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1. INTRODUCTION 

 
Since the beginning of time, man has looked up to the sky, which has been an 

inexhaustible source of questions, myths and legends. Personification of nature and natural 

phenomena, was the first shy attempt of the primitive man to explain the apparently 

meaningless world they saw. 

Until 500 years ago, people thought the earth was the center of the universe, for a 

pretty obvious reason: the Moon was orbiting the Earth, and there is no evidence that the Sun 

was not doing the same. The planets could be seen revolving around the Earth, although at 

times they seemed to be going the way back for several weeks if not months. 

Since the nineteenth century to the present a lot of astronomers and mathematicians 

have contributed to the evolution and development of astronomy.  

The early sailors used to keep the land in view. Sailors that knew the region well were 

used, relying on many previous passes through the same place: the recognition of rocks, 

stones surveys tied up to ropes to avoid shallow waters near the land, following the direction 

of movement of clouds, sea currents recognition, using winds both for sailing and for the 

recognition of the region where they operate. When the shore was not in view, orientation was 

made after Sun at daytime and after the stars at night time.  

Tales of Miletus says that the Ionian sailors were trained to recognize the constellation 

Ursa Minor 600 years BC.  

Christopher Columbus crossed the Atlantic using astronomical observations, being 

thus worshiped by the natives of Santa Gloria, in Jamaica Bay after he had predicted the lunar 

eclipse of February 29, 1504.  

In celestial navigation, the navigation landmarks are the celestial bodies (the Sun, the 

Moon, the planets and the stars); they are easily observed and identified as they form a natural 

infrastructure. 

Celestial navigation markers are localized for a certain observation hour using their 

ephemeris (paper or electronic). The measurements for celestial bodies are made using a 

sextant or a theodolite.  

Launching of the first artificial satellite (Sputnik) on October 4 1957 by Russia (USSR 

at that time) had a great scientific importance, being the road opener for many space missions 

up to the present date.  

In 1973, the U.S. Department of Defense wanted to create a spatial positioning 

system, known as NAVSTAR / GPS (NAVigation System with Timing And Ranging / Global 

Positioning System).  

The first targets aiming at the system were military targets. Further on, the US 

Congress required promotion of "civil" facilities of the system. This process was pushed 

forward by the marketing of the first GPS receiver, called "Macrometer" used for geodetic 

measurements. 

For determining the terrestrial position the satellite navigation uses the same principle 

as celestial navigation. In order to determine the ship’s precise position with the help of the 

satellite navigation system, measurements of four pseudo-distances at four different satellites 

are required. 

For a better precision in the observatory’s position it is necessary to know, as 

accurately as possible, the position of the artificial satellite. Upon a satellite act a series of 

perturbations that, depending on their nature, are classified as gravitational and non-

gravitational perturbations  

Accurate modeling of equations of such perturbations ultimately leads to a more 

precise determination of the observatory’s position.  
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This research paper, which is part of the research topics within the Astronomical 

Institute of the Romanian Academy, aims to address and investigate the following issues 

related to the movement GPS satellites: 

   developing models of perturbation accelerations that influence the motion of GPS 

satellites, determining the order of magnitude, and establishing  a criterion for their 

inclusion in the dynamic model; 

   study of the analytical method for calculating the influence of gravitational and non 

gravitational acceleration perturbations in the oscillatory elements of the GPS 

satellites; 

   study, through numerical applications, of the errors of GPS satellites orbit, induced 

by gravitational and non-gravitational perturbation accelerations, with emphasis on 

non-gravitational accelerations; 

   qualitative study of GPS satellites  movement.  

 

The paper is divided into six chapters as follows: 

Chapter I present NAVSTAR/GPS, GPS satellite system, the identification of GPS 

technology applications, reference systems and time scales required by the study of disruptive 

forces acting on GPS satellites. 

 

Chapter II presents a quantitative analysis of GPS satellites motion under the 

influence of gravitational and non-gravitational perturbations. 

 

Chapter III contains the quantitative analysis of non gravitational perturbations: direct 

solar radiation pressure, indirect solar radiation pressure, anisotropic thermal emission, 

antenna emission, and empirical models of solar radiation pressure. 

 

Chapter IV presents the author’s original method using Runge–Kutta integration 

algorithm of order 4, for determining gravitational perturbation accelerations that act upon 

GPS satellites and the effects produced by the non-gravitational perturbations to the orbital 

elements of the satellites. 

 

Chapter V is a qualitative or geometric study of GPS satellites motion. This is a new 

approach which applies the geometric method to analyze dynamic systems whose initiator is 

Poincare, for the study of GPS satellites motion. The analysis is not limited to GPS satellites 

alone; it also takes into account a multitude of cases, resulting in a comprehensive analysis of 

satellite motion. 

 

Chapter VI contains a brief overview of important data and conclusions presented in 

previous chapters, highlighting the main results obtained by the author. 

 

 

 

2. QUANTITATIVE ANALYSIS OF NAVSTAR/GPS SATELLITE 

MOTION 

 

     2.1. Equations of GPS satellite motions 

 
            Vector differential equation of relative motion of a satellite around the central body, in 

the absence of any disturbing influences, has the form (Brouwer and Clemence 1961, Pal and 

Ureche 1983): 
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The analytical integration process of the of 3 differential equations system, of order 2 

reveals 4 prime integrals (the energy integral and the surface integrals), the orbit equation, and 

equations of motion of the satellite on the orbital plane, as well as 6 integration constants 

determinable form conditions (initial positions and initial velocity): 

a - the semi-major axis 

e - the eccentricity 

i - the inclination 

 - the mean anomaly 

 - the perigee argument 

M - the longitude of the ascending node 

Those six constants of integration are actually kepleriene elliptical orbit parameters 

and define the position of the orbit in inertial space (i, Ω), the orientation of the orbit in its 

plane (ω), the shape of the orbit (a, e), and orbital position (M). The only parameter that 

depends on the orbital time is average anomaly. As a result, the place can be used when 

moving the perigee (t0). 

 

 

2.2 Functions of the disturbing force 
 

As known, a significant number of disturbing forces (accelerations) act upon an 

artificial satellite of the Earth; they are of a much smaller magnitude than the central force 

(acceleration), and in time they significantly influence the dynamics of the satellite. 

For first-order linear theory development it is necessary to express the main categories 

of disturbing  force  functions in terms orbital elements, while for the numerical integration of 

the  differential equation (2.2) of the disturbed motion, it is necessary that they be expressed 

in terms of cartesian coordinates. 

 

Depending on their nature there can be gravitational disturbing accelerations and 

non-gravitational disturbing accelerations. 

 

Gravitational disturbing accelerations: 

 the Earth's gravitational field is not centered; 

 the Sun’s  and the Moon’s gravitational pull;  

 the indirect effect of the attraction of the Sun and the Moon (the indirect tidal effect); 

 the gravitational pull of other planets; 

 relativistic effects; 

 

Non-gravitational acceleration disturbance: 

 direct solar radiation pressure; 

 pressure of solar radiation re-emitted by the Earth's surface (the Earth’s albedo); 

 the  Poynting–Robertson effect; 

 aerodynamic stopping; 

 solar wind; 

 other accelerations, such as inter-planetary dust, heat radiation of the satellite, etc.. 
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The magnitude of disturbing accelerations depends, on one hand on the nature of the 

phenomenon that generates term, and on the other hand on the values of orbital satellite 

parameters.  

