNn (n+ 1) , n ∈ I
0, n ∈ Ic ∩ {2, . . . ,m} ,

so

inf

∞∑
n=2

(xn − an)
2

n+ 1
≥ inf

m∑
n=2

(xn − an)
2

n+ 1
=
∑
n∈Icm

a2
n

n+ 1
+

(∑
n∈I

(
n2an

)
− 1
)2∑

n∈I (n4 (n+ 1))
,

where Icm = {2, . . .m} − I (note that for m ≥ max{i2, . . . , iN} we have I = {i2, . . . , iN} ⊂
{2, . . . ,m}).

Since the above inequality holds for any m ≥ max{i2, . . . , iN}, passing to the limit with m→∞
we obtain

inf

∞∑
n=2

(xn − an)
2

n+ 1
≥ lim

m→∞

∑
n∈Icm

a2
n

n+ 1
+

(∑
n∈I

(
n2an

)
− 1
)2∑

n∈I (n4 (n+ 1))

=
∑
n∈Ic

a2
n

n+ 1
+

(∑
n∈I

(
n2an

)
− 1
)2∑

n∈I (n4 (n+ 1))
.

The last expression above is just the value of the objective function
∑∞
n=2

(xn−an)2

n+1 for the
sequence (xn)n≥2 defined in Theorem 5.3.5, so the infimum of the quadratic problem (5.5.1) –
(5.5.2) is attained for the sequence in the statement of Theorem 5.3.5.

This justifies the use of the Karush-Kuhn-Tucker conditions for the quadratic problem (5.5.1)
– (5.5.2) with an infinite number of variables xn, completing the argument.
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5.4 Approximation of analytic functions by starlike func-
tions

Using the results from the previous section, we will determine dist (f,S∗) for a given function
f ∈ A , that is we will find

dist (f,S∗) = inf
g∈S∗

(∫
U

|f (x+ iy)− g (x+ iy)|2 dxdy
)1/2

,

and we will determine the extremal function g ∈ S∗ for which the minimum is attained.
In view of Lemma 5.2.2, if f ∈ A has the series expansion f (z) = z +

∑∞
n=2 anz

n, z ∈ U , this
amounts to finding

dist (f,S∗) =

(
π inf

∞∑
n=2

|an − bn|2
n+ 1

)1/2

,

where the infimum is taken over all sequences (bn)n≥1 in C satisfying

∞∑
n=2

n |bn| ≤ 1.

The main result is the following.

Theorem 5.4.1. Consider f ∈ A with series expansion given by

f (z) = z +

∞∑
n=2

anz
n, z ∈ U , (5.4.1)

and assume that the series
∑∞
n=2 n |an| converges.

If
∑∞
n=2 n |an| ≤ 1 then dist (f,S∗) = 0 (attained for g = f ∈ S∗ ⊂ S), and if

∑∞
n=2 n |an| > 1

we have

dist (f,S∗) =

(
π
∑
n∈Ic

|an|2
n+ 1

+ π

(∑
n∈I n |an| − 1

)2∑
n∈I n

2 (n+ 1)

)1/2

, (5.4.2)

where N and I = {i2, . . . , iN} are given by Theorem 5.3.1 with |an| instead of an, and the minimum

value of dist (f,S∗) = infg∈S∗
(∫

U
|f (x+ iy)− g (x+ iy)|2 dxdy

)1/2

is attained for the function

g (z) = z +
∑∞
n=2 bnz

n ∈ S∗ ⊂ S, where

bn =

{ (
|an| −

∑
m∈Im|am|−1∑
m∈Im

2(m+1)n (n+ 1)
)
ei arg an , n ∈ I

0, n ∈ Ic
. (5.4.3)

Proof. The claim is obvious if
∑∞
n=2 n |an| ≤ 1, so assume that

∑∞
n=2 n |an| > 1.

Using Lemma 5.2.2 and the triangle inequality we obtain

dist (f,S∗) = inf
g∈S∗

(∫
U

|f (x+ iy)− g (x+ iy)|2 dxdy
)1/2

=

(
π inf

∞∑
n=2

|an − bn|2
n+ 1

)1/2

≥
(
π inf

∞∑
n=2

(|an| − |bn|)2

n+ 1

)1/2

=

(
π inf

∞∑
n=2

(|an| − xn)
2

n+ 1

)1/2



102 CH. 5. UNIVALENT APPROXIMATIONS OF ANALYTIC FUNCTIONS.

where the second and the third infimum are taken over all sequences (bn)n≥2 of complex numbers

satisfying
∑∞
n=2 n |bn| ≤ 1, and the last infimum is taken over all non-negative sequences (xn)n≥2

of real numbers satisfying
∞∑
n=2

nxn ≤ 1.

Using Theorem 5.3.1 with |an| instead of an, we obtain that the last infimum above is attained
for the sequence (xn)n≥2 given by

xn =

{
an −

∑
m∈Im|am|−1∑
m∈Im

2(m+1)n (n+ 1) , n ∈ I
0, n ∈ Ic

.

It follows that dist (f,S∗) =
(
π inf

∑∞
n=2

|an−bn|2
n+1

)1/2

is attained for the sequence (bn)n≥2 of

complex numbers with |bn| = xn and arg bn = arg an, that is for bn = xne
i arg an .

Denoting g (z) = z +
∑∞
n=2 bnz

n ∈ S∗ we have

dist (f,S∗) =

(∫
U

|f (x+ iy)− g (x+ iy)|2 dxdy
)1/2

=

(
π

∞∑
n=2

|an − bn|2
n+ 1

)1/2

=

(
π

∞∑
n=2

(|an| − |bn|)2

n+ 1

)1/2

=

(
π
∑
n∈Ic

|an|2
n+ 1

+ π

(∑
n∈I n |an| − 1

)2∑
n∈I n

2 (n+ 1)

)1/2

,

concluding the proof.

