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Abstract

In this thesis we present our recent works on the structure of semisimple Hopf algebras and
their representation theory. The subjects we analyze are grouped in three main thematic
parts which are detailed below.

The first one, contained in Chapters 1 and 2 is concerned with the study of normal Hopf
subalgebras of semisimple Hopf algebras. The second one is devoted to the study of rep-
resentations of semisimple Hopf algebras. It contains Chapters 3 and 4. The third part is
the study of the group actions on fusion categories an it contains Chapters 5 and 6.

We resume now the main subjects that we address in the three parts of this thesis.

Part I. Normal Hopf subalgebras and kernels of representations

In Chapter 1 the notion of a Hopf kernel of a representation of a semisimple Hopf algebra is
introduced in this part. Similar properties to the kernel of a group representation are proved
in some special cases. In particular, every normal Hopf subalgebra of a semisimple Hopf
algebra H is the kernel of a representation of H. The maximal normal Hopf subalgebras
of H are also described. A well known result of Brauer in group representation theory is
generalized in the context of representations of a semisimple Hopf algebra. It will be shown
that this results holds only for those characters which are central in H∗.

In Chapter 2 we propose a different notion of the kernel of a representation of a semisimple
Hopf algebra. We define left and right kernels of representations of Hopf algebras. In
the case of group algebras, left and right kernels coincide and they are the usual kernels of
representations. In the general case we show that these kernels coincide with the categorical
left and right Hopf kernels of morphisms of Hopf algebras defined in [2]. Brauer’s theorem
for kernels over group algebras is generalized to any characters of semisimple Hopf algebras.
Recently it was proven in [10] that Hopf subalgebras are normal if and only if they are depth
two subalgebras. In this chapter we extend this result to coideal subalgebras. Moreover,
we show that in this situation, depth two and normality in the sense defined by Rieffel
in [105] also coincide. Note that normal subalgebras as defined by Rieffel were recently
revised in [25, Section 4]. In the same chapter it is also shown any coideal subalgebra of a
semisimple Hopf algebra is also semisimple.

Chapter 1 of this part is based on the paper [15] and Chapter 2 is based on [17].
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Part II. Representation theory of semisimple Hopf algebras. The second part of
this thesis contains two chapters. The first chapter is devoted to the study of double cosets
for semisimple Hopf algebras. The second chapter studies Clifford theory for semisimple
Hopf algebras.

In Chapter 3 we construct double cosets relative to two Hopf subalgebras of a given semisim-
ple Hopf algebra. The results in this Chapter are contained in [14] and generalizes the
results from [95]. Using Frobenius-Perron theory for nonnegative Hopf algebras the results
from [95] are generalized and proved in a simpler manner in this chapter. Applying a dual
version of these double cosets we obtain new results concerning character theory of normal
Hopf subalgebras. Applying these double cosets for the dual Hopf algebra we study the
restriction functor from a semisimple Hopf algebra to a normal Hopf subalgebra. We define
a notion of conjugate module similar to the one for modules over normal subgroups of a
group. Some results from group theory hold in this more general setting. In particular we
show that the induced module restricted back to the original normal Hopf subalgebra has
as irreducible constituents the constituents of all the conjugate modules.

In Chapter 4 we study an analogue of initial’s Clifford approach for groups. We consider
an extension of semisimple Hopf algebras A/B where B is a normal Hopf subalgebra of A
and let M be an irreducible B-module. The conjugate B-modules of M are defined as in
the Chapter 3 and the stabilizer Z of M is a Hopf subalgebra of A containing B. We say
that the Clifford correspondence holds for M if induction from Z to A provides a bijection
between the sets of isomorphism classes of irreducible Z (respectively A)-modules that
contain M as a B-submodule.

It is shown that the Clifford correspondence holds for M if and only if Z is a stabilizer
in the sense proposed in [120]. A necessary and sufficient condition for this to happen is
given in Proposition 4.2. Our approach uses the character theory for Hopf algebras and
normal Hopf subalgebras. If the extension

k −−−→ B
i−−−→ A

π−−−→ H −−−→ k

is cocentral then we prove that this condition is alawys satisfied (see Corollary 6.5.1).

Part III. Fusion categories: Group actions on fusion categories

In Chapter 5 we determine the fusion rules of the equivariantization of a fusion category
C under the action of a finite group G in terms of the fusion rules of C and some group-
theoretical data associated to the group action. As an application we obtain a formula
for the fusion rules in an equivariantization of a pointed fusion category in terms of only
group-theoretical data. This entails a description of the fusion rules in any braided group-
theoretical fusion category. Chapter 5 is based on a work in collaboration with S. Natale.
It mainly contains the results from [26].



In Chapter 6 a general Mackey type decomposition for representations of semisimple Hopf
algebras is investigated. We show that such a decomposition occurs in the case that the
module is induced from an arbitrary Hopf subalgebra and it is restricted back to a group
subalgebra. Some other examples when such a decomposition occurs are also constructed.
They arise from gradings on the category of corepresentations of a semisimple Hopf algebra
and provide new examples of Green functors in the literature. The results of this chapter
are included in [22].
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Rezumat

In această teză vom prezenta câteva din rezultatele noastre recente privind structura al-
gebrelor Hopf semisimple şi teoria lor de reprezentare. Subiectele pe care le vom analiza
sunt cuprinse ı̂n trei părti care sunt detaliate mai jos.

Prima parte, conţinută ı̂n Capitolele 1 şi 2, tratează subalgebrele Hopf normale ale unei
algebre Hopf semisimple. Cea de a doua parte este destinată studiului reprezentă rilor
algebrelor Hopf semisimple şi este conţiunta ı̂n Capitolele 3 şi 4. A treia parte conţine
Capitolele 5 şi 6 şi studiaza acţiunea grupurilor finite supra categoriilor de fuziune.

Mai jos vom face un rezumat al subiectelor adresate ı̂n cele trei părţi ale tezei.

Partea I -a. Subalgebre Hopf normale şi nuclee de reprezentări.

În Capitolul 1 este introdusă noţiunea de nucleu Hopf al unei reprezentări a unei algebre
Hopf semisimple. În cazuri speciale sunt demonstrate proprietaţi similare cu nucleul unei
reprezentări a unui grup finit. În particular, este arătat că orice subalgebră Hopf normală a
unei algebre Hopf semisimple H este nucleul unei reprezentări a lui H. Subalgebrele Hopf
normale maximale ale lui H sunt de asemenea descrise. Un rezultat bine cunoscut ı̂n teoria
reprezentărilor grupurilor este Teorema Brauer privind caracterele fidele. Acest rezultat
este generalizat ı̂n contextul algebrelor Hopf semisimple. Se va arăta că acest rezultat are
loc doar pentru acele caractere care sunt centrale ı̂n algebra duală H∗.

În Capitolul 2 este propusă o noţiune diferită de nucleu pentru o reprezentare a unei
algebre Hopf semisimple. Vom defini nuclee la stânga şi la dreapta pentru reprezentări de
algebre Hopf arbitrare, nu neapărat semisimple. În cazul algebrelor grupale, nucleele la
stânga şi la dreapta coincid şi sunt egale cu nucleele obişnuite de reprezentări. În cazul
general, vom arăta că aceste nuclee coincid cu nucleele de morfisme ı̂n categoria de algebre
Hopf (la stânga şi la dreapta), aşa cum au fost definite ı̂n [2]. Teorema Brauer mai sus
menţionată, pentru caractere fidele de algebre grupale finite, este generalizată ı̂n acest caz
la orice caracter al unei algebre Hopf semisimple. Recent, a fost demonstrat ı̂n [10] că
subalgebrele Hopf sunt normale, dacă şi numai dacă acestea sunt subalgebre de adancime
doi. În acest capitol vom extinde acest rezultat la subalgebrele coideal ale unei algebre Hopf
arbitrare. Mai mult decât atât, vom arăta că ı̂n această situaţie, adâncimea 2 şi noţiunea
de normalitate, ı̂n sensul definit de Rieffel ı̂n [105], de asemenea coincid. De remarcat
este faptul că pentru subalgebrele Hopf normale, aşa cum sunt definite de Rieffel ı̂n [105],
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acest rezultat a fost recent demonstrat ı̂n [25, Sectiunea 4]. De asemenea, ı̂n acest capitol
este arătat că orice subalgebră coideal al unei algebre Hopf semisimple este de asemenea
semisimplă.

Capitolul 1 este parte a articolului [15]. Capitolul 2 este continut in articolul [17].

Partea II-a. Reprezentări de algebre Hopf semisimple.

Cea de a doua parte a acestei teze conţine două capitole. Primul capitol este destinat
studiului coseturilor duble pentru algebrele Hopf semisimple. Cel de al doilea prezintă o
teorie de tip Clifford pentru reprezentări de algebre Hopf semisimple

În Capitolul 3 construim spaţiul coseturilor duble relativ la două subalgebre Hopf ale unei
algebre Hopf semisimple. Rezultatele acestui capitol sunt conţinute ı̂n [14] şi generalizează
rezultate din [95]. Folosind teoria Frobenius-Perron pentru matrici cu intrări nenegative
rezultatele din [95] sunt generalizate şi demonstrate intr-o manieră mai simplă ı̂n acest
capitol. Aplicând o versiune duală a acestor rezultate obţinem noi informaţii cu privire
la teoria caracterelor subalgebrelor Hopf normale. Mai exact, aplicând aceste coseturi
duble pentru algebra Hopf duală studiem functorul inducţie şi restricţie de la o algebră
Hopf semisimplă la o subalgebră Hopf normală. Definim de asemenea o noţiune de modul
conjugat similar celei din teoria grupurilor. Anumite rezultate din teoria reprezentărilor
de subgrupuri normale au loc de asemenea ı̂n acest context mai general. In particular
este arătat că modulul indus şi restricţionat ı̂napoi la subalgebra Hopf normală are ca şi
constituenţi simpli exact constitutenţii tuturor modulelor conjugate.

In Capitlolul 4 studiem un analog al teoriei Clifford pentru grupuri finite urmând abordarea
initială a acestei teorii definită de Clifford. Astfel s-au adus contribuţii noi la inţelegerea
reprezentărilor algebrelor Hopf semisimple. Considerăm extensii A/B de algebre Hopf
semisimple unde B este o subalgebră normală a lui A şi M un modul ireductibil al lui
B. Modulele conjugate ale lui M sunt definite ı̂n Capitolul 3 şi stabilizatorul lui M este
o subalgebră Hopf a lui A care conţine B. Spunem că teoria Clifford funcţionează pentru
M dacă functorul inducţie produce o bijecţie intre clasele de izomorfism ale Z-modulelor
(respectiv A-modulelor) simple care contin pe M ca B-modul.

Este arătat că teoria Clifford funcţionează pentru M dacă şi numai dacă Z este stabilizator
ı̂n sensul definit ı̂n [120]. O condiţie necesară şi suficientă ca aceasta să se ı̂ntâmple este
dată ı̂n Propoziţia 4.2. Abordarea noastră foloseşte teoria caracterelor pentru algebre Hopf
semisimple şi subalgebre Hopf normale. Dacă extinderea

k −−−→ B
i−−−→ A

π−−−→ H −−−→ k

este cocentrală demonstrăm că această condiţie este automat satisfacută (vezi Corolarul
6.5.1).



Partea III-a. Grupuri finite: Acţiuni de grupuri finite pe categorii de fuziune

În Capitolul 5 determinăm regulile de fuziune ale unei categorii echivariantizate CG sub
acţiunea unui grup finit G pe o categorie de fuziune C. Acestea sunt date ı̂n funcţie de reg-
ulile de fuziune ale lui C şi anumite date grup teoretice asociate acţiunii lui G. Ca aplicaţie
obţinem o formulă pentru regulile de fuziune ale unei echivariantizări a unei categorii de
fuziune punctate numai ı̂n funcţie de date grup-teoretice. Aceasta ı̂n schimb permite de-
scrierea regulilor de fuziune pentru orice categorie braided grup-teoreticală. Capitolul 5 se
bazează pe articolul [26], scris ı̂n colaborare cu S. Natale.

În Capitolul 6 o descompunere generală de tip Mackey pentru reprezentările algebrelor
Hopf semisimple este investigată. Arătăm că o astfel de descompunere are loc ı̂n cazul
când modulul este indus de la o subalgebră Hopf arbitrară şi restricţionat la o subalgebră
grupală. Alte exemple când o astfel de descompunere are loc sunt de asemenea construite.
Ele sunt date de graduări pe categoria de coreprezentări a algebrei Hopf semisimple şi
produc noi exemple de functori Green. Rezultatele acestui capitol sunt conţinute ı̂n [22].

Noiembrie 2013





Contents

I Normal Hopf subalgebras and kernels of representations 1

1 Normal Hopf Subalgebras of Semisimple Hopf Algebras 3

1.1 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1.1 The subcoalgebra associated to a comodule . . . . . . . . . . . . . . 4

1.2 Kernels of representations and their properties . . . . . . . . . . . . . . . . 6

1.3 Normal Hopf subalgebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.4 Central characters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Left and right kernels of representations 17

2.1 Left and right kernels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.1.1 Definition of left kernels . . . . . . . . . . . . . . . . . . . . . . . . 18

2.1.2 Definition of right kernel . . . . . . . . . . . . . . . . . . . . . . . . 20

2.1.3 Description as categorical kernels . . . . . . . . . . . . . . . . . . . 21

2.1.4 Core of a coideal subalgebra . . . . . . . . . . . . . . . . . . . . . . 24

2.1.5 On two endofunctors on A−mod and respectively S −mod . . . . 24

2.2 Depth two coideal subalgebras . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.2.1 Depth two coideal subalgebras . . . . . . . . . . . . . . . . . . . . . 26

2.2.2 Rieffel’s normality for coideal subalgebras . . . . . . . . . . . . . . 27

2.3 The semisimple case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.3.1 Rieffel’s equivalence relation for a coideal subalgebra . . . . . . . . 28

2.3.2 Tensor powers of a character . . . . . . . . . . . . . . . . . . . . . . 29

2.3.3 The integral element of S . . . . . . . . . . . . . . . . . . . . . . . 29

II Representation theory of semisimple Hopf algebras 31

3 Coset decomposition for semisimple Hopf algebras 33

3.1 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2 Double coset formula for cosemisimple Hopf algebras . . . . . . . . . . . . 34

3.3 More on coset decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.4 A dual relation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.4.1 Formulae for restriction and induction . . . . . . . . . . . . . . . . 40

ix



3.5 Restriction of modules to normal Hopf subalgebras . . . . . . . . . . . . . 41

4 Clifford theory 45

4.1 Normal Hopf subalgebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.2 Conjugate modules and stabilizers . . . . . . . . . . . . . . . . . . . . . . . 47

4.2.1 On the stabilizer . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.2.2 Definition of the Clifford correspondence . . . . . . . . . . . . . . . 49

4.2.3 Clifford theory for normal subrings . . . . . . . . . . . . . . . . . . 49

4.2.4 Clifford correspondence . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.3 Extensions of Hopf algebras . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.3.1 Results on Hopf Galois extensions . . . . . . . . . . . . . . . . . . . 51

4.3.2 Extensions by kF . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.3.3 Dimension of the orbit . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.3.4 Coset decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.4 A Counterexample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

III Fusion categories: Group actions on fusion categories 55

5 Fusion rules of equivariantization 57

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.2 Simple objects of an equivariantization . . . . . . . . . . . . . . . . . . . . 59

5.2.1 Equivariantization under a finite group action . . . . . . . . . . . . 59

5.2.2 Frobenius-Perron dimensions of simple objects of CG . . . . . . . . 60

5.2.3 Equivariantization and projective group representations . . . . . . . 61

5.2.4 The relative adjoint . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.2.5 Parameterization of simple objects . . . . . . . . . . . . . . . . . . 65

5.2.6 On the choice of isomorphisms in a fixed orbit . . . . . . . . . . . . 67

5.3 Fusion rules for CG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.3.1 Orbit formula for the tensor product of two simple objects . . . . . 69

5.3.2 Projective representation on multiplicity spaces. . . . . . . . . . . . 71

5.3.3 Fusion rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.3.4 The dual of a simple object . . . . . . . . . . . . . . . . . . . . . . 75

5.3.5 CG as a Rep G-bimodule category . . . . . . . . . . . . . . . . . . . 76

5.4 Application to equivariantizations of pointed fusion categories . . . . . . . 78

5.4.1 Group actions on C(Γ, ω) and equivariantizations . . . . . . . . . . 78

5.4.2 Fusion rules for C(Γ, ω)G . . . . . . . . . . . . . . . . . . . . . . . . 78

5.4.3 Braided group-theoretical fusion categories . . . . . . . . . . . . . . 79

5.5 Appendix of Chapter 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80



xi

6 Green functors arising from semisimple Hopf algebras 83
6.1 Main results of the Chapter . . . . . . . . . . . . . . . . . . . . . . . . . . 83
6.2 Double coset decomposition for Hopf subalgebras of semisimple Hopf algebras 86

6.2.1 Principal eigenspace for < C > . . . . . . . . . . . . . . . . . . . . 87
6.2.2 Rank of cosets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
6.2.3 Frobenius-Perron eigenvectors for cosets . . . . . . . . . . . . . . . 88

6.3 The conjugate Hopf subalgebra CK . . . . . . . . . . . . . . . . . . . . . . 89
6.3.1 Some properties of the conjugate Hopf subalgebra . . . . . . . . . . 90

6.4 Mackey type decompositions for representations of Hopf algebras . . . . . . 90
6.4.1 Proof of Theorem 6.1.2. . . . . . . . . . . . . . . . . . . . . . . . . 91
6.4.2 Mackey pairs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
6.4.3 Proof of Theorem 6.1.1 . . . . . . . . . . . . . . . . . . . . . . . . . 92

6.5 New examples of Green functors . . . . . . . . . . . . . . . . . . . . . . . . 92
6.5.1 Gradings of fusion categories . . . . . . . . . . . . . . . . . . . . . . 93
6.5.2 Gradings on Rep(H∗) and cocentral extensions . . . . . . . . . . . . 93
6.5.3 New examples of Mackey pairs of Hopf subalgebras . . . . . . . . . 94
6.5.4 Examples of Mackey pairs arising from group gradings on the cate-

gory Rep(H∗). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
6.5.5 Mackey and Green functors . . . . . . . . . . . . . . . . . . . . . . 96
6.5.6 New examples of Green functors . . . . . . . . . . . . . . . . . . . . 97

6.6 On normal Hopf subalgebras of semisimple Hopf algebras . . . . . . . . . . 98
6.6.1 Irreducibility criterion for an induced module . . . . . . . . . . . . 98
6.6.2 A tensor product formula for induced representations . . . . . . . . 99

7 Future plans and research directions 101
7.1 Classification of semisimple Hopf algebras . . . . . . . . . . . . . . . . . . 101

7.1.1 Hecke algebras arising from semisimple Hopf subalgebras . . . . . . 102
7.1.2 Kernels of representations of semisimple Hopf algebras . . . . . . . 102
7.1.3 Character theory for semisimple Hopf algebras . . . . . . . . . . . . 103
7.1.4 Nilpotent and solvable semisimple Hopf algebras . . . . . . . . . . . 103

7.2 Classification of fusion categories . . . . . . . . . . . . . . . . . . . . . . . 104
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of representations
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Chapter 1

Normal Hopf Subalgebras of
Semisimple Hopf Algebras

This part is devoted to the study of the notion of kernel of a representation of a semisimple
Hopf algebra. Similar properties to the kernel of a group representation are proved. The
results of the first chapter of this part are contained in author’s paper [15].

Let G be a finite group and X : G → Endk(M) be a finite dimensional complex rep-
resentation of G which affords the character χ. The kernel of the representation M is
defined as ker χ = {g ∈ G| χ(g) = χ(1)} and it is the set of all group elements g ∈ G
which act as identity on M . (For example, see [63].) Every normal subgroup N of G is
the kernel of a character, namely the character of the regular representation of G/N . If
Z = {g ∈ G| |χ(g)| = χ(1)} then Z is called the center of the character χ and it is the
set of group elements of G which act as a unit scalar on M . The properties of Z and ker χ
are described in [Lemma 2.27, [63]] which shows that Z/ker χ is a cyclic subgroup of the
center of G/ker χ.

If M is a representation of a finite dimensional semisimple Hopf algebra A and χ ∈ C(A) is
its associated character then ker χ ⊂ A is defined as the set of all irreducible A∗-characters
d ∈ A such that d acts as the scalar ε(d) on M . We prove that ker χ = {d ∈ Irr(A∗)| χ(d) =
ε(d)χ(1)}. Similarly, the set of all irreducible A∗-characters d ∈ A that act as a scalar of
absolute value ε(d) on M is characterized as zχ = {d ∈ Irr(A∗)| |χ(d)| = ε(d)χ(1)}.
The organization of this chapter is as follows. Section 1.2 presents the definition and the
main properties of the kernel of a character χ and its center zχ . It is shown that these
sets of characters are closed under multiplication and duality operation “ ∗ ”. Thus they
generate Hopf subalgebras of A denoted by Aχ and Zχ , respectively. We say that a Hopf
subalgebra K of A is the kernel of a representation if K = Aχ for a certain character χ of
A.

Section 1.3 studies the relationship between normal Hopf subalgebras and the Hopf algebras
generated by kernels. It is shown that any normal Hopf subalgebra is the kernel of a
character which is central in A∗.

3



4CHAPTER 1. NORMAL HOPF SUBALGEBRAS OF SEMISIMPLE HOPF ALGEBRAS

In Section 1.4 the converse of the above statement is proven. More precisely, it is shown
that for a representation M of H affording a character χ which is central in A∗ the Hopf
subalgebra Aχ is normal in A. Therefore this implies that a Hopf subalgebra is normal if
and only if it is the kernel of a character which is central in the dual Hopf algebra. Under the
same assumption on χ it is shown that the irreducible representations of A//Aχ := A/AA+

χ

are precisely the irreducible representations of A which are constituents of some tensor
power of M . Using a basis description given in [124] for the algebra generated by the
characters which are central in A∗ we describe a finite collection of normal Hopf subalgebras
of A which are the maximal normal Hopf subalgebras of A (under inclusion). We show
that any other normal Hopf subalgebra is an intersection of some of these Hopf algebras.
Two other results that hold for group representation are presented in this section.

1.1 Notations

For a vector space V we denote by |V | the dimension dimkV . The comultiplication, counit
and antipode of a Hopf algebra are denoted by ∆, ε and S, respectively. We use Sweedler’s
notation ∆(x) = x1 ⊗ x2 for all x ∈ A with the sum symbol dropped. All the other
notations are those used in [82]. All considered modules are left modules.

Throughout this section A will denote a semisimple Hopf algebra over the algebraically
closed field k of characteristic zero. It follows that A is also cosemisimple [73]. Recall that
a Hopf algebra is called cosemisimple if it is cosemisimple as a coalgebra. Moreover, a
coalgebra is called cosemisimple if the category of finite dimensional right (left) comodules
is completely reducible.

The set of irreducible characters of A is denoted by Irr(A). The Grothendieck group G(A)
of the category of finite dimensional left A-modules is a ring under the tensor product of
modules. Then the character ring C(A) := G(A) ⊗Z k is a semisimple subalgebra of A∗

[125, 64] and it has a basis given by the characters of the irreducible A-modules. Also
C(A) = Cocom(A∗), the space of cocommutative elements of A∗. By duality, the character
ring of A∗ is a semisimple subalgebra of A and under this identification it follows that
C(A∗) = Cocom(A). If M is a finite dimensional A-module with character χ then M∗ is
also an A-module with character χ∗ = χ ◦S. This induces an involution ∗ : C(A)→ C(A)
on C(A).

1.1.1 The subcoalgebra associated to a comodule

Let W be any right A-comodule. Since A is finite dimensional it follows that W is a left
A∗-module via the module structure f.w = f(w1)w0, where ρ(w) = w0 ⊗ w1 is the given
right A-comodule structure of W . Then one can associate to W the coefficient subcoalgebra
denoted by CW [72]. Recall that CW is the minimal subcoalgebra C of A with the property
that ρ(W ) ⊂ W ⊗ C. Moreover, it can be shown that CW = (AnnA∗(W ))⊥ and CW is



1.1. NOTATIONS 5

called the subcoalgebra of A associated to the right A-comodule W . If W is a simple
right A-comodule (or equivalently W is an irreducible left A∗-module) then the associated
subcoalgebra CW is a co-matrix coalgebra. More precisely, if dimW = q then dimCW = q2

and it has a a k-linear basis given by xij with 1 ≤ i, j ≤ q . The coalgebra structure of CW
is then given by ∆(xij) =

∑
l xil ⊗ xlj for all 1 ≤ i, j ≤ q. Then W ∼= C < x1i| 1 ≤ i ≤ q >

as right A-comodules where ρ(x1i) = ∆(x1i) =
∑q

l=1 x1l ⊗ xli for all 1 ≤ i ≤ q. Moreover
the irreducible character d ∈ C(A∗) of W is given by formula d =

∑q
i=1 xii. Then ε(d) = q

and the simple subcoalgebra C
W

is also denoted by Cd. As already mentioned, it is easy to
check that W is an irreducible A∗-module if and only if CW is a simple subcoalgebra of A.
This establishes a canonical bijection between the set Irr(A∗) of simple right A∗-comodules
and the set of simple subcoalgebras of A.

Recall also that if M and N are two right A-comodules then M ⊗ N is also a comodule
with ρ(m⊗ n) = m0 ⊗ n0 ⊗m1n1. The associated coalgebra of M ⊗N is is CD where C
and D are the associated subcoalgebras of M and N respectively (see [95]).

For any two subcoalgebras C and D of A we denote by CD the subcoalgebra of A generated
as a k-vector space by all elements of the type cd with c ∈ C and d ∈ D.

Remark 1.1.1. For a simple subcoalgebra C ⊂ A we denote by MC the simple A-comodule
associated to C. Following [96], if C and D are simple subcoalgebras of a semisimple Hopf
algebra A then the simple comodules entering in the decomposition of MC ⊗ MD are in
bijection with the set of all simple subcoalgebras of the product subcoalgebra CD of A.
Moreover, this bijection is given by W 7→ CW for any simple subcomodule W of MC⊗MD.

Subsets closed under multiplication and duality

Recall from [96] that a subset X ⊂ Irr(A∗) is closed under multiplication if for every two
elements c, d ∈ X in the decomposition of the product cd =

∑
e∈Irr(A∗) m

e
c,de one has e ∈ X

whenever me 6= 0. Also a subset X ⊂ Irr(A∗) is closed under “ ∗ ” if x∗ ∈ X for all x ∈ X.

Following [96] any subset X ⊂ Irr(A∗) closed under multiplication generates a subbial-
gebra A(X) of A defined by

A(X) := ⊕x∈XCx.

Moreover if the set X is also closed under ” ∗ ” then A(X) is a Hopf subalgebra of A.

Remark 1.1.2. Since in our case A is finite dimensional, it is well known that any sub-
bialgebra of A is also a Hopf subalgebra. Therefore in this case any set X of irreducible
characters closed under product is also closed under ”∗”.

Integrals in Hopf algebras

We use the notation ΛH ∈ H for the idempotent integral of H (ε(ΛH) = 1) and tH ∈ H∗
for the idempotent integral of H∗ (tH(1) = 1). From [72, Proposition 4.1] it follows that
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the regular character of H is given by the formula

|H|t
H

=
∑

χ∈Irr(H)

χ(1)χ. (1.1.1)

The dual formula is
|H|Λ

H
=

∑
d∈Irr(H∗)

ε(d)d. (1.1.2)

One also has t
H

(Λ
H

) = 1
|H| , see [73].

Central primitive idempotents in Hopf algebras

Let µ be any irreducible character of H and ξµ ∈ Z(H) be the central primitive idempotent
associated to it. Then ν(ξµ) = δµ, νµ(1) for any other irreducible character ν of H and
{ξµ}µ∈Irr(H)

is the complete set of central orthogonal idempotents of H. Dually, since H∗ is
semisimple to any irreducible character d ∈ C(H∗) one has an associated central primitive
idempotent ξd ∈ Z(H∗). As before one can view d ∈ H∗∗ = H and the above relation
becomes ξd(d

′) = δd, d′ε(d) for any other irreducible character d′ ∈ C(H∗). Also {ξ
d
}
d∈Irr(H∗)

is the complete set of central orthogonal idempotents of H∗.

Normal Hopf subalgebras

If K is a Hopf subalgebra of H then K is a semisimple and cosemisimple Hopf algebra
[82]. A Hopf subalgebra K of H is called normal if h1xS(h2) ∈ K and S(h1)xh2 ∈ K
for all x ∈ K and h ∈ H. If H is a semisimple Hopf algebra as above then S2 = Id (see
[73]) and K is normal in H if and only if h1xS(h2) ∈ K for all x ∈ K and h ∈ H. If
K+ = Ker(ε) ∩ K then K is normal Hopf subalgebra of A if and only if AK+ = K+A.
In this situation A//K := A/AK+ is a quotient Hopf algebra of A via the canonical map
π : A→ A//K (see [82, Lemma 3.4.2]). In our settings K is normal in A if and only if Λ

K

is central in A (see [78, Lemma 1], on page 1932).

Remark 1.1.1. Suppose that K is a normal Hopf subalgebra of A and let L = A//K be
the quotient Hopf algebra of A via π : A → L. Then π∗ : L∗ → A∗ is an injective Hopf
algebra map and π∗(C(L)) ⊆ C(A). It follows that π∗(L∗) is normal in A∗ and it is easy to
see that (A∗//L∗)∗ ∼= K. The representations of L = A//K are those representations M
of A such that each x ∈ K acts as ε(x)IdM on M . If χ is the character of M as L-module
then π∗(χ) ∈ C(A) is the character of M as A-module and with the notations from the
next section A

π∗(χ)
⊃ K.

1.2 Kernels of representations and their properties

Throughout this chapterH will denote a semisimple Hopf algebra. Recall that the exponent
of H is the smallest positive number m > 0 such that h[m] = ε(h)1 for all h ∈ H. The
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generalized power h[m] is defined by h[m] =
∑

(h) h1h2...hm. The exponent of a finite
dimensional semisimple Hopf algebra is always finite and divides the third power of the
dimension of H, [40]. For the rest of this chapter we work over the field C of complex
numbers.

Proposition 1.1. Let H be a finite dimensional semisimple Hopf algebra and M be a
representation of H affording the character χ ∈ C(H). If W is an irreducible representation
of H∗ affording the character d ∈ C(H∗) then the following hold:

1. |χ(d)| ≤ χ(1)ε(d)

2. Equality holds if and only if d acts as αε(d)Id
M

on M for a root of unity α ∈ C.

Proof. 1. W is a right H−comodule and one can define a map T which is similar to the
one defined in the [69, Paragraph 3.1]:

T : M ⊗W −→ M ⊗W
m⊗ w 7−→

∑
w1m⊗ w0.

It can be checked that Tp(m⊗w) =
∑
w

[p]
1 m⊗w0 for all p ≥ 0. Thus, if m = exp(H)

then Tm = Id
M⊗W . Therefore T is a semisimple operator and all its eigenvalues

are roots of unity. It follows that tr(T) is the sum of all these eigenvalues and in
consequence |tr(T)| ≤ dimC(M ⊗W ) = χ(1)ε(d). It is easy to see that tr(T) = χ(d).
Indeed using the above remark one can suppose that W = C < x1i | 1 ≤ i ≤ q >
where C

W
= C < xij| 1 ≤ i, j ≤ q > is the coalgebra associated to W . Then the

formula for T becomes T(m ⊗ x1i) =
∑ε(d)

j=1 xjim ⊗ x1j which shows that tr(T) =∑ε(d)
i=1 χ(xii) = χ(d).

2. Equality holds if and only if T = αId
M⊗W for some root of unity α. The above

expression for T implies that in this case xijm = δi,jαm for any 1 ≤ i, j ≤ ε(d).
Therefore dm = αε(d)m for any m ∈M . The converse is immediate.

Let M be a representation of H which affords the character χ. Define ker χ as the set
of all irreducible characters d ∈ Irr(H∗) which act as the scalar ε(d) on M . The previous
proposition implies that ker χ = {d ∈ Irr(H∗)| χ(d) = ε(d)χ(1)}. Similarly let zχ be the
the set of all irreducible characters d ∈ Irr(H∗) which act as a scalar αε(d) on M , where α
is a root of unity. Then from the same proposition it follows zχ = {d ∈ Irr(H∗)| |χ(d)| =
ε(d)χ(1)}. Clearly ker χ ⊂ zχ .

Remark 1.2.1. 1. The proof of Proposition 1.1 implies that for a representation M
of H affording a character χ ∈ C(H) and an irreducible character d ∈ Irr(H∗) the
following assertions are equivalent:
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1) d ∈ ker χ. 2) χ(d) = ε(d)χ(1).
3) χ(xij) = δijχ(1) for all i, j. 4) dm = ε(d)m for all m ∈M .
5) xijm = δijm for all i, j and m ∈M .

2. Similarly one has the following equivalences:

1)d ∈ zχ . 2) |χ(d)| = ε(d)χ(1).
3) There is a root of unity α ∈ C such that χ(xij) = αδijχ(1) for all i, j.
4) There is a root of unity α ∈ C such that dm = αε(d)m for all m ∈M .
5) There is a root of unity α ∈ C such that xijm = αδijm for all i, j and m ∈M .