Any modification of a parameter of the satellite orbit can be written as (Escobal, 

1965): 

              
    

  )2cos()2sin()2cos()()( 32100 vkvkktt
dt

du
tutu                     (2.3) 

where: 

v - true anomaly; 

k1, k2, k3 - sums and products depending on the major semi-axis, eccentricity, and inclination. 

The effect of a disturbing acceleration can be: 

 secular,  0tt
dt

du
   i.e. it has  linear evolution and it  is cumulative over time; 

 long – periodic, )2cos(1 k  where the disturbance amplitude increases and decreases 

with a certain defined interval of time, this being higher than the orbital period; 

 short - periodic, )2cos(3 vk  if the period of variation is shorter  than the orbital perio 

 mixed - periodical, )2sin(2  vk combination of disturbances with long and short 

periods (intervals). 

Secular perturbations

Long periodic + secular perturbations

Short periodic + long periodic + secular perturbations

Mean variation

Timet1 t2

u

O
 

Figure 2.1 Perturations type 

 

 

 

3.  NUMERICAL RESULTS OF QUANTITATIVE ANALYSIS OF 

NAVSTAR/GPS SATELLITE ORBIT 
 

3.1 Calculation of the GPS satellite orbit 

  
 For calculating the orbit GPS satellites, two methods are used. The first method called 

the analytical method is based on analytical solutions of Lagrange's planetary equations, 

expressed in terms of Keplerian orbital elements. The second method is based on the 

numerical solution of differential equation 2nd order perturbed relative motion in Cartesian 

coordinates, called numerical method. 

 The analytical solution used to calculate the precise GPS orbit short arcs is an 

extension of the 1st order perturbation theory. In order to determine the effects introduced by 

the 2
nd

 zonal harmonic (C20 or J2 coefficient) 2
nd

 order perturbations must be included; as a 
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principle, this requires the second solution of Lagrange planetary equations, using the solution 

1st order (linear) to evaluate the right member of this equation. 

The numerical solution of GPS satellites orbit is based on direct numerical integration 

of order 2 differential equations of perturbed relative motion, in Cartesian coordinates.  

This method can be found in two forms: Cowell method and Encke method. The 

advantage of numerical method is the simple formulation of movement equations. 

In Cartesian coordinates, they have the following form: 

                                                  
2

i
i

i

x
x

r r x

 
   


    for i = 1, 2, 3                                      (3.1) 

in which r is the geocentric vector radius, and 
ix




 is the sum of the disturbing accelerations 

caused by the fact that the terrestrial gravitational field is not centered, any by the fact that the 

Moon – Sun gravitational interference, as well as by the solar radiation pressure. 

The coordinates ix
 
are defined in an inertial, geocentric equatorial reference system. 

Equations of motion are complete when each disturbing acceleration is measured and 

converted into the reference system. 

 

 

3.2 The Runge-Kutta method 
 

In general, with defined initial conditions (namely position 0x  and velocity 0x
 
at 0t  

launch time) equations (4.16) can be integrated numerically. The Keplerian orbit is taken as 

reference. Thus, only the small differences between total acceleration and central acceleration 

must be integrated. Integration will result into an increase (incremental) dx  which provides 

the correct position when it is summed up with the position vector calculated on the reference 

ellipse. The differential equations of order 2 usually result into a 2 differential equation 

system, of order 1, as follows:  

                                           0

0 0 03

0

( ) ( ) ( ) ( )
( )

t

t

x t x t dx t x t dt
r t

 
   

 
                                    (3.1) 

0

0 0( ) ( ) ( )

t

t

x t x t x t dt    

The numerical integration of this system is achieved by applying a Runge-Kutta 

algorithm of order 4. The principle of the method is the following: 

Be ( )y x  a function defined on the interval 1 2x x x   and /y dy dx   the derivative 

of order 1 with respect to variable x. The general solution of a first order differential equations 

of the form  

/ ( , )y dy dx y y x    

results by integration, when assigning an initial  numerical value to the  integration 

constant 1 1( )y y x . Integration interval is divided into n equal subdivisions, small enought 

 2 1( ) /x x x n   , where n is an arbitrary integer. Then, the difference between successive 

functional values is obtained from the arithmetic mean: 

 

                                (1) (2) (3) (4)1
( ) ( ) 2

6
y y x x y x y y y y          

                    (3.2) 

where: 

                                                  
(1) ( , )y y y x x    
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(2)
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2 2

y x
y y y x x
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(4) (3)( , )y y y y x x x      

Thus, starting from the initial value 1y  corresponding to argument 1x , the function can 

be calculated for the successive arguments 1x x , 2x x , etc.. In the above example, 

variable x must be interpreted as a variable time (t).  

This method can be applied to the integration of Newton-Euler, and Lagrange 

equations system, which are equations of first order. Be Newton-Euler equations as follows: 

                                                 , , , , , ,i i j iq q q t q a e i M                                              (3.3) 

where iq  is any of the keplerian elements of the satellite. The integration of systerm (2.7) is 

made in a constant interval of time t  (small enough), as follows:
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( ) ,
2 2

j

i i j

w t
x q q t t t

 
    

 
 

                                                   ( ) ,
2 2

j

i i j

x t
y q q t t t

 
    

 
                                            (3.4) 

( ) ,
2 2

j

i i j

y t
z q q t t t

 
    

 
 

                                              ( ) ( )
6 3 3 6

i i i i
i i

w x y z
q t t q t       

 

 

3.3 The Numerical Results of the GPS Satellites Analysis 
 

An unperturbed Keplerian orbit was considered for the initial conditions, on 10th  

February 2011, UTC 00.00.  

xai = 2425.8676;            vxai = 3.8327; 

yai = -15215.1157;         vyai = 0.4529; 

zai = 21743.2188;           vzai = -0.1055; 

 

                  = 1.0027379093UT1 + o + ΔΨ cosε 

UT1 = UTC - dUT1, (dUT1 = 0.162626) 

        o = 24110
s
.54841 + 8640184

s
.812866T + 0

s
.093104T

2
 - 6

s
.210

-6
T

3
 = 580910482.2 

               
2455602,5

67,23073237
36525 36525

JD
T     

          ΔΨ cosε = -62.61453881 

                         = 1.0027379093*(UT-0.162626) + 580910482.2 - 62.61453881 

 

The values of the arguments for accuracy according to IERS Bulletin: 

 xp = 0.03428 

 yp = 0.20863 
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The order 4 Runge – Kutta algorithm was applied for the integration of undisturbed 

motion equation (1.1). The software determined, for the selected interval, the values of the 

vector radius and velocity ( , )r v , for each integration step, which was then wrote in a text file. 

The software also solved the problem of Laplace and determined, based on the ),( vr  values of 

the 6 Keplerian elements ),,,,,( Miea   and components of accelerations. 