As an example, consider the following.

Example 5.4.2. Consider the function fa : U → C defined by fa (z) = z + az2, where a ∈ C is a
constant.

If |a| ≤ 1
2 , then fa ∈ S∗ and dist (fa,S∗) = 0.

If 2 |a| > 1, from Theorem 5.4.1 we obtain that in = n for n ≥ 2, N = 2 and I = {i2} = {2},
so dist (fa,S∗) =

√
π
3

(
|a| − 1

2

)
is attained for the function ga (z) = z + a

2|a|z ∈ S∗ ⊂ S.

Figure 5.4 shows a comparison between the image domains fa (U) for a = 0.5, 0.75, and 1.
Note that in all cases the minimum of dist (fa,S∗) is attained for f0.5, that f0.5 is starlike, and
that f0.75 and f1 are not univalent.

As another example, consider the following.

Example 5.4.3. Consider the function f : U → C defined by f (z) = z+az2 +bz3, where a, b ∈ C
are constants.

If 2 |a|+ 3 |b| ≤ 1 then f ∈ S∗ and dist (f,S∗) = 0.
If 2 |a|+ 3 |b| > 1, we distinguish the following cases.

a) If 2 |a| ≥ |b|, then in = n for all n ≥ 2.

We distinguish the following subcases.

i) If 2 |a| − 1 ≥ |b| , from Theorem 5.4.1 it follows that N = 2 and I = {i2} = {2}, so

dist (f,S∗) =
(
π |b|

2

4 + π (2|a|−1)2

12

)1/2

, attained for the function g (z) = z + 1
2
a
|a|z

2.
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Figure 5.1: The image of the unit disk under fa, for a = 0.5 (left), a = 0.75 (center) and a = 1
(right).

ii) If 2 |a|−1 < |b|, then N = 3 and I = {i2, i3} = {2, 3}, so dist (f,S∗) =
√
π

4
√

3
(2 |a|+ 3 |b| − 1),

attained for the function g (z) = z + 6|a|−3|b|+1
8 ei arg az2 + |b|−2|a|+1

4 ei arg bz3.

b) If 2 |a| < |b|, then i2 = 3, i3 = 2 and in = n for n ≥ 4.

We distinguish the following subcases.

i) If 3 |b| − 1 ≥ 6 |a|, from Theorem 5.4.1 it follows that N = 2 and I = {i2} = {3}, so

dist (f,S∗) =
(
π |a|

2

3 + π (3|b|−1)2

36

)1/2

, attained for the function g (z) = z + 1
3
b
|b|z

3.

ii) If 3 |b|−1 < 6 |a|, then N = 3 and I = {i2, i3} = {2, 3}, so dist (f,S∗) =
√
π

4
√

3
(2 |a|+ 3 |b| − 1),

attained for the function g (z) = z +
(

6|a|−3|b|+1
8

)
ei arg az2 +

(
|b|−2|a|+1

4

)
ei arg bz3.

The above cases can be summarized as follows. If f (z) = z + az2 + bz3 with 2 |a| + 3 |b| > 1,
then

dist (f,S∗) =


√
π

2
√

3

(
(2 |a| − 1)

2
+ 3 |b|2

)1/2

, if |b| ≤ 2 |a| − 1
√
π

4
√

3
(2 |a|+ 3 |b| − 1) , if 2 |a| − 1 < |b| < 2 |a|+ 1

3
√
π

6

(
12 |a|2 + (3 |b| − 1)

2
)1/2

, if |b| > 2 |a|+ 1
3

,

attained for g (z) = z+ 1
2
a
|a|z

2, g (z) = z+
(

6|a|−3|b|+1
8

)
ei arg az2+

(
|b|−2|a|+1

4

)
ei arg bz3, respectively

for g (z) = z + 1
3
b
|b|z

3.

We conclude with the remark that the hypotheses on the convergence of the series
∑∞
n=2 n |an|

in Theorem 5.4.1, respectively the convergence of the series
∑∞
n=2 nan in Theorem 5.3.1, are not

essential for the validity of these theorems. Reviewing the proofs of Theorem 5.4.1 and Theorem
5.3.1 it can be seen that these hypotheses were only used in order to show that the sequence(

2|an|
n(n+1)

)
n≥2

(respectively
(

2an
n(n+1)

)
n≥2

) admit a non-increasing rearrangement convergent to 0.

So we can substitute these hypotheses for example by the weaker hypotheses limn→∞
|an|
n2 = 0

(respectively limn→∞
an
n2 = 0), or by requiring that the sequence (|an|)n≥2 (respectively (an)n≥2)

is bounded.

5.5 Approximation of analytic functions by convex func-
tions

In this section we give a method for constructing the best approximation of an analytic function
in the subclass K∗ ⊂ K of convex functions, in the sense of the L2 norm.
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Lemma 5.2.2, and the definitions of the class K∗ and of dist (f,K∗) lead us to consider the
problem of finding

inf

∞∑
n=2

(xn − an)
2

n+ 1
(5.5.1)

where (an)n≥2 is a given sequence of non-negative real numbers, and the infimum is taken over all
non-negative sequences (xn)n≥2 of real numbers satisfying

∞∑
n=2

n2xn ≤ 1. (5.5.2)

As an application of Theorem 5.3.5, for a given normed analytic function f ∈ A we will find

dist(f,K∗) = inf
g∈K∗

(∫
U

|f (x+ iy)− g (x+ iy)|2 dxdy
)1/2

,

and we will determine the extremal function g ∈ K∗ for which the minimum is attained.
The main result is the following.