3. Let Irr(H) = {χ0, · · · , χs} be the set of all irreducible H-characters and M be a
representation of H which affords the character χ. If χ =

∑s
i=0 miχi where mi ∈ Z≥0

then ker χ = ∩mi 6=0 ker χi ⊂ zχ ⊂ ∩mi 6=0 zχi .

A subset X ⊂ Irr(H∗) is closed under multiplication if for every χ, µ ∈ X in the
decomposition of χµ =

∑
γ∈Irr(H∗) mγγ one has γ ∈ X if mγ 6= 0. A subset X ⊂ Irr(H∗) is

closed under “ ∗ ” if x∗ ∈ X for all x ∈ X.

Proposition 1.2. Let H be a finite dimensional semisimple Hopf algebra and M a repre-
sentation of H affording the character χ ∈ C(H). Then the subsets ker χ and zχ of Irr(H∗)
are closed under multiplication and “ ∗ ”.

Proof. Proposition 1.1 implies that χ(d) = ε(d)χ(1) if and only if d acts as ε(d)Id
M

on M .
Therefore if d ∈ ker χ then d∗ = S(d) ∈ ker χ since χ(d∗) = χ(d) [95]. Let d, d′ ∈ ker χ.
Then dd′ acts as ε(dd′)IdM on M since d acts as ε(d)IdM and d′ acts as ε(d′)IdM on
M . Write dd′ =

∑q
i=1 midi where di are irreducible characters of H∗ and mi 6= 0 for all

1 ≤ i ≤ q. Then χ(dd′) =
∑q

i=1 miχ(di) and

χ(1)ε(dd′) = |χ(dd′)| ≤
q∑
i=1

mi|χ(di)| ≤ χ(1)

q∑
i=1

miε(di) = χ(1)ε(dd′).

It follows by Proposition 1.1 that χ(di) = χ(1)ε(di) and therefore di ∈ ker χ for all
1 ≤ i ≤ q. The proof for zχ is similar.

Remark 1.2.2. 1. For later use let us notice that ker χ ⊂ ker χn for all n ≥ 0. Indeed
if d ∈ Irr(H∗) is an element of ker χ then one has a simple subcoalgebra Cd associated
to d and d =

∑ε(d)
i=1 xii. Item 1 of Remark 1.2.1 implies that χ(xij) = χ(1)δij. Thus

χn(d) =

ε(d)∑
i=1

ε(d)∑
i1,··· ,in−1=1

χ(xii1)χ(xi1i2) · · ·χ(xin−1i) = χ(1)nε(d).

Similarly it can be shown that zχ ⊂ z
χn

for all n ≥ 0.
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2. If X ⊂ Irr(H∗) is closed under multiplication and “ ∗ ” then it generates a Hopf
subalgebra of H denoted by H

X
[92]. One has H

X
= ⊕d∈XCd. Using this, since

the sets ker χ and zχ are closed under multiplication and “ ∗ ” they generate Hopf
subalgebras of H denoted by Hχ and Zχ, respectively.

3. The proof of Proposition 1.1 implies that χ ↓
Hχ

= χ(1)ε
Hχ

where χ ↓
Hχ

is the restric-
tion of χ to the subalgebra Hχ and ε

Hχ
is the character of the trivial module over the

Hopf algebra Hχ.

4. Suppose that M and N are two H-modules affording the characters χ and µ. If M
is a submodule of N then it can be easily seen that ker µ ⊂ ker χ and consequently
Hµ ⊂ Hχ.

1.3 Normal Hopf subalgebras

We say that a Hopf subalgebra K of H is the kernel of a character if K = Hχ for some
character χ ∈ C(H). The following is the main result of this section.

Theorem 1.3.1. Let H be a finite dimensional semisimple Hopf algebra. Any normal
Hopf subalgebra K of H is the kernel of a character which is central in H∗. More precisely,
with the above notations one has:

K = H|L|π∗(t
L

)
.

Proof. Let L = H//K. Then L is a semisimple and cosemisimple Hopf algebra [82]. The
above remark shows that the representations of L are exactly those representations M
of H such that Hχ

M
⊃ K where χ

M
is the H-character of M . Let π : H → L be the

natural projection and π∗ : L∗ → H∗ be its dual map. Then π∗ is an injective Hopf algebra
map and L∗ can be identified with a Hopf subalgebra of H∗. Therefore, if t

L
∈ L∗ is the

idempotent integral of L then |L|t
L

is the regular character of L and H|L|π∗(t
L

) ⊃ K. Since
π∗(L∗) is a normal Hopf subalgebra of H∗ it follows that π∗(t

L
) is a central element of H∗.

We have to show that H|L|π∗(t
L

)
= K and the proof will be complete.

With the above notations, since π∗(t
L
) is a central idempotent of H∗ one can write it

as a sum of central primitive orthogonal idempotents:

π∗(t
L
) =

∑
d∈X

ξd

where X is a subset of Irr(H∗). It follows that for any d ∈ Irr(H∗) one has that π∗(t
L
)(d) =

ε(d) if d ∈ X and π∗(t
L
)(d) = 0 otherwise which shows that X = ker |L|π∗(t

L
). Since

H|L|π∗(t
L

)
⊃ K one has π∗(t

L
)(d) = ε(d) for all d ∈ Irr(K∗) and thus Irr(K∗) ⊂ X. Let
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Λ
H
∈ H and Λ

L
∈ L be the idempotent integrals of H and L. Since π is a surjective Hopf

algebra map one has π(ΛH) = Λ
L
. Then

π∗(t
L
)(Λ

H
) = t

L
(π(Λ

H
)) = t

L
(Λ

L
) =

1

|L|
.

On the other hand, since Λ
H

= 1
|H|
∑

d∈Irr(H∗) ε(d)d it follows that

π∗(t
L
)(Λ

H
) =

1

|H|
∑
d∈X

ε(d)2

which implies that
∑

d∈X ε(d)2 = |H|
|L| = |K|. Since

∑
d∈Irr(K∗) ε(d)2 = |K| and Irr(K∗) ⊂ X

we conclude that Irr(K∗) = X and H|L|π∗(t
L

)
= K.

Let C be the trivial K-module via the augmentation map ε
K

. Denote by ε ↑HK := ε
K
↑HK

the character of the induced module H ⊗K C.

Corollary 1.3.2. Let K be a Hopf subalgebra of H. Then K is normal in H if and only
if H

ε↑H
K

= K.

Proof. Suppose K is a normal Hopf subalgebra of H. With the notations from the above
theorem, since ε ↑HK= |L|π∗(t

L
) and H|L|π∗(t

L
)

= K, it follows H
ε↑H
K

= K. Conversely,

suppose that H
ε↑H
K

= K. Then using the third item of Remark 6.1.3 it follows ε↑HK↓HK =

|H|
|K|εK . Using Frobenius reciprocity this implies that for any irreducible character χ of H

we have that the value of m(χ ↓K , εK) = m(χ, ε ↑HK) is either χ(1) if χ is a constituent of
ε ↑HK or 0 otherwise. But if Λ

K
is the idempotent integral of K then m(χ ↓K , εK ) = χ(Λ

K
).

Thus χ(Λ
K

) is either zero or χ(1) for any irreducible character χ of H. This implies that
Λ
K

is a central idempotent of H and therefore K is a normal Hopf subalgebra of H by [78]
(see also [93, Proposition 1.7.2]).

1.4 Central characters

Let H be finite dimensional semisimple Hopf algebra over C. Consider the central subal-
gebra of H defined by Ẑ(H) = Z(H)

⋂
C(H∗). It is the algebra of H∗-characters which

are central in H. Let Ẑ(H∗) := Z(H∗)
⋂
C(H) be the dual concept, the subalgebra of

H-characters which are central in H∗.

Let φ : H∗ → H given by f 7→ f ⇁ Λ
H

where f ⇁ Λ
H

= f(S(Λ
H 1

))Λ
H 2

. Then φ is
an isomorphism of vector spaces [82].

Remark 1.4.1. With the notations from the previous section, it can be checked that φ(ξd) =
ε(d)
|H| d

∗ and φ−1(ξχ) = χ(1)χ for all d ∈ Irr(H∗) and χ ∈ Irr(H) (see for example [82]).
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We use the following description of Ẑ(H∗) and Ẑ(H) which is given in [124]. Since
φ(C(H)) = Z(H) and φ(Z(H∗)) = C(H∗) it follows that the restriction

φ|
Ẑ(H∗)

: Ẑ(H∗)→ Ẑ(H)

is an isomorphism of vector spaces.
Since Ẑ(H∗) is a commutative semisimple algebra it has a vector space basis given by

its primitive idempotents. Since Ẑ(H∗) is a subalgebra of Z(H∗) each primitive idempotent
of Ẑ(H∗) is a sum of primitive idempotents of Z(H∗). But the primitive idempotents of
Z(H∗) are of the form ξd where d ∈ Irr(H∗). Thus, there is a partition {Yj}j∈J of the set
of irreducible characters of H∗ such that the elements (ej)j∈J given by

ej =
∑
d∈Yj

ξd

form a basis for Ẑ(H∗). Note that ej(d) = ε(d) if d ∈ Yj and ej(d) = 0 if d /∈ Yj. Since
φ(Ẑ(H∗)) = Ẑ(H) it follows that êj := |H|φ(ej) is a k-linear basis for Ẑ(H). Using the first
formula from Remark 1.4.1 one has

êj =
∑
d∈Yj

ε(d)d∗.

Remark 1.4.2. 1. By duality, the set of irreducible characters of H can be partitioned
into a finite collection of subsets {Xi}i∈I such that the elements (fi)i∈I given by

fi =
∑
χ∈Xi

χ(1)χ

form a C-basis for Ẑ(H∗). Then the elements φ(fi) =
∑

χ∈Xi ξχ are the central

orthogonal primitive idempotents of Ẑ(H) and therefore they form a linear basis for
this space. Clearly |I| = |J |.

2. Let M be a representation of a semisimple Hopf algebra H. Consider the set X of all
simple representations of H which are a direct summand in some tensor power M⊗ n.
Then X is closed under tensor product and “ ∗ ” and it generates a Hopf algebra L

which is a quotient of H (see [103] or [104]). Note that if X ⊂ Irr(H) is closed
under multiplication and “ ∗ ” then using the dual version of item 2 of Remark 6.1.3
it follows that X generates a Hopf subalgebra H∗X of H∗. It follows that L = (H∗X )∗

(see also [97, Proposition 3.11]). If M has character χ ∈ H∗ then the character
π∗(t

L
) ∈ C(H) can be expressed as a polynomial in χ with rational coefficients (see

[95, Corollary 19]).

Next proposition represents a generalization of Brauer’s theorem from group represen-
tations to Hopf algebras representations with central characters.
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Proposition 1.3. Suppose χ is a character of H which is central in H∗. Then Hχ is
a normal Hopf subalgebra of H and the simple representations of H//Hχ are the simple
constituents of all the powers of χ.

Proof. Since χ ∈ Ẑ(H∗) with the above notations one has χ =
∑

j∈J αjej, where αj ∈ C.
It follows that χ(d) = α

j
ε(d) if d ∈ Yj. Therefore if d ∈ Yj then d ∈ ker χ if and only if

α
j

= χ(1). This implies ker χ is the union of all the sets Yj such that α
j

= χ(1). Using
formula (1.1.2) the integral |Hχ|ΛHχ can be written as

|Hχ|ΛHχ =
∑

d∈ker χ

ε(d)d =
∑

{j | αj=χ(1)}

∑
d∈Yj

ε(d)d

and therefore

|Hχ|ΛHχ = |Hχ |S(ΛHχ ) =
∑

{j | αj=χ(1)}

∑
d∈Yj

ε(d)d∗ =
∑

{j | αj=χ(1)}

êj.

Then ΛHχ is central in H since each êj is central in H. As above this implies that Hχ is
normal in H.

Let V be an H-module with character χ and I =
⋂
m≥0 Ann(V ⊗ m). If L is the quotient

Hopf algebra of H generated by the constituents of all the powers of χ then from [104, 103]
one has that L = H/I. Note that I ⊃ HH+

|L|π∗(t
L

)
. Using item 2 of Remark 1.4.2 one has

that π∗(t
L
) is a polynomial in χ with rational coefficients. Since χ is central in H∗ it follows

that π∗(t
L
) is a central element of H∗ and thus L∗ is a normal Hopf subalgebra of H∗. Using

(1.1.1) (for L∗ ↪→ H∗) it follows that H//(H∗//L∗)∗ = L. Then if K = (H∗//L∗)∗ one has
H//K = L. Theorem 4.2.2 implies that H|L|π∗(t

L
)

= K thus H//H|L|π∗(t
L

)
= H//K = L.

But L = H/I and since I ⊃ HH+
|L|π∗(t

L
)

it follows that HH+
|L|π∗(t

L
)

= I. It is easy to see

that HH+
χ
⊂ I since the elements of Hχ act as ε on each tensor power of V (see item 1 of

Remark 6.1.3).
On the other hand |L|t

L
is the regular character of L. Then ker χ ⊃ ker |L|π∗(t

L
) since

χ is a constituent of |L|π∗(t
L
). Thus I ⊃ HH+

χ ⊃ HH+
|L|π∗(t

L
)
. Since HH+

|L|π∗(t
L

)
= I it

follows HH+
χ = I and thus H//Hχ = L.

Theorem 4.2.2 and the previous proposition imply the following corollary:

Corollary 1.4.1. A Hopf subalgebra of H is normal if and only if it is the kernel of a
character χ which is central in H∗.

Let Hi := H
fi

, see Remark 1.4.2 for the definition of fi. From Proposition 1.3 it follows
that Hi is a normal Hopf subalgebra of H. If K is any other normal Hopf subalgebra of H
then Theorem 4.2.2 implies that K = Hχ for some central character χ. Following [124] one
has χ =

∑
i∈I′mifi for some rational positive numbers mi and some subset I ′ ⊂ I. Then

ker χ = ∩i∈I′ker fi which implies that Hχ =
⋂
i∈I′ Hi. Thus any normal Hopf subalgebra

is an intersection of some of these Hopf algebras Hi.



1.4. CENTRAL CHARACTERS 13

Remark 1.4.3. If K and L are normal Hopf subalgebras of H then it is easy to see that
KL = LK is a normal Hopf subalgebra of H that contains both K and L.

Let L be any Hopf subalgebra ofH. We define core(L) to be the biggest Hopf subalgebra
of L which is normal in H. Based on Remark 1.4.3 clearly core(L) exists and it is unique. If
A is a Hopf subalgebra of H then there is an isomorphism of H-modules H/HA+ ∼= H⊗

A
C

given by h̄ 7→ h ⊗
A

1. Thus if A ⊂ B ⊂ H are Hopf subalgebras of H then ε ↑H
B

is a
constituent of ε ↑H

A
since there is a surjective H-module map H/HA+ → H/HB+.

Remark 1.4.4. Suppose χ an µ are two characters of two representations M and N of H
such that µ is central in H∗ and χ is an irreducible character which is a constituent of µ.
Using item 1 of Remark 1.4.2 it follows that χ ∈ Xi0 for some i0 ∈ I. Since µ is central
in H∗ it follows that µ is a linear combination with nonnegative rational coefficients of the
elements fi. Since χ is a constituent of µ it follows that fi0 is also a constituent of an
integral multiple of µ. Thus ker µ ⊂ ker fi0.

Theorem 1.4.2. If χ is an irreducible character of H such that χ ∈ Xi for some i ∈ I
then core(Hχ) = H

fi
.

Proof. Let K = core(Hχ). Since χ is a constituent of fi by item 4 of Remark 6.1.3 one has
that H

fi
⊂ Hχ . The normality of H

fi
implies that H

fi
⊂ K. By the proof of Corollary

2.5 µ := ε ↑H
K

is the H-character of H//K = H/K+H and is central in H∗. Since
χ ↓Hχ= χ(1)εHχ and K ⊂ Hχ it follows that χ ↓

K
= χ(1)ε

K
. By Frobenius reciprocity

one has that χ is a constituent of the character µ. Using Remark 1.4.4 it follows that
ker fi ⊃ ker µ and H

fi
⊃ Hµ = K.

Remark 1.4.5. Item 3 of the Remark 6.1.3 implies that χ is a constituent of ε ↑HHχ and
therefore Hχ ⊇ H

ε↑H
Hχ

. Let H1 = Hχ and

Hs+1 = Hε↑H
Hs

for s ≥ 1.

The above argument implies that Hs ⊇ Hs+1. Since H is finite dimensional we conclude
that there is l ≥ 1 such that Hl = Hl+1 = · · · = Hl+n = · · · . Corollary 1.3.2 gives that Hl

is a normal Hopf subalgebra of H. We claim that core(Hχ) = Hl. Indeed, for any normal
Hopf subalgebra K of H with K ⊂ Hχ ⊂ H we have that ε ↑H

Hχ
is a constituent of ε ↑H

K
and

then using Corollary 1.3.2 it follows that K = H
ε↑H
K

⊆ H
ε↑H
Hχ

= H2. Inductively, it can be

shown that K ⊂ Hs for any s ≥ 1, which implies that core(Hχ) = Hl.

Proposition 1.4. Let H be a semisimple Hopf algebra. Then⋂
χ∈Irr(H)

zχ = Ḡ(H)

where Ḡ(H) is the set of all central grouplike elements of H.
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Proof. Any central grouplike element g of H acts as a scalar on each simple H-module.
Since gexp(H) = 1 it follows that this scalar is a root of unity and then

Ḡ(H) ⊂
⋂

χ∈Irr(H)

zχ .

Let d ∈
⋂
χ∈Irr(H)

zχ . If C
d

is the simple subcoalgebra of H associated to d (see subsection

1.1.1) then d =
∑ε(d)

i=1 xii. Item 2 of Remark 1.2.1 implies that xij acts as δi,jαχIdMχ
on Mχ

where αχ is a root of unity. For i 6= j, it follows that xij acts as zero on each irreducible
representation of H. Therefore xij = 0 for all i 6= j and d is a grouplike element of H.
Since d acts as a scalar on each irreducible representation of H we have d ∈ Z(H) and
therefore d ∈ Ḡ(H).

The next theorem is the generalization of the fact that Z/ker χ is a cyclic subgroup of
G/ker χ for any character of the finite group G.

Theorem 1.4.3. Let M be a representation of H such that its character χ is central in
H∗. Then Zχ is a normal Hopf subalgebra of H and Zχ//Hχ is the group algebra of a cyclic
subgroup of CḠ(H//Hχ).

Proof. Since χ ∈ Ẑ(H∗) one can write χ =
∑

j∈J αjej with αj ∈ C. A similar argument to
the one in Proposition 1.3 shows that

|Zχ|ΛZχ
= |Zχ|S(Λ

Zχ
) =

∑
{j | |αj | =χ(1)}

∑
d∈Yj

ε(d)d∗ =
∑

{j | |αj | =χ(1)}

êj.

Therefore Λ
Zχ

is central in H and Zχ is normal Hopf subalgebra of H. Let π : H → H//Hχ

be the canonical projection. Since H is a free Zχ-module there is also an injective Hopf
algebra map i : Zχ//Hχ → H//Hχ such that i(z̄) = π(z) for all z ∈ Zχ . Proposition
1.3 implies that the irreducible representations of H//Hχ are precisely the irreducible
constituents of tensor powers of χ. From item 1 of Remark 6.1.3 it follows that Zχ ⊂ Z

χl

for any nonnegative integer l. Let d ∈ zχ and C
d

=< xij > be the coalgebra associated
to d as in subsection 1.1.1. Item 2 of Remark 1.2.1 implies that for i 6= j the element xij
acts as zero on any tensor power of χ and therefore its image under π is zero. Since π is a
coalgebra map one has

∆(π(xii)) =

ε(d)∑
j=1

π(xij)⊗ π(xji) = π(xii)⊗ π(xii).

Thus π(xii) is a grouplike element ofH//Hχ . Since π(xii) acts as a scalar on each irreducible
representation ofH//Hχ it follows that π(xii) is a central grouplike element ofH//Hχ . This
proves that the image under i of Zχ//Hχ is inside CḠ(H//Hχ). The grouplike elements
that act as a scalar on the representation M of H//Hχ form a cyclic group by [69, Theorem
5.4] and the proof is finished.
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Remark 1.4.6. If χ ∈ Ẑ(H∗) is an irreducible character of H then Proposition 1.3 together
with [69, Theorem 5.4] imply that Ḡ(H//Hχ) is a cyclic group of order equal to the index
of the character χ.

We remark that recently, based on the papers [52, 53], Natale and Galindo provided ex-
amples of noncentral charactesr χ with non-normal Hopf kernels. These characters are one
dimensional characters of the simple Hopf algebras described as twists of group algebras
of non-simple groups in [53]. Note that these Hopf algebras also appeared in [31].
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Chapter 2

Left and right kernels of
representations

The notion of kernel of a representation of a group is a very important notion in studying
the representations of groups (see [63]). For example, a classical result of Brauer in group
theory states that over an algebraically closed field k of characteristic zero if χ is a faithful
character of G then any other irreducible character of G is a direct summand in some
tensor power of χ.

In [15] the author introduced a similar notion for the kernel of representations of any
semisimple Hopf algebra. The notion uses the fact that the exponent of a semisimple Hopf
algebra is finite [40]. In this chapter we will extend the notion of kernel to arbitrary Hopf
algebras, not necessarily semisimple. The aforementioned Brauer’s theorem for groups was
extended in [15] for semisimple Hopf algebras A and for those representations of A whose
characters are central in A∗. With the help of this new notion of kernel, we extend this
theorem to an arbitrary representation whose character is not necessarily central in the
dual Hopf algebra, see Theorem 2.3.1. We also prove a version of Brauer’s theorem for
arbitrary Hopf algebras, giving a new insight to the main results from [103] and [104].

Note that the group algebra kG is cocommutative. Lack of cocommutativity suggests
the introduction of left and right kernels of modules. It will also be shown that these
left and right kernels coincide with the left and respectively right categorical kernels of
morphisms of Hopf algebras that has been introduced in [2] and extensively studied in [1].
This coincidence proven in Theorem 2.1.6 suggests also how to generalize the notion of
kernel of modules to the non semisimple case.

Recently it was proven in [10] that Hopf subalgebras are normal if and only if they are
depth two subalgebras. We extend this result to coideal subalgebras. Moreover we show
that in this situation, depth two and normality in the sense defined by Rieffel in [105] also
coincide. Normal subalgebras as defined by Rieffel were recently revised in [25, Section 4].

This chapter is organized as follows. The second section introduces the notion of left
and right kernels of modules and proves their coincidence with the categorical kernels
introduced in [2]. A general version of Brauer’s theorem is also stated in this section. The

17
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third section is concerned with depth two coideal subalgebras of a Hopf algebra. We prove
a left coideal subalgebra is right depth two subalgebra if and only if it is a left normal
coideal subalgebra. Section 2.3 considers coideal subalgebras of semisimple Hopf algebra.
An extension of Brauer’s theorem in this case is also considered.

The Hopf algebra notations from [82] are used in this part but we drop the sigma
symbol from Sweedler’s notation of comultiplication. Recall a left coideal subalgebra S
of A is a subalgebra of A with ∆(S) ⊂ A ⊗ S. We say that a left coideal subalgebra S
of A is left normal if and only if it is invariant under the left the adjoint action of A, i.e
a1xS(a2) ∈ S for all a ∈ A and x ∈ S. Such a coideal subalgebra will be called a left
normal coideal subalgebra. Also it follows from [109] that if A is finite dimensional then
A is free as left or right S-module. In this Chapter we work over an arbitrary base field k,
unless otherwise specified.

2.1 Left and right kernels

Let A be an arbitrary Hopf algebra over a field k and M be an A-module. We say that
an element a ∈ A acts trivially on M if and only am = ε(a)m for all a ∈ A. If S is a
subalgebra of A we say that S acts trivially on M if each element of S acts trivially on M .

If M is an A-module then define

A
M

= {a ∈ A | am = ε(a)m for all m ∈M} (2.1.1)

It is easy to verify that S
M

is a subalgebra of A, thus the largest subalgebra of A
which acts trivially on M . If A is semisimple and M a simple A-module then dimk(SM ) =
dimk(A)− dimk(M)2.

2.1.1 Definition of left kernels

Let M be an A-module and L
M

: A ⊗ M → A ⊗ M be the linear operator given by
a ⊗m 7→ a1 ⊗ a2m. Let LKer

M
be the largest subspace B of A such that L

M
|
B⊗M = id.

Then LKer
M

is called the left kernel of M . Thus

LKer
M

= {a ∈ A| a1 ⊗ a2m = a⊗m, for all m ∈M} (2.1.1)

If A is a semisimple Hopf algebra and M a module with character χ we also write
LKerχ instead of LKer

M
.

Remark 2.1.1. If A = kG and M a G-module then LKer
M

is the group algebra k[KerG(M)]
of the usual kernel of M .

Proposition 2.1.1. Let A be a Hopf algebra and M be an A-module. Then LKer
M

is a
left normal coideal subalgebra of A.
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Proof. Applying ε⊗Id to the defining relation (2.1.1) of LKer
M

it follows that LKer
M
⊂ S

M
.

It is easy to verify that LKer
M

is an algebra.

Next we will show that ∆(LKer
M

) ⊂ A⊗LKer
M

. Let a ∈ LKer
M

and ∆(a) =
∑n

i=1 hi⊗
xi where hi is a basis of A. It will be shown that xi ∈ LKer

M
for all 1 ≤ i ≤ n. Indeed

∆2(a) =
∑n

i=1 hi⊗∆(xi). Since a1⊗a2m = a⊗m it follows that a1⊗a2⊗a3m = a1⊗a2⊗m
for all m ∈ M . Thus

∑n
i=1 hi ⊗ (xi)1 ⊗ (xi)2m =

∑n
i=1 hi ⊗ xi ⊗ m which implies that

(xi)1 ⊗ (xi)2m = xi ⊗m for all m ∈M and 1 ≤ i ≤ n.

Now we will show invariance under the left adjoint action of A. Let h ∈ A and a ∈
LKer

M
. Then h1aS(h2) ∈ LKer

M
since

(h1aS(h2))1 ⊗ (h1aS(h2))2m = h1a1S(h4)⊗ h2a2S(h3)m

= h1aS(h4)⊗ h2S(h3)m

= h1aS(h2)⊗m

Proposition 2.1.2. Let A be a Hopf algebra and

0 −−−→ N
i−−−→ M

p−−−→ P −−−→ 0

be a short exact sequence of modules. Then

LKer
M
⊆ LKer

N
∩ LKer

P
.

Proof. Clearly LKer
M
⊂ LKer

N
. Next we will show LKer

M
⊂ LKer

P
. Indeed if a ∈ LKer

M

then a1 ⊗ a2m = a⊗m for all m ∈M and applying id⊗ p it follows that a ∈ LKer
P

since
p is surjective.

Recall that the exponent of A is the smallest positive number m > 0 such that a[m] =
ε(a)1 for all a ∈ A. The generalized power a[m] is defined by a[m] = a1a2...am.

Remark 2.1.2. Let A be a Hopf algebra and M be an A-module. Then it is easy to check
that LsM(a ⊗ m) = a1 ⊗ a

[s]
2 m for all s ≥ 1. Thus if A is of a finite exponent m then

LmM = id on A⊗M .

Theorem 2.1.3. Let A be a Hopf algebra of finite exponent over an algebraically closed
field k and let

0 −−−→ N
i−−−→ M

p−−−→ P −−−→ 0

be a short exact sequence of finite dimensional modules. Then

LKer
M

= LKer
N
∩ LKer

P
.
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Proof. Let L := LKer
N
∩ LKer

P
and consider the exact sequence

0 −−−→ L⊗N 1⊗i−−−→ L⊗M 1⊗p−−−→ L⊗ P −−−→ 0.

If l ∈ L and m ∈M then

(1⊗ p)(L
M

(l ⊗m)− l ⊗m) = l1 ⊗ p(l2m)− l ⊗ p(m) = l1 ⊗ l2p(m)− l ⊗ p(m) = 0

since l ∈ LKer
P

. Thus L
M

(l⊗m)−l⊗m ∈ L⊗N . It follows that L
N

(L
M

(l⊗m)−l⊗m)) =
L
M

(l⊗m)− l⊗m. This also implies that L2
M(l⊗m)− LM(l⊗m) = L

M
(l⊗m)− l⊗m.

Thus (L
M
− id)2 = 0 on L ⊗M . On the other hand since A has finite exponent one has

Lm
M

= id on L⊗M by the previous remark. Since k is algebraically closed it follows that
L
M

= id on L⊗M , i.e L ⊂ LKer
M

.

Remark 2.1.3. Among the Hopf algebras with finite exponent we recall semisimple algebras
and group algebras of finite groups over a field of characteristic diving the order of the group.
The fact that the exponent of a finite dimensional semisimple Hopf algebra is finite was
proven in [40]. In the same paper it is also shown that in this case the exponent divides
the third power of the dimension of A.

Remark 2.1.4. Let S
M

the inverse operator of L
M

. Then S
M

is given by S
M

(a ⊗m) =
a1 ⊗ S(a2)m for all a ∈ A and m ∈ M . It follows that S

M
|
LKer

M
⊗A = id and thus one also

has that:

LKer
M

= {a ∈ A| a1 ⊗ S(a2)m = a⊗m, for all m ∈M}.

Proposition 2.1.4. Let A be a Hopf algebra and M be an A-module. Then LKer
M

is the
largest coideal subalgebra of A that acts trivially on M .

Proof. Proposition 2.1.1 implies that LKer
M

acts trivially on M . On the other hand if
∆(S) ⊂ A ⊗ S and S acts trivially on M then s1 ⊗ s2m = s1 ⊗ ε(s2)m = s ⊗ m, which
shows that S ⊂ LKer

M
.

Lemma 2.1.1. Let A be a Hopf algebra with bijective antipode and M be a finite dimen-
sional module over A. Then LKer

M
= LKer

M∗ .

Proof. For the operator L
M∗ : A⊗M∗ → A⊗M∗ one has that LKer

M∗ = {a ∈ A| a1⊗a2f =
a ⊗ f} for all f ∈ M∗. This is equivalent to a1f(S(a2)m) = af(m) for all m ∈ M and
f ∈ M∗. Therefore a ∈ LKer

M∗ if and only if a1 ⊗ S(a2)m = a⊗m for all m ∈ M which
implies by Remark 2.1.4 that LKer

M∗ = LKer
M

.

2.1.2 Definition of right kernel

Let M be an A-module and R
M

: A ⊗M → A ⊗M given by a ⊗ m 7→ a2 ⊗ a1m. Let
RKer

M
be the largest subspace B of A such that R

M
|
B⊗M = id. Thus
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RKer
M

= {a ∈ A| a2 ⊗ a1m = a⊗m, for all m ∈M} (2.1.1)

Suppose that A has a bijective antipode S with inverse S−1. Then the inverse operator
U
M

of R
M

is given by U
M

(a ⊗m) = a2 ⊗ S−1(a1)m for all a ∈ A and m ∈ M . It follows
that U

M
|
RKer

M
⊗A = id and thus one has also that

RKer
M

= {a ∈ A| a2 ⊗ S−1(a1)m = a⊗m, for all m ∈M} (2.1.2)

It is also easy to check that ∆(RKer
M

) ⊂ RKer
M
⊗ A.

Remark 2.1.5. 1)Suppose that the Hopf algebra A has a bijective antipode and let M be
an A-module. Then RKer

M
= S(LKer

M
). Indeed if a ∈ LKer

M
then

S(a)2 ⊗ S(a)1m = S(a1)⊗ S(a2)m = S(a)⊗m

which shows that S(LKer
M

) ⊂ RKer
M

. Similarly it can be checked that if a ∈ RKer
M

then
S−1a ∈ LKer

M
. Thus RKer

M
= S(LKer

M
).

2)Applying ε⊗ Id to the relation (2.1.1) it also follows that RKer
M
⊂ S

M
.

2.1.3 Description as categorical kernels

Lemma 2.1.2. If M and N are two A-modules then LKer
M
∩ LKer

N
⊂ LKer

M⊗N . In
particular LKer

M
⊂ LKer

M⊗ n
for all n ≥ 1.

Proof. Suppose m ∈M ,n ∈M and a ∈ LKer
M
∩LKer

N
. Since a1⊗ a2n = a⊗n applying

∆⊗Id one has a1⊗a2⊗a3n = a1⊗a2⊗n. Thus a1⊗a2m⊗a3n = a1⊗a2m⊗n = a1⊗m⊗n.

Definition 2.1.1. Let A be a Hopf algebra and M be an A-module. We define the Hopf
kernel A

M
of M as the largest sub-bialgebra of A contained in S

M
.

If A is finite dimensional then A
M

is also the largest Hopf subalgebra of A. It is easy
to see that in the case of a semisimple Hopf algebra this notion of kernel coincides with
the kernel A

M
of the module M introduced in [15].

Lemma 2.1.3. Let A be a Hopf algebra and M be an A-module. Then:
1) The kernel A

M
is the largest subcoalgebra in S

M
.

2) The kernel A
M

is the largest subcoalgebra in LKer
M

.
3) The kernel A

M
is the largest subcoalgebra in RKer

M
.

Proof. 1) If C is a subcoalgebra of A contained in S
M

then < C >= ⊕n≥0C
n is a sub-

bialgebra of A. Thus one has < C >⊂ AM .
2)Clearly A

M
is a subcoalgebra of LKer

M
⊂ S

M
. On the other hand any subcoalgebra

of S
M

is by definition included in LKer
M

. Thus the largest subcoalgebra of S
M

is A
M

and
coincides with the largest subcoalgebra of LKer

M
.