The motion of the satellite under observation was considered successively disrupted 

by a single disturbance: the zonal harmonic J2, J3, J4, J5, J6, the gravitational perturbation of 

the Sun and of the Moon, relativistic effects, and direct solar radiation pressure. 

Likewise, the calculation software had as output data the text files corresponding to 

the orbital elements ),( vr  and ( , , , , , )a e i M  . For each orbital element the difference 

was made between the values obtained in the unperturbed case, and the values obtained in 
case of disturbance, there resulting in orbital element variation under the influence of the 

disturbance considered. Each variation alone was analyzed separately, and a variation graph 

was drawn for it.  

The orbit integration was performed for a period of 2.1 days (50 hours) and 20.8 days 

(500 hours) for some disturbances. First the disturbing accelerations acting on a satellite in 

average orbit (GPS satellite) are exemplified. 

Orbital errors induced by main perturbations on the geostationary satellite are then 

presented. 

For determining orbital errors of GPS satellites J2, J3, J4, J6 și J22, zonal harmonics, 

Moon, Sun perturbations and solar radiations pressure must be taken into consideration. 

Next the effects of the perturbations upon the GPS satellite orbit are analised and 

synthetised in the following table.  

 

 

Table 1.1 Numerical values of the perturbative accelerations 

Parameter 
GPS 

satellite 
Calculation formula 

[Km/s
2
] Semi-major axis 26 500 km 

Inclination 55
0
 

Central acceleration 5,6 * 10
-4

 
2r


 

Perturbation 
Acceleration 

[Km/s
2
] 

Formula 

 J2h armonic 2 x 10
-7 

2
ec

22 2

a
3 J

r r


 

J3 harmonic 2,3 x 10
-11 

3
ec

32 3

a
4 J

r r


 

J4 harmonic 2,5 x 10
-11 

4
ec

42 4

a
5 J

r r


 

J5 harmonic 1,1 x 10
-12 

5
ec

52 5

a
6 J

r r


 

J6 harmonic 5,6 x 10
-13 

6
ec

62 6

a
7 J

r r


 

The Sun’s 

gravitational attraction 
2,95 x 10

-8 

  

















3

3

3

3

3

3
3

c

c

c

c
c

r

r

rr

rr



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The Moon’s 

gravitatioanl attraction 
1,95 x 10

-8 

Relativistic effects 3,4 x 10
-12  2 2

2 4

3 a 1 e

c r

 
 

Solar radiation pressure  4,4 x 10
-10 sat Soare

Soare

r rA
k q

m r
'


  

The Poynting-Robertson 

efect 
6,9 x 10

-15
 

 
 

 

 

3.4 Efects of the Gravitational Perturbations 
 

The Keplerian Orbit 

 
 

In Keplerian motions without disturbances acceleration has the mean value equal to 45,6 10  

Km/s
2
. 

 

 

J2 Perturbation 

 

 
 

In J2 perturbation acceleration has a mean value equal to 72 10  Km/s
2
. 
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J3 Perturbation 

 
 

In J3 perturbation acceleration has a mean value equal to 112,3 10  Km/s
2
. 

 

 

 

J4 Perturbation  

 
 

In J4 perturbation acceleration has a mean value of 112,5 10  Km/s
2
. 

 

 

 

J5 Perturbation 

 
 

In J5 perturbation acceleration has a mean value of 121,1 10  Km/s
2
. 
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J6 Perturbation 

 
 

In J6 perturbation acceleration has a mean value of 135,6 10  Km/s
2
. 

 

 

 

The Sun’s gravitational attraction 

 
 

When the perturbation is produced by the Sun’s gravitational attraction the acceleration has a 

mean value of 82,95 10  Km/s
2
. 

 

 

The Moon’s gravitatioanl attraction 

 
 

When the perturbation is produced by the Moon’s gravitational attraction the acceleration has 

a mean value of 81,95 10  Km/s
2
. 
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Relativistic effects 

 
 

When the perturbation is  produced by relativistic effects the acceleration has a mean value of 
123,45 10  Km/s

2
. 

 

 

 

3.5 Effects of the non–gravitational perturbations  

 
3.5.1 The direct solar radiation pressure 

 
 

 

When the perturbation is produced by the direct radiation pressure the acceleration has a mean 

value of 104,4 10  Km/s
2
. 
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The semi-major axis has a short-periodic perturbation with a period of 6 hours 

superimposed on a secular perturbation. For an orbital period, the major semi axis undergoes 

a variation of 4 meters. 

Eccentricity has a secular perturbation superimposed on a short-periodic perturbation 

with period of 6 hours with the order of magnitude 
86 10 . 

The inclination has the same type of disturbance as that of the major semi–major axis,  

a short-periodic perturbation superimposed on a secular perturbation. The short-period 

disturbance has a period of 6 hours, and the order of magnitude 63 10  degrees. 

The longitude of the ascending node has short periodic disturbance with a period of 6 hours, 

and an amplitude of 
61,7 10 degrees, superimposed on a secular perturbation. 
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3.5.2 The indirect solar radiation pressure. The Earth’s radiation 

Reflected Radiation 

The Earth's atmosphere reflects some incoming radiation from the Sun, and for 

making things simple we consider that this radiation is reflected back into space returned by a 

sphere covered with a Lambertian surface.  

The irradiance vector in the direction of the satellite r , due to the Earth's overall 

albedo ,, depends only on the relative position of the satellite, of the  Earth and the Sun 

(angle ) and on a satellite located at a height h it has the following form: 

                                 
  2 2

2
( , ) cos sin

3 ( )

E Soare
sat

P

A E
E h r

R h


    


  

                      

        (3.5) 

 

 
 

 Thus, it is noted that the variation chart of the Earth’s irradiance is a sinusoidal curve, 

and that it decreases once the Earth’s albedo is increasing, and the angle   between the 

satellite, the Earth and the Sun increases. For a zero value of the Earth's albedo the irradiance 

is null (zero). 

 

 

 
Iradiația datorată radiației emisă de Pământ 

 

 

Emitted radiation 

Incoming radiation from the Sun which intersects the Earth can be determined, and it 

is E SoareA E  cu 2
E EA R . A part of this radiation is immediately reflected in the visible 

spectrum, one part is absorbed, and another one is re-emitted as infrared radiation (Taylor 

2005). 

                                                      
2

(1 )
( )

4 ( )

E Soare
sat

E

A E
E

R h










                                             (3.6)
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the irradiance vector on a satellite located at a height h due to the radiation emitted by the 

Earth is expressed as: 

                                                   
2

(1 )
( , )

4 ( )

E Soare
sat

E

A E
E h r

R h










                                         (3.7) 

 

 
Irradiation due to radiation emitted from the Earth 

 

 The graph shows that the irradiance is independent of the angle  , is constant taking 

different values which depend on the value of  Earth’s  albedo. Irradiance has zero value for 

1  . 