Theorem 5.5.1. Consider f ∈ A with series expansion given by

f (z) = z +

∞∑
n=2

anz
n, z ∈ U, (5.5.3)

and assume that limn→∞
|an|
n3 = 0.

If
∑∞
n=2

(
n2 |an|

)
≤ 1 then dist (f,K∗) = 0 (attained for g = f ∈ K∗ ⊂ K), and if

∑∞
n=2

(
n2 |an|

)
>

1 we have

dist (f,K∗) =

(
π
∑
n∈Ic

|an|2
n+ 1

+ π

(∑
n∈I

(
n2 |an|

)
− 1
)2∑

n∈I (n4 (n+ 1))

)1/2

, (5.5.4)

where N and I = {i2, . . . , iN} are given by Theorem 5.3.5 with |an| instead of an.
Moreover, the minimum value of dist (f,K∗) is attained for the function g (z) = z+

∑∞
n=2 bnz

n ∈
K∗ ⊂ K, where

bn =


(
|an| −

∑
m∈I(m

2|am|)−1∑
m∈I(m4(m+1)) n

2 (n+ 1)

)
ei arg an , n ∈ I

0, n ∈ Ic
. (5.5.5)

Proof. The claim is obvious if
∑∞
n=2 n

2 |an| ≤ 1, so assume that
∑∞
n=2 n

2 |an| > 1.
Using Lemma 5.2.2 and the triangle inequality we obtain

dist (f,K∗) = inf
g∈K∗

(∫
U

|f (x+ iy)− g (x+ iy)|2 dxdy
)1/2

=

(
π inf

∞∑
n=2

|an − bn|2
n+ 1

)1/2

≥
(
π inf

∞∑
n=2

(|an| − |bn|)2

n+ 1

)1/2

=

(
π inf

∞∑
n=2

(|an| − xn)
2

n+ 1

)1/2

,

where the second and the third infimum are taken over all sequences (bn)n≥2 of complex numbers

satisfying
∑∞
n=2 n

2 |bn| ≤ 1, and the last infimum is taken over all non-negative sequences (xn)n≥1

of real numbers satisfying
∑∞
n=2 n

2xn ≤ 1.
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Applying Theorem 5.3.5 with |an| instead of an, we obtain that the last infimum above is
attained for the sequence (xn)n≥2 given by

xn =

{
|an| −

∑
m∈I(m

2|am|)−1∑
m∈I(m4(m+1)) n

2 (n+ 1) , n ∈ I
0, n ∈ Ic

.

Observing that the triangle inequality |an−bn| ≤ (|an| − |bn|)2
becomes an equality if arg an =

arg bn, it follows that dist (f,K∗) =
(
π inf

∑∞
n=1

|an−bn|2
n+1

)1/2

is attained for the sequence (bn)n≥2

of complex numbers with |bn| = xn and arg bn = arg an, that is for bn = xne
i arg an , n ≥ 2 (if

an = 0, from the proof of Theorem 5.3.5 we have n ∈ Ic, so xn = 0 and bn = xne
i arg an = 0 is

unambiguously defined).
Since bn = 0 for n ∈ Ic and |bn| = |xn| = xn ≥ 0 for n ∈ I, we obtain

∞∑
n=2

(
n2|bn|

)
=

∑
n∈I

[
n2

(
|an| −

∑
m∈I

(
m2 |am|

)
− 1∑

m∈I (m4 (m+ 1))
n2 (n+ 1)

)]

=
∑
n∈I

(
n2|an|

)
−
∑
m∈I

(
m2 |am|

)
− 1∑

m∈I (m4 (m+ 1))

∑
n∈I

(
n4 (n+ 1)

)
= 1,

so g (z) = z +
∑∞
n=2 bnz

n ∈ K∗, and(∫
U

|f (x+ iy)− g (x+ iy)|2 dxdy
)1/2

=

(
π

∞∑
n=2

|an − bn|2
n+ 1

)1/2

=

(
π

∞∑
n=2

(|an| − |bn|)2

n+ 1

)1/2

=

(
π
∑
n∈Ic

|an|2
n+ 1

+ π

(∑
n∈I n

2 |an| − 1
)2∑

n∈I n
4 (n+ 1)

)1/2

= dist (f,K∗)

as needed, concluding the proof.

As an application of the previous theorem, consider the following.

Example 5.5.2. Let fa : U → C be defined by fa (z) = z + az2, where a ∈ C is a constant.
If 4 |a| ≤ 1, then fa ∈ K∗ and dist (fa,K∗) = 0.
If 4 |a| > 1, from Theorem 5.5.1 we obtain P = {2}, i2 = 2, N = 2, and I = {i2} = {2}, so

dist (fa,K∗) = (4|a|−1)
√
π

4
√

3
is attained for the function ga (z) = z + 1

4e
i arg az2 ∈ K∗ ⊂ K.

As another example, consider the following.

Example 5.5.3. Let fa,b : U → C be defined by fa,b (z) = z + az2 + bz3, where a, b ∈ C are
constants.