3)The proof of 3) is similar to that of 2).
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Proposition 2.1.5. Let A be a Hopf algebra and M be an A-module. Then

A
M

= {a ∈ A | a1 ⊗ a2m⊗ a3 = a1 ⊗m⊗ a2 for all m ∈M}

Proof. Let A′
M

= {a ∈ A | a1⊗a2m⊗a3 = a1⊗m⊗a2 for all m ∈M}. Clearly A
M
⊂ A′

M
,

since A
M

is a coalgebra. On the other hand it easy to check that A′
M

is a sub-bialgebra of
A contained inside S

M
. Maximality of the kernel A

M
implies the other inclusion.

Let π : A→ B a Hopf map. Recall that the Hopf kernel of π was defined in [2] as:

HKer(π) = {a ∈ A | a1 ⊗ π(a2)⊗ a3 = a1 ⊗ π(1)⊗ a2} (2.1.1)

Also the left and right kernels of π are defined as LKer(π) = Aco π and RKer(π) =co π A.

Now, let M be an A-module and I
M

= ∩n≥0AnnA(M⊗ n). Then I
M

is a Hopf ideal
[103] that will be called the Hopf ideal generated by M for the rest of this chapter. Also
let πM : A→ A/I

M
be the canonical projection.

Theorem 2.1.6. Suppose that M is a finite dimensional module over a finite dimensional
Hopf algebra A. Let I

M
= ∩n≥0AnnA(M⊗ n) and π : A→ A/I

M
be the canonical projection.

Then

1) Aco π = LKer
M

and co πA = RKer
M

.

2) Hker(π) = AM .

Proof. 1)If a ∈ Aco π then a1 ⊗ a2m = a1 ⊗ π(a2)m = a ⊗ π(1)m = a ⊗ m, therefore
a ∈ LKer

M
. Conversely suppose that a ∈ LKer

M
and let ∆(a) =

∑s
i=1 ai ⊗ xi with ai a

k-basis of A. Then xi ∈ LKerM and the Lemma 2.1.2 implies that xi ∈ LKer
M⊗ n

for all
n ≥ 1. Therefore xi − ε(xi)1 ∈ IM which implies that π(xi) = ε(xi)1. Thus Aco π = LKer

M

and applying the antipode S it follows that co πA = RKer
M

.

2)It is easy to see that AM ⊂ HKer(π). On the other hand since HKer(π) acts trivially
on M it follows that HKer(π) ⊂ AM by maximality of A

M
.

The following Corollary can be regarded as a generalization of Brauer’s theorem for
groups.

Corollary 2.1.7. Suppose that M is a finite dimensional module over a finite dimensional
Hopf algebra A. Then

∩n≥0AnnA(M⊗ n) = ω(LKer
M

)A.

For a coideal subalgebra S of A denote by ε
S

the character of the left trivial S-module.
Then ε

S
is the restriction of the counit ε to S.

Remark 2.1.6. One has that A⊗S k, the trivial left S-module induced to A, is isomorphic
to A/AS+ via the map a⊗S 1 7→ ā.

Next Lemma is the first item of [110, Theorem 1.1].
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Lemma 2.1.4. Suppose that the antipode S of the Hopf algebra A is bijective. Let S be a
coideal subalgebra of A and π : A→ A/AS+ the canonical coalgebra projection. If A is left
S-faithfully flat then Aco π = S.

Remark 2.1.7. From [110, Lemma 4.2] it follows that S is normal whenever AS+ ⊂ S+A.

Proposition 2.1.8. Let L be a normal left coideal subalgebra of a Hopf algebra A with
bijective antipode S. Then

LKer
εL↑

A
L

= L (2.1.2)

Proof. We show first that L ⊂ LKer
ε
L
↑A
L

. Indeed, for all l ∈ L and a ∈ A one has

l1 ⊗ l2(Sa⊗L 1) = l1 ⊗ Sa1 ⊗L (a2l2Sa3)1) = l ⊗ (Sa⊗L 1)

since L is normal. Since the antipode S is bijective it follows that L ⊂ LKer
ε
L
↑A
L

.

Let π : A → A//L be the canonical projection. It follows that Aco π = L by Lemma
2.1.4. Suppose now that a ∈ LKerM with M = k

L
↑A
L

∼= A/AL+. Then a⊗m = a1⊗a2m =
a1 ⊗ π(a2)m for all m ∈ M . In particular for m = 1̄ one has a1 ⊗ π(a2) = a ⊗ π(1).
Therefore a ∈ Aco π = L.

Corollary 2.1.9. Suppose that L is a normal coideal subalgebra of A and M := k ↑A
L

is
the trivial L-module induced up to A. Let I

M
be the Hopf ideal generated by M in A and

π : A→ A/I
M

be the canonical projection. Then Acoπ = L, i.e A/I
M

= A//L.

Proof. By Proposition 2.1.8 it follows that LKer
M

= L. On the other hand Corollary 2.1.7
implies that Acoπ = LKer

M
.

Next we will give two examples of left (right) kernels and kernels.

Example 2.1.1. 1) Let A be a Hopf algebra and consider the left adjoint action of A on
itself. Then L := LKer(A) is the largest central coideal subalgebra of A. In this situation
the kernel A

A
of the adjoint action coincides with the largest central sub-bialgebra of A and

it is in fact a Hopf subalgebra called, the Hopf center of A in [1].
2) Let A be a finite dimensional Hopf algebra and

L := ∩S∈Irr(A)LKer(S).

Then A//L is the largest semisimple Hopf algebra quotient of A. Moreover A has Chevalley
property if and only if the Jacobson radical rad(A) equals ω(L)A.

Remark 2.1.8. Let π : A → H be a Hopf algebra map with A and H finite dimensional
Hopf algebras. Then H can be regarded as A-module via π and let L := LKerA(H). It is to
see that in this case A//L is isomorphic with the Hopf image of π as defined in [5]. Thus
π is inner faithful if and only if L is trivial.
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2.1.4 Core of a coideal subalgebra

Let S be a left coideal subalgebra of A. If L and K are left normal coideal subalgebras of
A contained in S then it is easy to see that LK is also a left normal coideal subalgebra
contained in S. Thus one can define L := core(S) as the largest left normal coideal
subalgebra of A contained in S.

The next Proposition gives a description of the core of a coideal subalgebra. It gener-
alizes Theorem 3.7 and Remark 3.8 from [15].

Proposition 2.1.10. Suppose that S is a coideal subalgebra of A and let L := LKerε
S
↑A
S

.

Then core(S) = L.

Proof. First we show that L ⊂ S. Since k ↑A
S

= A/AS+ one has that

L = {l ∈ A | l1 ⊗ π(l2a) = l ⊗ π(a) for all a ∈ A} (2.1.1)

Thus for a = 1 one gets that L ⊂ Aco π = S. Now suppose that K is any left normal
coideal subalgebra of A contained in S. Then one has a canonical projection of A modules
A/AK+ → A/AS+ and Proposition 2.1.2 implies K = LKer

A/AK+ ⊂ L.

Corollary 2.1.11. Let S be a coideal subalgebra of A. Then S is normal if and only if
ε
S
↑A
S
↓A
S

= |A|
|S| εS

Proof. If S normal the statement follows from Proposition 2.1.8. The converse follows from
previous Proposition and Proposition 2.1.4.

2.1.5 On two endofunctors on A−mod and respectively S −mod

Let A be a Hopf algebra. Then A is a right comodule subalgebra of A with the usual
multiplication and comultiplication given by ∆.

Let S be a left A-comodule subalgebra of A, i.e a left coideal subalgebra of A. Then
for any A-module M and any S-module V the comodule structure ρ : S → A⊗ S defines
via pullback, an S-module structure on M ⊗ V . Denote this module structure by M � V .

This makes the category of S-modules a left module category over the tensor category
A-modules.

Proposition 2.1.12. Let S ⊂ A be a right A-comodule subalgebra of A. Then M⊗V ↑AS∼=
(M ↓A

S
�V ) ↑AS for any S-module V and any A-module M .

Proof. The map T : A ⊗S (M � V ) → M ⊗ (A ⊗S V ) given by a ⊗S (m ⊗ v) 7→ a1 ⊗
a1m⊗ (a2⊗S v) is a well defined map and a morphism of A-modules with inverse given by
m⊗ (a⊗S v) 7→ a2 ⊗S (S−1(a1)m⊗ v).

Corollary 2.1.13. Let S ⊂ A be a right A-comodule subalgebra of A. Then

M ⊗ εS ↑AS= M ↓AS↑AS (2.1.1)

for any A-module S.
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Proof. Put V = k, the trivial S-module in the above relation. Note also that M � k =
M ↓AS .

Define the endofunctors:

T : S −mod→ S −mod given by T (V ) = V ↑AS↓AS (2.1.2)

for any S-module V . Also define

V : A−mod→ A−mod given by V(M) = M ↓AS↑AS (2.1.3)

for any A-module M .

The following Lemma is straightforward. It shows that the restriction functor res :
A−mod→ S −mod is a morphism of A−mod categories.

Lemma 2.1.1. Let S be a coideal subalgebra of A and M , N be two A-modules. Then

(M ⊗N) ↓AS= M �N ↓AS

Then one has the following relations:

Lemma 2.1.5. For any S-module V and any A-module M it follows that:

1.

Vn(M) = M ⊗ (εS ↑AS )n

2.

T n+1(V ) = V ↑AS �T n(εS)

for all n ≥ 1.

Proof. The first statement follows from Corollary 2.1.13. The second statement is easily
proven by induction on n.

In the next Proposition we need the Frobenius-Perron theory on Grothendieck rings of
hopf algebras developed in [46].

Proposition 2.1.14. Let A be a finite dimensional Hopf algebra and L := LKer
M

be the
kernel of a finite dimensional A-module. Then ε

L
↑A
L

is the regular character of A//L.

Proof. For any left A//L-module one has that N ↓A
L

= |N |ε
L
. Applying previous lemma it

follows that N⊗ε
L
↑A
L

= |N |ε
L
↑A
L

. Thus ε
L
↑A
L

is the common Frobenius-Perron eigenvector
of the operators of left multiplication by all A//L-modules, thus the regular character of
A//L (see [46]).
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2.2 Depth two coideal subalgebras

In this section we work over a commutative ring R instead of the field k. Recall that an
extension of R-algebras B ⊂ A is called right (left) depth two if the module A ⊗B A is
a direct summand in An in the category BModA (respectively AModB) for an arbitrary
n ≥ 1.

In this section we will show that a left coideal subalgebra of a Hopf algebra A is right
depth two if and only if it is left normal, i.e closed under the left adjoint action. For this
reason in this section we have to work with right modules instead of left. Our treatment
is very similar to the one used in [10] for depth two Hopf subalgebras.

2.2.1 Depth two coideal subalgebras

Proposition 2.2.1. Let S be a right coideal subalgebra of a Hopf algebra A.

1)Then the map

β : A⊗S A→ A⊗ A/S+A given by a⊗S b 7→ ab1 ⊗ b̄2

is a well defined morphism of (A, S)-bimodules. The (A, S)-bimodule actions are defined
as c(a⊗S b)x = ca⊗ bx on A⊗S A and c(a⊗ b̄)x = cax⊗ b for a, b, c ∈ A and x ∈ S.

2) If AS+ ⊂ S+A then the above map β is an isomorphism.

Proof. The first item follows by direct computation. For the second item consider

γ : A⊗ A/S+A→ A⊗S A given by a⊗S b̄ 7→ ab1 ⊗S Sb2

It is not hard to check that if AS+ ⊂ S+A then γ is well defined. Moreover γ is an inverse
for β.

For the rest of this section let Ā := A/AS+A and π : A→ Ā be the canonical projection.
Recall that the extension A/S is Ā -right Hopf Galois [82] if Aco π = S and the canonical
map β is bijective.

Proposition 2.2.2. If A is left or right faithfully flat over S and AS+ ⊂ SA+ then A/S

is a right Ā-Galois extension. In particular S is a left normal coideal subalgebra.

Proof. By Proposition 2.2.1 one knows that β is bijective. If A is left faithfully flat over S
the second theorem of [117, Section 13.1] implies that S equals the equalizer of i1 and i2
where i1 : A→ A⊗S A a 7→ a⊗S 1 and i2 : A→ A⊗S A a 7→ 1⊗S a. Since β is bijective
this coincides with the equalizer of i1 ◦β and i2 ◦β. But this last equalizer is exactly Aco π.
Thus S is also closed under the left adjoint action.

If A is right faithfully flat over S a ”right version” of the same second theorem from
[117, Section 13.1] would also imply that S is the equalizer i1 and i2.
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Theorem 2.2.3. If AS+ ⊂ SA+ and A is finitely generated projective as left S-module
then S is of right depth two inside A.

Proof. Using [10, Lemma 2.7] it follows that Ā|Rn in ModR and therefore A ⊗S A ∼=
A⊗ Ā|A⊗Rn ∼= An in AModS.

Proposition 2.2.4. Let S be a left coideal subalgebra of A such that A is faithfully flat
S-module. If S has right depth two inside A then AS+ ⊂ S+A.

Proof. If S has right depth two inside A then k ⊗A (A ⊗S A) is a direct summand in
(k ⊗A A)n in ModS. Note that k ⊗S A is the trivial S-modules and therefore k ⊗S A
divides kn in S-mod. Since S+ annihilates the S-module k this implies that the two sided
ideal generated AS+A annihilates the A-module k ⊗S A. Previous remark implies that
AS+A = S+A and in particular AS+ ⊂ S+A.

Corollary 2.2.5. Let S be a coideal subalgebra of A such that A is faithfully flat over S.
Then S is a right depth two subalgebra of A if and only if S is normal, i.e closed under
the left adjoint action.

2.2.2 Rieffel’s normality for coideal subalgebras

Let B ⊂ A an extension of finite dimensional k-algebras. An ideal J of B is called A-
invariant if AJ = JA. Following [105] the extension A/B is called normal if for every
maximal two sided ideal I of A the ideal B ∩ I is A-invariant.

If S is closed under adjoint action and A has bijective antipode then it easy to verify
that S is normal in Rieffel’s sense. Indeed, if I is a two-sided ideal of A and x ∈ S ∩ I then
ax = a1xS(a2)a3 ∈ (I ∩ S)A. Also xSa = a3Sa2xSa1 ∈ A(I ∩ S). Conversely, if a coideal
subalgebra S of a semisimple Hopf algebra A is normal in Rieffel’s sense then AS+ = S+A
since S+ = A+ ∩ S is a maximal two sided ideal of S. Then Proposition 2.2.2 implies that
S is closed under the left adjoint action. Thus normality, depth two and Rieffel’s normality
coincide for coideal subalgebras of a Hopf algebra with bijective antipode.

Remark 2.2.1. If A is semisimple it will be shown in the next section that S is also
semisimple. Note that in this case left depth two coincides with right depth two by [25,
Theorem 4.6 ].

This remark brings up the question whether left and right depth two coincide on coideal
subalgebras. Further one can ask whether the extensionA/S is a quasi-Frobenius extension,
at least in the finite dimensional case. Results from [109] shows that S is a Frobenius
algebra if S is finite dimensional.
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2.3 The semisimple case

Throughout of this section we assume that the Hopf algebra A is semisimple. Let S be a
left coideal subalgebra of A.

Since A is free over S [109] there is a decomposition A = S ⊕ R as left S-modules.
Consider Λ

A
= x+ r the decomposition of the idempotent integral Λ

A
in the above direct

sum. Then clearly sx = ε(s)x for all s ∈ S and ε(x) = 1. Similarly since A is free as
right S there is a decomposition A = S ⊕ R′ as left S-module. Consider Λ

A
= y + r′

the decomposition of the idempotent integral Λ
A

in the above direct sum. Then clearly
ys = ε(s)x for all s ∈ S and ε(y) = 1. Thus x = yx = y.

Lemma 2.3.1. Let S be a left coideal subalgebra of a semisimple Hopf algebra A. Then S
is also semisimple.

Proof. We will use a Maschke type argument for the category of S-modules. Suppose that
W is an S- submodule of V and f : V → W a k-linear projection. Then it easy to check
f̃ : V → W given by

f̃(v) =
∑

Sx1f(x2v)

is an S-projection. Indeed one has that f̃(sv) =
∑
Sx1f(x2sv) = s1S(s2)Sx1f(x2s3v) =

sf̃(v) and f̃(w) = Sx1x2w = w.

Thus the element x from above is the central idempotent corresponding to the trivial
module ε

S
of S.

2.3.1 Rieffel’s equivalence relation for a coideal subalgebra

Let S ⊆ A be a left coideal subalgebra of A. Let V and W two S-modules. that We
say that V ∼ W if and only if there is a simple A-module M such that V and W are
both constituents of M ↓A

S
. The relation ∼ is reflexive and symmetric but not transitive

in general. Its transitive closure is denoted by ≈. Thus we say that V ≈ W if and only
if there is m ≥ 1 and a sequence Vi0 , Vi1 , · · · , Vim−1 , Vim of simple S-modules such that
V = Vi0 ∼ Vi1 ∼ Vi2 ∼ · · · ∼ Vim−1 ∼ Vim = W . As explained in [25] it follows that V ≈ W

if and only if there is n ≥ 0 such that V is a constituent to T n(W ). This is equivalent to
W to be a constituent of T n(V ).

We denote the above equivalence relation by dA
S

. This equivalence relation is considered in
[105] in the context of any extension of semisimple Hopf algebras.

Similarly one can define an equivalence relation uAB on the set of irreducible A-modules.
We say that M ∼ N for two simple A-modules M and N if and only if their restriction to
S have a common constituent. Then uA

S
is the transitive closure of ∼. Similarly M and N

are equivalent if and only if there is n ≥ 0 such that M is a constituent to Vn(N). This is
equivalent to N to be a constituent of Vn(M).
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2.3.2 Tensor powers of a character

The following Theorem can be viewed as a generalization of Brauer’s theorem for groups:

Theorem 2.3.1. Let A be a semisimple Hopf algebra and M be an A-module with character
χ. If L := LKer

M
then the irreducible modules of A//L are precisely all the irreducible

constituents the tensor powers M⊗ n with n ≥ 0.

Proof. One has that A//L is a semisimple Hopf algebra. On the other hand since L is left
normal Corollary 2.1.11 implies that the simple A-submodules of k ↑AL and the simple A
-submodules of A//L coincide. Then description of the Hopf ideal I

M
given in Corollary

2.1.7 implies the conclusion.

Next Corollary follows from [15, Proposition 3.3 ].

Corollary 2.3.2. Let A be a semisimple Hopf algebra and M an A module with character
χ. If χ is central in A∗ then Lkerχ = Rkerχ = Aχ.

Proof. Let L := Lkerχ . Then from the previous Theorem and [15, Proposition 3.3 ] the
quotient Hopf algebras A//L and A//Aχ have the same irreducible representations, namely
the irreducible representations of all tensor powers of M . It follows that dimk L = dimkAχ .
Since Aχ ⊂ L then one has Aχ = L. Then Aχ = Rkerχ by applying the antipode S.

In view of the last corollary the next theorem can be viewed as an extension of [25,
Corollary 6.5] from representations of group algebras.

Theorem 2.3.3. Let A be a semisimple Hopf algebra and S be a coideal subalgebra of A.
Let L := core(S). Then the equivalence relations uA

S
and uA

L
coincide.

Proof. From Proposition 2.1.1 it follows that L := LKerεS↑AS . Two A-modules M and N
are equivalent if and only if N is a constituent of Vn(M) for some n ≥ 1. From the formula
of Vn(M) it follows that M and N are equivalent if and only if N is a constituent of
M ⊗ (εS ↑AS )n for some n ≥ 1.

But from Theorem 2.3.1 it follows that εL ↑AL has as constituents all the irreducible
constituents of all tensor powers (εS ↑AS )n with n ≥ 0. Thus two A-modules M and N are
equivalent relative to S if and only if they are equivalent relative to L.

2.3.3 The integral element of S

Let x
S

:= x denote the element from the beginning of this section.

In this situation one has AS+ = A(1−x
S
). Indeed if s ∈ S+ then s = sx

S
+s(1−x

S
) =

ε(s)x
S

+ s(1− x
S
) = s(1− x

S
).
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Proposition 2.3.4. Let A be a semisimple Hopf algebra and S be a coideal subalgebra of
A. Then the following statements are equivalent:

1)S is normal in A
2)ε

S
by itself from an equivalence class of dA

S
.

3)The element x
S

is central in A.

Proof. Corollary 2.1.11 implies the equivalence between the first two items. [25, Proposi-
tion 3.1] shows the equivalence between the last two items. By results from [110] it follows
that S is normal if and only if AS+ = S+A.

Note that the equivalence between first and third item generalizes [78, Proposition 1].

The depth of Hopf subalgebras and coideal subalgebras of a finite dimensional Hopf algebra
was subsequently studied by others autors in [9, 34, 51, 65, 66, 114, 115].
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Representation theory of semisimple
Hopf algebras
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Chapter 3

Coset decomposition for semisimple
Hopf algebras

In this chapter we introduce a notion of double coset for semisimple finite dimensional Hopf
algebras, similar to the one for groups. This is achieved by considering an equivalence rela-
tion on the set of irreducible characters of the dual Hopf algebra. The equivalence relation
that we define generalizes the equivalence relation introduced in [92]. Using Frobenius-
Perron theory for nonnegative Hopf algebras the results from [92] are generalized and
proved in a simpler manner.

The chapter is organized as follows. In the first Section we recall some basic results for
finite dimensional semisimple Hopf algebras that we need in the other sections.

In section 3.2 the equivalence relation on the set of irreducible characters of the dual
Hopf algebra is introduced and the coset decomposition it is proven. Using this coset de-
composition in the next section we prove a result concerning the restriction of a module
to a normal Hopf subalgebra. A formula for the induction from a normal Hopf subal-
gebra is also described using Frobenius reciprocity. A formula equivalent to the Mackey
decomposition formula for groups is given in the situation of a unique double coset.

Section 3.4 considers one of the above equivalence relations but for the dual Hopf
algebra. In the situation of normal Hopf subalgebras this relation can be written in terms
of the restriction of the characters to normal Hopf subalgebras. Some results similar to
those in group theory are proved.

The next sections studies the restriction functor from a semisimple Hopf algebra to
a normal Hopf subalgebra. We define a notion of conjugate module similar to the one
for modules over normal subgroups of a group. Some results from group theory hold in
this more general setting. In particular we show that the induced module restricted back
to the original normal Hopf subalgebra has as irreducible constituents the constituents
of all the conjugate modules. Note that results of this chapter can be applied in the
program of classification of semisimple Hopf algebras of low dimension, see for example
[39, 45, 55, 88, 89, 91].

33
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3.1 Notations

Throughout this chapter, H denotes a semisimple Hopf algebra over C. It follows that H
is also cosemisimple [73]. If K is a Hopf subalgebra of H then K is also semisimple and
cosemisimple Hopf algebra [82]. For a (finite dimensional) semisimple Hopf algebra H we
use as above the notation ΛH ∈ H for the integral of H with ε(ΛH) = |H| and tH ∈ H∗
for the integral of H∗ with tH(1) = |H|.

All algebras and coalgebras in this chapter are defined over the complex numbers C.
As before, for a vector space V over C, by |V | is denoted the dimension dimCV .

3.2 Double coset formula for cosemisimple Hopf alge-

bras

In this section let H be a semisimple finite dimensional Hopf algebra as before and K and
L be two Hopf subalgebras. Then H can be decomposed as sum of K−L bimodules which
are free both as K-modules and L-modules and are analogues of double cosets in group
theory. To the end we give an application in the situation of a unique double coset.

There is a bilinear form m : C(H∗) ⊗ C(H∗) → k defined as follows (see [92]). If
M and N are two H-comodules with characters c and d then m(c, d) is defined as
dimkHomH(M, N). The following properties of m (see [92, Theorem 10]) will be used
later:

m(x, yz) = m(y∗, zx∗) = m(z∗, x∗y) and

m(x, y) = m(y, x) = m(y∗, x∗)

for all x, y, z ∈ C(H∗).

Let H be a finite dimensional cosemisimple Hopf algebra and K, L be two Hopf subal-
gebras of H. We define an equivalence relation rH

K, L
on the set of simple subcoalgebras of

H as following: C ∼ D if C ⊂ KDL.

Since the set of simple subcoalgebras is in bijection with Irr(H∗) the above relation in
terms of H∗-characters becomes the following: c ∼ d if m(c ,Λ

K
dΛ

L
) > 0 where Λ

K
and

Λ
L

are the integrals of K and L with ε(Λ
K

) = |K| and ε(Λ
L
) = |L| and c, d ∈ Irr(H∗).

It is easy to see that ∼ is an equivalence relation. Clearly c ∼ c for any c ∈ Irr(H∗)
since both Λ

K
and Λ

L
contain the trivial character.

Using the above properties of the bilinear form m , one can see that if c ∼ d then
m(d, Λ

K
cΛ

L
) = m(Λ∗

K
, cΛ

L
d∗) = m(c∗, Λ

L
d∗Λ

K
) = m(c, Λ∗

K
dΛ∗

L
) = m(c, Λ

K
dΛ

L
) since

Λ∗
K

= Λ
K

and Λ∗
L

= Λ
L
. Thus d ∼ c.

The transitivity can be easier seen that holds in terms of simple subcoalgebras. Suppose
that c ∼ d and d ∼ e and c, d, and e are three irreducible characters associated to the
simple subcoalgebras C, D and E respectively. Then C ⊂ KDL and D ⊂ KEL. The last
relation implies that KDL ⊂ K2EL2 = KEL. Thus C ⊂ KEL and c ∼ e.
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If C1, C2, · · · , Cl are the equivalence classes of rH
K, L

on Irr(H∗) then let

ai =
∑
d∈Ci

ε(d)d (3.2.1)

for 1 ≤ i ≤ l.
For any character d ∈ C(H∗) let L

d
and R

d
be the left and right multiplication with d

on C(H∗).

Proposition 3.1. With the above notations it follows that ai are eigenvectors of the oper-
ator T = L

ΛK
◦R

ΛL
on C(H∗) corresponding to the eigenvalue |K||L|.

Proof. Definition of rH
K, L

implies that d ∼ d′ if and only if m(d′, T (d)) > 0. It follows that

T (ai) has all the irreducible constituents in Ci for all 1 ≤ i ≤ l. Since Λ
H

=
∑l

i=1 ai the
formula T (Λ

H
) = |H||K|Λ

H
gives that T (ai) = |K||L|ai for all 1 ≤ i ≤ l.

In the sequel, we use the Frobenius-Perron theorem for matrices with nonnegative
entries (see [54]). If A is such a matrix then A has a positive eigenvalue λ which has the
biggest absolute value among all the other eigenvalues of A. The eigenspace corresponding
to λ has a unique vector with all entries positive. λ is called the principal value of A and
the corresponding positive vector is called the principal vector of A. Also the eigenspace
of A corresponding to λ is called the principal eigenspace of A.

The following result is also needed:

Proposition 3.2.1. ([54], Proposition 5.) Let A be a matrix with nonnegative entries such
that A and At have the same principal eigenvalue and the same principal vector. Then after
a permutation of the rows and the same permutation of the columns A can be decomposed
in diagonal blocks A = A1, A2, · · · , Al with each block an indecomposable matrix.

Recall from [54] that a matrix A ∈ Mn(C) is called decomposable if the set I =
{1, 2, · · · . n} can be written as a disjoint union I = J1 ∪ J2 such that auv = 0 whenever
u ∈ J1 and v ∈ J2. Otherwise the matrix A is called indecomposable.

Theorem 3.2.2. Let H be a finite dimensional semisimple Hopf algebra and K, L be two
Hopf subalgebras of H. Consider the linear operator T = L

Λ
K
◦R

Λ
L

on the character ring

C(H∗) and [T ] the matrix associated to T with respect to the standard basis of C(H∗) given
by the irreducible characters of H∗.

1. The principal eigenvalue of [T ] is |K||L|.

2. The eigenspace corresponding to the eigenvalue |K||L| has
(ai)1≤i≤l as C-linear basis, were ai are defined in (3.2.1).

Proof. 1. Let λ be the biggest eigenvalue of T and v the principal eigenvector corre-
sponding to λ. Then Λ

K
vΛ

L
= λv. Applying ε on both sides of this relation it follows

that |K||L|ε(v) = λε(v). But ε(v) > 0 since v has positive entries. It follows that
λ = |K||L|.
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2. It is easy to see that the transpose of the matrix [T ] is also [T ]. To check that
let x1, · · · , xs be the basis of C(H∗) given by the irreducible characters of H∗

and suppose that T (xi) =
∑s

j=1 tijxj. Thus tij = m(xj, Λ
K
xiΛL

) and tji =
m(xi, Λ

K
xjΛL

) = m(Λ∗
K
, xjΛL

x∗i ) = m(x∗j , Λ
L
x∗iΛK

) =
m(xj,Λ

∗
K
xiΛ

∗
L
) = tij since Λ∗

K
= S(Λ

K
) = Λ

K
and also Λ∗

L
= Λ

L
.

Proposition 3.2.1 implies that after a permutation of the rows and the same permuta-
tion of the columns the matrix [T ] decomposes in diagonal blocksA = {A1, A2, · · · , As}
with each block an indecomposable matrix. This decomposition of [T ] in diagonal
blocks gives a partition Irr(H∗) = ∪si=1Ai on the set of irreducible characters of H∗,
where each Ai corresponds to the rows (or columns) indexing the block Ai. The
eigenspace of [T ] corresponding to the eigenvalue λ is the sum of the eigenspaces of
the diagonal blocks A1, A2, · · ·Al corresponding to the same value. Since each Ai is
an indecomposable matrix it follows that the eigenspace of Ai corresponding to λ
is one dimensional ( see [54]). If bj =

∑
d∈Aj ε(d)d then as in the proof of Propo-

sition 3.1 it can be seen that bj is eigenvector of T corresponding to the eigenvalue
λ = |K||L|. Thus bj is the unique eigenvector of Aj corresponding to the eigenvalue
|K||L|. Therefore each ai is a linear combination of these vectors. But if d ∈ Ai
and d′ ∈ Aj with i 6= j then m(d′, T (d)) = 0 and the definition of rH

K, L
implies that

d � d′. This means that ai is a scalar multiple of some bj and this defines a bijective
correspondence between the diagonal blocks and the equivalence classes of the rela-
tion rH

K, L
. Thus the eigenspace corresponding to the principal eigenvalue |K||L| has

a C- basis given by ai with 1 ≤ i ≤ l.

Corollary 3.2.3. Let H be a finite dimensional semisimple Hopf algebra and K, L be two
Hopf subalgebras of H. Then H can be decomposed as

H =
l⊕

i=1

Bi (3.2.2)

where each Bi is a (K,L)- bimodule free as both left K-module and right L-module.

Proof. Consider as above the equivalence relation rH
K, L

relative to the Hopf subalgebras
K and L. For each equivalence class Ci let Bi =

⊕
C∈Ci C. Then KBiL = Bi from the

definition of the equivalence relation. It follows that Bi = KBiL ∈ KMH
L which implies

that Bi is free as left K-module and right L-module [96].

The bimodules Bi from the above corollary will be called a double coset for H with
respect to K and L.

Corollary 3.2.4. With the above notations, if d ∈ Ci then

Λ
K

|K|
d

Λ
L

|L|
= ε(d)

ai
ε(ai)

(3.2.3)
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Proof. One has that Λ
K
dΛ

L
is an eigenvector of T = L

Λ
K
◦R

Λ
L

with the maximal eigenvalue

|K||L|. From Theorem 3.2.2 it follows that Λ
K
dΛ

L
is a linear combination of the elements

aj. But Λ
K
dΛ

L
cannot contain any aj with j 6= i because all the irreducible characters

entering in the decomposition of the product are in Ci. Thus Λ
K
dΛ

L
is a scalar multiple

of ai and formula (3.2.3) follows.

Remark 3.2.1. Let C1 and C2 be two subcoalgebras of H and K =
∑

n≥0C
n
1 and L =∑

n≥0C
n
2 be the two Hopf subalgebras of H generated by them [95]. The above equivalence

relation rH
K, L

can be written in terms of characters as follows: c ∼ d if m(c, cn1dc
m
2 ) > 0

for some natural numbers m,n ≥ 0.

Remark 3.2.2. Setting C1 = k in the above remark Theorem 3.2.2 gives [92, Theorem 7].
The above equivalence relation is denoted by rH

k, L
and can be written as c ∼ d if and only

if m(c, dcm2 ) > 0 for some natural number m ≥ 0. The equivalence class corresponding to
the simple coalgebra k1 consists of the simple subcoalgebras of all the powers Cm

2 for m ≥ 0
that is all the simple subcoalgebras of L. Without loss of generality we may assume that
this equivalence class is C1. It follows that a1 = Λ

L
and

d

ε(d)

Λ
L

|L|
=

ai
ε(ai)

(3.2.4)

for any irreducible character d ∈ Ci.

Let K be a Hopf subalgebra of H and s = |H|/|K|. Then H is free as left K-module
[96]. If {ai}i=1, s is a basis of H as left K-module then H = Ka1 ⊕ Ka2 · · · ⊕ Kas as
left K-modules. Consider the operator L

Λ
K

given by left multiplication with Λ
K

on H.

The eigenspace corresponding to the eigenvalue |K| has a basis given by Λ
K
ai, thus it has

dimension s. If we restrict the operator L
Λ
K

on C(H∗) ⊂ H then Theorem 3.2.2 implies

that the number of equivalence classes of rH
k, K

is equal to the dimension of the eigenspace
of L

Λ
K

corresponding to the eigenvalue |K|. Thus the number of the equivalence classes

of rH
k, K

is always less or equal then the index of K in H.