 

 

The Earth's Radiation Model 

The Earth's radiation model is the sum total of reflected radiation and emitted 

radiation, and is expressed as: 

                                 
  2 2

2 (1 )
( ) cos sin

( ) 3 4

E Soare
sat

E

A E
E

R h

 
    

 

 
      

                (3.8)            

 

 
 

The albedo model in relation to latitude 
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 Assuming that reflectivity and emissivity can be written as harmonic developments, in 

relation to latitude, of the form: 

                                                cos sin( ) cos sinconst                                               (3.9)                                 

cos sin( ) cos sinconst          

 reflectivity and emissivity coefficients can be  determined using the method of least squares. 

 

Tab. 3.1.The estimated coefficients for reflectivity and emissivity 

 for the interval February – June 2011 

const  0,737963502 

cos  -0,5300641743 

sin  -0,026283497 

const  0,4566176405 

cos  0,3057731068 

sin  0,0292256524 

 

 

The acceleration model exerted on GPS satellites 

          The irradiance vector (Esat) or the solar flux ( ) according to the notation used by 

Montenbruck and Gill (2000) has the expression: 

                                                                    
E

A t


 


                                                          (3.10) 

it represents the energy transferred through the area A in a time unit. According to Beutler 

(2005) who says that according to quantum mechanics each frequency photon   and 

wavelength /c v   carry  energy: 

                                                                     E h                                                             (3.11) 

and a momentum: 

                                                                      
E

p
c

                                                             (3.12) 

where h = 6.62 x10-34Js - Planck's constant. Thus, the total momentum for an absorbing body 

illuminated by the Earth in the time interval t  is: 

                                                             
E

p A t
c c

 
                                                      (3.13) 

Thus the force acting on a satellite is: 

                                                               
p

F A
t c

 
 


                                                      (3.14)            

 

and radiation pressure is: 

                                                                      P
c


                                                            (3.15) 

The GPS satellite on which the radiation pressure of the Earth is acting will be 

considered as having two forms: it can be either a sphere or a "canonical ball", or in the form 

of a box with wings (wing box), where the box ("box") is the satellite itself, while the wings 

are the solar panels. Of particular interest is the transverse section of the satellite, and its 

optical properties. 
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The general model of solar radiation pressure emitted by the Earth 

 The “box-wing” GPS satellite is based on general models of radiation pressure 

developed by Fliegel (1992) and Hunentobler (2008). 

Knowing the area of a flat surface A, the mass of the satellite  M, the angle   between 

the incoming radiation from the earth, and normal to the surface, the Earth's irradiance E, the 

speed of light c we can write the three components of acceleration for each area according to 

Fliegel et al. (1992): 

Normal to the surface: 

                                                 

2(1 )cosN

A E
f n

M c
                                                   (3.16) 

Tangent to the surface: 

                                           
(1 )sin cosS

A E
f t

M c
                                                    (3.17) 

Diffuse: 

 

The radial and non-radial componwent for the solar panels has the following form: 

                             

2
cos 1 (1 ) cos cos 2

3
r

A E
f

M c
     

 
     

 
                           (3.18) 

                            

2
cos (1 )sin sin 2

3
r

A E
f

M c
     



 
    

                           

          (3.19) 

or, in a more simplified  way: 

                  

2
cos 1 (1 ) cos cos 2

3
r cutie cutie panou

E
f A C A

Mc
     

  
      

  
           (3.20) 

2
cos (1 )sin sin 2

3
r panou

E
f A

Mc
     



 
   

 
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The radial accelerations are represented by a solid line, while the non-radial 

accelerations are represented by dotted lines. 

It can be noted that the radial acceleration achieves its minimum for 90  . 

The maximum of teh radial component is achieved for 0   and 180  . 

In the case of non-radial component there still is a maximum and a minimum for the 

approximate values 35   and 145  . 

If the satellite is considered to be a “sphere” a simple model is built by mediating the 

value of acceleration for the angle   between the satellite, the Earth and the Sun. Thus, the 

acceleration can be calculated using the formula: 

                                                               r sferă

A E
f C

M c
                                                     (3.21) 

where Cball is a constant determined numerically, which the average size and optical 

properties of GPS satellites. 

 

Tab. 3.2 GPS satellites parameters (ball type satellites) 

GPS satellite type 
Ratio Aria/Mass 

[m
2
/Kg] 

Csferă 

Block I 0,01513 0,8876 

Block II 0,01667 0,8551 

Block IIR 0,01606 0,8134 

 

The major semi–axis variation graphs, designed for 50 and 500 hours show that it has 

two types of perturbations, a short-periodic one, and long-periodic one. The short-periodic 

perturbation has a period equal to the orbital period (12 hours), and a variation of 1 km, while 

the long-periodic perturbation has a period of 240 hours.  

The eccentricity has a secular perturbation superimposed on a short-periodic 

perturbation with period of 6 hours, with the order of magnitude 81,5 10 . 

 The inclination has two types of disturbances, a short-periodic and secular one. Short-

periodic disturbance period is equal to the orbital period (12 hours) and a variation of degree. 

The perigee argument undergoes mixed periodic perturbation: 

- a short periodic perturbation with a   6 – hour period, and an amplitude of 21 10 degrees 

- a short periodic perturbation with a 6- hour period,  and an amplitude of 23 10 degrees 

- a secular perturbation 

The longitude of the ascending node suffers mixed periodic perturbation: 

- a short periodic perturbation with a  6- hour period,  and an amplitude of 34 10 degrees 

- a secular perturbation 

 

3.5.3 The anisotropic thermal emission  

         The anisotropic thermal acceleration has a linear variation depending on the temperature 

variation of two parts of the satellite body, and on the ratio of effective sectional area and 

mass of the satellite. The acceleration due to anisotropic thermal emission, for a temperature 

difference "at day time" is of order 10
-13

 Km/s
2
. 

The major semi–axis undergoes perturbations equal to the orbital period, and to 

amplitude  54 10  kilometers. 

Eccentricity undergoes a short periodic perturbation of a 6 – hour period, and 

amplitude 106 10  superimposed on a secular perturbation. 

The inclination of the orbit undergoes a short periodic perturbation of a period equal to 

the orbital period, and of amplitude and 83 10   

The longitude of the ascending node undergoes a mixed periodic disturbance: 

- short-periodic perturbations with a 3 – hours period, and amplitude 71 10  degrees 

- long-periodic perturbations with a 24 – hours period. 
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3.5.4 The acceleration produced by antennas emissions 

        The emission of the navigation antennas of the GPS satellites produces a constant radial 

acceleration, and as a consequence, there is a change of acceleration in this direction.  

The GPS satellites provide a continuous emission, with an output of 70 to 80 watts in 

the direction of the antenna when emitting on the two fundamental frequencies L1 and L2.  

The force expressed in newtons due to photon absorption from a flux of incident 

radiation (E) is given by: 

                                                                      
E

F
c

                                                            (3.22) 

Considering an emission power of 80 watts  of the antennas, the resultant acceleration 

on different types of GPS satellites is: 

Block I: 5.3x10-10 m/s2 

 Block II: 3.0x10-10 m/s2 

 Block IIR: 2.4 x10-10 m/s2  

The major semi–axis undergoes more short-periodic perturbations: 

 - a short periodic perturbation with a period equal to the orbital  period, and  amplitude 
54 10 kilometers; 

 - a short periodic perturbation with a 3 hour period, and amplitude of 51 10 kilometers  

The eccentricity has a short periodic disturbance with a 3 hours period and an 

amplitude of 102 10  superposed on secular perturbation. 