If 4 |a|+ 9 |b| ≤ 1 then fa,b ∈ K∗ and dist (fa,b,K∗) = 0.
If 4 |a|+ 9 |b| > 1, applying Theorem 5.5.1 it follows that if 3 |a| ≥ |b|+ 3

4 we have N = 2 and
I = {i2} = {2}, if |b| ≥ 3 |a|+ 1

9 we have N = 2 and I = {i2} = {3}, and in the rest of the cases
we have N = 3 and I = {i2, i3} = {2, 3}. We obtain

dist (fa,b,K∗) =


√
π

4
√

3

(
(4|a| − 1)

2
+ 12|b|2

)1/2

, if 3 |a| ≥ |b|+ 3
4

√
π

18

(
108 |a|2 + (9 |b| − 1)

2
)1/2

, if |b| ≥ 3 |a|+ 1
9√

π

2
√

93
|4 |a|+ 9 |b| − 1| , otherwise

,
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attained for the function ga,b : U → C (belonging to K∗ ⊂ K), defined by

ga,b(z) =


z + 1

4e
i arg az2, if 3 |a| ≥ |b|+ 3

4
z + 1

9e
i arg bz3, if |b| ≥ 3 |a|+ 1

9

z + 27|a|−9|b|+1
31 ei arg az2 + −12|a|+4|b|+3

31 ei arg bz3, otherwise

, z ∈ U.

Figure 5.2 below shows a comparison of the images of the unit disk under the function fa,b and
under its best convex approximation function ga,b for some values of a and b in the three cases
above.
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Figure 5.2: The image of the unit disk under fa,b (top row) and ga,b (bottom row), for (a, b) =
(0.5, 0.25) (left), (a, b) = (0.1, 0.5) (center) and (a, b) = (0.25, 0.5) (right).

We conclude with the observation that for f ∈ A for which dist (f,K∗) is not too large, the
best convex approximation of f given by Theorem 5.5.1 is in general a good approximation of f
(see Figure 5.2), suitable for both practical problems and numerical implementation.



Chapter 6

Neighborhoods of univalent
functions

In this chapter we consider the problem of studying the perturbations of a given univalent function.
As a measure of the (non)univalency of a function we introduce the constant K (f,D) associated
with a function f : D ⊂ C → C analytic in a domain D, and we use it in order to show that
a small perturbation of a univalent function is again a univalent function. As a consequence, a
univalent function has a neighborhood consisting entirely of univalent functions.

As applications of the main result, we derive a corollary which is shown to be equivalent to the
classical Noshiro-Warschawski-Wolff univalence criterion, and we present an application in terms
of Taylor series.

6.1 Introduction

It is known that if f : D → C is a univalent map in a domain D, then f ′ 6= 0 in D. The non-
vanishing of the derivative of an analytic function (local univalence) is not in general sufficient to
insure the univalence of the function, as it can be seen by considering for example the exponential
function f (z) = ez defined in the upper half-plane.

The classical Noshiro-Warschawski-Wolff univalence criterion gives a partial converse of the
above result, as follows:

Theorem 6.1.1. If f : D → C is analytic in the convex domain D and

Re f ′ (z) > 0, z ∈ D,
then f is univalent in D.

In this chapter we introduce the constant K (f,D) associated with a function f : D → C
analytic in a domain D, which is a measure of the “degree of univalence” of f (see Proposition
6.2.1 and the remark following it).

Using the constant K (f,D) thus introduced, in Theorem 6.2.4 we obtain a sufficient condition
for univalence, which shows that a small perturbation of a univalent function is again univalent.
As a theoretical consequence of this result, it follows that a univalent function has a neighborhood
consisting entirely of univalent functions (see Remark 6.2.8).

The Theorem 6.2.4 is sharp, in the sense that we cannot replace the upper bound appearing
in the hypothesis of this theorem by a larger one, as shown in Example 6.2.9.

For the particular choice of a linear function in Theorem 6.2.4, we obtain a simple suffi-
cient condition for univalence (Corollary 6.2.6), which is shown to be equivalent to the Noshiro-
Warschawski-Wolff univalence criterion. The main result in Theorem 6.2.4 can be viewed therefore
as a generalization of this classical result, in which the linear function is replaced by a general
univalent function.
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The chapter concludes with another application of the main result in the case of analytic
functions defined in the unit disk. Thus, in Theorem 6.2.11 and the corollary following it, we
obtain sufficient conditions for the univalence of an analytic function defined in the unit disk in
terms of the coefficients of its Taylor series representation, which might be of independent interest.

6.2 Main results

We denote by Ur = {z ∈ C : |z| < r} the open disk of radius r > 0 centered at the origin and we
let U = U1. The class of functions f : D → C analytic in the domain D will be denoted by A (D).

Given a function f : D → C analytic in the domain D we introduce the constant K (f,D)
defined as follows:

K (f,D) = inf
a,b∈D
a6=b

∣∣∣∣f (a)− f (b)

a− b

∣∣∣∣ . (6.2.1)

It is immediate from the definition that if the function f is not univalent inD thenK (f,D) = 0.
The constant K (f,D) characterizes the univalence of the function f in D in the following sense:

Proposition 6.2.1. Let f : D → C be an analytic function in the domain D. If K (f,D) > 0
then f is univalent in D.

Conversely, if f is univalent in D and Ω ⊂ Ω ⊂ D is a bounded domain strictly contained in
D, then K (f,Ω) > 0.

Proof. See [70].

Remark 6.2.2. Note that the converse in the above proposition may not hold for Ω = D without
the additional hypothesis, as shown in the example below.

In order to have the equivalence

f univalent in D ⇐⇒ K (f,D) > 0,

one needs additional hypotheses, which guarantee the existence of a continuous extension of f, f ′

to D, such that f is injective on D and f ′ 6= 0 in D.
For example, in the case D = U , if the boundary of the image domain f (U) is a Jordan curve

of class C1,α (0 < α < 1), by Carathéodory theorem the function f has a continuous injective ex-
tension to D, and also, by Kelogg-Warschawski theorem, the function f ′ has continuous extension
to D, with f ′ 6= 0 in D (see for example [76], p. 24 and pp. 48 – 49). Following the proof above
with Ω replaced by U , we obtain K (f, U) > 0, and therefore in this case we have

f univalent in U ⇐⇒ K (f, U) > 0.