Example 3.2.1. Let H = kQ8#αkC2 be the 16-dimensional Hopf algebra described in [68].
Then G(H∗) =< x > × < y >∼= Z2×Z2 and Irr(H∗) is given by the four one dimensional
characters 1, x, y, xy and 3 two dimensional characters denoted by d1, d2, d3. The
algebra structure of C(H∗) is given by:

x.d1 = d3 = d1.x, x.d2 = d2 = d2.x, x.d3 = d1 = d3.x

y.di = di = di.y for all i = 1, 3

d2
1 = d2

3 = x+ xy + d2, d2
2 = 1 + x+ y + xy, d1d2 = d2d1 = d1 + d3

d1d3 = d3d1 = 1 + y + d2
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Consider K = k < x > as Hopf subalgebra of H and the equivalence relation rH
k, K

on
Irr(H∗). The equivalence classes are given by {1, x}, {y, xy}, {d2} and {d1, d3} and the
number of them is strictly less than the index of K and H. If C2 ⊂ H is the coalgebra
associated to d2 then the third equivalence class gives in the decomposition (3.2.2) the free
K-module C2K = C2 whose rank is strictly less then the dimension of C2.

3.3 More on coset decomposition

Let H be a semisimple Hopf algebra and A be a Hopf subalgebra. Define H//A = H/HA+

and let π : H → H//A be the natural module projection. Since HA+ is a coideal of H it
follows that H//A is a coalgebra and π is also a coalgebra map.

Let k be the trivial A-module via the counit ε. It can be checked that H//A ∼= H ⊗A k
as H-modules via the map ĥ 7→ h⊗A 1. Thus dimkH//A = rank

A
H.

If L and K are Hopf subalgebras of H define LK//K := LK/LK+. LK is a right free
K-module since LK ∈ MH

K . A similar argument to the one above shows that LK//K ∼=
LK ⊗K k as left L-modules where k is the trivial K-module. Thus dimkLK//K =
rankKLK. It can be checked that LK+ is a coideal in LK and therefore LK//K has
a natural coalgebra structure.

Theorem 3.3.1. Let H be a semisimple Hopf algebra and K, L be two Hopf subalgebras
of H. Then L//L ∩K ∼= LK//K as coalgebras and left L-modules.

Proof. Define the map φ : L → LK//K by φ(l) = l̂. Then φ is the composition of L ↪→
LK → LK//K and is a coalgebra map as well as a morphism of left L-modules. Moreover
φ is surjective since l̂k = ε(k)l̂ for all l ∈ L and k ∈ K. Clearly L(L ∩K)+ ⊂ ker(φ) and
thus φ induces a surjective map φ : L//L ∩K → LK//K.

Next it will be shown that
|L|

|L ∩K|
=
|KL|
|K|

which implies that φ is bijective since both spaces have the same dimension. Consider on
Irr(H∗) the equivalence relation introduced above and corresponding to the linear operator
L

Λ
L
◦R

Λ
K

. Assume without loss of generality that C1 is the equivalence class of the character

1 and put d = 1 the trivial character, in formula (3.2.3). Thus
Λ
L

|L|
Λ
K

|K| = a1

ε(a1)
. But from

the definition of ∼ it follows that a1 is formed by the characters of the coalgebra LK. On
the other hand Λ

L
=
∑

d∈Irr(L∗) ε(d)d and Λ
K

=
∑

d∈Irr(K∗) ε(d)d (see [72]). Equality 3.2
follows counting the multiplicity of the irreducible character 1 in Λ

K
Λ
L
. Using [92, Theorem

10 ] we know that m(1, dd′) > 0 if and only if d′ = d∗ in which case m(1, dd′) = 1. Then

m(1,
Λ
L

|L|
Λ
K

|K| ) = 1
|L||K|

∑
d∈Irr(L∩K) ε(d)2 = |L∩K|

|L||K| and m(1, a1

ε(a1)
) = 1

ε(a1)
= 1
|LK| .

Corollary 3.3.2. If K and L are Hopf subalgebras of H then rankKLK = rankL∩KL.
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Proposition 3.2. Let H be a finite dimensional cosemisimple Hopf algebra and K, L be
two Hopf subalgebras of H such that KL = LK. If M is a K-module then

M ↑LKK ↓L∼= (M ↓L∩K) ↑L

as left L-modules.

Proof. For any K-module M one has

M ↑LK↓L= LK ⊗K M

while
(M ↓L∩K) ↑L= L⊗L∩K M.

The previous Corollary implies that rankKLK = rankL∩KL thus both modules above
have the same dimension.

Define the map φ : L ⊗L∩K M → LK ⊗K M by φ(l ⊗L∩K m) = l ⊗K m which is
the composition of L ⊗L∩K M ↪→ LK ⊗L∩K M → LK ⊗K M . Clearly φ is a surjective
homomorphism of L-modules. Equality of dimensions implies that φ is an isomorphism.

If LK = H then the previous theorem is the generalization of Mackey’s theorem de-
composition for groups in the situation of a unique double coset.

3.4 A dual relation

Let K be a normal Hopf subalgebra of H and L = H//K. Then the natural projection
π : H → L is a surjective Hopf map and then π∗ : L∗ → H∗ is an injective Hopf map. We
identify L∗ with its image π∗(L∗) in H∗. This is a normal Hopf subalgebra of H∗. In this
section we will study the equivalence relation rH

∗

L∗, k
on Irr(H∗∗) = Irr(H).

The following result was proven in [15].

Proposition 3.3. Let K be a normal Hopf subalgebra of a finite dimensional semisimple
Hopf algebra H and L = H//K. If t

L
∈ L∗ is the integral on L with tL(1) = |L| then

ε
K
↑HK= tL and tL ↓HK= |H|

|K|εK .

Proposition 3.4. Let K be a normal Hopf subalgebra of a semisimple Hopf algebra H and
L = H//K. Consider the equivalence relation rH

∗

L∗, k
on Irr(H). Then χ ∼ µ if and only if

their restrictions to K have a common constituent.

Proof. The equivalence relation rH
∗

L∗, k
on Irr(H) becomes the following: χ ∼ µ if and only

if m
H

(χ, t
L
µ) > 0. On the other hand, applying the previous Proposition it follows that:

m
H

(χ, t
L
µ) = m

H
(t∗
L
, µχ∗) = m

H
(t
L
, µχ∗)

= = m
H

(ε ↑H
K
, µχ∗) = m

K
(ε
K
, (µχ∗) ↓

K
)

= m
K

(ε
K
, µ ↓

K
χ∗ ↓

K
) = m

K
(χ ↓

K
, µ ↓

K
)

Thus χ ∼ µ if and only if their restriction to K have a common constituent.
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Theorem 3.4.1. Let K be a normal Hopf subalgebra of a semisimple Hopf algebra H and
L = H//K. Consider the equivalence relation rH

∗

L∗, k
on Irr(H). Then χ ∼ µ if and only if

χ↓
K

χ(1)
=

µ↓
K

µ(1)
.

Proof. Let C1, C2, · · · Cl be the equivalence classes of rH
∗

L∗, k
on Irr(H) and let

ai =
∑
χ∈Ci

χ(1)χ (3.4.1)

for 1 ≤ i ≤ l. If C1 is the equivalence class of the trivial character ε then the definition of
rH
∗

L∗, k
implies that a1 = t

L
. Formula from Remark 3.2.2 becomes

t
L

|L|
χ

χ(1)
=

ai
ai(1)

for any irreducible character χ ∈ Ci.
Restriction to K of the above relation combined with Proposition 4.1 gives:

χ ↓
K

χ(1)
=
ai ↓K
ai(1)

(3.4.2)

Thus if χ ∼ µ then
χ↓
K

χ(1)
=

µ↓
K

µ(1)
.

3.4.1 Formulae for restriction and induction

The previous theorem implies that the restriction of two irreducible H-characters to K
either have the same common constituents or they have no common constituents. Let t

H

be the integral on H with t
H

(1) = |H|. One has that t
H

=
∑l

i=1 ai as t
H

is the regular
character of H. Since H is free as K-module [96] it follows that the restriction of t

H
to

K is the regular character of K multiplied by |H|/|K|. Thus t
H
↓
K

= |H|/|K|t
K

. But
t
K

=
∑

α∈Irr(K) α(1)α and Theorem 4.3 implies that the set of the irreducible characters of
K can be partitioned in disjoint subsets Ai with 1 ≤ i ≤ l such that

ai ↓K=
|H|
|K|

∑
α∈Ai

α(1)α.

Then if χ ∈ Ci formula (3.4.2) implies that

χ ↓
K

=
χ(1)

ai(1)

|H|
|K|

∑
α∈Ai

α(1)α.

Let |Ai| =
∑

α∈Ai α
2(1). Evaluating at 1 the above equality one gets ai(1) = |H|

|K| |Ai|. By
Frobenius reciprocity the above restriction formula implies that if α ∈ Ai then

α ↑H
K

=
α(1)

ai(1)

|H|
|K|

∑
χ∈Ci

χ(1)χ (3.4.1)
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3.5 Restriction of modules to normal Hopf subalge-

bras

Let G be a finite group and H a normal subgroup of G. If M is an irreducible H-module
then

M ↑G
H
↓G
H

= ⊕si=1
giM

where gM is a conjugate module of M and {gi}i=1, s is a set of representatives for the left
cosets of H in G. For g ∈ G the H-module gM has the same underlying vector space as
M and the multiplication with h ∈ H is given by h.n = (g−1hg)n for all n ∈ N . It is easy
to see that gN ∼= g′N if gN = g′N .

Let K be a normal Hopf subalgebra of H and M be an irreducible K-module. In this
section we will define the notion of a conjugate module to M similar to group situation. If
d ∈ Irr(H∗) we define a conjugate module dM . The left cosets of K in H correspond to the
equivalence classes of rH

K, k
. We will show that if d, d′ are two irreducible characters in the

same equivalence class of rH
K, k

then the modules dM and d′M have the same constituents.

We will show that the irreducible constituents of M ↑H
K
↓H
K

and ⊕d∈Irr(H∗)
dM are the same.

Remark 3.5.1. Since K is a normal Hopf subalgebra it follows that Λ
K

is a central element
of H (see [78]) and by their definition rH

K, k
= rH

k, K
. Thus the left cosets are the same with

the right cosets in this situation.

Let K be a normal Hopf subalgebra of H and M be a K-module. If W is an H∗-module
then W ⊗M becomes a K-module with

k(w ⊗m) = w0 ⊗ (S(w1)kw2)m (3.5.1)

In order to check that W ⊗M is a K-module one has that

k.(k′(w ⊗m)) = k(w0 ⊗ (S(w1)k′w2)m)

= w0 ⊗ (S(w1)kw2)((S(w3)k′w4)m)

= w0 ⊗ (S(w1)kk′w2)m

= (kk′)(w ⊗m)

for all k, k′ ∈ K, w ∈ W and m ∈M .
It can be checked that if W ∼= W ′ as H∗-modules then W ⊗M ∼= W ′ ⊗M . Thus for

any irreducible character d ∈ Irr(H∗) associated to a simple H-comodule W one can define
the K-module dM ∼= W ⊗M .

Proposition 3.5.1. Let K be a normal Hopf subalgebra of H and M be an irreducible K-
module with character α ∈ C(K). Suppose that W is a simple H∗-module with character
d ∈ Irr(H∗). Then the character αd of the K-module dM is given by the following formula:

α
d
(x) = α(Sd1xd2)

for all x ∈ K.
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Proof. Indeed one may suppose that W ∼= k < x1i | 1 ≤ i ≤ q > where C
d

= k < xij | 1 ≤
i, j ≤ q > is the coalgebra associated to W and q = ε(d) = |W |. Then formula (4.2.1)
becomes k(x1i ⊗ w) =

∑q
j, l=1 x1j ⊗ (S(xjl)kxlj)m. Since d =

∑q
i=1 xii one gets the the

formula for the character α
d
.

For any d ∈ Irr(H∗) define the linear operator cd : C(K) → C(K) which on the basis
given by the irreducible characters is given by cd(α) = α

d
for all α ∈ Irr(K).

Remark 3.5.2. From the above formula it can be directly checked that dd′α =d (d
′
α) for

all d, d′ ∈ Irr(H∗) and α ∈ C(K). This shows that C(K) is a left C(H∗)-module. Also
one can verify that d(α∗) = (dα)∗.

Proposition 3.5.2. Let K be a normal Hopf subalgebra of H and M be an irreducible
K-module with character α ∈ C(K). If d, d′ ∈ Irr(H∗) lie in the same coset of rH

K, k
then

dM and d′M have the same irreducible constituents. Moreover
α
d

ε(d)
=

α
d′

ε(d′)
.

Proof. Consider the equivalence relation rH
k, K

from section 2 and H = ⊕si=1Bi the decompo-
sition from Corollary 2.5. Let B1, · · · , Bs be the equivalence classes and let bi be defined
as in subsection 3.4. Then formula (3.2.4) becomes

d

ε(d)

ΛK

|K|
=

bi
ε(bi)

(3.5.2)

where Λ
K

is the integral in K with ε(Λ
K

) = |K| and d ∈ Bi. Thus

α
bi

(x) = α(S(bi)1x(bi)2) =

=
ε(bi)

ε(d)|K|
α(S(dΛ

K
)1)x(dΛ

K
)2) =

=
ε(bi)

ε(d)|K|
α(S((Λ

K
)1)S(d1)xd2(Λ

K
)2) =

=
ε(bi)

ε(d)
α(Sd1xd2) =

=
ε(bi)

ε(d)
α
d
(x)

for all d ∈ Bi.
This implies that if d ∼ d′ then

α
d

ε(d)
=

α
d′

ε(d′)
.

Let N be a H-module and W an H∗-module. Then W ⊗N becomes an H-module such
that

h(w ⊗m) = w0 ⊗ (S(w1)hw2)m (3.5.3)

It can be checked that W ⊗ N ∼= N |W | as H-modules. Indeed the map φ : W ⊗ N →
εW ⊗N w ⊗ n 7→ w0 ⊗ w1n is an isomorphism of H-modules where εW is considered left
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H-module with the trivial action. Its inverse is given by w⊗m 7→ w0⊗S(w1)m. To check
that φ is an H-module map one has that

φ(h.(w ⊗ n)) = φ(w0 ⊗ (S(w1)hw2)n)

= w0 ⊗ w1(S(w2)hw3)n

= w0 ⊗ hw1n

= h.(w0 ⊗ w1n)

= hφ(w ⊗ n)

for all w ∈ W , m ∈M and h ∈ H.

Proposition 3.5.3. Let K be a normal Hopf subalgebra of H and M be an irreducible
K-module with character α ∈ C(K). If d ∈ Irr(H∗) then

1

ε(d)
α
d
↑HK= α ↑H

K
.

Proof. With the notations from subsection 3.4.1 let Ai be the subset of Irr(K) which
contains α. It is enough to show that the constituents of α

d
are contained in this set and

then the induction formula (3.4.1) from the same subsection can be applied. For this,
suppose N is an irreducible H-module and

N ↓
K

= ⊕si=1Ni (3.5.4)

where Ni are irreducible K-modules. The above result implies that
W ⊗ N ∼= N |W | as H-modules. Therefore (W ⊗ N) ↓

K
= (N ↓

K
)|W | as K-modules. But

(W ⊗N) ↓
K

= ⊕si=1(W ⊗Ni) where each W ⊗Ni is a K-module by Equation (3.5.3). Thus

⊕si=1 N
|W |
i = ⊕si=1(W ⊗Ni) (3.5.5)

This shows that if Ni is a constituent of N ↓
K

then W ⊗Ni has all the irreducible K- con-
stituents among those of N ↓

K
. The formula (3.4.1) applied for each irreducible constituent

of α
d

gives that
1

ε(d)
α
d
↑HK= α ↑H

K
(3.5.6)

for all α ∈ Irr(K) and d ∈ Irr(H∗).

Proposition 3.5.4. Let K be a normal Hopf subalgebra of H and M be an irreducible
K-module. Then M ↑H

K
↓H
K

and ⊕d∈Irr(H∗)
dM have the same irreducible constituents.

Proof. Consider the equivalence relation rH
k, K

from Section 2 and let B1, · · · , Bs be its
equivalence classes. Pick an irreducible character di ∈ Bi in each equivalence class of
rH
k, K

and let Ci be its associated simple coalgebra. Then Corollary 2.5 implies that H =

⊕si=1CiK. It follows that the induced module M ↑H
K

is given by

M ↑H
K

= H ⊗
K
M = ⊕si=1CiK ⊗K

M
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Each CiK ⊗K
M is a K-module by left multiplication with elements of K since

k.(ck′ ⊗K m) = c1(Sc2kc3)k′ ⊗K m = c1 ⊗K (Sc2kc3)k′m

for all k, k′ ∈ K, c ∈ Ci and m ∈ M . Thus M ↑H
K

restricted to K is the sum of
the K-modules CiK ⊗K M . On the other hand the composition of the canonical maps
Ci ⊗K ↪→ CiK ⊗M → CiK ⊗K M is a surjective morphism of K-modules which implies
that CiK⊗KM is a homeomorphic image of ε(di) copies of diM . Therefore the irreducible
constituents of M ↑H

K
↓H
K

are among those of ⊕d∈Irr(H∗)
dM . In the proof of the previous

Proposition we showed the other inclusion. Thus M ↑H
K
↓H
K

and ⊕d∈Irr(H∗)
dM have the

same irreducible constituents



Chapter 4

Clifford theory for cocentral
extensions

The classical Clifford correspondence for normal subgroups is considered in the more gen-
eral setting of semisimple Hopf algebras. We prove that this correspondence still holds if
the extension determined by the normal Hopf subalgebra is cocentral.

The starting point for Clifford theory is Clifford’s paper [28] on representations of normal
groups. Since then a lot of literature was written on the subject. Parallel theories for
graded rings and Lie algebras were developed in [33] and [7] respectively, as well as in
other papers. A unifying setting for these theories was developed by Schneider [106] for
Hopf Galois extensions. The main problem with this more general theory is that usually
the stabilizer is not a Hopf subalgebra and is not an extension of the based ring.

A more general approach was considered by Witherspoon in [120, 121] for any normal
extension of semisimple algebras. With a certain definition of the stabilizer it was proven
in [120] that the Clifford correspondence holds.

In this chapter we address an analogue of initial’s Clifford approach for groups. We consider
an extension of Hopf algebras A/B where B is a normal Hopf subalgebra of A and let M
be an irreducible B-module. The conjugate B-modules of M are defined as in [14] and
the stabilizer Z of M is a Hopf subalgebra of A containing B. We say that the Clifford
correspondence holds for M if induction from Z to A provides a bijection between the sets
of Z (respectively A)-modules that contain M as a B-submodule.

Since B is normal in A also in the sense of [120] the results from this paper can also
be applied. It is shown that the Clifford correspondence holds for M if and only if Z is
a stabilizer in the sense proposed in [120]. A necessary and sufficient condition for this
to happen is given in Proposition 4.2. Our approach uses the character theory for Hopf
algebras and normal Hopf subalgebras. If the extension

k −−−→ B
i−−−→ A

π−−−→ H −−−→ k

45



46 CHAPTER 4. CLIFFORD THEORY

is cocentral then we prove that this condition is satisfied (see Corollary 6.5.1). Recall that
a such extension is cocentral if H∗ ⊂ Z(A∗) via π∗.

The chapter is organized as follows. First section recalls the character theory results for
Hopf subalgebras that are further needed. The next section defines the conjugate module
and introduces the stabilizer as a Hopf subalgebra. The necessary and sufficient condition
for the Clifford correspondence to hold is proven in this section. Third section considers the
case when the quotient Hopf algebra is a finite group algebra. A different approach gives
in these settings another criterion for the Clifford correspondence to hold (see Theorem
4.3.1). As a corollary of this it is proven that the Clifford correspondence holds for cocentral
extensions. In the last section of this chapter a counterexample of a non cocentral extension
where the Clifford correspondence does not hold anymore is given.

4.1 Normal Hopf subalgebras

Throughout of this chapter A will be a finite dimensional semisimple Hopf algebra over an
algebraically closed field k of characteristic zero. Then A is also cosemisimple and S2 = Id
[73].

Let B be a Hopf subalgebra A. By [14, Corollary 2.5] there is a coset decomposition
for A

A = ⊕C/∼BC.
where ∼ is an equivalence relation on the set of simple subcoalgebras of A given by C ∼ C ′

if and only if BC = BC ′. In [14] this equivalence relation is denoted by rA
B, k

.
Since A is also cosemisimple [73] the set of simple subcoalgebras of A is in bijection

with the set of irreducible characters of A∗ (see [72] for this correspondence).
Suppose now that B is a normal Hopf subalgebra of A. Recall that this means

a1BS(a2) ⊂ B for all a ∈ A. If χ and µ are two irreducible characters of A it can be
proven that their restriction to B either have the same irreducible constituents or they
don’t have common constituents at all. Define χ ∼ µ if and only m

B
(χ ↓AB, µ ↓AB) > 0.

With the above notations this is the equivalence relation rA
∗

H∗, k
for the inclusion H∗ ⊂ A∗

where H = A//B is the quotient Hopf algebra.
Let A1, · · · ,Al the equivalence classes of the above relation and

ai =
∑
χ∈Ai

χ(1)χ

for 1 ≤ i ≤ l.
This equivalence relation determines an equivalence relation on the set of irreducible

characters of B. Two irreducible B-characters α and β are equivalent if and only if they
are constituents of χ ↓AB for some irreducible character χ of A.

Let B1, · · · ,Bl be the equivalence classes of this new equivalence relation and let

bi =
∑
α∈Bi

α(1)α.
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The induction-restriction formulae from [14] can be written as

χ ↓AB
χ(1)

=
bi
bi(1)

(4.1.1)

and
α ↑A

B

α(1)
=
|A|
|B|

ai
ai(1)

(4.1.2)

if χ ∈ Ai and α ∈ Bi.
Since the regular character of A restricts to |A||B| copies of the regular character of B it

follows that

ai ↓AB=
|A|
|B|

bi. (4.1.3)

In particular ai(1) = |A|
|B|bi(1) for all 1 ≤ i ≤ l(see also [14, Subsection 4.1]).

4.2 Conjugate modules and stabilizers

Let M be an irreducible B-module with character α ∈ C(B). We recall the following
notion of conjugate module introduced in [14]. It was also previously considered in [106]
in the cocommutative case.

If W is an A∗-module then W ⊗M becomes a B-module with

b(w ⊗m) = w0 ⊗ (S(w1)bw2)m (4.2.1)

Here we used that any left A∗-module W is a right A-comodule via ρ(w) = w0 ⊗ w1.
It can be checked that if W ∼= W ′ as A∗-modules then W ⊗M ∼= W ′ ⊗M . Thus for any
irreducible character d ∈ Irr(A∗) associated to a simple A-comodule W one can define the
B-module dM ∼= W ⊗M . If α is the character of M then the character dα of dM is given
by

dα(x) = α(Sd1xd2) (4.2.2)

for all x ∈ B (see [14, Proposition 5.3]).

Remark 4.2.1. From [14, Proposition 5.12] it follows that the equivalence class of a char-
acter α ∈ Irr(B) is given by all the irreducible constituents of dα as d runs through all
irreducible characters of H∗.

Fix α ∈ Irr(B) and suppose that α ∈ Bi for some index i.

Proposition 4.1. The set {d ∈ Irr(A∗) | dα = ε(d)α} is closed under multiplication and
“ ∗ ”. Thus it generates a Hopf subalgebra Z of A that contains B.
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Proof. Since d(d
′
α) = dd′α it follows that the above set is closed under multiplication.

Since d∗ is a constituent of some power of d it also follows that the set is closed under “ ∗ ”
too. Thus it generates a Hopf subalgebra Z of A (see [92]) with Z = ⊕CC where the sum
is over all simple subcoalgebras of H whose irreducible characters d satisfy dα = ε(d)α.
If d ∈ B then dα(x) = α(Sd1xd2) = α(xd2S(d1)) = ε(d)α(x) for all x ∈ B. Therefore
B ⊂ Z.

Z will be called the stabilizer of α in A.

Remark 4.2.2. If C is any subcoalgebra of H then C ⊗M has a structure of B-module
as above using the fact that C is a right A-comodule via ∆. Then C ⊗ M ∼= M |C| as
B-modules if and only if C ⊂ Z.

Remark 4.2.3. If A = kG and B = kN for a normal subgroup N then Z coincides with
the stabilizer of α introduced in [28].

4.2.1 On the stabilizer

Since B is normal in Z one can define as above two equivalences relations, on Irr(Z)
respectively Irr(B). Let Z1, · · · ,Zr be the equivalence classes in Irr(Z) and B′1, · · · ,B′r
be the corresponding equivalence classes in Irr(B).

Remark 4.2.1 implies that α by itself form an equivalence class of Irr(B), say B′1. Then
clearly the corresponding equivalence class Z1 is given by

Z1 = {ψ ∈ Irr(Z)| ψ ↓
B

contains α}.

Formula (4.1.1) becomes in this situation ψ ↓Z
B

= ψ(1)
α(1)

α for all ψ ∈ Z1. Let ψα =∑
ψ∈Z1

ψ(1)ψ. Then ψα ↓ZB= |Z|
|B|α(1)α by 4.1.3 and ψα(1) = |Z|

|B|α(1)2.

Lemma 4.2.1. With the above notations

ψα ↑AZ=
α(1)2

bi(1)
ai.

Proof. One has α ↑ZB= |Z|
|B|

α(1)
ψα(1)

ψα by 4.1.2. But ψα(1) = |Z|
|B|α(1)2 and the last formula

becomes

α ↑ZB=
ψα
α(1)

Thus α ↑AB= (α ↑ZB) ↑AZ=
ψα↑AZ
α(1)

. On the other hand α ↑AB= |A|α(1)
|B|ai(1)

ai and one gets that:

ψα ↑AZ=
|A|α(1)2

|B|ai(1)
ai =

α(1)2

bi(1)
ai.
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4.2.2 Definition of the Clifford correspondence

The above Lemma implies that for any ψ ∈ Z1 all the irreducible constituents of ψ ↑AZ are
in Ai. We say that the Clifford correspondence holds for the irreducible character α ∈ Bi
if ψ ↑AZ is irreducible for any irreducible character ψ ∈ Z1 and the induction function

ind : Z1 → Ai

given by ind(ψ) = ψ ↑AZ is a bijection.

4.2.3 Clifford theory for normal subrings

Let B ⊂ A an extension of k-algebras. An ideal J of B is called A-invariant if AJ = JA.
Following [120] the extension A/B is called normal if every two sided ideal of B is A-
invariant. Witherspoon gave a general Clifford correspondence for normal extensions. Let
M be a B-module. Then M is called A stable if the module M ↑AB↓AB is isomorphic to direct
sum of copies of M . A stabilizer S of M is a semisimple algebra S such that B ⊂ S ⊂ A,
B is a normal subring of S, M is S-stable, and M − soc(M ↑AB↓AB) = M − soc(M ↑SB↓SB).
Here the M -socle of a B -module is the sum of all its submodules isomorphic to M .

Next we investigate a relationship between the stabilizer Z previously defined and the
notion of stabilizer defined as above for normal extensions. It is easy to see that if B
is a normal Hopf subalgebra of A then the extension A/B is normal in the above sense
(see also [120, Proposition 5.3]). By the same argument B is normal in Z and from
Remark 4.2.1 it follows that M is Z-stable. Thus Z is a stabilizer in the above sense if
and only if the socle condition is satisfied. In terms of characters this can be written as
m

B
(α ↑ZB↓ZB, α) = m

B
(α ↑AB↓AB, α) where α is the character of M .

Proposition 4.2. With the above notations:

1. |Z| ≤ |A|α(1)2

bi(1)
.

2. Equality holds if and only if Z is a stabilizer in the sense of [120].

Proof. Clearly m
B

(α ↑ZB↓ZB, α) ≤ m
B

(α ↑AB↓AB, α) and equality holds if and only if Z is a
stabilizer in the sense of [120].

Let as before s = |A|
|B| be the index of B in A and s′ = |Z|

|B| be the index of B in Z.

Using formulae (4.1.2) and (4.1.3) it can be seen that :

m
B

(α ↑AB↓AB, α) =
sα(1)

ai(1)
m

B
(ai ↓AB, α) =

s2α(1)

ai(1)
m

B
(bi, α)

=
α(1)2s2

ai(1)

=
α(1)2

bi(1)
s
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A similar argument applied to the extension B ⊂ Z gives

m
B

(α ↑ZB↓ZB, α) =
α(1)2s′

b′1(1)
= s′

since in this situation b′1 = α(1)α. Thus s′ = |Z|
|B| ≤ sα(1)2

bi(1)
= |A|
|B|

α(1)2

bi(1)
which gives the

required inequality.

Remark 4.2.1. If A = kG and B = kN for a normal subgroup N then the above inequality
is equality. It states that the number of conjugate modules of α is the index of the stabilizer
of α in G.

4.2.4 Clifford correspondence

Theorem 4.2.2. The Clifford correspondence holds for α if and only if Z is a stabilizer
in the sense given in [120].

Proof. If Z is a stabilizer in the sense given in [120] then the Clifford correspondence holds
by Theorem 4.6 of the same paper.

Conversely, suppose that the map

ind : Z1 → Ai
given by ind(ψ) = ψ ↑AZ is a bijection. Thus for any ψ ∈ Z1 there is a χ ∈ Ai such that
ψ ↑AZ= χ. Note that this implies ψ(1) = |Z|

|A|χ(1).
Since ind is a bijection one can write

ψα ↑AZ=
∑
ψ∈Z1

ψ(1)ψ ↑AZ=
∑
χ∈Ai

|Z|
|A|

χ(1)χ =
|Z|
|A|

ai

which implies that ψα(1) = ( |Z||A|)
2ai(1). Lemma 4.2.1 implies ψα(1) = |Z|

|A|
α(1)2

bi(1)
ai(1) and

therefore one gets |Z| = |A|α(1)2

bi(1)
. Proposition 4.2 implies that Z is a stabilizer in the sense

given in [120].

4.3 Extensions of Hopf algebras

Let B be a normal Hopf subalgebra of A and H = A//B. Then we have the extension

k −−−→ B
i−−−→ A

π−−−→ H −−−→ k (4.3.1)

and A/B is an H-Galois extension with the comodule structure ρ : A → A ⊗H given by
ρ = (id⊗ π)∆.

Remark 4.3.1. The restriction functor form A-modules to B-modules induces a map
res : C(A) → C(B). It is easy to see that res = i∗|C(A), the restriction of i∗ : A∗ → B∗

to the subalgebra of characters C(A). By duality, π|C(A∗) is the restriction map of A∗-
characters to H∗ (here H∗ ⊂ A∗ via π∗).
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4.3.1 Results on Hopf Galois extensions

In this subsection we recall few facts about Clifford theory for Hopf Galois extensions over
finite group algebras H = kF from [106]. (see also [33]). Let A/B be a Hopf Galois
extension over H = kF via the comodule map ρ : A → A ⊗ kF . For any f ∈ F let
Af = ρ−1(A ⊗ kf). Since A/B is a Hopf Galois extension one has that A = ⊕f∈FAf is
a strongly graded algebra by F with A1 = B. The functor Af ⊗B − :B M →B M is
an equivalence of categories since Af is an invertible B-bimodule, Af ⊗B Af−1 = B. In
particular for any simple B-module M then Af⊗BM is also a simple B-module. From this
it follows that the group F acts on the irreducible representations of B by f.M := Af⊗BM

The stabilizer H of M is defined as the set of all f ∈ F such that Af ⊗B M ∼= M as
B-modules. It is a subgroup of F . Let S := A(H) = ρ−1(A ⊗ kH) = ⊕h∈HAh. Then the
induction map ind

{V ∈ S −mod : V ↓SB contains M} → {P ∈ A−mod : P ↓AB contains M}

given by ind(M) = S ⊗B M is a bijection.

4.3.2 Extensions by kF
For the rest of this section we suppose that H = kF for some finite group F . Then
H∗ = kF is a normal Hopf subalgebra of A∗ and one can define the same equivalence
relations form the beginning of this Chapter for this new extension. Since Irr(kF ) = F this
gives a partition of the group F =

⊔m
j=1Fj. Then by Remark 4.3.1 formula (4.1.3) applied

to this situation implies that for any d ∈ Irr(A∗) there is an unique index j such that

π(d) =
ε(d)

|Fj|
∑
f∈Fj

f. (4.3.1)

4.3.3 Dimension of the orbit

Let M be an irreducible representation of B with character α and let H ≤ F be the
stabilizer of M . Since |f.M | = |M | it follows that all the irreducible representations in
the equivalence class of M have the same dimension. If s is their number then clearly
s = |F |

|H| . Suppose now that Bi is the equivalence class of α. The above results implies that
Bi coincide with the set of characters of the irreducible modules f.M . Thus

bi(1) = sα(1)2 =
|F |
|H|

α(1)2. (4.3.1)

4.3.4 Coset decomposition

Recall the coset decomposition for A

A = ⊕C/∼BC. (4.3.1)
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where ∼ is an equivalence relation on the set of simple subcoalgebras of A given by C ∼ C ′

if and only if BC = BC ′. Note that BC = CB for any simple subcoalgebra C of A since
B is a normal Hopf subalgebra (see also [14]).