The inclination has several periodic perturbations: 

 - a short periodic perturbation with a period equal to the orbital period, and amplitude 
83 10  degrees. 

 - a mixed periodic perturbation superposed on a short periodic disturbance. 

 The perturbations acting on the longitude of the ascending node are mixed periodical, 

with periods of 3, 6, 18 and 48 hours, and with amplitudes of 82 10  and 
71,2 10  degrees. 

 

 

3.5.5 The elipses  
   Eclipse modeling region 

 The method is based on the tests which determine if the lines from the edges of the 

Sun to the Earth crosses or not the satellite. If a junction is made and the distance from the 

Sun at this point is less than the distance sun-satellite, the satellite is in the penumbra or 

umbra. 

 An immediate plan is defined in the center of the earth, is the vector of the Earth-Sun 

and Earth-satellite array. In this two-dimensional space, the Sun is represented as a circle. In 

plan, the light rays leaving at the edges of the sun and is tangent to the Earth Sun and the 

Earth determines the edge of the penumbra and umbra.  

 Determination of the intersection points is performed using the mathematical ellipsoid 

approximation for the Earth:           

                                                        
2 2 2

2 2
1

x y z

p q


                                                             (3.23) 

where x, y, z are coordinates of a point on the ellipsoid, p is the equatorial radius and q is the 

polar radiu. 

Equation that connects the satellite with one of the edges of the Sun is: 

                                                     

1 1

2 2

3 3

a bx

y a b

z a b



    
    

     
     
     

                                                        (3.24)         
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where (a1, a2, a3) are coordinates of the position vector of the satellite and (b1, b2, b3) are 

coordinates of the position vector of an edge of the sun. Thus the above equation (3.24) can be 

written as: 

                                                 

31 2

1 1 2 2 3 3

z ax a y a

b a b a b a

 
 

                                        

             (3.25) 

The vectors a  and b  can be obtained for a specific period from the precise ephemeris or 

from numerical integration. From equation (3.25), y and z can be written as a function of x 

and the coefficients a  and b . 

                         2 2 2 1 1 2

1 1

( )x b a a b a b
y

b a

  



        3 3 3 1 1 3

1 1

( )x b a a b a b
z

b a

  



                      (3.26) 

Developing is obtained a 2nd degree equation of the form: 
2 0Ax Bx C    

with the coefficients: 

 
2 2 2 2 2

1 1 2 2 3 3( ) ( ) ( )A q b a b a p b a         

 2 2 2 2 2 2

1 2 2 1 2 2 1 1 2 2 1 3 3 1 3 3 1 1 3 32 ( ) 2 ( )B q bb a a b a b a a b p bb a a b a b a a b         

    
2 22 2 2 2 2

1 2 2 1 1 3 3 1 1 1( )C q b a b a p b a b a p q b a       

 To solve the system is necessary to know the coordinates of the edges of the Sun. Real 

solutions of the 2
nd

 degree equation is the x coordinates of the points of intersection of the line 

that goes from one edge of the Sun and satellite with the ellipsoid. 

The existing condition for real solutions is:        
2 4 0B AC  . 

     Author the method proposed by consists in using the line that passes through the center of 

the sun points - TV. Sun center coordinates can be obtained either by numerical integration or 

from the specialized sites. For this study the author used data from www.imcce.fr site / en / 

ephemerides. This site provides the geocentric coordinates of the Sun based on astronomical 

unit. For the study made by the author have been used sun coordinates obtained by numerical 

integration. 

 Below are presented the situations of intersection of the straight line passing through the 

points and center of the Sun-satellite Earth ellipsoid.   
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satelit

satelit

satelit

a) Fază plină: Dreapta nu intersectează Pământul

b) Satelitul în penumbră: Dreapta este tangentă la suprafața Pământului 

c) Satelitul în penumbră sau umbră: Dreapta intersectează Pământul  
 

Fig. 3.1 Determination of GPS satellite position. The solution proposed by the author 

 

   If the system has no real solutions when the satellite is fully illuminated. 

   If the system has only one real solution, then right is tangent to the ellipsoid and the 

satellite may lie in the penumbra or completely illuminated. Then it is necessary to 

determine and y and z coordinates of the intersection to calculate the distance to the 

Sun. If the distance is greater than the distance between the sun and the satellite, the 

satellite is fully illuminated, the satellite failing in the penumbra area. 

   If the system has two real solutions, it is necessary to determine and y and z 

coordinates of the intersection to calculate the distance to the Sun. 

   If the distance is greater than the distance between the sun and the satellite, the 

satellite is fully illuminated, otherwise satellite is in the penumbra or umbra. 

 

     For this study, the author determined the coordinates of the Sun by numerical integration 

every minute for 365-days using the start date, date 10.02.2011, time: 00:00:00 UTC. 

 

 
The coordinates variation of the Sun for a year 
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The variation of the radius vector of the sun for a year 

 

 

For determining the geocentric coordinates of the satellite every minute for a period of 

365 days author started from the initial conditions since 10.02.2011 00.00 UT: 

  xai = 2425.8676;            vxai = 3.8327; 

yai = -15215.1157;         vyai = 0.4529; 

zai = 21743.2188;           vzai = -0.1055; 

 

 

Tab. 3.3 The number of GPS satellite solutions entering in the umbra 

The ellipsoid type 

Number of real solutions of 

the system depending on 

perturbation 

Number of minutes for the 

satellite in the umbra or 

penumbra 

J2 

Direct solar 

radiation 

pressure 

J2 

Direct solar 

radiation 

pressure 

p = 6378,137 Km 

q = 6356,752 Km 
26424 26278 0 0 

p =q = 6378,137 Km 26506 26376 0 0 

p =q = 6402 Km 26702 26488 0 0 

 

 For all cases the system was real solutions revealed that the satellite did not go to any 

time in the Earth's umbra or penumbra. 

 The numerical results concerning the satellite crossing through the penumbra and umbra 

of the earth are in line with the actual movement of satellites. Thus, the observations made on 

the satellites is known that the time spent by them in eclipse is only 1-2 minutes. 

 

 

3.5.6 The Poynting – Robertson effect 

 The Poynting-Robertson effect, named after John Henry Poynting and Howard Percy 

Robertson, braking is a process whereby solar radiation causes dust particles in the solar 

system to spin on a downward spiral. The braking force is produced basically by the 

tangential component of the force caused by the radiation pressure on the movement of the 

dust particles. 

 For proper dust surrounding the Sun's radiation sun appears to be coming a little 

forward direction (aberration of light). As a result, the absorption of of this radiation lead to a 

force component against the direction of movement. The angle of aberration is extremely 
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small, because the radiation travels at the speed of light as particles of dust is moving with a 

speed order of magnitude required is much lower. 

 The braking force produced by the The Poynting-Robertson effect can be understood 

as a force acting in the direction opposite to the direction of motion of the dust particle's own 

orbit, which produces a decreasing effect of angular momentum. Thus, while the dust particle 

moving on a spiral slowly towards the Sun, its orbital speed increases continuously. 