Example 6.2.3. Let D = U − [0, 1] be the unit disk with a slit along the positive real axis. Since
D is simply connected, there exists a conformal map f : U → D between the unit disk U and D
(see Figure 6.1 below). The map f has a continuous extension to U , and without loss of generality
we may assume that there exists θ ∈ (0, 2π) such that f

(
eiθ
)

= f
(
e−iθ

)
∈ (0, 1).

The function f is univalent in U , but K (f, U) = 0 since

K (f, U) ≤ lim
a→eiθ
b→e−iθ

∣∣∣∣f (a)− f (b)

a− b

∣∣∣∣ =

∣∣∣∣∣f
(
eiθ
)
− f

(
e−iθ

)
eiθ − e−iθ

∣∣∣∣∣ = 0.

The main result is contained in the following:

Theorem 6.2.4. Let f : D → C be a non-constant analytic function in the convex domain D. If
there exists an analytic function g : D → C univalent in D such that

|f ′ (z)− g′ (z)| ≤ K (g,D) , z ∈ D, (6.2.2)

then the function f is also univalent in D.
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D = U − [0, 1]
f

U

f(eiθ) = f(e−iθ)

e−iθ

eiθ

Figure 6.1: An example of a univalent function f : U → C for which K (f, U) = 0.

Proof. Assuming that f is not univalent in D, there exist distinct points z1,2 ∈ D such that
f (z1) = f (z2). Integrating the derivative of f − g along the line segment [z1, z2] ⊂ D and using
the hypothesis (6.2.2) we obtain

|g (z2)− g (z1)| = |(f (z2)− g (z2))− (f (z1)− g (z1))|

=

∣∣∣∣∣
∫

[z1,z2]

f ′ (z)− g′ (z) dz
∣∣∣∣∣

≤
∫

[z1,z2]

|f ′ (z)− g′ (z)| |dz|

≤
∫

[z1,z2]

K (g,D) |dz|

= K (g,D) |z1 − z2| .

Since the points z1,2 are assumed to be distinct, from the definition of the constant K (g,D)
we obtain equivalently∣∣∣∣g (z2)− g (z1)

z2 − z1

∣∣∣∣ ≤ K (g,D) = inf
a,b∈D
a6=b

∣∣∣∣g (a)− g (b)

a− b

∣∣∣∣ ≤ ∣∣∣∣g (z2)− g (z1)

z2 − z1

∣∣∣∣ , (6.2.3)

and therefore

K (g,D) = inf
a,b∈D
a 6=b

∣∣∣∣g (a)− g (b)

a− b

∣∣∣∣ =

∣∣∣∣g (z2)− g (z1)

z2 − z1

∣∣∣∣ . (6.2.4)

Consider now the auxiliary function G : D − {z2} → C defined by

G (z) =
g (z)− g (z2)

z − z2
, z ∈ D − {z2} , (6.2.5)

and note that since g is analytic in D, G is also analytic in D − {z2} and moreover the limit

lim
z→z2

G (z) = lim
z→z2

g (z)− g (z2)

z − z2
= g′ (z2) (6.2.6)

exists and it is finite. The function G can be therefore extended by continuity to an analytic
function in D, denoted also by G.

Since

inf
z∈D
|G (z)| = inf

z∈D
z 6=z2

|G (z)| = inf
z∈D
z 6=z2

∣∣∣∣g (z)− g (z2)

z − z2

∣∣∣∣ ≥ inf
a,b∈D
a6=b

∣∣∣∣g (a)− g (b)

a− b

∣∣∣∣ = K (g,D) ,
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combining with (6.2.4) we obtain that

inf
z∈D
|G (z)| ≥ K (g,D) =

∣∣∣∣g (z2)− g (z1)

z2 − z1

∣∣∣∣ = |G (z1)| ≥ inf
z∈D
|G (z)| ,

which shows that minimum value of the modulus of G in D is attained at z1:

inf
z∈D
|G (z)| = |G (z1)| .

However, since the function g is univalent in D, from the definition of G it follows that G (z) 6= 0
for any z ∈ D − {z2}, and also G (z2) = g′ (z2) 6= 0, and therefore the function G does not vanish
in D. Applying the maximum modulus principle to the analytic function 1/G it follows that |G|
must be constant in D, and therefore G is constant in D.

It follows that
g (z) = g (z2) + c (z − z2) , z ∈ D, (6.2.7)

for a certain constant c ∈ C (from the definition of G it can be seen that the constant c can be
written in the form c = g′ (z2) eiθ, for some θ ∈ R).

The relation (6.2.7) shows that g is a linear function, and therefore the constant K (g,D)
becomes in this case

K (g,D) = inf
a,b∈D
a6=b

∣∣∣∣g (a)− g (b)

a− b

∣∣∣∣
= inf

a,b∈D
a6=b

∣∣∣∣ (g (z2) + c (a− z2))− (g (z2) + c (b− z2))

a− b

∣∣∣∣
= inf

a,b∈D
a6=b

∣∣∣∣c (a− b)
a− b

∣∣∣∣
= |c| .

The hypothesis (6.2.2) of the theorem can be written therefore as follows

|f ′ (z)− c| ≤ |c| , z ∈ D,

which shows that either f is linear in D (and thus univalent, since f is assumed to be non-constant
in D), or the following strict inequality holds

|f ′ (z)− c| < |c| , z ∈ D.

Repeating the proof above with g (z) ≡ cz we obtain

|cz2 − cz1| = |(f (z2)− cz2)− (f (z1)− cz1)|

=

∣∣∣∣∣
∫

[z1,z2]

f ′ (z)− cdz
∣∣∣∣∣

≤
∫

[z1,z2]

|f ′ (z)− c| |dz|

< |c| |z2 − z1| ,

a contradiction.
The contradiction obtained shows that the function f is univalent in D, concluding the proof

of the theorem.