Lemma 4.3.1. Suppose that π : A → kF is a surjective map of Hopf algebras where F
is a finite group. Let C be a simple subcoalgebra of A with irreducible character d and
suppose π(d) =

∑
g∈A agg where A ⊂ F and ag are positive integers for all g ∈ A. Then

π(C) = ⊕g∈Akg.

Proof. π(C) is a subcoalgebra of kF and therefore π(C) = ⊕g∈Bkg. It is enough to show
A = B. Clearly A ⊂ B. For any g ∈ B let kg be a copy of the field k. By duality π∗ induces
an embedding of the semisimple algebra R =

∏
g∈B kg in the matrix algebra C∗ = Mε(d)(k).

Writing the primitive idempotents of R in terms of the primitive idempotents of C∗ it
follows that B ⊂ A.

Lemma 4.3.2. Assume that H = kF for some finite group F . Let d ∈ Irr(A∗) associated
to the simple subcoalgebra C. If

π(d) =
ε(d)

|Fj|
∑
f∈Fj

f

then the coset BC = ⊕f∈FjA(f).

Proof. Let As = ⊕f∈FsA(f) for all 1 ≤ s ≤ m. Then A = ⊕ms=1As. The above lemma
implies that π(C) = ⊕f∈Fjkf . Since π(BC) = π(C) this shows BC ⊂ Aj. The coset
decomposition formula (4.3.1) forces BC = Aj.

Theorem 4.3.1. Suppose that H = kF for some finite group F . Let M be an irreducible
representation of B with character α and let H ≤ F be the stabilizer of M . Then Z ⊂
S := A(H) and the Clifford correspondence holds for α if and only if Z = S.

Proof. Since A/B is an Hopf Galois extension over H = kF it follows as above that A is
strongly F -graded with A = ⊕f∈FAf . First we will show that Z ⊂ S = A(H). Recall
the definition of Z as the sum of all simple subcoalgebras C whose irreducible characters
d verify the property dα = ε(d)α. Let C be such an algebra with character d. As above
there is a j such that π(d) = ε(d)

|Fj |
∑

f∈Fj f . It is easy to see that the canonical map
CB ⊗M → CB ⊗B M is a morphism of B-modules. Since BC ⊂ Z is a subcoalgebra
Remark 4.2.2 implies CB⊗M ∼= M |CB| as B-modules. Thus CB⊗BM is a sum of copies
of M . By Lemma 4.3.2 BC ⊗B M = ⊕f∈FjA(f) ⊗B M which shows that Fj ⊂ H and
therefore C ⊂ A(H) by Lemma 4.3.1. Thus Z =

∑
C⊂Z C ⊂ A(H).

Since S/B is a kH-Hopf Galois extension it follows that |S| = |B||H|. Using formula

(4.3.1) it follows that |S| = |A|α(1)2

bi(1)
if α ∈ Bi. Then Theorem 4.2.2 shows that the Clifford

correspondence holds if and only if |Z| = |S|.

It is easy to see that ∆A(S) ⊂ A⊗ S.
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Corollary 4.3.2. Suppose that H = kF for some finite group F . Let M be an irreducible
representation of B with character α and let H ≤ F be the stabilizer of M . Then the
Clifford correspondence holds for α if and only S is a Hopf subalgebra of A.

Proof. Any S-module which restricted to B contains M is a direct sum of copies of M as
a B-module by [106, Corollary 2.2]. If S is a Hopf algebra then Remark 4.2.1 applied to
the extension S/B implies that S ⊂ Z. Thus S = Z.

Corollary 4.3.3. Suppose that the extension (4.3.1) is cocentral. Then the Clifford corre-
spondence holds for any irreducible B-module M .

Proof. Since H∗ is commutative there is a finite group F such that H = kF . It is easy to
see that H∗ ⊂ Z(A∗) via π∗ if and only if π(a1)⊗ a2 = π(a2)⊗ a1 for all a ∈ A. This last
relation implies that S is a Hopf subalgebra of A and the previous corollary finishes the
proof.

4.4 A Counterexample

Let Σ = FG be an an exact factorization of finite groups. This gives a right action
C : G × F → G of F on the set G, and a left action B : G × F → F of G on the set F
subject to the following two conditions:

sB xy = (sB x)((sC x) B y) stC x = (sC (tB x))(tC x)

The actions B and C are determined by the relations gx = (gBx)(gCx) for all x ∈ F ,
g ∈ G. Note that 1 B x = x and sC 1 = s.

Consider the Hopf algebra A = kG#kF [81] which is a smashed product and coproduct
using the above two action. The structure of A is given by:

(δgx)(δhy) = δgCx,hδgxy

∆(δgx) =
∑
st=g

δs(tB x)⊗ δtx

Then A fits into the abelian extension

k −−−→ kG i−−−→ A
π−−−→ kF −−−→ k (4.4.1)

As above F acts on Irr(kG) = G. It is easy to see that this action is exactly C. Let
g ∈ G and H be the stabilizer of g under C. Using the above notations it follows that
S = A(H) = kG#kH. We will construct an example where S is not a Hopf algebra
and therefore the Clifford correspondence does not hold g ∈ G. Remark that the above
comultiplication formula implies S is a Hopf subalgebra if and only if GBH ⊂ H.
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C4 C S3 g g2 g3

t g g3 g2

s g2 g3 g

s2 g3 g g2

st g3 g2 g

ts g2 g g3

Table 4.1: The right action of S3 on C4

C4 B S3 t s s2 st ts

g ts t s st s2

g2 s2 ts t st s

g3 s s2 ts st t

Table 4.2: The left action of C4 on S3

Consider the exact fact factorization S4 = C4S3 where C4 is generated by the four cycle
g = (1234) and S3 is given by the permutations that leave 4 fixed. If t = (12) and s = (123)
then the actions C and B are given in Tables 1 and 2.

The stabilizer of the element g is the subgroup {1, t} which is not invariant by the
action of C4. Thus the Clifford correspondence does not hold for g.



Part III

Fusion categories: Group actions on
fusion categories
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Chapter 5

Fusion rules of equivariantization

5.1 Introduction

Throughout this chapter we shall work over an algebraically closed field k of characteristic
zero.

Let C be a fusion category over k, that is, C is a semisimple rigid monoidal category
over k with finitely many isomorphism classes of simple objects, finite-dimensional Hom
spaces, and such that the unit object 1 is simple (see [27, 43, 44]).

Consider an action ρ : G → Aut⊗C of a finite group G by tensor autoequivalences of
C and let CG be the equivariantization of C with respect to this action. Equivariantiza-
tion under a finite group action, as well as its applications, generalizations and related
constructions, have been intensively studied in the last years by several authors. See for
instance [3, 13, 12, 36, 37, 45, 50, 57, 98, 111].

In the sense of the notions introduced in [13, 12], equivariantization gives rise in a
canonical way to a central exact sequence of tensor categories

Rep G→ CG → C,

where Rep G is the category of finite-dimensional representations of G. On the other
hand, combined with the dual notion of (graded) group extension of a fusion category,
equivariantization underlies the notion of solvability of a fusion category developed in [45].

An important invariant of a fusion category C is its Grothendieck ring, gr(C). For
instance, the knowledge of the structure of the Grothendieck ring allows to determine all
fusion subcategories of C, which correspond to the so-called based subrings.

Let Irr(C) = {1 = S0, . . . , Sn} denote the set of isomorphism classes of simple objects
of C. Then Irr(C) is a basis of gr(C) and, for all 0 ≤ i, j ≤ n, we have a relation

SiSj =
n∑
l=0

N l
i,j Sl, (5.1.1)

57
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where N l
i,j are non-negative integers given by N l

i,j = dim HomC(Sl, Si ⊗ Sj), 0 ≤ l ≤ n.
The relations (5.1.1) are known as the fusion rules of C. They are determined by the set
Irr(C) and the multiplicities N l

i,j ∈ Z≥0.
The main result of this chapter is the determination of the fusion rules of CG in terms

of the fusion rules of C and certain canonical group-theoretical data associated to the
group action. This is contained in Theorem 6.1.3. As it turns out, the structure of the
Grothendieck ring of CG resembles that of the rings introduced by Witherspoon in [122].
See Remark 5.3.4.

As an example, consider a semisimple cocentral Hopf algebra extension H of a Hopf
algebra A by a finite group G, that is, H fits into a cocentral exact sequence

k→ A→ H → kG→ k.

As shown in [94] the category Rep H of finite-dimensional representations of H is an
equivariantization (Rep A)G with respect to an appropriate action of G on Rep A. Thus
Theorem 6.1.3 implies that the fusion rules of the category Rep H can be described in
terms of the fusion rules of Rep A and the action of G. In particular, Theorem 6.1.3
generalizes the results obtained for cocentral abelian extensions of Hopf algebras in [61]
and [122].

We discuss in detail the case where C is a pointed fusion category, that is, when all simple
objects of C are invertible. In this case the fusion rules of CG are described completely in
terms of group-theoretical data. See Theorem 5.4.1.

It is known that every braided group-theoretical fusion category is an equivariantization
of a pointed fusion category [87, 86]. Therefore, our results entail the determination of the
fusion rules in any braided group-theoretical fusion category.

In order to establish Theorem 6.1.3, we give an explicit description of the simple objects
of the equivariantization CG. This is done, more generally, for any action ρ : G→ AutC of
the group G by autoequivalences of a k-linear finite semisimple category C. Such an action
induces naturally an action of G on the set Irr(C) of isomorphism classes of simple objects
of C. Let Y ∈ Irr(C) and let GY ⊆ G denote the inertia subgroup of Y , that is,

GY = {g ∈ G | ρg(Y ) ' Y }. (5.1.2)

We show that isomorphism classes of simple objects of CG are parameterized by pairs
(Y, π), where Y runs over the orbits of the action of G on Irr(C), and π is the equivalence
class of an irreducible projective representation of the inertia subgroup GY with a certain
factor set α̃Y ∈ Z2(GY ,k∗). This result is analogous to the parameterization of irreducible
representations of a finite group in terms of those of a normal subgroup given by Clifford
Theorem. It extends the description obtained in [83] for the case where CG is the category
of representations of an (algebra) group crossed product (see [94, Subsection 3.1]).

In the case where C is a fusion category, the duality in C gives rise to a ring involution
∗ : gr(C) → gr(C). We describe this ring involution for the Grothendieck ring of CG in
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Subsection 5.3.4, more precisely, we use Theorem 6.1.3 in order to determine the dual of
the simple object in CG corresponding to a pair (Y, π) as above.

We may regard Rep G as a fusion subcategory of CG under a canonical embedding.
In this way CG becomes a Rep G-bimodule category under the action given by tensor
product. As another consequence of Theorem 6.1.3, we give a decomposition of CG into
indecomposable Rep G-module categories. See Theorem 5.3.8.

This chapter is organized as follows. In Section 5.2 we recall the definition of the equiv-
ariantization of a semisimple abelian category over k under a finite group action and give
a parameterization of its simple objects. With respect to this parameterization, we deter-
mine in Section 5.3 the fusion rules in an equivariantization of a fusion category. Appart
from the main result, Theorem 6.1.3, we also present in this section the above mentioned
applications to the determination of the dual of a simple object and the decomposition of
CG as a Rep G-bimodule category. In Section 5.4 we specialize our main result to the case
of an equivariantization of a pointed fusion category and in particular, to braided group-
theoretical fusion categories. We include an Appendix at the end of the chapter, where
we give an account of the relevant facts about projective group representations needed
throughout.

5.2 Simple objects of an equivariantization

The goal of this section is to describe a (mostly well-known) Clifford correspondence en-
tailing a classification of isomorphism classes of simple objects of CG in terms of the action
of G on the set Irr(C) of isomorphism classes of simple objects of C. Some instances of this
correspondence appear for instance in [45, Proof of Proposition 6.2] and [86, Proposition
5.5].

By abuse of notation, we often indicate an object of a category C and its isomorphism
class by the same letter.

5.2.1 Equivariantization under a finite group action

Let C be a finite semisimple k-linear category and let G be a finite group. Let also ρ : G→
Aut C be an action of G on C by k-linear autoequivalences. Thus, for every g ∈ G, we have
a k-linear functor ρg : C → C and natural isomorphisms

ρg,h2 : ρgρh → ρgh, g, h ∈ G,

and ρ0 : idC → ρe, subject to the following conditions:

(ρab,c2 )X (ρa,b2 )ρc(X) = (ρa,bc2 )X ρ
a((ρb,c2 )X), (5.2.1)

(ρa,e2 )Xρ
a
ρ0(X) = (ρe,a2 )X(ρ0)ρa(X), (5.2.2)
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for all objects X ∈ C, and for all a, b, c ∈ G. By the naturality of ρg,h2 , g, h ∈ G, we have
the following relation:

ρgh(f) (ρg,h2 )Y = (ρg,h2 )X ρ
gρh(f), (5.2.3)

for every morphism f : Y → X in C. For simplicity, we shall assume in what follows that
ρe = idC and ρ0, ρg,e2 , ρe,g2 are identities.

Let CG denote the corresponding equivariantization. Recall that CG is a finite semisim-
ple k-linear category whose objects are G-equivariant objects of C, that is, pairs (X,µ),
where X is an object of C and µ = (µg)g∈G, such that µg : ρgX → X is an isomorphism,
for all g ∈ G, satisfying

µgρg(µh) = µgh(ρg,h2 )X , ∀g, h ∈ G, µeρ0X = idX . (5.2.4)

A morphism f : (X,µ) → (X ′, µ′) in CG is a morphism f : X → X ′ in C such that
fµg = µ′gρg(f), for all g ∈ G.

We shall also say that an object X of C is G-equivariant if there exists such a collection
µ = (µg)g∈G so that (X,µ) ∈ CG. Note that µ is not necessarily unique.

The forgetful functor F : CG → C, F (X,µ) = X, is a dominant functor. The
functor F has a left adjoint L : C → CG, defined by L(X) = (⊕t∈GρtX,µX), where
(µX)g : ⊕t∈GρgρtX → ⊕t∈GρtX is given componentwise by the isomorphisms (ρg,t2 )X . The
composition Tρ = FL : C → C is a faithful k-linear monad on C such that CG is equivalent
to the category CTρ of Tρ-modules in C. See [13, Subsection 5.3].

5.2.2 Frobenius-Perron dimensions of simple objects of CG

Let X, Y ∈ C. Then HomC(ρ
gX, ρgY ) ' HomC(X, Y ), for all g ∈ G. Therefore, for all

g ∈ G, and for all objects M of CG, we have

HomC(F (M), ρgY ) ' HomC(F (M), Y ). (5.2.1)

The action of the group G on C permutes isomorphism classes of simple objects of C.
Let Y ∈ Irr(C). We shall denote GY := StG(Y ) ⊆ G the inertia subgroup of Y , that is,

GY = {g ∈ G| ρg(Y ) ' Y }.

Then Y has exactly n = [G : GY ] mutually nonisomorphic G-conjugates Y = Y1, . . . , Yn.
For every 1 ≤ j ≤ n, we have Yj ' ρgjY , where g1 = e, . . . , gn is a complete set of
representatives of the left cosets of GY in G.

Proposition 5.2.1. Let M = (X,µ) be a simple object of CG and let Y be a simple
constituent of X in C. Let Y = Y1, . . . , Yn, n = [G : GY ], be the mutually nonisomorphic
G-conjugates of Y . Then X ' m⊕ni=1 Yi, where m = dim HomC(X, Y ).
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Proof. Consider the object T (Y ) = FL(Y ) = ⊕g∈GρgY . Let Z be a simple object of C
such that Z � Yj, j = 1, . . . , n. Then HomC(Z, T (Y )) = 0. By adjointness, we have
HomCG(L(Y ),M) ' HomC(Y,X) 6= 0. Then M is a simple direct summand of L(Y ) in
CG. This implies that X = F (M) is a direct sum of simple subobjects of FL(Y ) = T (Y ).
Therefore HomC(Z,X) = 0.

Hence X ' ⊕ni=1miYi, where mi = dim HomC(Yi, X), for all i. By (5.2.1), we have
mi = m1 = m, for all i = 1, . . . , n. This proves the proposition.

Corollary 5.2.2. Let M = (X,µ) be a simple object of CG and let Y be a simple constituent
of X in C. Then FPdimM = m[G : GY ] FPdimY , where m = dim HomC(Y,X).

5.2.3 Equivariantization and projective group representations

Let Y ∈ C be a fixed simple object. The action ρ of G on C induces by restriction an action
of GY on C by autoequivalences. We may thus consider the equivariantization CGY .

By definition of GY , there exist isomorphisms cg : ρg(Y ) → Y , for all g ∈ GY . For all
g, h ∈ GY , the composition cgρg(ch)(ρg,h2Y

)−1(cgh)−1 defines an isomorphism Y → Y . Since
Y is a simple object, there exist nonzero α̃Y (g, h) ∈ k such that

α̃Y (g, h)−1 idY = cgρg(ch)(ρg,h2Y
)−1(cgh)−1 : Y → Y. (5.2.1)

This defines a map α̃Y : GY ×GY → k∗ which is a 2-cocycle on GY .

Remark 5.2.1. The cocycle α̃Y measures the possible obstruction for (Y, c) to be a GY -
equivariant object, where c = (cg)g∈GY .

Consider another choice of isomorphisms vg : ρg(Y ) → Y , g ∈ GY . Since Y is a
simple object, the composition cg(vg)−1 : Y → Y is given by scalar multiplication by some
f(g) ∈ k∗, for all g ∈ GY . Denoting by β̃Y the 2-cocycle related to (vg)g, it easy to see

that α̃Y and β̃Y differ by the coboundary of the cochain f : GY → k∗. This implies that
the cohomology class αY ∈ H2(GY ,k∗) of α̃Y depends only on the isomorphism class of the
simple object Y .

Lemma 5.2.1. Let (X,µ) ∈ CG and let Y ∈ Irr(C). Consider, for every g ∈ GY , iso-
morphisms cg : ρg(Y ) → Y and let α̃Y be the associated 2-cocycle on GY . Then the space
HomC(Y,X) carries a projective representation of GY with factor set α̃Y , defined in the
form

π(g)(f) = µgρg(f)(cg)−1 : Y → X, (5.2.2)

for all f ∈ HomC(Y,X).

Proof. The relation π(g)π(h) = α̃Y (g, h)π(gh), g, h ∈ G, follows by straightforward com-
putation, using the compatibility conditions for ρ.
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Remark 5.2.2. Suppose that φ : (X,µ)→ (X ′, µ′) is an isomorphism in CG. Then the in-
duced isomorphism HomC(Y,X)→ HomC(Y,X

′), f 7→ φf , is an isomorphism of projective
representations. Similarly, if Y ′ ' Y is another representative of the isomorphism class
of Y and c′g : ρg(Y ′) → Y ′, g ∈ GY , is a collection of isomorphisms, then the projective
representations HomC(Y,X) and HomC(Y

′, X) are projectively equivalent.

Proposition 5.2.3. Let Y ∈ Irr(C). There is a bijective correspondence between isomor-
phism classes of simple objects L = (N, ν) of CGY such that N ' HomC(Y,N) ⊗ Y and
equivalence classes of irreducible αY -projective representations of the group GY . If the sim-
ple object L = (N, ν) corresponds to the projective representation π, then π ' HomC(Y,N)
and FPdimL = dimπ FPdimY .

Proof. Let cg : ρg(Y ) → Y , g ∈ GY , be any fixed choice of isomorphisms, and let α̃Y be
the associated 2-cocycle. Let also π be a projective representation of GY on the vector
space V with factor set α̃Y . Then the pair (V ⊗ Y, ν) is a GY -equivariant object, where

νg = π(g)⊗ cg : ρg(V ⊗ Y ) = V ⊗ ρg(Y )→ V ⊗ Y. (5.2.3)

Conversely, if L = (N, ν) is an object of CGY with N ' HomC(Y,N) ⊗ Y , then V =
HomC(Y,N) carries a projective representation π of GY with factor set α̃Y defined by
(5.2.2).

These assignments are functorial and mutually inverse up to isomorphisms. Then L =
(N, ν) is a simple object of CGY if and only if V = HomC(Y,N) is an irreducible projective
representation. This implies the proposition.

5.2.4 The relative adjoint

Consider the forgetful functor FY : CG → CGY . We discuss in this subsection the left
adjoint LY : CGY → CG of the functor FY .

Let R be a set of representatives of the left cosets of GY in G. So that G is a disjoint
union G = ∪t∈RtGY .

Set, for all (N, ν) ∈ CGY , LY (N, ν) = LRY (N, ν) = (⊕t∈Rρt(N), µ), where, for all g ∈ G,
µg : ⊕t∈Rρgρt(N)→ ⊕t∈Rρt(N) is defined componentwise by the formula

µg,t = ρs(νh)(ρs,h2 )−1ρg,t2 : ρgρt(N)→ ρs(N), (5.2.1)

where the elements h ∈ GY , s ∈ R are uniquely determined by the relation

gt = sh. (5.2.2)

Remark 5.2.3. We shall show in Proposition 5.2.4 below that the functor LRY thus defined
is left adjoint of the functor FY . By uniqueness of the adjoint, it will follow that, up to
isomorphism, LRY does not depend on the particular choice of the set of representatives R.
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Lemma 5.2.2. Let (N, ν) ∈ CGY . Then LY (N, ν) ∈ CG.

Proof. For every g ∈ G, t ∈ R, let s(g, t) ∈ R, h(g, t) ∈ GY be the elements uniquely
determined by the relation gt = s(g, t)h(g, t). Note that, for all a, b ∈ G, t ∈ R, the
following relations hold:

s(ab, t) = s(a, s(b, t)), (5.2.3)

h(ab, t) = h(a, s(b, t))h(b, t), (5.2.4)

s(ab, t)h(a, s(b, t)) = as(b, t). (5.2.5)

In order to prove the lemma we shall show that, for all objects (N, ν) ∈ CGY , and for
all a, b ∈ G, t ∈ R, the following diagram is commutative:

ρaρbρt(N)
(ρa,b2 )ρt(N) //

ρa(µb,t)
��

ρabρt(N)

µab,t

��
ρaρs(b,t)(N)

µa,s(b,t)
// ρs(ab,t)(N).

(5.2.6)

This is done as follows. By (5.2.1), the relevant maps in diagram (5.2.6) are given by

µab,t = ρs(ab,t)(νh(ab,t)) (ρ
s(ab,t),h(ab,t)
2 )−1 ρab,t2 , (5.2.7)

µa,s(b,t) = ρs(a,s(b,t))(νh(a,s(b,t))) (ρ
s(a,s(b,t)),h(a,s(b,t))
2 )−1ρ

a,s(b,t)
2 , (5.2.8)

ρa(µb,t) = ρaρs(b,t)(νh(b,t)) ρa(ρ
s(b,t)h(b,t)
2 )−1 ρa(ρb,t2 ). (5.2.9)

Using (5.2.3) and the fact that (N, ν) is GY -equivariant, we compute

ρs(ab,t)(νh(ab,t)) = ρs(a,s(b,t))(νh(a,s(b,t))h(b,t))

= ρs(a,s(b,t))
(
νh(a,s(b,t)) ρh(a,s(b,t))(νh(b,t)) (ρ

h(a,s(b,t)),h(b,t)
2 )−1

)
= ρs(a,s(b,t))

(
νh(a,s(b,t))

)
ρs(a,s(b,t))ρh(a,s(b,t))

(
νh(b,t)

)
× ρs(a,s(b,t))

(
ρ
h(a,s(b,t)),h(b,t)
2

)−1

Similarly, relations (5.2.4) and (5.2.5), together with the defining condition (5.2.1) on the
isomorphisms ρ2, give(

ρ
s(ab,t),h(ab,t)
2

)−1

= ρs(ab,t)
(
ρ
h(a,s(b,t)),h(b,t)
2

)(
ρ
s(ab,t),h(a,s(b,t))
2

)−1

ρh(b,t)(N)

×
(
ρ
as(b,t),h(b,t)
2

)−1

.

The naturality condition (5.2.3) on ρg,h2 and relation (5.2.5) imply that(
ρ
s(ab,t),h(a,s(b,t))
2

)−1

ρh(b,t)(N)
=
(
ρs(ab,t)ρh(a,s(b,t))(νh(b,t))

)−1
(
ρ
s(ab,t),h(a,s(b,t))
2

)−1

× ρs(ab,t),h(a,s(b,t))(νh(b,t)).
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Hence we get

ρs(ab,t)(νh(ab,t))
(
ρ
s(ab,t),h(ab,t)
2

)−1

= ρs(a,s(b,t))
(
νh(a,s(b,t))

) (
ρ
s(ab,t),h(a,s(b,t))
2

)−1

× ρas(b,t)(νh(b,t))
(
ρ
as(b,t)),h(b,t)
2

)−1

.

Composing this resulting morphism with the inverse of

ρs(a,s(b,t))(νh(a,s(b,t))) (ρ
s(a,s(b,t)),h(a,s(b,t))
2 )−1,

and using (5.2.5), we obtain the expression

ρas(b,t)(νh(b,t))
(
ρ
as(b,t),h(b,t)
2

)−1

. (5.2.10)

Using relation (5.2.1), we see that commutativity of the diagram (5.2.6) is equivalent to

ρas(b,t)(νh(b,t))
(
ρ
as(b,t),h(b,t)
2

)−1

ρa,bt2 ρa(ρb,t2 ) = µa,s(b,t) ρa(µb,t). (5.2.11)

Finally, we compute

ρa,bt2 = ρ
a,s(b,t)h(b,t)
2

= ρ
as(b,t),h(b,t)
2 (ρ

a,s(b,t)
2 )ρh(b,t)(N) ρ

a(ρ
s(b,t),h(b,t)
2 )−1

= ρ
as(b,t),h(b,t)
2 ρas(b,t)(νh(b,t))−1ρ

a,s(b,t)
2 ρaρs(b,t)(νh(b,t)) ρa(ρ

s(b,t),h(b,t)
2 )−1.

Combining this with (5.2.9) we get relation (5.2.11). This shows that the diagram (5.2.6)
is commutative, as claimed, and finishes the proof of the lemma.

In view of Lemma 5.2.2 there is a well defined functor LY = LRY : CGY → CG.

Proposition 5.2.4. The functor LRY is left adjoint of the functor FY .

Proof. We define natural transformations η : idCGY →FYL
R
Y and ε : LRY FY → idCG , in the

form

η(N,ν) = ie : N = ρe(N)→ FYL
R
Y (N, ν) = FY (⊕t∈Rρt(N), µ),

ε(M,u) = ⊕t∈Rut : LRY FY (M,u) = (⊕t∈Rρt(M), µ)→ (M,u),

for every (N, ν) ∈ CGY , (M,u) ∈ CG. It is straightforward to verify that η and ε are
well-defined and that the compositions

FY
ηFY→ FYL

R
Y FY

FY ε→ FY , LRY
LRY η→ LRY FYL

R
Y

εLRY→ LRY

are identities. This implies the proposition.

Remark 5.2.4. Note that the restriction of LY to the fusion subcategory Rep GY of CGY
is isomorphic to the induction functor Rep GY → Rep G ⊆ CG.

As pointed out in Remark 5.2.3, we have the following:

Corollary 5.2.5. The functor LRY is, up to isomorphism, uniquely determined by the
subgroup GY .
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5.2.5 Parameterization of simple objects

The following theorem is the main result of this section.

Theorem 5.2.6. Let Y ∈ C be a simple object. Then the functor LY : CGY → CG induces
a bijective correspondence between isomorphism classes of:

(a) Simple objects (N, ν) ∈ CGY such that HomC(Y,N) 6= 0, and

(b) Simple objects (X,µ) ∈ CG such that HomC(Y,X) 6= 0.

If (X,µ) in CG as in (b) corresponds to (N, ν) in CGY as in (a), then we have HomC(Y,N) '
HomC(Y,X) as projective representations of GY . Moreover, N ' HomC(Y,N)⊗ Y .

Proof. Let (N, ν) ∈ CGY be a simple object as in (a). By Proposition 5.2.1 applied to GY ,
N ' mY , where m = dim HomC(Y,N). Thus N ' HomC(Y,N)⊗ Y .

Let (X,µ) ∈ CG be a simple object such that (N, ν) is a simple direct summand of
FY (X,µ) in CGY . By adjunction, (X,µ) is a simple direct summand of LY (N, ν) in CG.
Then X is a direct summand of ⊕t∈G/GY ρt(N) in C. Since X is G-equivariant, then
HomC(X,N) 6= 0.
Therefore HomC(Y,X) 6= 0 and (X,µ) satisfies the condition in (b).

Again by Proposition 5.2.1, we get that X ' e⊕ni=1 Yi, where Y = Y1, . . . , Yn, n = [G :
GY ], are the mutually nonisomorphic G-conjugates of Y . Note that e = dim HomC(Y,X) ≤
dim HomC(Y,N) = m, because the multiplicity of Y in ρt(N) is 0, for all t /∈ GY .

Since (N, ν) is a direct summand of FY (X,µ) in CGY , comparing Frobenius-Perron
dimensions, we obtain

[G : GY ]mFPdimY = FPdimLY (N, ν) ≤ FPdim(X,µ) = e[G : GY ] FPdimY.

Therefore e = m, and necessarily (X,µ) = LY (N, ν). This implies surjectivity of the map
induced by LY from (a) to (b).

Suppose (N ′, ν ′) � (N, ν) is a simple summand of FY (X,µ), with (N ′, ν ′) as in (b).
Applying the forgetful functor CGY → C and comparing the multiplicity of Y we get

e = dim HomC(Y,X) ≥ dim HomC(Y,N ⊕N ′) = m+ dim HomC(Y,N
′) > m.

This is a contradiction since e = m. Hence (N, ν) is the unique, up to isomorphisms,
simple object as in (b) such that

HomCG(LY (N, ν), (X,µ)) ' HomCGY ((N, ν), FY (X,µ)) 6= 0.

This proves injectivity of the map induced by LY . Thus this map is bijective, as claimed.

Now suppose that the class of the simple object (X,µ) of CG as in (b) corresponds
to the class of the simple object (N, ν) of CGY as in (a). The proof above shows that
N ' HomC(Y,N)⊗ Y .
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As we have shown, dim HomC(Y,X) = dim HomC(Y,N). Since N is a direct summand
of X in C, then HomC(Y,N) ⊆ HomC(Y,X), thus these spaces are equal. Furthermore, the
corresponding projective representations given by Formula (5.2.2) clearly coincide on both
spaces. This finishes the proof of the theorem.

Combining Theorem 5.2.6 with Proposition 5.2.3 we obtain the following:

Corollary 5.2.7. There is a bijective correspondence between the set of isomorphism
classes of simple objects (X,µ) of CG and the set of pairs (Y, π), where Y runs over the
orbits of the action of G on Irr(C) and π runs over the equivalence classes of irreducible
αY -projective representations of the inertia subgroup GY ⊆ G, where αY ∈ H2(GY ,k∗) is
the cohomology class of the cocycle α̃Y determined by (5.2.1).

Let (X,µ) be the simple object corresponding to the pair (Y, π). Then we have X '
⊕t∈G/GY ρt(Vπ ⊗ Y ). In particular, FPdim(X,µ) = dim π[G : GY ] FPdimY .

Let Y ∈ Irr(C)/G and let π be an irreducible αY -projective representation of the group
GY . We shall use the notation SY,π to indicate the isomorphism class of the simple object
of CG corresponding to the pair (Y, π). We shall also say that such simple object SY,π lies
over Y .

Remark 5.2.5. For every set R of left coset representatives of GY in G and for every
collection of isomorphisms {cg : ρg(Y ) → Y }g∈GY , the class SY,π is represented by the
simple object SR,cY,π := LRY (π ⊗ Y ), with the GY -equivariant structure on π ⊗ Y given by
(5.2.3).

Let us describe more explicitly the dependence of the simple object SR,cY,π on the choice
of the isomorphisms ch : ρh(Y ) → Y . Suppose we are given another collection of isomor-
phisms c′ = {c′g}. Then, Y being simple, for any g ∈ GY we can write c′g = dc,c′(g)cg, for
some scalar dc,c′(g) ∈ k∗. It follows from (5.2.3) that π⊗Y = d−1

c,c′π⊗Y as objects of CGY .
Hence

SR,cY,π = LRY (π ⊗ Y ) = LRY (d−1
c,c′π ⊗ Y ) = SR,c

′

Y,d−1
c,c′π

. (5.2.1)

Theorem 5.2.6 implies the following:

Lemma 5.2.3. Let Y ∈ Irr(C) and let π be an αY -projective representation of GY . Then

π ' HomC(Y, SY,π) (5.2.2)

as GY -projective representations.

Proof. Let Vπ denote the vector space of the representation π. We have SY,π ' LY (Vπ ⊗
Y, (π(g) ⊗ cg)g∈G), where cg : ρg(Y ) → Y is a collection of isomorphisms. It follows from
Proposition 5.2.3 and Theorem 5.2.6 that π ' HomC(Y, Vπ ⊗ Y ) ' HomC(Y, SY,π).

As a consequence we now get:
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Proposition 5.2.8. Let Y ∈ Irr(C) and let π be an irreducible αY -projective representation
of GY . Then, for all (X,µ) ∈ CG, we have

dim HomCG(SY,π, (X,µ)) = mGY (π, HomC(Y,X)).

In particular, the simple object SY,π is a constituent of (X,µ) if and only if π is a constituent
of HomC(Y,X).

Here, mGY (π, HomC(Y,X)) denotes the multiplicity of π in HomC(Y,X). See Section
5.5.