The Poynting-Robertson force is equal to:  

                                                                                                 (3.27) 

where: 

 W - is the power of incident radiation,, 

 v - is the velocity of the powder particles, 

c - the speed of light,  

r - is the radius of the object,  

G - the gravitational constant of the universe,  

Ms - the mass of the Sun,  

Ls - solar brightness 

R - is the radius of the orbit on moving object. 

Solar brightness L☉ represents the radiant flux (power emitted as photons) to measure 

the brightness of stars. A solar brightness unit is equal to the current brightness accepted by 

Sun and has a value of  3.839 x 10
26

 W, or 3.839 x 10
33

 erg/s. 

Solar brightness refers to the measured solar irradiance on the Earth or by the satellites 

orbiting the Earth. The average irradiance at the top of Earth's atmosphere is sometimes 

known as the solar constant, I☉. Irradiation is defined as the power per unit surface area, so 

that the solar luminosity (total energy emitted by the sun) is the irradiance received on the 

Earth (the solar constant) multiplied by the surface of the sphere whose radius is the average 

distance between Earth and the Sun: 

                                                                   
24SL kA                                                        (3.28) 

where: 

A - is the astronomical unit in meters 

k - is a constant (whose value is very close to one) that reflects the fact that the average 

distance from Earth to the Sun is not exactly one astronomical unit. 

considering: 

c = 299792458m/s 

r = 1m  

G = 6,674*10
-11

 m
3
/Kgs

2
 

Ms = 2*10
30

 Kg  

Ls = 3,9*10
26 

Kgm
2
/s

3
 

R =  150000000000 m (astronomical unit) 

The result is a Poynting-Robertson force value of: 

 
 The Poynting-Robertson acceleration is determined from the ratio of the Poynting-

Robertson force and mass of the satellite. 

                                                                                              (3.29) 

Considering the ratio between the radius of the satellite and its mass as a ratio Area / Mass 

particular satellite, the The Poynting-Robertson acceleration has the value: 
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GPS satellite type 
Ratio Area/Mass 

[m
2
/Kg] 

The Poynting-Robertson 

acceleration 

[Km/s] 

Block I 0,01513 6,930*10-15 

Block II 0,01667 7,635*10-15 

Block IIR 0,01606 7,356*10-15 

 

 

 
The variation of acceleration components due to The Poynting-Robertson effect 

 

 

 
       The variation of total acceleration due to The Poynting-Robertson effect 

                                

From the graphs of variation of the orbital elements ),,,,,( Miea  , the radius 

vector and the speed of the TSC system, for a period of 50 hours, a GPS satellite follows: 

 -   semi-major axis suffer perturbations with amplitude of 1 cm. 

- eccentricity present a secular perturbation superimposed over on a short-periodic 

perturbation with a period of 4 hours and an order of magnitude of 1010  Km. 

- inclination is very stable, this presenting very small variations with order of 910  

degrees. 
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4. QUALITY ANALYSIS OF GPS SATELLITE MOVEMENT 

 

4.1. Introductory notes  
 

Before the French mathematician Henri Poincare, studies on the dynamical systems 

were focused on finding solutions for explaining functions in solving the equations of motion. 

The dynamical systems theory has undergone a significant evolution in the late nineteenth 

century by the contribution made by the French mathematician Henri Poincare. Poincare 

thinks of the possibility to solve the geometry of the solutions without developing any   

formulas. Thus, qualitative properties of the solution are found without knowing its exact 

formula. This new method has helped solving many problems involving differential 

equations. 
       Qualitative or geometrical analysis deals with the analysis of the evolution of dynamic 

systems solutions. This analysis is done in phase space, which is the state space, i.e. the space 

where all sizes are represented graphically describing the system state. In the phase space, a 

dynamic state, at a certain time is described graphically by a point, defined by a set of phase 

variables, i.e. a set of minimum variables that describe completely the system state. Changing 

the system state in relation with time is a trajectory in the phase space. The collection of all 

possible trajectories (local or global) of a dynamical system is called the phase portrait (local 

or global).  

We analyze in terms of quality movement of a particle (satellite, comet) around the 

central body in a variety of fields, under the influence of zonal harmonics up to the 6
th

 order, 

on any type of orbit, and for different values of the energy system. 

The gravitational field in which the potential is given by: 

                                    
3

)(
r

B

r

A
rV        (4.1) 

is called Schwarzschild problem, while the field in which the potential is given by  the 

relation: 

                                               
2

)(
r

B

r

A
rV                                        (4.2) 

is named Manev type field.  

 

 

4.2 Qualitative analysis of GPS satellite motion under the influence of zonal 

harmonics of higher order 

 
The gravitational potential up to the sixth zonal harmonic is: 
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     (4.4) 

To make calculation less difficult, we can note:

 
                        1a  , 02 a  și   6..3sin11
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resulting in the new form of gravitational potential: 
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rV                (4.6) 

    In order to describe the movement of the two bodies, satellite-central body (particle-center) 

which goes on in a plane, we choose the coordinates configuration - impulse.  

The position of the satellite will be defined by the vector, 

                                          )}0,0{(\),( 2

21  qqq ,                                               (4.7) 

and the velocity will be defined by the impulse vector.  
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                                                      qpppp  ,),( 2

21 .                                         (4.8)  

The configuration (position) vector is not defined in the origin because this is point is 

associated with a singularity of the system (particle collision - center). 

To remove singularities and regularize the equations of motion we use the McGehee 

transformations of  second order. The equations of motion become: 

xr
ds

dr
r   

y
ds

d



  
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The prime integrals become: 

                                                    




7

1

7722 2
n

n

n rarhyx             (4.10) 

                                                            
522 rCy                                                       

At this point both the equations of motion, and the  prime integrals are well defined  

for limit r → 0, so the phases space can be analytically extended to contain the 

variety   }0|,,,{ ryxr   as well. 

Variety }),(,,0|),,,{( 21

0  yxSryxrM 
  

is defined, where S
1
 is the interval 

[0, 2 ] with mistaken heads and variety of constant energy 

  .

 

}),(,,2|),,,{( 21
7

1

7722  


 yxSrarhyxyxrM
n

n

nh  . 

Variety of collision will be the intersection of the two varieties defined above, ie: 

                          }),(,,2,0|),,,{( 21

7

22  yxSayxryxrM col            (4.11) 

         The expression of angular momentum of the integral in polar coordinates shows that if 

0r  then  . In terms of physical motion, the particle moves on the orbits, in spiral, 

around the center of an infinite number of times, until collision happens (or, after ejection). 

This is the black hole effect (Diacu et al., 1995). From the energy integral expression we can 

see that the escape r  is possible only for the negative energy 0h . 