In the particular case D = U , from the previous thereom we obtain immediately the following
sufficient criterion for univalence in the unit disk:
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Theorem 6.2.5. Let f : U → C be a non-constant analytic function in the unit disk. If there
exists an analytic function g : U → C univalent in U such that

|f ′ (z)− g′ (z)| ≤ K (g, U) , z ∈ U, (6.2.8)

then the function f is also univalent in U .

As a corollary of Theorem 6.2.4 we obtain the following:

Corollary 6.2.6. If f : D → C is non-constant and analytic in the convex domain D and there
exists c > 0 such that

|f ′ (z)− c| ≤ c, z ∈ D, (6.2.9)

then f is univalent in D.

Proof. Follows from Theorem 6.2.4 by considering the univalent function g : D → C defined by
g (z) = cz, for which we have

K (g,D) = inf
a,b∈D
a 6=b

∣∣∣∣g (a)− g (b)

a− b

∣∣∣∣ = inf
a,b∈D
a6=b

∣∣∣∣ca− cba− b

∣∣∣∣ = c.

Remark 6.2.7. Let us note that the previous corollary can also be obtained as a direct consequence
of the classical Noshiro-Warschawski-Wolff univalence criterion, since the hypothesis (6.2.9) im-
plies the hypothesis

Re f ′ (z) > 0, z ∈ D. (6.2.10)

of this theorem (the fact that the above inequality is a strict inequality follows from the maximum
principle, the function f being assumed to be non-constant in D).

Conversely, the Noshiro-Warschawski-Wolff univalence criterion follows from the previous
corollary. To see this, without loss of generality we may assume 0 ∈ D, and in order to prove the
univalence of f , it suffices to prove the univalence of f in Dr = rD ⊂ D, for an arbitrarily fixed
r ∈ (0, 1).

If the condition (6.2.10) holds, there exists c = c(r) > 0 such that

f ′ (Dr) ⊂ {w ∈ C : |w − c| < c} ,

or equivalent
|f ′ (z)− c| < c, z ∈ Dr.

Applying Corollary 6.2.6 to the restriction of of f to Dr, it follows that the function f is
univalent in Dr. Since r ∈ (0, 1) was arbitrarily fixed, it follows that f is univalent in U , concluding
the proof of the claim.

The remark above shows that Corollary 6.2.6 and the Noshiro-Warschawski-Wolff univalence
criterion are equivalent, and therefore Theorem 6.2.4 is a generalization of it. The Noshiro-
Warschawski-Wolff univalence criterion can be viewed therefore as a particular case of Theorem
6.2.4, corresponding to the choice of a linear function g.

Remark 6.2.8. Fixing an arbitrarily univalent function g : U → C for which K (g, U) 6= 0 (see
Remark 6.2.2 above), Theorem 6.2.5 shows that a whole neighborhood

V (g) = {f ∈ A : ||f ′ − g′|| ≤ K (g, U)}

of g consists entirely of univalent functions in U (||·|| denotes here the supremum norm in the
space A0 = {f ∈ A : f (0) = 0} of normalized analytic functions). Loosely stated, Theorem 6.2.5
shows that an univalent function has a neighborhood consisting entirely of univalent functions.
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The hypotheses of Theorem 6.2.4 and Theorem 6.2.5 are sharp, in the sense that we cannot
replace the right side of the inequalities (6.2.2), respectively (6.2.8), by larger constants, as can
be seen from the following example.

Example 6.2.9. Consider the function f : U → C defined by f (z) = z+az2, z ∈ U , where a ∈ C
is a parameter.

Using Theorem 6.2.5 above with g (z) ≡ z, for which K (g, U) = 1, we obtain that the function
f is univalent in U if

|2az| ≤ 1, z ∈ U,

that is if |2a| ≤ 1.

This result is sharp, since the function f is univalent iff |a| ≤ 1
2 , as it can be checked by direct

computation.

The univalence of the function f in the previous example can also be obtained by using the
Noshiro-Warschawski-Wolff univalence criterion (for |a| ≤ 1/2 we have Re f ′ (z) > 0 for any
z ∈ U). The next example shows that we may still use Theorem 6.2.5 also in situations when the
Noshiro-Warschawski-Wolff univalence criterion cannot be applied:

Example 6.2.10. Consider the linear map g : U → C defined by g (z) = z
1−z . The function g is

univalent in U and we have

K (g, U) = inf
a,b∈U
a6=b

∣∣∣∣g (a)− g (b)

a− b

∣∣∣∣ = inf
a,b∈U
a 6=b

∣∣∣∣∣ a
1−a − b

1−b
a− b

∣∣∣∣∣ = inf
a,b∈U
a 6=b

1

|1− a| |1− b| =
1

4
.

The function f : U → C defined by f (z) = z2

8 + z
1−z is analytic in U and satisfies

|f ′ (z)− g′ (z)| =
∣∣∣z
4

∣∣∣ < 1

4
= K (g, U) , z ∈ U,

and therefore by Theorem 6.2.5 it follows that f is univalent in the unit disk.

The univalence of f does not follow however by the Noshiro-Warschawski-Wolff univalence
criterion since Re f ′ (z) takes (arbitrarily small) negative values for z ∈ U sufficiently close to 1.