Proof. We have a decomposition (X,µ) ' ⊕(Z,γ) HomCG(SZ,γ, (X,µ))⊗SZ,γ, where Z runs
over a set of representatives of the orbits of the action of G on Irr(C) and γ is an irreducible
αZ-projective representation of GZ . Since HomC(Y, SZ,γ) = 0, for all Z 6= Y , then, as
projective GY -representations,

HomC(Y,X) ' ⊕(Z,γ) HomCG(SZ,γ, (X,µ))⊗ HomC(Y, SZ,γ)

' ⊕γ HomCG(SY,γ, (X,µ))⊗ γ,

the last isomorphism by Lemma 5.2.3. This implies the proposition.

5.2.6 On the choice of isomorphisms in a fixed orbit

Let Y ∈ Irr(C) and let t ∈ G. Since ρt(Y ) is a constituent of F (SY,π), it follows from
Theorem 5.2.6 that SY,π ' Sρt(Y ),δ, for some irreducible projective representation δ of
Gρt(Y ). In this subsection we discuss the dependence of δ upon π and the choice of the sets
of isomorphisms cY , cρt(Y ).

Let π be a projective representation ofGY with factor set α̃Y and let tπ be the conjugate
projective representation of Gρt(Y ) = tGY t

−1 =: tGY . That is, V tπ = Vπ and the action is
defined as tπ(h) = π(t−1ht), for all h ∈ GY . Denote by tα̃Y the 2-cocycle of Gρt(Y ) given
by

tα̃Y (tht−1, th′t−1) = α̃Y (h, h′), h, h′ ∈ GY . (5.2.1)

Then tπ is a projective representation of Gρt(Y ) with factor set tα̃Y .

Note that a given collection of isomorphisms cg : ρg(Y ) → Y , g ∈ GY , determines
canonically a collection of isomorphisms (tc)g : ρg(ρt(Y ))→ ρt(Y ), g ∈ tGY , in the form

(tc)g := ρt(ct
−1gt
Y ) (ρt,t

−1gt
2 )−1

Y (ρg,t2 )Y . (5.2.2)

Indeed, t−1gt ∈ GY since Gρt(Y ) = tGY t
−1.

Remark 5.2.6. Assume that Y is a simple object representing a class in a fixed orbit of
the action of G. For the objects ρt(Y ), let the isomorphisms tc be given as in (5.2.2). Then
formula (5.2.1) gives the 2-cocycle α̃ρt(Y )(tht

−1, th′t−1) = α̃Y (h, h′) on the inertia subgroup
Gρt(Y ).
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Lemma 5.2.1. Let H be a subgroup of G and let (M, ν) ∈ CH . Then, for all x ∈ G,
(ρx(M),x ν) ∈ CxH with equivariant structure (xν)xhx

−1
: ρxhx

−1
ρx(M) → ρx(M) defined,

for every h ∈ H, as the composition

ρxhx
−1

(ρx(M))
ρxhx

−1,x
2−−−−−→ ρxh(M)

(ρx,h2 )−1

−−−−−→ ρx(ρh(M))
ρx(νh)−−−→ ρx(M). (5.2.3)

Proof. Consider the 2-cocycle α̃ρx(M) ∈ Z2(Gρx(M),k∗) associated to the collection of iso-
morphisms xν. Since ν is an equivariant structure on M , it has a trivial associated 2-
cocycle. It follows from Remark 5.2.6 that α̃ρx(M) = 1 and therefore xν does define an
equivariant structure on ρx(M).

Corollary 5.2.9. Let tc be the collection of isomorphisms given by equation (5.2.2) and let
V tπ ⊗ ρt(Y ) be the associated object of CGρt(Y ). Then ρt(Vπ ⊗ Y ) = V tπ ⊗ ρt(Y ) in CGρt(Y ).

In particular we have an isomorphism of tGY -equivariant objects ρt(Vπ ⊗ Y ) ' V tπ ⊗
ρt(Y ), where the tGY -equivariant structure on V tπ ⊗ ρt(Y ) is induced by any choice of
isomorphisms cρt(Y ) for ρt(Y ).

Proof. By Lemma 5.2.1, a Gρt(Y )-equivariant structure on ρt(Vπ ⊗ Y ) is given by

ρtht
−1

ρt(Vπ ⊗ Y )
ρtht
−1,t

2−−−−→ ρth(Vπ ⊗ Y )
(ρt,h2 )−1

−−−−→ ρtρh(Vπ ⊗ Y )
π(h)⊗ρt(chY )
−−−−−−−→ Vπ ⊗ ρt(Y ),

for every h ∈ H. Since tπ(tht−1) = π(h), for all h ∈ H, this coincides with the equivariant
structure of V tπ ⊗ ρt(Y ) induced by tc.

Suppose now that for every h ∈ GY we have arbitrary isomorphisms

ctht
−1

ρt(Y ) : ρtht
−1

(ρt(Y ))→ ρt(Y )

These give rise to isomorphisms

ρt(Y )
(ctht

−1

ρt(Y )
)−1

−−−−−−→ ρtht
−1

(ρt(Y ))
ρtht
−1,t

2−−−−→ ρth(Y )
(ρt,h2 )−1

−−−−→ ρt(ρh(Y ))
ρt(chY )
−−−→ ρt(Y ).

Since ρt(Y ) is a simple object, there exist scalars dY (t, h) ∈ k∗ such that

ρt(chY )(ρt,h2 )−1ρtht
−1,t

2 = dY (t, h)ctht
−1

ρt(Y ), (5.2.4)

for all h ∈ H.
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5.3 Fusion rules for CG

In this section we shall assume that C is a fusion category over k and ρ : G → Aut⊗C
is an action of G on C by tensor autoequivalences, that is, ρg,h2 : ρgρh → ρgh are natural
isomorphisms of tensor functors, for all g, h ∈ G. Thus, for all g ∈ G, ρg is endowed with
a monoidal structure (ρg2)X,Y : ρg(X ⊗ Y ) → ρg(X) ⊗ ρg(Y ), X, Y ∈ C, and the following
relation holds:

ρgh2 X,Y ρ
g,h
2 X⊗Y = (ρg,h2 X ⊗ ρ

g,h
2 Y ) ρg2ρhX,ρhY ρ

g(ρh2X,Y ), (5.3.1)

for all g, h ∈ G, X, Y ∈ C.

Then CG is also a fusion category with tensor product (X,µX) ⊗ (Y, µY ) = (X ⊗
Y, (µX ⊗ µY )ρ2X,Y ), where for all g ∈ G, ρ2

g
X,Y : ρg(X ⊗ Y ) → ρg(X) ⊗ ρg(Y ) is the

monoidal structure on ρg.

Let π : G→ GL(V ) be a finite dimensional representation of G on the vector space V .
Then the (trivial) object V ⊗ 1 ∈ C has a G-equivariant structure defined by π(g)⊗ id1 :
ρg(V ⊗ 1) → V ⊗ 1. This induces an embedding of fusion categories Rep G → CG that
gives rise to an exact sequence of fusion categories

Rep G→ CG → C. (5.3.2)

See [13, Subsection 5.4].

Remark 5.3.1. Let G(C) be the set of isomorphism classes of invertible objects of C. The
exact sequence (5.3.2) induces an exact sequence of groups

1→ Ĝ→ G(CG)→ G0(C)→ 1,

where Ĝ ' G/[G,G] denotes the group of invertible characters of G and G0(C) is the
subgroup of G(C) consisting of isomorphism classes of invertible objects which are G-
equivariant. Indeed, F preserves Frobenius-Perron dimensions, and thus it induces a group
homomorphism F : G(CG)→ G0(C), which is clearly surjective. The kernel of F coincides
with the invertible objects of KerF = Rep G.

Remark 5.3.2. Note that if π is an irreducible representation of G = G1 on V , then the
simple object (V ⊗ 1, (π(g) ⊗ id1)g) of CG is isomorphic to the simple object S1,π corre-
sponding to the pair (1, π) as in Corollary 5.2.7.

5.3.1 Orbit formula for the tensor product of two simple objects

Let Y, Z, U ∈ Irr(C) and let π, γ, δ, be projective representations of the corresponding
inertia subgroups with factor sets determined by (5.2.1). Let also SY,π, SZ,γ and SU,δ be
the associated simple objects of CG.
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The multiplicity of SU,δ in the tensor product SY,π ⊗ SZ,γ is given by the dimension of
the vector space HomCG(SU,δ, SY,π ⊗ SZ,γ). In view of Proposition 5.2.8, this multiplicity
is the same as the multiplicity of δ in the space

HomC(U, SY,π ⊗ SZ,γ), (5.3.1)

regarded as an αU -projective representation of GU .

Consider the diagonal action of G on G/GY ×G/GZ coming from the natural actions by
left multiplication of G on G/GY and G/GZ . The stabilizer of a pair (t, s) is the subgroup
tGY ∩ sGZ ⊆ G.

As objects of C, we have that

SY,π ⊗ SZ,γ ' (
⊕

u∈G/GY

ρu(Vπ ⊗ Y ))⊗ (
⊕

v∈G/GZ

ρv(Vγ ⊗ Z))

'
⊕

(u,v)∈G/GY ×G/GZ

ρu(Vπ ⊗ Y )⊗ ρv(Vγ ⊗ Z)

=
⊕
O

SO,

where the last summation is over the distinct G-orbits O in G/GY ×G/GZ , and for every
G-orbit O,

SO := ⊕(u,v)∈O ρ
u(Vπ ⊗ Y )⊗ ρv(Vγ ⊗ Z). (5.3.2)

The subgroup GU acts on G/GY ×G/GZ by restriction and every G-orbit in G/GY ×
G/GZ is a disjoint union of GU -orbits. Note that the stabilizer of (t, s) ∈ G/GY × G/GZ

under the action of GU is the subgroup T = GU ∩ tGY t
−1 ∩ sGZs

−1.

Lemma 5.3.1. For every G-orbit (respectively, GU -orbit) O ⊆ G/GY × G/GZ, SO is
an equivariant subobject (respectively, a GU -equivariant subobject) of the tensor product
SY,π ⊗ SZ,γ.

Proof. We shall prove the statement for G-orbits, the proof for GU -orbits being analogous.
Let g ∈ G. The equivariant structure µg := µg

SY,π⊗SZ,γ
of SY,π⊗SZ,γ is given componentwise

by
(µg)u,v = (µg,uSY,π ⊗ µ

g,v
SZ,γ

)(Vπ ⊗ Vγ ⊗ (ρg2)ρuY,ρvZ),

where, for every (u, v) ∈ G/GY × G/GZ , µg,uSY,π and µg,vSZ,γ are given by formula (5.2.1). It
follows that

(µg)u,v(ρg(Vπ ⊗ Vδ ⊗ ρu(Y )⊗ ρv(Z)) ⊆ Vπ ⊗ Vδ ⊗ ρu
′
(Y )⊗ ρv′(Z),

where (u′, v′) ∈ G/GY × G/GZ are uniquely determined by the relations gu = u′hY and
gv = v′hZ , with hY ∈ GY and hZ ∈ GZ . Therefore, µg(SO) ⊆ SO, for all g ∈ G. This
implies the lemma.

The map G × G → G, (a, b) 7→ a−1b, induces a surjective map p : G/GY × G/GZ →
GY \G/GZ , such that p(tGY , sGZ) = GY t

−1sGZ .
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Let OG(t, s) denote the G-orbit of an element (t, s) ∈ G/GY ×G/GZ . Observe that for
all g ∈ G, we have p−1(GY gGZ) = OG(e, g). Therefore, p induces an identification between
the orbit space of G/GY × G/GZ under the action of G and the space of double cosets
GY \G/GZ . Combining this with (5.3.2), we obtain:

Corollary 5.3.1. We have a decomposition SY,π ⊗ SZ,γ '
⊕

D∈GY \G/GZ SD, where SD :=⊕
t−1s∈D ρ

t(Vπ⊗Y )⊗ρs(Vγ⊗Z). Moreover, for all D ∈ GY \G/GZ, SD is a G-equivariant
subobject of SY,π ⊗ SZ,γ.

5.3.2 Projective representation on multiplicity spaces.

It follows from Lemma 5.3.1 that for every G-orbit O ⊆ G/GY ×G/GZ , the space HO :=
HomC(U, SO) is an αU -projective representation of GU .

Let O = O1∪· · ·∪OnO be the decomposition of O into disjoint GU -orbits O1, . . . ,OnO .
Then, for all 1 ≤ i ≤ nO, the space H(i) = HomC(U, SOi) is also an αU -projective repre-
sentation of GU , where SOi := ⊕(u,v)∈Oi ρ

u(Vπ ⊗ Y )⊗ ρv(Vγ ⊗ Z).
Furthermore, as GU -projective representations,

HomC(U, SY,π ⊗ SZ,γ) ' ⊕OHO ' ⊕O ⊕nOi=1 H(i),

where summation is understood to run over all orbitsO = OG(t, s) such that HomC(U, ρ
t(Y )⊗

ρs(Z)) 6= 0.

For every (t, s) ∈ G/GY ×G/GZ , let

Ht,s := HomC(U, Vtπ ⊗ Vsγ ⊗ ρt(Y )⊗ ρs(Z)).

Lemma 5.3.2. Let t, s ∈ G. Then Ht,s is an αU |T -projective representation of T =
GU ∩ tGY ∩ sGZ. Moreover, for all 1 ≤ i ≤ n, we have

H(i) = HomC(U, SOi) =
⊕

(t,s)∈Oi

Ht,s, (5.3.1)

as projective representations of T .

Proof. Since Vtπ ⊗ ρt(Y ) and Vsγ ⊗ ρs(Z) are tGY ∩ sGZ-equivariant objects, so is their
tensor product. Lemma 5.2.1 implies that Ht,s is an αU |T -projective representation of T .
The decomposition (5.3.1) follows from the definition of SOi .

Proposition 5.3.2. Let U, Y, Z ∈ Irr(C) and let t, s ∈ G. Then the vector space τ t,sU (Y, Z) :=
HomC(U, ρ

t(Y )⊗ ρs(Z)) carries an α-projective representation of the subgroup T := GU ∩
Gρt(Y ) ∩Gρs(Z), where α := αU |Tα−1

ρt(Y )|Tα
−1
ρs(Z)|T . The action of g ∈ T is given by

g.f = (cgρt(Y ) ⊗ c
g
ρs(Z)) (ρg2)ρt(Y ), ρs(Z) ρ

g(f) (cgU)−1, (5.3.2)

for all f ∈ HomC(U, ρ
t(Y )⊗ ρs(Z)). Furthermore,

Ht,s ' tπ|T ⊗ sγ|T ⊗ τ t,sU (Y, Z),

as projective representations of T .
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Remark 5.3.3. Observe that the equivalence class of the projective representation τ t,sU (Y, Z)
is independent on the choice of the isomorphism classes of U, Y, Z as well as on the choice
of isomorphisms cρt(Y ), cρs(Z) and cU .

Proof. Given X ∈ Irr(C), we shall consider in what follows a fixed (but arbitrary) collection
of isomorphisms cX = {cgX : ρg(X)→ X}g∈GX . Let also α̃X ∈ Z2(GX ,k∗) be the associated
2-cocycles.

We first show that formula (5.3.2) does define a projective representation of T with
factor set α̃U |T α̃−1

ρt(Y )|T α̃
−1
ρs(Z)|T . Let g, h ∈ T , f ∈ HomC(U, ρ

t(Y ) ⊗ ρs(Z)). Using the
definition of the cocycles α̃ given by (5.2.1) and relation (5.3.1), we compute:

g.(h.f) = (cgρtY ⊗ c
g
ρsZ) (ρg2)ρtY, ρsZρ

g
(

(chρtY ⊗ chρsZ) (ρh2)ρtY, ρsZ ρ
h(f) chU

−1
)
cgU
−1

= (cgρtY ⊗ c
g
ρsZ) (ρg2)ρtY, ρsZ ρ

g(chρtY ⊗ chρsZ) ρg((ρh2)ρtY, ρsZ)

ρgρh(f) ρg(chU)−1 cgU
−1

= (cgρtY ⊗ c
g
ρsZ)

(
ρg(chρtY )⊗ ρg(chρsZ)

)
(ρg2)ρtY, ρsZρ

g((ρh2)ρtY, ρsZ) ρgρh(f)

ρg(chU)−1cgU
−1

= (cgρtY ⊗ c
g
ρsZ)

(
ρg(chρtY )⊗ ρg(chρsZ)

) (
(ρg,h2 )−1

ρtY ⊗ (ρg,h2 )−1
ρsZ

)
(ρgh2 )ρtY, ρsZ

(ρg,h2 )ρtY⊗ρsZ ρ
gρh(f) ρg(chU)−1 cgU

−1

= α̃−1
ρtY (g, h)α̃−1

ρsZ(g, h)(cghρtY ⊗ c
gh
ρsZ) (ρgh2 )ρtY, ρsZρ

gh(f)(ρg,h2 )U ρ
g(chU)−1 cgU

−1

= α̃−1
ρtY (g, h)α̃−1

ρsZ(g, h)α̃U(g, h) (cghρtY ⊗ c
gh
ρsZ) (ρgh2 )ρtY, ρsZρ

gh(f) cghU
−1

= α̃−1
ρtY (g, h)α̃−1

ρsZ(g, h)α̃U(g, h) (gh.f).

On the other hand, with respect to the given choice of isomorphisms {cgX}g∈GX , X ∈
Irr(C), the tGY ∩ sGZ-equivariant structures on Vtπ ⊗ ρt(Y ) and Vsγ ⊗ ρs(Z) are given,
respectively, by tπ(g)⊗ cgρt(Y ) : ρg(Vtπ ⊗ ρt(Y ))→ Vtπ ⊗ ρt(Y ), and sγ(g)⊗ cgρs(Z) : ρg(Vsγ ⊗
ρs(Z))→ Vsγ ⊗ ρs(Z), for all g ∈ T .

Thus, the action of g ∈ T on f ∈ Ht,s = HomC(U, Vtπ ⊗ Vsγ ⊗ ρt(Y ) ⊗ ρs(Z)) is
determined by

g.f = (tπ(g)⊗ sγ(g)⊗ cgρt(Y ) ⊗ c
g
ρs(Z)) (Vtπ ⊗ Vsγ ⊗ (ρg2)ρt(Y ),ρs(Z)) ρ

g(f) (cgU)−1

= tπ(g)⊗ sγ(g)⊗
(

(cgρt(Y ) ⊗ c
g
ρs(Z)) (ρg2)ρt(Y ),ρs(Z)

)
ρg(f) (cgU)−1.

In view of the k-linearity of the functors ρg, g ∈ G, this implies that the canonical isomor-
phism

Vtπ ⊗ Vsγ ⊗ HomC(U, ρ
t(Y )⊗ ρs(Z)) ' HomC(U, Vtπ ⊗ Vsγ ⊗ ρt(Y )⊗ ρs(Z))

is indeed an isomorphism of projective representations of T . This finishes the proof of the
proposition.
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Proposition 5.3.3. Let (ti, si) ∈ Oi, 1 ≤ i ≤ n, and let Ti = GU ∩ tiGY ∩ siGZ be its
stabilizer in GU . Then H(i) ' IndGUTi Hti,si, as projective GU -representations.

Proof. The proposition follows from Lemma 5.3.2, in view of Lemma 5.5.1. Note that the
group GU permutes the set Oi transitively.

5.3.3 Fusion rules

The following theorem gives the fusion rules for the category CG.

Theorem 5.3.4. Let U, Y, Z ∈ Irr(C) and let δ, π, γ be irreducible projective representations
of the inertia subgroups GU , GY , GZ with factor sets determined by (5.2.1). Then the
multiplicity of SU,δ in the tensor product SY,π ⊗ SZ,γ is given by the formula∑

D∈GY \G/GZ

∑
1≤i≤n
t−1
i si∈D

HomC(U,ρtiY⊗ρsiZ)6=0

mTi(δ|Ti , tiπ|Ti ⊗ siγ|Ti ⊗ τ
si,ti
U (Y, Z)), (5.3.1)

where (t1, s1), . . . , (tn, sn) are representatives of the distinct GU -orbits O1, . . . ,On in G/GY×
G/GZ and, for all 1 ≤ i ≤ n, Ti = GU ∩ tiGY ∩ siGZ, and mTi denotes the multiplicity
form of projective Ti-representations.

Proof. It follows from Proposition 5.2.8 that

dim HomCG(SU,δ, SY,π ⊗ SZ,γ) = mGU (δ, HomC(U, SY,π ⊗ SZ,γ)).

In view of Corollary 5.3.1, we have a decomposition

HomC(U, SY,π ⊗ SZ,γ) '
⊕

D∈GY \G/GZ

HD,

as projective representations of GU , where

HD :=
⊕

t−1s∈D,
HomC(U,ρt(Y )⊗ρs(Z)) 6=0

HomC(U, ρ
t(Vπ ⊗ Y )⊗ ρs(Vγ ⊗ Z)).

Consider a decomposition O1 ∪ · · · ∪On of G/GY ×G/GZ into disjoint GU -orbits, and
let H(i) ' HomC(U, SOi), 1 ≤ i ≤ n, as in (5.3.1).

Let also (ti, si) ∈ Oi be a representative of the orbit Oi with stabilizer Ti = GU ∩ tiGY ∩
siGZ . By Proposition 5.3.3 we have

HD '
⊕

1≤i≤n
t−1
i si∈D

H(i) '
⊕

1≤i≤n
t−1
i si∈D

IndGUTi Hti,si ,
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Therefore, using Frobenius Reciprocity and Proposition 5.3.2, we get

dim HomCG(SU,δ, SY,π ⊗ SZ,γ) =
∑

D∈GY \G/GZ

mGU (δ, HD)

=
∑

D∈GY \G/GZ

∑
1≤i≤n
t−1
i si∈D

HomC(U,ρtiY⊗ρsiZ) 6=0

mGU (δ, IndGUTi Hti,si)

=
∑

D∈GY \G/GZ

∑
1≤i≤n
t−1
i si∈D

HomC(U,ρtiY⊗ρsiZ) 6=0

mTi(δ|Ti , Hti,si)

=
∑

D∈GY \G/GZ

∑
1≤i≤n
t−1
i si∈D

HomC(U,ρtiY⊗ρsiZ) 6=0

mTi(δ|Ti , tiπ|Ti ⊗ siγ|Ti ⊗ τ
si,ti
U (Y, Z)).

Thus we get formula (5.3.1). This finishes the proof of the theorem.

Remark 5.3.4. In the paper [122] a class of rings graded by conjugacy classes of finite
groups is studied. More generally, suppose G and Γ are finite groups such that G acts
on Γ by group automorphisms, and denote this action by g 7→ xg, g ∈ Γ, x ∈ G. Let
A = ⊕g∈ΓA(g), where A(g), g ∈ Γ, are free modules over a commutative ring R, endowed
with R-linear isomorphisms cg,x : A(g)→ A(xg) and R-bilinear maps mg,h : A(g)×A(h)→
A(gh), g, h ∈ Γ, x ∈ G, subject to certain compatibility conditions. Then there is an
associative multiplication in A defined componentwise by mg,h, g, h ∈ G, and the submodule
of G-invariants: AG = {a ∈ A : cx(a) = a} is a subring of A; here cx : A → A is the R-
linear map which is cg,x on the component A(g). Furthermore, under weaker assumptions
on the maps cg,x, mg,h, AG is an associative ring with multiplication

(a.b)u :=
∑

(y,z)∈Gu\(Γ×Γ)
yz=u

my,z(ay, bz),

for all a, b ∈ AG, u ∈ Γ. See [122, Theorem 2.2].
It is shown in [122, Section 4] that the Grothendieck ring of the fusion category of rep-

resentations of a Hopf algebra cocentral abelian extension of kΓ by kG fits into the above
construction. As shown in [94, Proposition 3.5], this fusion category is an equivarianti-
zation of the category C(Γ) of finite dimensional Γ-graded vector spaces under the induced
action of G.

Consider now an action of the finite group G on a fusion category C. For every Y ∈
Irr(C) let A(Y ) := K0(kαY [GY ]) be the Grothendieck group of the twisted group algebra
kαY [GY ] and let A := ⊕Y ∈Irr(C)A(Y ). For every g ∈ G, let cY,g : A(Y ) → A(ρg(Y )) and
cg : A→ A be given by

cY,g(π) = gπ, cg := ⊕Y ∈GcY,g. (5.3.2)
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Theorem 5.2.6 implies that there is an isomorphism of abelian groups gr(CG) ' {a ∈
A | cY (a) = a} = AG such that the simple object SY,π corresponds to the irreducible projec-
tive representation π ∈ A(Y ), for every Y ∈ Irr(C).

It follows from Theorem 6.1.3 that, for all Y, Z ∈ Irr(C)/G, the product SY,πSZ,δ has
the expression

SY,πSZ,δ =
∑

D∈GY \G/GZ
U∈Irr(C)/G

∑
1≤i≤n
t−1
i si∈D

HomC(U,ρtiY⊗ρsiZ) 6=0

S
U,m

ti,si
U (Y,Z)(π,δ)

(5.3.3)

where the map mt,s
U (Y, Z) : A(Y )× A(Z)→ A(U) is defined by

(π, δ) 7→ IndUT ( tπ|T ⊗ sδ|T ⊗ τ t,sU (Y, Z)) (5.3.4)

Comparing (5.3.3) with the formula given in [122, Corollary 2.5], we observe that the
structure of the Grothendieck ring of the equivariantization CG is similar to that of the
rings AG in [122], where the set Irr(C) plays now the rôle of the group Γ.

Corollary 5.3.5. A simple object SU,δ is a constituent of a tensor product of simple objects
SY,π ⊗ SZ,γ if and only if there exist t ∈ G/GY and s ∈ G/GZ such that

(a) HomC(U, ρ
t(Y )⊗ ρs(Z)) 6= 0 and

(b) mT (δ|T , tπ|T ⊗s γ|T ⊗ τ t,sU (Y, Z)) 6= 0, where T = GU ∩ tGY t
−1 ∩ sGY s

−1.

5.3.4 The dual of a simple object

Let Y ∈ Irr(C). Then the multiplicity of the unit object of C in the tensor product Y ⊗Y ∗
is one. Hence τY := τ e,e1 (Y, Y ∗) = HomC(1, Y ⊗ Y ∗) is a one dimensional (linear) repre-
sentation of G = G1. In particular, it follows from Proposition 5.3.2 that the cohomology
class of the product αY αY ∗ is trivial on GY = GY ∗ .

Recall that the dual π∗ of the GY -projective representation π is defined as V ∗π with
π∗(h)(f) = f ◦ π(h)−1. This is an α−1

Y -projective representation of GY .

Proposition 5.3.6. The dual object of SY,π ∈ CG is determined by

S∗Y,π ' SY ∗, π∗ .

Proof. Observe that S∗Y,π ' SZ,γ, for some Z ∈ Irr(C)/G and some αZ-projective represen-
tation of GZ . On the other hand, S∗Y,π ' SZ,γ if and only if the unit object is a constituent
of SY,π⊗SZ,γ. Since the unit object of CG is isomorphic to S1,ε, where ε denotes the trivial
representation of G1 = G, it follows from Corollary 5.3.5 that S∗Y,π ' SY ∗, π∗⊗τ−1

Y
, where

τY = HomC(1, Y ⊗Y ∗). Since τY is a linear character of GY , then π∗⊗τ−1
Y ' π∗ as projec-

tive GY -representations (see Section 5.5). Then SY ∗, π∗⊗τ−1
Y
' SY ∗, π∗ and the proposition

follows.
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Combining Proposition 5.3.6 with Frobenius Reciprocity we obtain:

Corollary 5.3.7. Let Y, Z ∈ Irr(C)/G and let π, γ be projective representations of GY

and GZ with factor sets determined by (5.2.1). Let also δ be an irreducible representation
of G. Then S1,δ is a constituent of SY,π⊗S∗Z,γ if and only if Z = Y ∗ and δ is a constituent
of (π ⊗ γ∗) ↑GGY .

5.3.5 CG as a Rep G-bimodule category

Let us regard the category Rep G as a fusion subcategory of CG via the natural embedding
π 7→ (π⊗1, π(g)⊗ id1). So that the tensor product of CG makes CG into a Rep G-bimodule
category.

The results in Section 5.2 imply that there is an equivalence of k-linear categories CG '
⊕Y ∈Irr(C)/G RepαY GY , where RepαY GY is the category of finite dimensional αY -projective
representations of GY . Under this equivalence, a simple object π of RepαY GY , that is,
an irreducible αY -projective representation of GY , corresponds to the simple object SY,π
of CG. In other words, RepαY GY is identified with the full subcategory of C whose simple
objects are lying over Y . An explicit equivalence is determined, for every Y ∈ Irr(C)/G,
by the functors LY : CGY → CG and FY : CG → CGY .

For each Y ∈ Irr(C), the category RepαY GY is in a canonical way an indecompos-
able Rep G-bimodule category via tensor product of projective representations; see [102,
Theorem 3.2]. As a consequence of Theorem 6.1.3 we obtain:

Theorem 5.3.8. There is an equivalence of Rep G-bimodule categories

CG '
⊕

Y ∈Irr(C)/G

RepαY GY . (5.3.1)

Moreover, each RepαY GY is an indecomposable Rep G-bimodule category.

Proof. Let π be an irreducible representation of G, so that π corresponds to the simple
object S1,π ∈ Rep G, and let SZ,γ ∈ RepαZ GZ be another simple object, where Z ∈
Irr(C)/G. It follows from Corollary 5.3.5 that if the simple object SU,δ, U ∈ Irr(C)/G, is
a constituent of S1,π ⊗ SZ,γ, then U ' ρs(Z), for some s ∈ G/GZ . Hence U = Z and
thus the group T = GZ ∩ G1 ∩ GZ coincides with GZ , τU(1, Z) ' HomC(Z,Z) is a one
dimensional (linear) representation of GZ . Therefore π|GZ ⊗ γ ⊗ τU(1, Z) ' π|GZ ⊗ γ as
projective representations of GZ .

By Theorem 6.1.3, the multiplicity of SU,δ in the tensor product S1,π ⊗ SZ,γ equals
mGZ (δ, π ⊗ γ). Therefore we obtain

S1,π ⊗ SZ,γ '
⊕
δ

mGZ (δ, π|GZ ⊗ γ) SZ,δ,

where δ runs over the equivalence classes of αZ-projective representations of GZ . Clearly
this object corresponds to π|GZ ⊗ γ ∈ RepαZ GZ .
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Similar arguments apply for the tensor product SZ,γ ⊗ S1,π. This completes the proof
of the theorem.

For any U ∈ Irr(C), let us extend the notation SU,δ = LU(δ ⊗U) to indicate the object
of CG corresponding to an arbitrary αU -projective representation δ of GU .

Remark 5.3.5. Let Y, Z ∈ Irr(C) and let SY,π, SZ,γ be simple objects of CG lying over Y
and Z, respectively. So that π is an irreducible αY -projective representation of GY and γ
is an irreducible αZ-projective representation of GZ.

According to Theorem 5.3.8, the tensor product SY,π ⊗ SZ,γ has a decomposition

SY,π ⊗ SZ,γ ∼=
⊕

U∈Irr(C)/G

SU,δ, (5.3.2)

where, for all U ∈ Irr(C)/G, SU,δ ∈ CG is the sum of simple constituents of SY,π ⊗ SZ,γ
lying over U . It follows from Proposition 5.2.8 that δ ∼= HomC(U, SY,π ⊗ SZ,γ).

Remark 5.3.6. The action of G on C induces an action of G on gr(C) by algebra automor-
phisms. Let gr(C)G ⊆ gr(C) be the subring of G-invariants in gr(C). For every Y ∈ Irr(C),
let us consider the element

S(Y ) :=
∑

t∈G/GY

ρt(Y ) ∈ gr(C). (5.3.3)

Clearly, we have S(Y ) ∈ gr(C)G and S(Y ) = S(ρg(Y )), for all Y ∈ Irr(C). Observe that
F !(SY,π) = (dim π)S(Y ), where F ! : gr(CG)→ gr(C) is the ring map induced by the forgetful
functor F : CG → C. Moreover, the set {S(Y ) : Y ∈ Irr(C)/G} is a basis for gr(C)G and,
for all Y, Z ∈ Irr(C)/G, we have

S(Y )S(Z) =
∑

U∈Irr(C)/G

mU
Y,Z S(U), (5.3.4)

for some nonnegative integers mU
Y,Z.

Let Y, Z, U ∈ Irr(C)/G. Consider any fixed simple objects SY,π and SZ,γ of CG lying
over Y and Z, respectively. Applying the map F ! in formula (5.3.2), we obtain that mU

Y,Z =
dim δ/(dimπ)(dim γ), where δ = HomC(U, SY,π⊗SZ,γ) ' Vπ⊗Vγ⊗(⊕(t,s)∈G/GY ×G/GZ HomC(U, ρ

t(Y )⊗
ρs(Z))). Therefore, for all Y, Z, U ∈ Irr(C)/G, the integers mU

Y,Z are given by the formula

mU
Y,Z =

∑
(t,s)∈G/GY ×G/GZ

dim HomC(U, ρ
t(Y )⊗ ρs(Z)).
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5.4 Application to equivariantizations of pointed fu-

sion categories

We shall consider in this section a pointed fusion category C, that is, all simple objects
of C are invertible. Then there is an equivalence of fusion categories C ' C(Γ, ω), where
Γ = G(C) is the group of isomorphism classes of invertible objects in C, ω : Γ×Γ×Γ→ k∗ is
an invertible normalized 3-cocycle and C(Γ, ω) = VecΓ

ω is the category of finite dimensional
Γ-graded vector spaces with associativity constraint induced by ω.