Since the variable   does not appear explicitly in the equations of motion, or prime 

integrals the four-dimensional space ),,,( yxr  can be reduced to the three dimensional space 

),,( yxr  by factoring the current through S
1
. Any solution within the space ),,( yxr  should be 

regarded as a variety of solutions in four-dimensional phase space. Using the first integral of 

angular momentum, reduce to two-dimensional phase space ),( xr  . Vector field is: 

xrr   
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where the integral of energy is used for taking x out the second  ecuation
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The tor Mcol was reduced to circle }2;0|),,{( 7

22 ayxryxr 
 

within the three-

dimensional space, while within the two-dimensional space it was reduced to two points 

N )2,0( 7axr   and P )2,0( 7axr  .
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For the  preparation of the phase portraits of GPS satellite motion around the central 

body the graphic of function )()( rfrx 
 

will be analyzed  where 





7

1

7527 2)(
n

n

n rarCrhrf

 

also the  values of the coefficients in the equations of 

motion and equations solutions 0)( rf  and 0
)(


dr

rdf

 
will be taken into account. 

The most general case will be considered, when the derivative  rf   has 5 sign 

changes ( the maximum)  for the of case negative energy; there results that, according to 

Descartes' rule,  for the collisional case 07 a  the equation 0)( rf  has 5 positive roots, and 

for the non-collisional case 07 a ,  the equation has four positive roots . When the energy is 

positive or null we assume that the derivative   rf   
has 4 sign changes ( the maximum), so,  according to the same Descartes rule  the  

equation 0)( rf  will have 5 positive roots for 07 a  and 4  positive roots for 07 a . . 

There is a critical value of the energy that will determine, together with the sign of the 

coefficient function )(rf  different configurations for the phase portraits. 

 

 

Case  07 a , 0 chh   
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The explanation of the given phase portrait is: 

S - stable equilibrium point (center), which represents stable circular motion; 

U - unstable equilibrium point (source), which represents  unstable circular motion; 

(1) and (3) - heterocline orbits, spiraling movement of ejection type - collision; 

(2) and (2 ') represents motion on the  spiral orbits that start from collision, and tend to  

asymptotical unstable  form, or vice versa; 

(4), (6), (7), (10) and (10 ') – homocline trajectory, which in physical terms is a spiral orbit 

which starts  asymptotically from an unstable circle, and tends asymptotically to the same 

unstable circle; 

(5), (8) and (9), (9 '), (9 ") – stable periodical or cvasi-periodical orbits,  with eccentricity that  

decreases from (5) which has significant values, up to (9') and (9 '). Nothing can be mentioned 

about the eccentricity of orbits (9); 
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4.3 Practical application – The GPS SATELLITE 
 

Replace in the function expression, 

                                                



7

1

7527 2)(
n

n

n rarCrhrf                                   (4.14) 

all coefficients with known parameters of the Earth: 

- the zonal harmonics J2 to J6 on 

- the legendary  polynomials for null latitude 

- the gravitational constant (μ)  

- the energy calculated by the formula
a

h


   

- the angular momentum of the relationship  22 1 eaC    

- the major semi-axis of the  geostationary satellite a = 26559.4 km 

After solving the equation 0)( rf  the following solutions result 1 26329,11r  and 

2 26788,02r  ; after solving the equation 0)(  rf , the following solution results 

1 26563,5r
 which is exactly the major semi-axis of the geo – stationary satellite.  

There result the graphs of the functions ( ) ( )x r f r   and after that the phase portrait 

using the program Maple 14. 
 

42 165 r [km]

x

42 37441 954  

42 165 r [km]
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(a) (b) 

r

x

 
(c) 

Figura 5.20 (a), (b) - Diagram of  function x (r) (c) – Phase portrait in 

Maple 
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In the following the explicit phase portrait is explained. The GPS satellite position is 

marked by the point (S), which means stable circular motion at distance r off the central body 
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Figure 5.21 The explicit phase portrait of the GPS satellite movement 

GPS satellite orbit is stable as long as r is between the values 1 26329,11r   and 

2 26788,02r  . If in its movement on the orbit the GPS satellite exceeds the value of  
2r  to 

the right, or the value of 
1r , to the left, there results the spiral  physical movement along an  

orbit which tends asymptotically to collision. The dotted line represents the fictitious 

trajectory of a geostationary satellite that is leaving the orbit and moves in an elliptical orbit 

with increasing eccentricity, tending asymptotically to collision. 

 

 

 

4.4 Conclusions for the qualitative  analysis  

 
This chapter presents a new approach to the theory of dynamical systems in general, 

and of the celestial mechanics, in particular, through the qualitative method, whose initiator is 

Poincare. The motion of a particle (satellite, comet) around the central body in various field 

types was observed: Schwarzschild, Manev, under the influence of zonal harmonics up to 

degree 6.  

From the above mentioned it is important to observe the utility of McGehee 

transformations, that are designed to eliminate singularities, and regularized equations of 

motion. Transformations made it possible to replace collision t with a limited variety, attached 

to the phase space. The McGehee transformations allow the study of movement near collision.  
In this chapter we noted that collisions can also occur when 0C . Therefore, 

when 0r  there results that  , i.e. the particle executes a spiral motion of an infinite 

number of times around the center, up to  collision or after ejection, which  is the effect of the 

black hole (Diacu et al., 1995). 

If the system’s energy is negative (h <0) the particle can not escape. If the maximum 

coefficient (a7 <0) is negative, the movement is executed without collision.  

From the presented situations we can derive that: there are several types of orbits: 

 bounded and collisional, which start from ejection, reach a maximum distance, or an 

unstable equilibrum, and come back to collision; 
 bounded and non-collisional, which can be: 

 stable or unstable circulars 
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 regular (including librations, radials) and quasi-periodicals 

 homocline, starting from an  unstable equilibrium and return to it 

 heterocline that connect two points of unstable equilibrium 
 boundless and collisional, i.e. as ejection – escape and  infinity - collision; 
 not bounded and non-collisional, coming from infinity, reach a minimum distance or a 

point of unstable equilibrium and return to infinity. 
 
 
 

5. CONCLUSIONS  
 

Finally an overview of the notions and analyzes performed in this paper is made, 

highlighting significant and original results. 

In order of the chapters, will summarizing the important parts from each section of this 

paper and the conclusions drawn. 

 

Chap. I. Description of NAVSTAR/GPS satellite system, identification of GPS 

technology applications, description of reference systems and time scales required for study of  

disturbing forces acting on GPS satellites. 

 

Chap. II. Quantitative analysis of GPS satellite motion under the influence of 

gravitational and non-gravitational perturbations type. 

 

Chap. III. Quantitative analysis of non-gravitational perturbations type: direct solar 

radiation pressure, indirect solar radiation pressure, anisotropic thermal emission, the antennas 

emission and empirical models of the solar radiation pressure. 

 

Chap. IV. Analysis of perturbed motion of satellites NAVSTAR / GPS based on 

numerical method using 4th order Runge-Kutta integration algorithm. The advantages of this 

integration algorithm are stability and easy modeling perturbed motion equations for GPS 

satellite. Algorithm is slowly, the computing time increasing considerably for long periods of 

time, which is the main disadvantage of the algorithm. Calculation program is developed by 

the author in the C ++ programming language, in a simple manner, but providing information 

for the analysis of GPS satellite motion. 