As another application of Theorem 6.2.5, in the next result we show that by perturbing the
coefficients of the Taylor series of an univalent function, the resulting function is also univalent.
More precisely, we have the following:

Theorem 6.2.11. Let g : U → C be an analytic univalent function with Taylor series represen-
tation

g (z) =

∞∑
n=0

bnz
n, z ∈ U . (6.2.11)

If the coefficients a0, a1, . . . ∈ C satisfy the inequality

∞∑
n=1

n |an − bn| < K (g, U) (6.2.12)

then the function f : U → C defined by

f (z) =

∞∑
n=0

anz
n, z ∈ U, (6.2.13)

is analytic and univalent in U .



6.2. MAIN RESULTS. 113

Proof. Since g is univalent in U , the radius of convergence of the Taylor series (6.2.11) is at least
1, hence

lim sup n
√
|bn| ≤ 1,

and therefore given ε > 0 we have |bn| ≤ 1 + ε for all n sufficiently large.
Using the hypothesis (6.2.12) we obtain

lim sup n
√
|an| ≤ lim sup n

√
|bn|+ |an − bn| ≤ lim sup

n

√
1 + ε+

K (g, U)

n
= 1,

and therefore the radius of convergence of the series in (6.2.13) is at least 1, thus the function f
is well defined by (6.2.13) and it is analytic in U .

Since

|f ′ (z)− g′ (z)| =

∣∣∣∣∣
∞∑
n=0

nanz
n−1 −

∞∑
n=0

nbnz
n−1

∣∣∣∣∣
≤

∞∑
n=1

n |an − bn| |z|n−1

≤
∞∑
n=1

n |an − bn|

< K (g, U) ,

for any z ∈ U , by Theorem 6.2.5 follows that f is univalent in U , concluding the proof.

Using a comparison with the generalized harmonic series, from the above we can obtain the
following:

Corollary 6.2.12. Let g : U → C be an analytic univalent function with Taylor series represen-
tation

g (z) =

∞∑
n=0

bnz
n, z ∈ U . (6.2.14)

If the coefficients a0, a1, . . . ∈ C satisfy the inequality

|an − bn| < K (g, U)
ζ (p)

np+1
, n = 1, 2, . . . , (6.2.15)

for some p > 1 (ζ denotes the Riemann zeta function), then the function f : U → C defined by

f (z) =

∞∑
n=0

anz
n, z ∈ U, (6.2.16)

is analytic and univalent in U .

Example 6.2.13. Considering the function g (z) = z
1−z =

∑∞
n=1 z

n defined in Example 6.2.10,
which is analytic and univalent in U and has K (g, U) = 1, from the previous theorem it follows
that the function f : U → C defined by f (z) =

∑∞
n=0 anz

n is analytic and univalent in U if the
coefficients an satisfy the inequality

∞∑
n=1

n |an − 1| < 1.

Using for example the fact that ζ (2) = π2

6 ≈ 1.645, from the previous corollary it follows that
the function f is also analytic and univalent in U if the coefficients an satisfy the inequality

|an − 1| ≤ π2

6n3
≈ 1.645

n3
, n = 1, 2, . . .
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Chapter 7
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ability of the author to advise Ph.D. students in the future. Mrs. Gageonea in now teaching at
University of Connecticut at Storrs (USA), and Ms. Nicolaie completed a post-doctoral program
at the Institute of Statistics, Biostatistics and Actuarial Sciences of the Catholic University of
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” PDEs and Stochastic Processes”, Transilvania University of Braşov, 10 November 2012.
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4. Co-organizer (with S. Owa, Kinki University, Japan), of the conference International Sym-
posium Complex Function Theory and Applications, Transilvania University of Braşov, 1 -
5 September 2006.

5. Co-organizer of several workshops in the area of tochastic processes (IMAR - Bucureşti,
Transilvania University of Braşov, University of Piteşti, etc)

The author published 38 scientific research papers, of which 14 in the last 5 years (of these, 6
papers were published in ISI journals). In recognition for his research contributions in the area
of Brownian motions, the author received in 2013 the “Dimitrie Pompeiu” prize of the Romanian
Academy.

Other activities and professional memberships:

• member of the American Mathematical Society and of the Romanian Mathematical Society;

• reviewer for several mathematics journals (Annals of Mathematics, Proceedings of the Lon-
don Mathematical Society, Electronic Communications in Probability, Potential Analysis,
Mathematical Reports, etc);

• CNCSIS reviewer for research grants in mathematics;

• visiting professor (Department of Mathematics, François Rabelais University of Tours, France,
14 - 28 May, 2006, Institute of Mathematics, Budapest University of Technology and Eco-
nomics, Budapest, March 1 - May 31, 2012), etc;

• organizer of several international conferences;

• invited speaker at several prestigious conferences.

7.2 Open problems and future plans

We begin by presenting some open problems related to the research presented in the previous
chapters.

As indicated in Chapter 1 (Section 1.5), a very interesting problem which drew the attention
of many researchers in both Analysis and Probability is the Hot Spots conjecture, which is still
open in its full generality.

Although it is widely believed that the conjecture is true, and there are recent advances in this
research area (see for example the Polymath Project web page or the recent papers [59], [42], [44],
[77], or [18], to mention just a few), a proof of it is still missing. This suggests that new tools for
approaching the conjecture are needed. To attack the problem, perhaps a first thing to do is to try
to solve the conjecture in the case of acute triangles (the conjecture is known to be true for obtuse
triangles, see [7]), and understand better the role played by the acute/obtuse angles in the proof.
From the point of view of couplings of Brownian motions, the reason for which the conjecture can
be proved just for obtuse triangles (and not for acute ones) is that the mirror coupling preserves
the left/right starting position of the Brownian motions, and it does not do so in the case of
acute triangles. An idea that might lead to a resolution of this problem is that instead of using
the mirror/synchronous couplings, to construct a new fixed-distance coupling (similar to the one
constructed in Chapter 3 in the case of complete manifolds, but for the case of reflecting Brownian
motion in polygonal domains, viewed as a two-sided flat manifold), and to use its properties in
order to derive the validity of the conjecture.