5.4.1 Group actions on C(Γ, ω) and equivariantizations

Let C = C(Γ, ω) and let G be a finite group. An action ρ : G → Aut⊗C of G on C is
determined by an action by group automorphisms of G on Γ, that we shall indicate by
x 7→ gx, x ∈ Γ, g ∈ G, and two maps τ : G × Γ × Γ → k∗, and σ : G × G × Γ → k∗,
satisfying

ω(x, y, z)

ω(gx, gy, gz)
=
τ(g;xy, z) τ(g;x, y)

τ(g; y, z) τ(g;x, yz)

1 =
σ(h, l;x)σ(g, hl;x)

σ(gh, l;x)σ(g, h; lx)

τ(gh;x, y)

τ(g; hx, hy) τ(h;x, y)
=
σ(g, h;x)σ(g, h; y)

σ(g, h;xy)
,

for all x, y, z ∈ Γ, g, h, l ∈ G.
We shall also assume that τ and σ satisfy the additional normalization conditions

τ(g;x, y) = σ(g, h;x) = 1, whenever some of the arguments g, h, x or y is an identity.

The action ρ : G → Aut⊗C determined by this data is defined by letting ρg(x) = gx,
for all g ∈ G, x ∈ Γ, and ρg = id on arrows, together with the following constraints:

(ρg,h2 )x = σ(g, h;x)−1 idghx, (ρg2)x,y = τ(g;x, y)−1 idxy, ρg0 = ide, (5.4.1)

for all g, h ∈ G, x, y ∈ Γ. See [112, Section 7].

5.4.2 Fusion rules for C(Γ, ω)G

Let us denote σx(g, h) := σ(g, h;x) and τx,y(g) := τ(g;x, y), x, y ∈ Γ, g, h ∈ G.

For all x ∈ Γ and g ∈ Gx we let the isomorphism cx : gx = x→ x to be the identity of
x. Therefore, the cocycle α̃x : Gx ×Gx → k∗ defined by (5.2.1) is given by

α̃x(g, h) = σx(g, h)−1, (5.4.1)

for all g, h ∈ Gx.
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It follows from Corollary 5.2.7 that the set of isomorphism classes of simple objects of
CG is parameterized by isomorphism classes of pairs (y, π), where y runs over the orbits
of the action of G on Γ and π is an irreducible projective representation of the inertia
subgroup Gy ⊆ G with factor set σy.

Let O be a G-orbit in G/Gy × G/Gz corresponding to a double coset D ∈ Gy\G/Gz.
Then O = OG(e, g), for any g ∈ D, and O contains at most one GU -orbit, OGU (t, s),
t−1s ∈ D, such that HomC(x,

ty ⊗ sz) 6= 0. Indeed, the condition HomC(x,
ty ⊗ sz) 6= 0

amounts in this case to x = tysz. Thus, for all e 6= g ∈ G/GU , x 6= gx = gtygsz.

In addition, if x = tysz, then tGy ∩ sGz ⊆ Gx. Therefore, Gx ∩ tGy ∩ sGz = tGy ∩ sGz.

In the projective representation of tGy ∩ sGz in HomC(x,
tysz) ' k, defined in Lemma

5.3.2, the action of an element g ∈ tysz is nothing but scalar multiplication by τty,sz(g)−1.

As a consequence of Theorem 6.1.3, the following theorem gives the fusion rules for the
category C(Γ, ω)G.

Theorem 5.4.1. Let x, y, z ∈ Γ and let δ, π, γ be irreducible projective representations
of the inertia subgroups Gx, Gy, Gz with factor sets σx, σy, σz, respectively. Then the
multiplicity of Sx,δ in the tensor product Sy,π ⊗ Sz,γ is given by the formula∑

D∈Gy\G/Gz

∑
t−1s∈D
x=tysz

m tGy∩sGz(δ|tGy∩sGz , tπ|tGy∩sGz ⊗ sγ|tGy∩sGz τ−1
ty,sz).

Example 5.4.1. Consider a cocentral abelian exact sequence of Hopf algebras k→ kΓ →
H → kG → k, where Γ and F are finite groups. As special case of [94, Proposition 3.5],
there is an action of G on the category C = C(Γ, 1) of finite dimensional representations
of kΓ such that Rep H ' CG as fusion categories (see [94, Remark 2.1] and [90]). In this
situation, the formula for the fusion rules of Rep H given by Theorem 5.4.1 specializes to
the formula obtained by C. Goff in [61, Theorem 4.5]. See Section 5.5.

5.4.3 Braided group-theoretical fusion categories

Recall that a fusion category is called group-theoretical if it is Morita equivalent to a pointed
fusion category [4, 43, 56, 58]. In view of [87, Theorem 7.2], a braided fusion category is
group-theoretical if and only if it is an equivariantization of a pointed fusion category. More
precisely, it was shown in [86, Theorem 5.3] that every braided group-theoretical fusion
category is equivalent to an equivariantization C(ξ)G of a crossed pointed fusion category
C(ξ) associated to a quasi-abelian 3-cocycle ξ on a finite crossed module (G,X, ∂), under
a canonical action of G on C(ξ).

Recall that a finite crossed module (G,X, ∂) consists of a finite group G acting by
automorphisms on a finite group X, and a group homomorphism ∂ : X → G such that

∂(x)y = xyx−1, ∂(gx) = g∂(x)g−1, g ∈ G, x, y ∈ X,
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where x 7→g x, x ∈ X, g ∈ G, denotes the action of g on X.
A quasi-abelian 3-cocycle ξ on (G,X, ∂) is a quadruple ξ = (ω, γ, µ, c), where ω :

X × X × X → k∗ is a 3-cocycle, γ : G × G × X → k∗, µ : G × X × X → k∗ and
c : X ×X → k∗ are maps satisfying the compatibility conditions in [86, Definition 3.4].

As a fusion category C(ξ) = C(X,ω), and the action of G on C(ξ) is determined by the
action of G on X and formulas (5.4.1), with respect to σx(g, h) := γ(g, h;x), τx,y(g) :=
µ(g;x, y)−1, x, y ∈ X, g, h ∈ G. See [86, Subsection 4.1].

Theorem 5.4.1 gives thus the fusion rules in the category C(ξ)G in terms of group-
theoretical data determined by the crossed module (G,X, ∂) and the quasi-abelian 3-
cocycle ξ, entailing the determination of the fusion rules in any braided group-theoretical
fusion category.

Example 5.4.2. Let ω : G × G × G → k∗ be a 3-cocycle on G. Consider the crossed
module (G,G, id) with respect to the adjoint action of G on itself. The quadruple ξ =
(ω−1, γ−1, µ−1, 1) is a quasi-abelian 3-cocycle on (G,G, id), where γ and µ are defined in
the form

γ(g, h;x) =
ω(g, h, x)ω(ghxh−1g−1, g, h)

ω(g, hxh−1, y)
,

µ(g;x, y) =
ω(gxg−1, g, y)

ω(gxg−1, gyg−1, g)ω(g, x, y)
,

for all g, h, x, y ∈ G.
The equivariantization C(ξ)G is equivalent to the category Rep DωG of finite dimen-

sional representations of the twisted quantum double DωG introduced in [35]. See [86,
Lemma 6.3] and [70].

Simple objects of C(ξ)G are parameterized by Sx,π, where x runs over a set of represen-
tatives of conjugacy classes of G and π is an irreducible projective representation of the
centralizer Z(x) of x in G with factor set γx. Theorem 5.4.1 gives the following formula
for the multiplicity of Sx,δ in the tensor product Sy,π ⊗ Sz,γ:∑

D∈Z(y)\G/Z(z)

∑
t−1s∈D

x=tyt−1szs−1

m tZ(y)t−1∩sZ(z)s−1(δ, tπ ⊗ sγ µ(−; tyt−1, szs−1)−1).

We point out that the fusion rules for the category Rep DωG were also determined in
[61, Section 5] See also [118, 119] for some preliminary results.

5.5 Appendix of Chapter 5

In this Appendix we give a brief account of the results on projective representations used
in this chapter. See for instance [67].
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Let G be a finite group and let α̃ : G×G→ k∗ be a (normalized) 2-cocycle on G, that
is,

α̃(g, h)α̃(gh, t) = α̃(g, ht)α̃(h, t), α̃(g, e) = 1 = α̃(e, g), ∀g, h, t ∈ G.

A projective representation π of G with factor set α̃ on a vector space V is a map
π : G→ GL(V ), such that

π(e) = idV , π(gh) = α̃(g, h)π(g)π(h), ∀g, h ∈ G.

In other words, π is a representation of the twisted group algebra kα̃G on the vector space
V . We shall also use the notation Vπ = V to indicate such a projective representation.

Two projective representations π and π′ of G are called (projectively) equivalent if there
is a linear isomorphism φ : Vπ → Vπ′ and a map f : G→ k∗ such that φπ(g) = f(g)π′(g)φ,
for all g ∈ G. In this case we shall use the notation π′ ' π.

If π′ ' π, then the associated cocycles α̃ and α̃′ are related by

α̃(g, h) = α̃′(g, h)f(g)f(h)f(gh)−1, g, h ∈ G,

that is, α̃ and α̃′ are cohomologous cocycles, and thus they belong to the same cohomology
class α ∈ H2(G,k∗). We shall also call π an α-projective representation. Note that the map
f : G → k∗ induces an algebra isomorphism f̃ : kα̃G → kα̃′G in the form f̃(g) = f(g)g,
for all g ∈ G. Thus π and π′ are equivalent projective representations if and only if
Vπ ' f̃ ∗(Vπ′) as kα̃G-modules.

Let π and π′ be projective representations of G with factor sets α̃ and α̃′, respectively.
The tensor product π⊗π′ is the projective α̃α̃′-representation on the vector space Vπ⊗Vπ′
defined by (π⊗ π′)(g)(u⊗ v) = π(g)u⊗ π′(g)v. In particular, if π is a representation of G,
then π ⊗ π′ is again a projective representation with factor set α̃.

If π1 and π′1 are projective representations projectively equivalent to π and π′, respec-
tively, then the tensor products π1 ⊗ π′1 and π ⊗ π′ are projectively equivalent. Further,
suppose that π′ is a one-dimensional representation, that is, a linear character of G. Then
π and π ⊗ π′ are projectively equivalent via the canonical isomorphism φ : Vπ → Vπ ⊗ k,
v 7→ v ⊗ 1, and the map f : G→ k∗ given by f(g) = π′(g)−1, for all g ∈ G.

A nonzero projective representation π : G→ GL(V ) of G is called irreducible if 0 and
V are the only subspaces of V which are invariant under π(g), for all g ∈ G. Hence, π is
irreducible if and only if it is not projectively equivalent to a projective representation ρ
of the form

ρ(g) =

(
π1(g) ∗

0 π2(g)

)
, g ∈ G,

where π1 and π2 are nonzero projective representations or, equivalently, if V is a simple
kα̃G-module, where α̃ is the factor set of π [67, Theorem 3.2.5].
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Let π : G → GL(V ) be a projective representation of G with factor set α̃. Since
the group algebra kα̃G is semisimple, then V = Vπ is completely reducible, that is, Vπ '
Vπ1 ⊕ · · · ⊕ Vπn , where Vπi is a simple kα̃G-module, for all i = 1, . . . , n. If π′ is an irre-
ducible projective representation with factor set α̃′, then π′ is called a constituent of π if
π′ is projectively equivalent to πi for some 1 ≤ i ≤ n. In this case, the multiplicity (or
intertwining number) of π′ in π is defined as

mG(π′, π) := dim Homkα̃G(Vπi , Vπ).

Observe that if π′ is a constituent of π, then the cocycles α̃′ and α̃ belong to the same
class in H2(G,k∗). Letting α̃′df = α̃, with f : G → k∗, we have that mG(π′, π) :=
dim Homkα̃G(f̃ ∗(Vπ′), Vπ), where f̃ : kα̃G→ kα̃′G is the isomorphism associated to f .

The character of a projective representation π : G → GL(V ) is defined as the map
χ = χV : G → k given by χ(g) = Tr(π(g)), for all g ∈ G. Let α̃ be the factor set of π. If
π′ is an irreducible projective representation of G with factor set α̃ and character χ′, then
the multiplicity of π′ in π can be computed by the formula

mG(π′, π) = 〈χ′, χ〉 : =
1

|G|
∑
g∈G

1

α̃(g−1, g)
χ′(g)χ(g−1)

=
1

|G|
∑
g∈G0

1

α̃(g−1, g)
χ′(g)χ(g−1),

G0 ⊆ G is the subset of α̃-regular elements of G. See [67, Chapter 5].

Let α̃ : G×G→ k∗ be a 2-cocycle and let H ⊆ G be a subgroup. Consider a projective
representation W of H with factor set α̃|H . The induced projective representation of G is
defined as IndGHW = kα̃G⊗kα̃HW . This is a projective representation of G with factor set
α̃. By Frobenius reciprocity, we have natural isomorphisms

Homkα̃G(IndGHW,V ) ' Homkα̃H(W,V |H),

for every projective representation V of G with factor set α̃, where V |H denotes the re-
stricted projective representation of H.

The following lemma gives a characterization of those projective representations which
are induced from a subgroup.

Lemma 5.5.1. Let α̃ : G × G → k∗ be a cocycle and let V be a kα̃G-module. Suppose
V = ⊕x∈XVx is a grading of V by a set X and assume that there is transitive action of G
on X, G×X → X, (g, x) 7→ gx, such that g.Vx = Vgx, for all g ∈ G, x ∈ X.

Let also y ∈ X and Gy ⊆ G the inertia subgroup of y. Then Vy is a kα̃Gy-module and
V ' IndGGy Vy as kα̃G-modules.

Proof. See [67, Theorem 5.2.1].



Chapter 6

Green functors arising from
semisimple Hopf algebras

6.1 Main results of the Chapter

Mackey’s decomposition theorem of induced modules from subgroups is a very important
tool in the representations theory of finite groups. This decomposition describes the process
of an induction composed with a restriction in terms of the reverse processes consisting
of restrictions followed by inductions. More precisely, if G is a finite group, M and N
two subgroups of G and V a finite dimensional k-linear representation of M then the well
known Mackey’s decomposition states that there is an isomorphism of kN -modules:

V ↑kGkM↓kGkN
δV−→

⊕
x∈M\G/N

k[N ]⊗k[ xM∩N ]
xV. (6.1.1)

Here xM := xMx−1 is the conjugate subgroup and xV := V is the conjugate xM -
representation defined by (xmx−1).v := m.v for all m ∈ M and v ∈ V . The direct sum is
indexed by a set of representative group elements of G for all double cosets M\G/N of G
relative to the two subgroups M and N . Note that the inverse isomorphism of δV is given
on each direct summand by the left multiplication operator n⊗kN∩k xM v 7→ nx⊗kM v, see
[108, Proposition 22].

The goal of this chapter is to investigate a similar Mackey type decomposition for
the induced modules from Hopf subalgebras of semisimple Hopf algebras and restricted
back to other Hopf subalgebras. In order to do this, we use the corresponding notion of
a double coset relative to a pair of Hopf subalgebras of a semisimple Hopf algebra that
was introduced by the author in [14] and also discussed in details in Chapter 3. We
also have to define a conjugate Hopf subalgebra corresponding to the notion of a conjugate
subgroup. For any Hopf subalgebra K ⊆ H of a semisimple Hopf algebra H and any simple
subcoalgebra C of H we define the conjugate Hopf subalgebra CK of K in Proposition 6.3.1.
This notion corresponds to the notion of conjugate subgroup from the above decomposition.

83
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In order to deduce that CK is a Hopf subalgebra of H we use several crucial results from
[96] concerning the product of two subcoalgebras of a semisimple Hopf algebra as well as
Frobenius-Perron theory for nonnegative matrices.

Using these tools we can prove one of the following main results of this Chapter:

Theorem 6.1.1. Let K ⊆ H be a Hopf subalgebra of a semisimple Hopf algebra and M
a finite dimensional K-module. Then for any subgroup G ⊆ G(H) one has a canonical
isomorphism of kG-modules

M ↑HK↓HkG
δM−→

⊕
C∈kG\H/K

(kG⊗ kGC
CM). (6.1.2)

Here G(H) is the group of grouplike elements of H and the subgroup GC ⊆ G is determined
by kG ∩ CK = kGC. The conjugate module CM is defined by CM := CK ⊗K M .

As in the classical group case the homomorphism δM is the inverse of a natural homo-
morphism πM which is constructed by the left multiplication on each direct summand. It
is not difficult to check (see Theorem 6.1.2 below) that in general, for any two Hopf sub-
algebras K,L ⊆ H the left multiplication homomorphism πM is always an epimorphism:

Theorem 6.1.2. Let K and L be two Hopf subalgebras of a semisimple Hopf algebra H.
For any finite dimensional left K-module M there is a canonical epimorphism of L-modules

⊕C∈L\H/K (L⊗L∩ CK CM)
πM−−→M ↑HK↓HL (6.1.3)

given on components by l ⊗L∩ CK v 7→ lv for any l ∈ L and any v ∈ CM . Here the
conjugate module CM is defined as above by CK := CK ⊗K M .

We remark that there is a similar direction in the literature in the paper [49]. In this
paper the author considers a similar decomposition but for pointed Hopf algebras instead
of semisimple Hopf algebras. Also, in [74] the author proves a similar result for some
special Hopf subalgebras of quantum groups at roots of 1.

Another particular situation of Mackey’s decomposition can be found in [14]. In this
paper it is proven that for pairs of Hopf subalgebras that generate just one double coset
subcoalgebra, the above epimorphism πM from Theorem 6.1.2 is in fact an isomorphism.
In both papers, the above homomorphism πM is given by left multiplication.

Definition 6.1.1. We say that (L,K) is a Mackey pair of Hopf subalgebras of H if the
above left mutliplication homomorphism πM from Theorem 6.1.2 is an isomorphism for
any finite dimensional left K-module M .

Then Theorem 6.1.1 above states that (kG,K) is a Mackey pair for any Hopf subalge-
bra K ⊂ H and any subgroup G ⊂ G(H). Moreover in Theorem 6.6.1 it is shown that for
any normal Hopf subalgebra K of H the pair (K,K) is a Mackey pair. This allows us to
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prove a new formula (see Proposition 6.6.2) for the restriction of an induced module from a
normal Hopf subalgebra which substantially improves [14, Proposition 5.12]. It also gives
a criterion for an induced module from a normal Hopf subalgebra to be irreducible gen-
eralizing a well known criterion for group representations, see for example [108, Corollary
7.1].

For any semisimple Hopf algebra H, using the universal grading of the fusion category
Rep(H∗) we construct in Section 6.5 new Mackey pairs of Hopf subalgebras of H. In
turn, this allows us to define a Green functor on the universal group G of the category of
representations of H∗. For H = kG one obtains in this way the usual Green functor [62].
As in group theory, this new Green functor can be used to determine new properties of the
Grothendieck ring of a semisimple Hopf algebra.

In the last section we prove the following tensor product formula for two induced
modules from a Mackey pair of Hopf subalgebras.

Theorem 6.1.3. Suppose that (L,K) is a Mackey pair of Hopf subalgebras of a semisimple
Hopf algebra H. Then for any K-module M and any L-module N one has a canonical
isomorphism:

M ↑HK ⊗N ↑HL
∼=−→

⊕
C∈L\H/K

((CK ⊗K M) ↓ CKL∩ CK ⊗N ↓
L
L∩ CK) ↑ HL∩ CK (6.1.4)

This generalizes a well known formula for the tensor product of two induced group
representations, see for example [6].

This chapter is structured as follows. In the first section we recall the basic results
on coset decomposition for Hopf algebras. The second section contains the construction
for the conjugate Hopf subalgebra generalizing the conjugate subgroup of a finite group.
These results are inspired from the treatment given in [24]. A general characterization for
the conjugate Hopf subalgebra is given in Theorem 6.3.5. This theorem is automatically
satisfied in the group case. In the third section we prove Theorem 6.1.2. In the next section
we prove Theorem 6.1.1. We also show that for any semisimple Hopf algebra there are some
canonical associated Mackey pairs arising from the universal grading of the category of finite
dimensional corepresentations (see Theorem 6.5.3). Necessary and sufficient conditions for
a given pair to be a Mackey pair are given in terms of the dimensions of the two Hopf
subalgebras of the pair and their conjugate Hopf subalgebras. In Section 6.6 we prove
that for a normal Hopf subalgebra K the pair (K,K) is always a Mackey pair. In the last
subsection 6.6.2 we prove the tensor product formula from Theorem 6.1.3.

In this chapter we work over an algebraically closed field k of characteristic zero.
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6.2 Double coset decomposition for Hopf subalgebras

of semisimple Hopf algebras

Let L and K be two Hopf subalgebras of a semisimple Hopf algebra H. Recall from Chapter
3 that one can define an equivalence relation rH

L, K
on the set of simple subcoalgebras of H

as following: C ∼ D if C ⊂ LDK. We also have the following:

Proposition 6.1. If C and D are two simple subcoalgebras of H then the following are
equivalent:

1) C ∼ D
2) LCK = LDK
3) ΛLCΛK = ΛLDΛK

Proof. First assertion is equivalent to the second by Corollary 3.2.3 from Chapter 3. Clearly
(2)⇒ (3) by left multiplication with ΛK and right multiplication with ΛL. It will be shown
that (3)⇒ (1). One has the following decomposition:

H =
l⊕

i=1

LCiK

where C1, · · · , Cl are representative subcoalgebras for each equivalence class of rH
K, L

.

It follows that ΛLHΛK =
⊕l

i=1 ΛLCiΛK . Thus if C � D then ΛLCΛK ∩ ΛLDΛK = 0
which proves (1).

Remark 6.2.1. The above Proposition shows that for any two simple subcoalgebras C and
D of H then either LCK = LDK or LCK∩LDK = 0. Therefore for any subcoalgebra D ⊂
LCK one has that LCK = LDK. In particular, for L = k, the trivial Hopf subalgebra,
one has that D ⊂ CK if and only if DK = CK.

Notations

We denote by L\H/K the set of double cosets LCK of H with respect to L and K.
Thus the elements LCK of L\H/K are given by a choice of a representative of simple
subcoalgebras in each equivalence class of rH

L, K
. Similarly, we denote by H/K be the set of

right cosets CK of H with respect to K. This corresponds to a choice of a representative
simple subcoalgebra in each equivalence class of rH

k, K
.

Remark 6.2.2. As noticed in [14] one has that LCK ∈MH
K and therefore LCK is a free

right K-module. Similarly LCK ∈ H
LM and therefore LCK is also a free left L-module.

By Corollary 3.2.4 it follows that two simple subcoalgebras C and D are in the same
double coset of H with respect to L and K if and only if

ΛL
c

ε(c)
ΛK = ΛL

d

ε(d)
ΛK . (6.2.1)
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where c and d are the irreducible characters of H∗ associated to the simple subcoalgebras
C and D. In particular for L = k, the trivial Hopf subalgebra, it follows that CK = DK
if and only if

cΛK =
ε(c)

ε(d)
dΛK . (6.2.2)

6.2.1 Principal eigenspace for < C >

For a simple subcoalgebra C we denote by < C > the Hopf subalgebra of H generated by
C. If d is the character associated to C we also denote this Hopf subalgebra by < d >.

Frobenius-Perron theory for nonnegative matrices

Next we will use the Frobenius-Perron theorem for matrices with nonnegative entries (see
[54]). If A ≥ 0 is such a matrix then A has a positive eigenvalue λ which has the biggest
absolute value among all the other eigenvalues of A. The eigenspace corresponding to λ
has a unique vector with all entries positive. λ is called the principal eigenvalue of A and
the corresponding positive vector is called the principal vector of A. Also the eigenspace
of A corresponding to λ is called the principal eigenspace of the matrix A.

For an irreducible character d ∈ Irr(H∗) let Ld be the linear operator on C(H∗) given
by left multiplication by d. By Theorem 3.2.2 it follows that ε(d) is the Frobenius-Perron
eigenvalue of the nonnegative matrix associated to the operator Ld with respect to the
basis given by the irreducible characters of H∗. In analogy with Frobenius-Perron theory,
for a subcoalgebra C with associated character d we call the space of eigenvectors of Ld
corresponding to the eigenvalue ε(d) as the principal eigenspace for Ld.

Next Corollary can also be deduced directly from Theorem 3.2.2.

Corollary 6.2.1. The principal eigenspace of LΛK is ΛKC(H∗) and it has a k-linear basis
given by ΛKd where d are the characters of a set of representative simple coalgebras for the
right cosets of K inside H.

Using this we can prove the following:

Theorem 6.2.2. Let C be a subcoalgebra of a semisimple Hopf algebra H with associated
character d ∈ C(H∗). Then the principal eigenspaces of Ld and L

Λ<d>
coincide.

Proof. Let V be the principal eigenspace of L
Λ<d>

and W be the principal eigenspace of
Ld. Then by Corollary 6.2.1 one has that V = Λ<d>C(H∗). Since dΛ<d> = ε(d)Λ<d> then
clearly V ⊆ W . On the other hand since Λ<d> is a polynomial with rational coefficients in
d (see [92, Corollary 19]) it also follows that W ⊆ V .
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6.2.2 Rank of cosets

Let K be a Hopf subalgebra of a semisimple Hopf algebra H. Consider the equivalence
relation rHk, K on the set Irr(H∗) of simple subcoalgebras of H. As above one has C ∼ D if
and only if CK = DK. Therefore

H = ⊕C∈H/KCK. (6.2.1)

Lemma 6.2.1. The equivalence class under rHk,K of the trivial subcoalgebra k is the set of
all simple subcoalgebras of K.

Proof. Indeed suppose that C is a simple subcoalgebra of H equivalent to the trivial
subcoalgebra k. Then CK = kK = K by Proposition 6.4.1. Therefore C ⊂ CK = K.
Conversely, if C ⊂ K then CK ⊂ K and since CK ∈ MH

K it follows that CK = K. Thus
C ∼ k.

Proposition 6.2. If D is a simple subcoalgebra of a semisimple Hopf algebra H and e ∈ K
is an idempotent then

DK ⊗K Ke ∼= DKe

as vector spaces.

Proof. Since H is free right K-module one has that the map

φ : H ⊗K Ke→ He, h⊗K re 7→ hre

is an isomorphism of H-modules. Using the above decomposition (6.2.1) of H and the fact
that DK is a free right K-module note that φ sends DK ⊗K Ke to DKe.

Corollary 6.2.3. Let K be a Hopf subalgebra of a semisimple Hopf algebra H. For any
simple subcoalgebra C of H one has that the rank of CK as right K-module is dimkCΛK.

Proof. Put e = ΛK the idempotent integral of K in the above Proposition.

6.2.3 Frobenius-Perron eigenvectors for cosets

Let T be the linear operator given by right multiplication with ΛK on the character ring
C(H∗).

Remark 6.2.3. By Theorem 3.2.2 it follows that the largest (in absolute value) eigenvalue
of T equals dimK. Moreover a basis of eigenvectors corresponding to this eigenvalue is
given by cΛK where the character c ∈ Irr(H∗) runs through a set of irreducible characters
representative for all the right cosets CK ∈ H/K.
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6.3 The conjugate Hopf subalgebra CK

Let as above K be a Hopf subalgebra of a semisimple Hopf algebra H. For any simple
subcoalgebra C of H in this section we construct the conjugate Hopf subalgebra CK
appearing in Theorem 6.1.3. If c ∈ Irr(H∗) is the associated irreducible character of C
then consider the following subset of Irr(H∗):

cK = {d ∈ Irr(H∗) | dcΛK = ε(d)cΛK } (6.3.1)

where as above ΛK ∈ K is the idempotent integral of K.

Proposition 6.3.1. The set cK ⊂ Irr(H∗) is closed under multiplication and ”∗” and it
generates a Hopf subalgebra CK of H. Thus

CK = ⊕d∈cKCd (6.3.2)

Proof. Suppose that D and D′ are two simple subcoalgebras of H whose irreducible char-
acters satisfy d, d′ ∈ cK. Then one has dd′cΛK = ε(dd′)cΛK . On the other hand suppose
that

dd′ =
∑

e∈Irr(H∗)

me
d,d′e. (6.3.3)

Then ε(dd′)cΛK = dd′cΛK =
∑

e∈Irr(H∗) m
e
d,d′ecΛK and Remark 6.2.3 implies that ecΛK is

a scalar multiple of cΛK for any e with me
d,d′ 6= 0. Therefore ecΛK = ε(e)cΛK and e ∈ cK.

This shows that CK is a subbialgebra of H and by Remark 1.1.2 a Hopf subalgebra of
H.

Sometimes the notation CK will also be used for cK where c ∈ Irr(H∗) is the irreducible
character associated to the simple subcoalgebra C.

The notion of conjugate Hopf subalgebra CK is motivated by the following Proposition:

Proposition 6.3.2. Let H be a semisimple Hopf algebra over k. If the simple subcoalgebra
C is of the form C = kg with g ∈ G(H) a group-like element of H then CK = gKg−1.

Proof. Indeed, suppose that D ∈ CK. If d is the associated irreducible character of D
then by definition it follows that dgΛK = gΛK . Thus g−1dgΛK = ΛK . Therefore the
simple subcoalgebra g−1Dg of H is equivalent to the trivial subcoalgebra k. Then using
Lemma 6.2.1 one has that g−1Dg ⊂ K and therefore CK ⊂ gKg−1. The other inclusion
gKg−1 ⊂ CK is obvious.

Remark 6.3.1. In particular for H = kG one has that Ck[M ] = k[ xM ] where x ∈ G is
given by C = kx.

Remark 6.3.2. 1. Using Remark 1.1.1 it follows from the definition of conjugate Hopf
subalgebra that CK is always a left CK-module.
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2. Note that if C(H∗) is commutative then CK ⊇ K. Indeed for any d ∈ Irr(K∗) one
has dΛK = ε(d)ΛK and therefore dcΛK = cdΛK = ε(d)cΛK.

3. If K is a normal Hopf subalgebra of H then since ΛK is a central element in H by
same argument it also follows that CK ⊇ K.

6.3.1 Some properties of the conjugate Hopf subalgebra

Proposition 6.3.3. Let H be a semisimple Hopf algebra and K be a Hopf subalgebra of
H. Then for any simple subcoalgebra C of H one has that CK coincides to the maximal
Hopf subalgebra L of H with the property LCK = CK.

Proof. The equality CKCK = CK follows from the character equality Λ CKcΛK =
ε(Λ CK)cΛK and Reamark 1.1.1. Conversely, if LCK = CK by passing to the regular
H∗-characters and using Equation (6.2.1) it follows that ΛLcΛK = ε(ΛL)cΛK which shows
that L ⊂ CK.

Note that Remark 6.2.1 together with the previous proposition implies that CKC ⊆
CK.

Corollary 6.3.4. One has that CK ⊆ CKC∗.

Proof. Since S(C) = C∗ by applying the antipode S to the above inclusion one obtains
that C∗ CK ⊆ KC∗. Therefore CC∗ CK ⊆ CKC∗ and then one has CK ⊆ CC∗ CK ⊆
CKC∗.

Theorem 6.3.5. One has that CK is the largest Hopf subalgebra L of H with the property
LC ⊆ CK.

Proof. We have seen above that CKC ⊆ CK. Suppose now that LC ⊆ CK for some
Hopf subalgebra L of H. Then by Remark 6.2.1 it follows that LCK = CK. Thus by
passing to regular characters one has that ΛLcΛK = ε(ΛL)cΛK which shows the inclusion
L ⊆ CK.

Proposition 6.3.6. Let H be a semismple Hopf algebra and K be a Hopf subalgebra of
H. Then for any subcoalgebra D with DK = CK one has that DK = CK.

Proof. One has that CKCK = CK. If D ⊂ CK then by Remark 6.2.1 one has that
CKDK = CKCK = CK = DK which shows that CK = DK.

6.4 Mackey type decompositions for representations

of Hopf algebras

Let K be a Hopf subalgebra of a semisimple Hopf algebra H and M be a finite dimensional
K-module. Note that for any simple subcoalgebra C of H one has by Proposition 6.3.3



6.4. MACKEY TYPE DECOMPOSITIONS FOR REPRESENTATIONS OF HOPF ALGEBRAS91

that CM := CK ⊗K M is a left CK-module via the left multiplication with elements of
CK.

Remark 6.4.1. Let H = kG be a group algebra of a finite group G and K = kA for some
subgroup A of G. Then note that CM := CK ⊗K M coincides to the usual conjugate
module gM if C = kg for some g ∈ G. Recall that gM = M as vector spaces and
(gag−1).m = a.m for all a ∈ A and all m ∈M .

6.4.1 Proof of Theorem 6.1.2.

Proof. Since by definition of the double cosets one has H = ⊕C∈L\H/KLCK and each LCK
is a free K-module, the following decomposition of L-modules follows:

M ↑HK↓HL = H ⊗K M ∼= ⊕C∈L\H/K(LCK ⊗K M). (6.4.1)

Consider now the k-linear map π
(C)
M : L⊗L∩ CK (CK ⊗K M)→ LCK ⊗K M given by

l ⊗L∩ CK (cx⊗K m) 7→ lcx⊗K m

for all l ∈ L, x ∈ K, c ∈ C and m ∈ M . It is easy to see that π
(C)
M is a well defined map

and clearly a surjective morphism of L-modules. Then πM := ⊕C∈L\H/Kπ(C)
M is surjective

morphism of L-modules and the proof is complete.

Remark 6.4.2. Suppose that for M = k one has that πk isomorphism in Theorem 6.1.2.
Then using a dimension argument it follows that the same epimorphism πM from Theorem
6.1.2 is in fact an isomorphism for any finite dimensional left H-module M .

6.4.2 Mackey pairs

It follows from the proof above that (L,K) is a Mackey pair if and only if πk is an isomor-

phism, i.e. if and only if each π
(C)
k is isomorphism for any simple subcoalgebra C of H.

Since π
(C)
k is surjective passing to dimensions one has that (L,K) is a Mackey pair if and

only if

dimLCK =
(dimL) (dimCK)

dimL ∩ CK
(6.4.1)

for any simple subcoalgebra C of H.

Note that for C = k1 the above condition can be written as

dim LK =
(dimL)(dimK)

dim(L ∩K)
.

Remark 6.4.3. Note also that for any Mackey pair it follows that

dim L ∩ DK

dimDK
=

dim L ∩ CK

dimCK
(6.4.2)

if LCK = LDK.
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Example 6.4.1. Suppose that L, K are Hopf subalgebras of H with LK = KL. Then
(L,K) is a Mackey pair of Hopf subalgebras of LK by [14, Proposition 3.3].

6.4.3 Proof of Theorem 6.1.1

Let L,K be two Hopf subalgebras of a semisimple Hopf algebra H and let C be a simple
subcoalgebra of H. Note that equations (6.2.1) and (6.2.2) implies that LCK can be
written as a direct sum of right K-cosets,

LCK =
⊕
DK∈S

DK, (6.4.1)

for a subset S ⊂ H/K of right cosets of K inside H. Note that always one has CK ∈ S.

Next we give a proof for the main result Theorem 6.1.1.

Proof. Suppose that L = kG. By Equation (6.4.1) one has to verify

dim(kG)CK =
|G| (dimCK)

dimkG ∩ CK
(6.4.2)

for any subcoalgebra C of H. Since kG ∩ CK is a Hopf subalgebra of kG it follows
that kG ∩ CK = kGC for some subgroup GC of G. By Equation (6.3.1) it follows that
GC = {g ∈ G | gdΛK = dΛK} where d ∈ Irr(H∗) is the character associated to C. In terms
of subcoalgebras this can be written as GC = {g ∈ G | gCK = CK}.

With the above notations Equation (6.4.2) becomes

dim(kG)CK =
|G|
|GC |

dimCK (6.4.3)

Note that the group G acts transitively on the set S from Equation (6.4.1). The action is
given by g.DK = gDK for any g ∈ G and any DK ∈ S. Let StC be the stabilizer of the
right coset CK. Thus the subgroup StC of G is defined by StC = {g ∈ G | gCK = CK}
which shows that StC = GC . Note that dimDK = dimCK for any DK ∈ S since
DK = gCK for some g ∈ G. Thus dim(kG)CK = |S|(dimCK) and Equation (6.4.3)
becomes

|S| = |G|
|GC |

(6.4.4)

which is the same as the formula for the size of the orbit S of CK under the action of the
finite group G.

6.5 New examples of Green functors

In this section we construct new examples of Green functors arising from gradings on the
category of corepresentations of semisimple Hopf algebras.
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6.5.1 Gradings of fusion categories

In this subsection we recall few basic results on gradings of fusion categories from [58] that
will be further used in the chapter.

Let C be a fusion category and O(C) be the set of isomorphism classes of simple objects
of C. Recall that the fusion category C is graded by a finite group G if there is a function
deg : O(C)→ G such that for any two simple objects X, Y ∈ O(C) one has that deg(Z) =
deg(X) deg(Y ) whenever Z ∈ O(C) is a simple object such that Z is a constituent of X⊗Y .
Alternatively, there is a decomposition C = ⊕g∈GCg such that the the tensor functor of C
sends Cg⊗Ch into Cgh. Here Cg is defined as the full abelian subcategory of C generated by
the simple objects X of C satisfying deg(X) = g. Recall that a grading is called universal
if any other grading of C is arising as a quotient of the universal grading. The universal
grading always exists and its grading group denoted by UC is called the universal grading
group.

Remark 6.5.1. If C = Rep(H) for a semisimple Hopf algebra H then by [58, Theorem 3.8]
it follows that the Hopf center (i.e. the largest central Hopf subalgebra) of H is kG∗ where
G is the universal grading group of C. We denote this Hopf center by HZ(H). Therefore
one has HZ(H) = kG∗ where G = URep(H). Moreover, in this case, by the universal
property any other grading on C = Rep(H) is given by a quotient group G/N of G. The
corresponding graded components of C are given by

Cḡ = {M ∈ Irr(H) |M ↓HkG/N= (dimM)ḡ} (6.5.1)

for all g ∈ G. Here kG/N ⊂ kG is regarded as a central Hopf subalgebra of H. Also note
that in this situation one has a central extension of Hopf algebras:

k→ kG/N → H → H//kG/N → k. (6.5.2)

6.5.2 Gradings on Rep(H∗) and cocentral extensions

Suppose that H is a semisimple Hopf algebra such that the fusion category Rep(H∗) is
graded by a finite group G. Then the dual version of Remark 6.5.1 implies that H fits into
a cocentral extension

k→ B → H
π−→ kG→ k. (6.5.1)

Recall that such an exact sequence of Hopf algebras is called cocentral if kG∗ ⊂ Z(H∗) via
the dual map π∗. On the other hand, using the reconstruction theorem from [2] it follows
that

H ∼= B τ#σ kF (6.5.2)

for some cocycle σ : B ⊗B → kF and some dual cocyle τ : kF → B ⊗B.
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For any such cocentral sequence it follows thatG acts on Rep(B) and by [94, Proposition
3.5] that Rep(H) = Rep(B)G, the equivariantized fusion category. For the main properties
of group actions and equivariantized fusion categories one can consult for example [98].
Recall that the above action of G on Rep(B) is given by T : G −→ Aut⊗(Rep(B)), g 7→ T g.
For any M ∈ Rep(B) one has that T g(M) = M as vector spaces and the action of B is
given by b.gm := (g.b).m for all g ∈ G and all b ∈ B, m ∈ M . Here the weak action of G
on B is the action used in the crossed product from Equation (6.5.2).

For any subgroup M of G it is easy to check that H(M) = B#σkM , i.e. H(M) is the
unique Hopf subalgebra of H fitting the exact cocentral sequence

k→ B → H(M)→ kM → k. (6.5.3)

Lemma 6.5.1. Let H be a semisimple Hopf algebra. Then gradings on the fusion category
Rep(H∗) are in one-to one correspondence with cocentral extensions

k→ B → H
π−→ kG→ k. (6.5.4)

Proof. We have shown at the beginning of this subsection how to associate a cocentral
extension to any G-grading on Rep(H∗).

Conversely, suppose one has a cocentral exact sequence as in Equation (6.5.1). Then
Rep(H∗) is graded by G where the graded component of degree g ∈ G is given by

Rep(H∗)g = {d ∈ Irr(H∗) | π(d) = ε(d)g}. (6.5.5)

Indeed, since kG ⊂ Z(H∗) via π∗ it follows that kG acts by scalars on each irreducible
representation of H∗. Therefore for any d ∈ Irr(H∗) one has d ↓H∗kG = ε(d)g for some g ∈ G.
It follows then by [58, Theorem 3.8]) that Rep(H∗) is G-graded and

Rep(H∗)g = {d ∈ Irr(H∗) | d ↓H∗kG = ε(d)g} (6.5.6)

On the other hand it is easy to check that one has π(d) = d ↓H∗kG for any d ∈ Irr(H∗) (see
also Remark 3.2 of [16].)

Clearly the two constructions are inverse one to the other.

6.5.3 New examples of Mackey pairs of Hopf subalgebras

Let H be a semisimple Hopf algebra and C = Rep(H∗). Since H∗ is also a semisimple
Hopf algebra [73] it follows that C is a fusion category. For the rest of this section fix an
arbitrary G-grading C = ⊕g∈GCg on C.

For any subset M ⊂ G define CM := ⊕m ∈MCm as a full abelian subcategory of C. Thus
O(CM) = tm∈MO(Cm). Let also H(M) to be the subcolagebra of H generated by all the
simple subcoalgebras of H whose irreducible H∗-characters belong to O(CM).

For any subcoalgebra C of H denote by Irr(C∗) the irreducible characters of the dual
algebra C∗. Therefore by its definition H(M) verifies the equality Irr(H(M)∗) = O(CM)
and as a coalgebra can be written as H(M) =

⊕
{d∈O(Cm) | m∈M}Cd. Note that if M is a

subgroup of G then H(M) is a Hopf subalgebra of H by Remark 1.1.1.
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For any simple subcoalgebra C of H whose associated irreducible character d ∈ Irr(H∗)
has degree g we will also write for shortness that deg(C) = g.

Proposition 6.5.1. Let H be semisimple Hopf algebra and G be the universal grading
group of Rep(H∗). Then for any arbitrary two subgroups M and N of G, the set of double
cosets H(M)\H/H(N) is canonically bijective to the set of group double cosets M\N/G.
Moreover, the bijection is given by H(M)CH(N) 7→M deg(C)N .

Proof. By Remark 1.1.1 one has the following equality in terms of irreducibleH∗-characters:

Irr(H(M)CH(N)∗) = O(CM deg(C)N)

Thus if H(M)CH(N) = H(M)DH(N) then deg(C) = deg(D) which shows that the
above map is well defined. Clearly the map H(M)CH(N) 7→ M deg(C)N is surjective.
The injectivity of this map also follows from Remark 1.1.1.

Note that the proof of the previous Proposition implies that the cosetHx = H(M)CH(N)
with deg(C) = x is given by

Hx =
⊕

{d∈O(Cmxn) | m∈M, n∈N}

Cd. (6.5.1)

Proposition 6.5.2. Suppose that V ∈ H(M) −mod, i.e. V is a B#σkM-mdule. Then

as B-modules one has that CV ∼= T g
−1

(Res
H(M)
B (V )) where g ∈ G is chosen such that

deg(C) = g. Moreover C(V ⊗W ) ∼= CV ⊗ CW for any two left H(M)-modules V and
W .

Proof. Note that in this situation one has that CH(M) = H( gM) = B#σkgM . By
definition one has CV = CH(M)⊗H(M) V = H(gM)⊗H(M) V . Thus

CV = (B#kgM)⊗B#kM V ∼= kgM ⊗kM V (6.5.2)

where the inverse of the last isomorphism is given by g⊗kM v 7→ (1#g)⊗B#kM v. Note that
B acts on kgM ⊗kM V via b.(g⊗kM v) = g⊗kM (g−1.b)m for all b ∈ B, v ∈ V . This shows

that indeed CV ∼= T g
−1

(Res
H(M)
B (V )) as B-modules. Moreover it follows that CV can be

identified to V as vector spaces with the B#σkgMg−1-module structure given by b.v =
(g−1.b)v and (ghg−1).v = ([g−1.(σ(ghg−1, g)σ−1(g, h))]#σh).v. for all g ∈ G, h ∈ M and
v ∈ V . Then it can be checked by direct computation that the map v⊗w 7→ τ−1(g)(v⊗w)
from [94, Proposition 3.5] is in this case a morphism of B#σkgMg−1-modules. In order to
do that one has to use the compatibility conditions from [2, Theorem 2.20].
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6.5.4 Examples of Mackey pairs arising from group gradings on
the category Rep(H∗).

Let as above H be a semisimple Hopf algebra with C = ⊕g∈GCg be a group grading of
C := Rep(H∗). It follows that

FPdim(Cg) =
dimH∗

dimHZ(H∗)
(6.5.1)

for all g ∈ G where FPdim(Cg) :=
∑

V ∈O(CG)(dimV )2 is the Perron-Frobenius dimension
of the full abelian subcategory Cg of C.

Theorem 6.5.3. Let H be a semisimple Hopf algebra and M , N be any two subgroups of
G. With the above notations the pair (H(M), H(N)) is a Mackey pair of Hopf subalgebras
of H.

Proof. Put L := H(M) and K := H(N). Therefore Irr(L∗) = O(C(M)) and Irr(K∗) =
O(C(N)). Then we have to verify Equation (6.4.1) for any simple subcoalgebra C. Fix a
simple subcoalgebra C of H with deg(C) = x. As above one has CH(M) = H( xM).

It is easy to verify that H(M) ∩H(N) = H(M ∩N) for any two subgroups M and N
of G. This implies that L∩ CK = H(N ∩ xM). On the other hand from Equation (6.5.1)
note that dimLCK = |MxN |FPdim(C1).

Then Equation (6.4.1) is equivalent to the well known formula for the size of a double
coset relative to two subgroups:

|MxN | = |M ||N |
|M ∩ xN |

, (6.5.2)

for any x ∈ G.

Remark 6.5.2. The fact that (H(M), H(N)) is a Mackey pair also follows in this case
from a more general version of Mackey’s decomposition theorem that holds for the action
of any finite group on a fusion category. This results were recently sent to publication by
the author, see [20].

Remark 6.5.3. It also should be noticed that the author is not aware of any pair of
Hopf subalgebras that is not a Mackey pair. It would be interesting to construct such
counterexamples if they exist.

6.5.5 Mackey and Green functors

For a finite group G denote by S(G) the lattice of all subgroups of G. Following [113]
a Mackey functor for G over a ring R can be regarded as a collection of vector spaces
M(H) for any H ⊂ S(G) together with a family of morphisms ILK : M(K) → M(L),
RL
K : M(L) → M(K), and cK,g : M(K) → M( gK) for all subgroups K and L of G

with K ⊂ L and for all g ∈ G. This family of morphisms has to satisfy the following
compatibility conditions:
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1. IHH , R
H
H , cH,h : M(H)→M(H) are the identity morphisms for all subgroups H of G

and any h ∈ H,

2. RJ
KR

K
H = RJ

K , for all subgroups J ⊂ K ⊂ H,

3. IKH I
H
J = IKJ , for all subgroups J ⊂ K ⊂ H,

4. cK,gcK,h = cK,gh for all elements g, h ∈ G.

5. For any three subgroups J, L ⊆ K of G and any a ∈ M(J) one has the following
Mackey axiom:

RJ
L(IKJ (a)) =

∑
x∈J\K/L

ILL∩ xJ(R
xJ
xJ∩L(cJ,x(a)))

Moreover, a Green functor is a Mackey functor M such that for any subgroup K of G one
has

that M(K) is an associative R-algebra with identity and the following conditions are
satisfied:

6. RL
K and cK,g are always unitary R-algebra homomorphisms,

7. ILK(aRL
K(b)) = ILK(a)b,

8. ILK(RL
K(b)a) = bILK(a) for all subgroups K ⊆ L ⊆ G and all a ∈M(K) and b ∈M(L).

Green functors play an important role in the representation theory of finite groups (see
for example [113]).

6.5.6 New examples of Green functors

Next Theorem allows us to construct new examples of Green functors from semisimple
Hopf algebras.

Theorem 6.5.4. Let H be a semisimple Hopf algebra and G be a grading group for the
fusion category Rep(H∗). Then the functor M 7→ K0(H(M)) is a Green functor.

Proof. By Proposition 6.5.1 there is a cocentral extension

k→ B → H
π−→ kG→ k (6.5.1)

for some Hopf subalgebra B ⊂ H. Then as above, for a simple subcoalgebra C of H with
associated character d ∈ H∗ one has that if π(d) = g for some g ∈ G then π(C) = kg.

The map RL
K : K0(H(L)) → K0(H(K)) is induced by the restriction map Res

H(L)
H(K) :

H(L) −mod → H(K) −mod. Similarly, the map ILK is induced by the induction functor
between the same two categories of modules. Clearly RL

K is a unital algebra map and the
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compatibility conditions 7 and 8 follow from the adjunction of the two functors. Moreover
conditions 2 and 3 are automatically satisfied.

Define cL,g : K0(L) → K0( gL) by [M ] 7→ [ CM ] where C is any simple subcoalgebra
of H chosen with the property that deg(C) = g. It follows by Proposition 6.5.2 that cL,g
is a well defined algebra map. Condition 4 is equivalent to T gh(M) ∼= T gT h(M) which is
automatically satisfied for a group action on a fusion category.

It is easy to see that all other axioms from the definition of a Green functor are satisfied.
For example, the Mackey decomposition axiom 5 is satisfied by Theorem 6.5.3.

6.6 On normal Hopf subalgebras of semisimple Hopf

algebras

Proposition 6.6.1. Suppose that H is a semisimple Hopf algebra. Then for any normal
Hopf subalgebra K of H one has that (K,K) is a Mackey pair of Hopf algebras.

Proof. Note KC = CK for any subcoalgebra C of K since K is a normal Hopf subalgebra
of H. Then for any simple subcoalgebra C of H the dimension condition from Equation
(6.4.1) can be written as

dimCK =
(dimK) (dimCK)

dimK ∩ CK
(6.6.1)

which is equivalent to K ∩ CK = K. This equality follows by the third item of Remark
(6.3.2).

6.6.1 Irreducibility criterion for an induced module

Remark 6.6.1. Let G be a finite group and H be a normal subgroup of G Then [108,
Corollary 7.1] implies that an induced module M ↑GH is irreducible if and only if M is
irreducible and M is not isomorphic to any of its conjugate module gM .

Previous Theorem allows us to prove the following Proposition which is an improvement
of [14, Proposition 5.12]. The second item is also a generalization of [108, Corrolary 7.1].

Proposition 6.6.2. Let K be a normal Hopf subalgebra of a semisimple Hopf algebra H

and M be a finite dimensional K-module.

1. Then
M ↑HK↓HK∼=

⊕
C∈H/K

CM

as K-modules.

2. M ↑HK is irreducible if and only if M is an irreducible K-module which is not a direct
summand of any conjugate module CM for any simple subcoalgebra C of H with
C 6⊂ K.
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Proof. 1. Previous Proposition implies that

M ↑HK↓HK∼=
⊕

C∈K\H/K

K ⊗K∩ CK CM (6.6.1)

as K-modules. On the other hand since K is normal note that CK = KC and
therefore the space K\H/K of double cosets coincides to the space H/K of left
(right) cosets (see also Subsection 6.2 for the notation). In the the proof of the same
Proposition 6.6.1 it was also remarked that K ∩ CK = K.

2. One has that M ↑HK is an irreducible H-module if and only if

dimk HomH(M ↑HK , M ↑HK) = 1.

Note that by the Frobenius reciprocity one has the following HomH(M ↑HK , M ↑HK
) = HomK(M, M ↑HK↓HK). Then previous item implies that

HomK(M, M ↑HK) ∼=
⊕

C∈H/K

HomK(M, CM) (6.6.2)

Since for C = k one has kM = M it follows that HomK(M, CM) = 0 for all C 6⊂ K.

6.6.2 A tensor product formula for induced representations

We need the following preliminary tensor product formula for induced representations
which appeared in [25].

Proposition 6.6.3. Let K be a Hopf subalgebra of a semisimple Hopf algebra H. Then
for any K-module M and any H-module V one has that

M ↑HK ⊗V ∼= (M ⊗ V ↓ HK) ↑ HK . (6.6.1)

Proof of Theorem 6.1.3: Applying Proposition 6.6.3 one has that

M ↑HK ⊗N ↑HL∼= (M ↑HK↓HL ⊗N) ↑HL . (6.6.2)

On the other hand, by Theorem 6.1.2 one has

M ↑HK↓HL∼= ⊕C∈L\H/K(L⊗L∩ CK (CK ⊗K M)). (6.6.3)

Thus,

M ↑HK ⊗N ↑HL ∼= (M ↑HK↓HL ⊗N) ↑HL
∼=−→ ⊕C∈L\H/K((L⊗L∩ CK (CK ⊗K M))⊗N) ↑HL .

Applying again Proposition 6.1.3 for the second tensor product one obtains that

M ↑HK ⊗N ↑HL
∼=−→ ((CK ⊗K M)⊗N ↓ LL∩ CK) ↑LL∩ CK↑

H
L

∼=−→ ⊕C∈L\H/KH ⊗L∩ CK ((CK ⊗K M)⊗N ↓ LL∩ CK).
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Remark 6.6.2. Note that the above Theorem always applies for K = L a normal Hopf
subalgebra of H.



Chapter 7

Future plans and research directions

The author of this thesis has obtained a Ph.D. from Syracuse University in 2005. In the next
year he held a postdoctoral position to the same University. In 2007 the author returned
to Romania as a Scientific Researcher at the Simion Stoilow Institute of Mathematics of
Romanian Academy.

In the period 2010-2012 the author held a postdoctoral grant PN II-RU-PD-168/2010 of the
Romanian National Authority for Scientific Research, CNCS - UEFISCDI. Since May 2012,
Sebastian Burciu is the director of a grant for young researchers PN II-RU-TE-168/2012
of the Romanian National Authority for Scientific Research, CNCS - UEFISCDI. He was
also member of other national research grants. For other research grants where the author
was a team member one can consult author’s CV. He intends in the future to apply for
other national and international grants or fellowships.

Recently the author started a scientific research seminar on Hopf algebras and tensor
categories in the institute. The seminar is related with the ongoing activities of the grant
PN-II-RU-TE 168/2012. One of the goals of the seminar is to bring together researchers
interested in applying the the new methods of fusion categories to the study of semisimple
Hopf algebras.

The future research directions of the author are to obtain new results in the classification
of semisimple Hopf algebras and fusion categories.

Next we will give some details on few of these future directions.

7.1 Classification of semisimple Hopf algebras

The study of semisimple Hopf algebras became recently a very dynamic field of research.
The main motivation of this studies consists in the fact that the category of finite dimen-
sional representations of a semisimple Hopf algebra is a fusion category. Fusion categories
are used in various branches of mathematics such as quantum filed theory, invariants of
knots and 3-manifolds and representation theory.
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If H is a finite dimensional semisimple Hopf algebra over an algebraically closed field k then
Kaplansky’s sixth conjecture states that the dimension of an irreducible H-module divides
the dimension of H. For finite group algebras this conjecture is known as a classical result
of Frobenius (see [108]). The conjecture was proven so far for some important particular
cases of Hopf algebras for quasitriangular Hopf algebras, see [38, 107], and for cotriangular
Hopf algebras, [41] semi-solvable Hopf algebras, see [83].

Note also that there are already several results in the literature which classify Hopf algebras
in certain dimensions based on the assumption thatKaplansky’s sixth conjecture is true,
[39, 55, 59, 60].

Recently many properties from group representations were transferred to semisimple Hopf
algebras. The starting point of this process was the paper of Larson [72] which proved the
orthogonality relation for characters of (co)semisimple Hopf algebras. Next step was done
by Zhu [125] who proved the class equation for semisimple Hopf algebras. This allowed
people to make substantial progress in the classification of semisimple Hopf algebras in
various low dimensions, see for example [78, 77, 80, 79, 88, 89, 91].

Next we will describe some future projects of the author in this direction. It is worth
emphasising that some of these projects could lead to reasonably difficult subjects for a
Ph.D. thesis with a good impact in the field of study.

7.1.1 Hecke algebras arising from semisimple Hopf subalgebras

In [14] the author constructed double cosets associated to Hopf subalgebras K of a semisim-
ple Hopf algebra A. It was observed by D. Nikshych that two such double cosets can be
multiplied obtaining an algebra of double cosets similar to the Hecke algebra associated to
a subgroup of finite group, [32, Section 11.21]. We denote this algebra by H(K,A). It is
easy to show that a similar formula to [32, Proposition 11.30] for the central idempotents of
these Hecke algebras hold. Moreover an idempotent is primitive in H(K,A) if and only if it
is primitive in A. We intend to investigate some other properties of Hecke algebras, espe-
cially the correspondence between the irreducible representations of these Hecke algebras
and the irreducible constituents of some induced representations of A.

7.1.2 Kernels of representations of semisimple Hopf algebras

As we already have noticed in Chapter 1 a new method in the study of the semisimple Hopf
algebras is by investigating the Hopf kernels associated to their representations. In [21]
we have shown that the kernels of all representations of Drinfeld doubles of finite groups
are all normal Hopf subalgebras. At this time there are not known examples of Drinfeld
doubles admitting not normal Hopf kernels of representations. It is our intention in the
future to explore the Hopf kernels of representations of semisimple Drinfeld double. For
this study we will use the recent classification of irreducible representations of Drinfeld
doubles given by the author in [19].
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In [23] I have obtained new information concerning the left kernel of any normal coideal
subalgebra of a semisimple Hopf algebra, regarded as a left module over the Drinfeld
double via the adjoint action, see [126, Lemma 1]. In the future we would like to explore
this information with respect to the Müger centralizer of these modules.

7.1.3 Character theory for semisimple Hopf algebras

The Mackey type decomposition from Chapter 6 suggests that the character algebra of a
semisimple Hopf algebra has many analogue properties to the character algebra of a finite
group. In Chapter 6 we have seen that for an equivariantized fusion category one can
construct new Green rings (associated to cocentral extensions of Hopf algebras).

In a recent preprint [20] the author has shown that these Green rings have a similar ring
structure as the rings introduced by Bouc in [11] and Witherspoon in [122]. These rings
appear in may branches of mathematics as group representations, Hochschild cohomology
and K-theory of crossed products. A classical example of such rings is given by the double
(crossed) Burnside ring, see [11]. It is our intention to further investigate the algebraic
structure of these rings using Hopf algebraic methods.

We also mention that a new direction in the character theory is that of (weak) orders for
semisimple Hopf algebras and fusion categories that was recently developed in [31, 42].
Our results from [26] shows that if C = Rep(H) has a (weak) Hopf order then CG has also
a (weak) Hopf order, for H a semisimple Hopf algebra. In the future we would like to
extend the known class of Hopf algebras which posses a Hopf order, enlarging in this way
the class of Hopf algebras satisfying Kaplansky’s sixth conjecture.

7.1.4 Nilpotent and solvable semisimple Hopf algebras

Recently the notion of a solvable and nilpotent fusion category was introduced by Etingof,
Nikshych and Ostrik in [45]. It is a well known challenging problem to characterize those
semisimple Hopf algebras whose category of representations is nilpotent or solvable.

Using notions of character theory for Hopf algebras we proved in [23] that for any two
normal coideal subalgebras L,K of a semisimple Hopf algebra A with a commutative
character ring C(A) one has that

dimLK =
(dimL)(dimK)

dim(L ∩K)
. (7.1.1)

Using the notion of commutator introduced by the author in [18], (see also [29]), I intend
in the future to obtain new results in this direction. For example, it is an open problem to
characterize nilpotency of the category of representations of a semisimple Hopf algebra in
terms of central series. Note that in [30] the authors succeeded to characterize nilpotent
Hopf subalgebras in terms of an upper central series introduced in loc. cit. Formula (7.1.1)
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concerning the dimension of a product of two coideal subalgebras, suggests that a similar
lower central series can be defined for a semisimple Hopf algebra. It is expected that
characterization of nilpotency in terms of this series should also hold.

In [36] it is shown that any nilpotent fusion categories is a direct product of fusion categories
of Frobenius-Perron dimensions power of primes. We would like to investigate a similar
result for semisimple Hopf algebras. All known nilpotent Hopf algebras at this moment
are tensor product of normal coideal subalgebras of prime power dimension.

In a recent ongoing project, the author defines a new algebraic notion of solvability of
semisimple Hopf algebras in terms of an abelian series introduced using left coideal subal-
gebras. In [83] a stronger notion is defined insisting on the terms of the abelian series to
be Hopf subalgebras. There are examples of semisimple Hopf algebras that are solvable in
the new algebraic sense but neither semisolvable or solvable in the categorical sense. It is
not known yet any counterexample in the opposite direction for the categorical notion of
solvability. It is expected that this new class of solvable Hopf algebras to enlarge the class
of semisimple Hopf algebras satisfying Kaplansky’s sixth conjecture.

Another open problem related to those mentioned above is related to the unicity of com-
position factors of a composition series for semisimple Hopf algebras and the existence of
an analogue of Jordan Hölder Theorem for semisimple Hopf algebras.

7.2 Classification of fusion categories

A new method to construct fusion categories is proposed in [43]. This method consists of
constructing new Morita equivalent categories.

P. Etingof, D. Nikshych and V. Ostrik defined the notion of group-theoretical fusion cate-
gories consisting of those fusion categories which are Morita equivalent to a pointed fusion
category. Recall that a fusion category is called pointed if all its simple objects are invert-
ible.

In [43] it was conjectured that any fusion category is group theoretical. A counterexample
to this conjecture was constructed by D. Nikshych in [98]. The counterexample consists
of a category of representations of a semisimple Hopf algebra which is a Z2−extension of
a group theoretical fusion category. More recently, the same three authors conjectured in
[45] that any fusion category is weakly group theoretical. Recall that a fusion category is
called weakly group theoretical if it is Morita equivalent to a nilpotent fusion category.

It is an open problem in the field if any fusion category is weakly group theoretical. Fol-
lowing results from [45] an affirmative answer to this question would imply that any fusion
category has the strong Frobenius property. Thus, in particular, this would imply the
sixth conjecture of Kaplansky for semisimple Hopf algebras. Müger has introduced in [85]
the notion of centralizer of a fusion subcategory of a braided fusion category. One of the
most remarkable features of this notion is that the centralizer of a nondegenerate fusion
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subcategory of a modular category is a categorical complement of the modular category.
This principle is the basis of many classification results of fusion categories, see for example
[36, 37, 45].

Despite its importance, in general it is a difficult task to give a concrete description for the
centralizer of all fusion subcategories of a given fusion category. Only few cases are know in
the literature. For instance, in the same aforementioned paper, [85], Müger described the
centralizer of all fusion subcategories of the category of finite dimensional representations
of a Drinfeld double of a finite abelian group. More generally, for the category of repre-
sentations of a (twisted) Drinfeld double of an arbitrary finite group a similar formula was
then given in [87]. Note also that for the braided center of Tambara-Yamagami categories,
this centralizer was described in [57] by computing completely the S-matrix of the modular
category.

The author intends to study the centralizer for two classes of braided fusion categories.

7.2.1 Müger centralizer for semisimple Drinfeld doubles

It is well known that the category of representations of the Drinfeld double of a semisimple
Hopf algebra is a modular fusion category. Recall that this means that the S-matrix of a
such category is an invertible matrix. Müeger’s inequality inequality

|sX,Y | ≤ dXdY

for the maximum values of the entries of S-matrix suggests that these values might be
related with the values obtained by evaluating characters at cocharacters, see Proposition
1.1 from Chapter 1.

In a recent preprint, [23], we investigated for a factorizable Hopf algebra such a possible
relation. More precisely, we computed the centralizer of the fusion subcategory HKerA∗(d)
in terms of the central idempotents of the character algebra of A.

In the future we would like to investigate this relation of Müger’s centralizer for other fusion
subcategories of Rep(A). The description given in [19] for the irreducible representations
of a semisimple Drinfeld double D(A) suggests that results similar to the one from [87] are
expected.

7.2.2 Müger centralizer for equivariantized fusion categories

Suppose that a finite group G acts by tensor autoequivalences on a G - crossed braided
fusion category C, [116]. It is well known that in this case CG is braided.

Using the fusion rules for equivariantizations from [26] (see also Chapter 5) one can param-
eterize all fusion subcategories of the equivariantized fusion category CG. Similar to the
results from [87] these fusion subcategories are parameterized by a fusion subcategory D
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of C, a pair of elementwise commuting subgroups H,K of G, and some twisted bicharacter
λ : H × K → K0(D) satisfying certain compatibilities. We denote by S(H,K, λ,D) the
subcategory corresponding to this datum. In a future project, together with S. Natale the
author will study Müger’s centralizer for these fusion subcategories CG. It is expected that
a symmetry similar to the one from [87] to hold. In particular it is not difficult to see
that the subgroups of the centralizer of a fusion subcategory of CG are interchanged, i.e
S(K,H,D, λ) = S(H,K,D′, λ′). It remains to investigate the relationship between D and
D′ and between λ and λ′.

7.2.3 Mackey theory for equivariantized fusion categories

As it was already mentioned in Chapter 6 one can extend the Mackey decomposition
for cocentral extensions obtained by the author in [22] to a Mackey decomposition for
equivariantized fusion categories.

Such a decomposition will enable us to define a categorized notion of a Green functor [20].
This study will provide new information abut the Grothendieck group of an equivariantized
fusion category. Since the Drinfeld center of a fusion category can also be described as
an equivariantization (of the relative center), see [57], this new Mackey decomposition
provides new properties on the structure of the Grothendieck rings of Drinfeld doubles.

7.2.4 Fusion subcategories from II1 subfactors

It was recently observed that a categorical Morita equivalence between two fusion categories
is precisely a finite-depth subfactor (the two fusion categories are the A − A and B − B
bimodules, the Morita equivalence and its inverse are the A−B and B−A bimodules). This
remark provided a new method for studying fusion categories in the literature intimately
related to the study of II1 subfactors, see [47, 48, 8, 101, 99, 100].

Given a fusion category C, an important question is to understand all quantum subgroups
of C in the sense given by Ocneanu in [101]. This equivalent to understanding all indecom-
posable module categories over C. When C is a fusion category coming from quantum su2

at a root of unity, then the quantum subgroups are given by the ADE Dynkin diagrams.
(see for example [99, 100, 8].) For the corresponding results results into the language of
fusion categories and module categories see [46, 71, 102].

It is well known now that a subfactor whose principal even part is C is almost the same
thing as a simple algebra object in C (see for example [75, 76, 84, 123]). Note that all simple
algebra objects in C can be realized as the internal endomorphisms of a simple object in
some module category over C [102].

The author intends to extend the results from [26, Theorem 3.14 ] in order to obtain new
information about the indecomposable module categories over an equivariantization CG
and to further analyze the Grothendieck rings generated by them.
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