In Section 2.3 we presented a resolution of the Laugesen-Morpurgo conjecture for unit ball in
Rn (n ≥ 1), and from this result we derived in particular the validity of the Hot Spots conjecture
in the case of the unit ball (see [66]). One challenging and interesting open problem would be
to try to formulate and then to prove a corresponding Laugesen-Morpurgo conjecture for general
convex domains. That is, for a given smooth convex domain D ⊂ Rn to find a family of curves
along which the diagonal pD(t, x, x) of the Neumann heat kernel for D increases for all times t > 0.

http://michaelnielsen.org/polymath1/
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In turn, as in [66], this would also give a resolution of the Hot Spots conjecture. Note that our
results in Section 2.3 identify (in the case of the unit ball) the family of curves along which the
diagonal of the Neumann heat kernel is monotone with the diameters of the ball.

In Section 1.6 we studied the Brownian motion with killing and reflection in a domain D
(Neumann conditions on a part of the boundary and Dirichlet conditions on the remaining one),
and we found sufficient condition under which the lifetime of Brownian motion is monotone on a
certain family of curves. We showed that if the domain is convex, the two parts of the boundary
meet at acute angles, and one of them is a line segment of an arc of a circle, then the lifetime of
Brownian motion is monotone along hyperbolic geodesics in the domain. One interesting problem
would be to extend this result beyond the conditions we found in [10]. In turn, this and additional
information on the nodal line of the second Neumann eigenfunction of the Laplacian could give a
resolution of the Hot Spots conjecture.

In Chapter 4 we showed that the Maximum modulus principle for analytic functions can be
extended to certain classes of non-analytic functions. Interesting open problems here are the
parallel extension of the known theory of analytic functions to these classes of functions (i.e.
Schwarz lemma, univalence criteria, coefficient inequalities, aso), and the problem of finding more
general classes of functions and operators for which the maximum principle holds.

In Chapter 5 we introduced a method for obtaining the best univalent approximation of an-
alytic functions in certain subclasses of analytic functions. The method used the fact that the
corresponding classes of functions can be described by certain inequalities on the coefficients of
the Taylor series development of the functions. A possible line of research for extending these
results is to find conditions on the coefficients of the Taylor series development which guarantee
the univalence of the function, and then to use the same ideas in order to find the best univalent
approximation of an analytic function in these newly defined classes of functions.

In Chapter 6 we introduced the constant K (f,D) which characterizes the univalency of the
analytic function f : D → C, and using it we derived sufficient conditions for univalence. The
method seems to be a powerful one, since a corollary of our main result (Corollary 6.2.6) was shown
to be equivalent to the classical Noshiro-Warschawski-Wolff univalence criterion. One interesting
line of research would be continue the study of this constant, and to try to derive new sufficient
conditions for univalence involving it.

Regarding the future plans for professional growth and development, we have in mind the
following activities:

• leading the research activity of Ph. D. students at the host institution, thus contributing to
the awareness, growth, and development of Mathematics;

• organizing a strong research seminar at the host institution, for the benefit of both senior
and young researchers, where they can find a stimulating research environment and a place
for disseminating their most recent research findings;

• obtaining a full professorship in Mathematics and contributing in this position, as a member
of the Romanian Mathematical School, to its international recognition and prestige through
active research and publications in the field of Mathematics.
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[45] Kiyosi Itô and Henry P. McKean, Jr. Diffusion processes and their sample paths. Springer-
Verlag, Berlin-New York, 1974. Second printing, corrected, Die Grundlehren der mathema-
tischen Wissenschaften, Band 125.

[46] Ioan M. James. The topology of Stiefel manifolds. Cambridge University Press, Cambridge-
New York-Melbourne, 1976. London Mathematical Society Lecture Note Series, No. 24.

[47] Paul A. Jensen and Jonathan F. Bard. Operations Research Models and Methods. Wiley,
2003.

[48] David Jerison and Nikolai Nadirashvili. The “hot spots” conjecture for domains with two
axes of symmetry. J. Amer. Math. Soc., 13(4):741–772, 2000.

[49] Bernhard Kawohl. Rearrangements and convexity of level sets in PDE, volume 1150 of Lecture
Notes in Mathematics. Springer-Verlag, Berlin, 1985.

[50] Wilfrid S. Kendall. Nonnegative Ricci curvature and the Brownian coupling property. Stochas-
tics, 19(1-2):111–129, 1986.

[51] Wilfrid S. Kendall. Coupled Brownian motions and partial domain monotonicity for the
Neumann heat kernel. J. Funct. Anal., 86(2):226–236, 1989.

[52] Wilfrid S. Kendall. Brownian couplings, convexity, and shy-ness. Electron. Commun. Probab.,
14:66–80, 2009.

[53] Richard Snyder Laugesen and Carlo Morpurgo. Extremals for eigenvalues of Laplacians under
conformal mapping. J. Funct. Anal., 155(1):64–108, 1998.



122 BIBLIOGRAPHY.

[54] Yong Lin, Linyuan Lu, and Shing-Tung Yau. Ricci curvature of graphs. Tohoku Math. J. (2),
63(4):605–627, 2011.

[55] Torgny Lindvall and Leonard C. G. Rogers. Coupling of multidimensional diffusions by
reflection. Ann. Probab., 14(3):860–872, 1986.

[56] John E. Littlewood. Littlewood’s miscellany. Cambridge University Press, Cambridge, 1986.
Edited and with a foreword by Béla Bollobás.
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