 

4.4  Starting from the initial conditions (position and velocity) for GPS satellite of 

study for 10.02.2011 00.00 UT were presented graphs of variation of the gravitational 

acceleration components given by gravitational perturbations J2, J3, J4, J5, J6, gravitational 

attraction of the Sun and Moon, relativistic effects and Poynting-Robertson effect for an 

orbital period and the total accelerations graphs of variation of these gravitational 

perturbations for a period of 50 hours. Are determined average values of the total 

accelerations, unit being Km/s2. 

4.5 It is observed that the gravitational perturbations have the greatest influence 

among them highlighting zonal harmonic J2 of which order of magnitude is 2x10
-7 

Km/s
2
.   

Between the non-gravitational perturbations, the direct solar radiation pressure has the 

greatest effect with the order of magnitude of 4.4 x 10
-10

 Km/s
2
, while the order of magnitude 

of the Poynting-Robertson effect is 6.9 x 10
-15

 km/s
2
. 

4.6 Are determined the effects of non-gravitational perturbations on the keplerian 

orbital elements. 

4.6.1  As a result of action of direct solar radiation pressure on a GPS satellite has 

revealed the following effects: 
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 - Semi-major axis shows a short-periodic perturbation with a 6 hours period 

superimposed on a secular perturbation. For an orbital period, semi-major axis suffers a 

variation of 4 meters. 

 - Eccentricity present a secular perturbation superimposed on a short-periodic 

perturbation with a 6 hours period having the order of magnitude of 84,8 10  Km. 

 - Inclination present same type of perturbation as semi-major axis, a short-periodic 

perturbation superimposed on a secular perturbation. Short-period perturbation have the 

period of 6 hours and the order of magnitude is 63 10  degrees. 

 - Longitude of ascending node suffers a short periodic perturbation with a period of 6 

hours and an amplitude of 61,7 10  degrees, superimposed on a secular perturbation. 

4.6.2 Based on the models of the Earth's radiation, reflected and emitted radiation, the 

irradiance graphs has been made for different values of albedo Earth and the   angle – angle 

between Satellite-Earth-Sun. Based on the reflectivity and emissivity data of the Earth 

supplied by CERES for the period from February to June 2011 has been made the graphics of 

these variation and has been determined the mean values. 

Using the least squares method we determined the reflectivity and emissivity coefficients for 

the period February to June 2011, for the case when them are write like harmonic 

development according to the latitude. There have been determined the variation graphs of 

radial and tangential components of acceleration due to reflected and emitted radiation from 

Earth to GPS satellites (satellite P07 in particular), where satellites are modeled as "box-

wing". 

 If the GPS satellite is considered having the form of "sphere" have been determined 

the graphs of variation of the keplerian elements for 50 and 500 hours resulting in the 

following effects: 

 - Semi-major axis present two types of perturbations, one short and one long-periodic. 

Short-periodic perturbation is equal to the orbital period (12 hours) and a variance of 1 km, 

and the long-periodic perturbation have period of 240 hours. 

 - Eccentricity present a secular perturbation superimposed on a short-periodic 

perturbation with period of 6 hours having the order of magnitude of 67 10  Km. 

 - Inclination presents two types of perturbations, one short-periodic and one secular 

perturbation. Short-periodic perturbation is equal to the orbital period (12 hours) and with a 

variance of 67 10  degrees. 

 - Mean anomaly suffer a short periodic perturbation having a 6 hours period 

superimposed on secular perturbation. 

 - Argument of perigee suffer a mixed periodic perturbations: 

 a short periodic perturbation having a period of 6 hours and an amplitude of 
21 10 degrees 

 a short periodic perturbation having a period of 6 hours and an amplitude of 
23 10 degrees 

 a secular perturbation 

- Longitude of ascending node suffer a mixed periodic perturbations: 

 a short periodic perturbation having a period of 6 hours and an amplitude of 34 10  

degrees 

 a secular perturbation 

4.6.3 Due to anisotropic thermal emmission upon a GPS satellite the following effects 

were revealed: 

 - The semimajor axis and inclination do not suffer perturbations 

- The eccentricity has a short periodic perturbation equal to the orbital period and an 

amplitude of 
108 10   
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 - The mean anomaly suffers short periodic perturbations with a period of 6 hours 

superimposed over a secular perturbation. 

 - The perigee argument suffers short periodic perturbations with a period of 6 hours 

superimposed over a secular perturbation. 

- The longitude of ascending node suffers a long periodic perturbation having an 

amplitude of 112 10 degrees. 

 4.6.4 Due to GPS navigation antennas emission the following effects were revealed: 

 - The semimajor axis and do not suffer perturbations  

 - The eccentricity has a short periodic perturbation equal to the orbital period and an 

amplitude of 
108 10   

- The perigee argument suffers short periodic perturbations with a period of 6 hours 

- Argumentul perigeului suferă perturbații scurt periodice având perioada de 6 ore. 

- The longitude of ascending node suffers a long periodic perturbation having an 

amplitude of 81 10 degrees.  

 4.6.5 Based on studies carried out by Adhya - 2005 regarding the GPS satellites 

eclipses, we developed a mathematical model to determine the period of time during which 

the GPS satellite enters in Earth's penumbra or umbra. We consider cases where GPS satellite 

is perturbed by direct solar radiation pressure or J2 and I developed the solutions of the 

mathematical model. For all cases, the system has real solutions revealed that the satellite did 

not go to any time in the Earth's umbra or penumbra. 

      At theoretical modeling of the penumbra region through which a GPS satellite passing, 

revealed that the satellite at a speed of about 3.86 km/s crossing this area is performed within 

a period 15.3 minutes. 

4.6.6 As a result of Poynting-Robertson effect on a GPS satellite has revealed the 

following effects: 

 - Semi-major axis suffers perturbations with maximum amplitude of 1 cm. 

 - Eccentricity present a secular perturbation superimposed over a short-periodic 

perturbation with a period of 4 hours and a magnitude order of 111,5 10  

 - Inclination is very stable, presenting short periodic perturbations with a period of 4 

hours and a magnitude order of 81 10  degrees.  

 - The other orbital elements suffer short periodic perturbations with a period of 6 

hours and an amplitude of 78 10  degrees. 

 

Chap. V Presents a new approach to the theory of dynamical systems in general and 

celestial mechanics in particular by using qualitative method whose initiator is Poincare. It 

was considered the motion of a particle (satellite) around the central body in different field 

types: Schwarzschild, Manev and under the influence of zonal harmonics up to grade 6. It was 

analyzed the GPS satellite motion on any type of orbit and for different values of energy of 

the system. 

 

5.2 It notes the usefulness of McGehee transformations that are designed to eliminate 

singularities and to regularize the equations of motion. Through changes was made to explode 

the variety of collision and it was replaced a variety limit attached to space phases. McGehee 

transformations act as a lens with a infinite power magnification on a collision singularity, 

thus allowing the study of motion near collision. 

 

5.3 It was made a practical application for GPS satellite. The GPS satellite orbit is 

stable as long as r is between values 1 26329,11r   and 2 26788,02r  . If the movement of a 

GPS satellites on an orbit exceeds at right the value of r2 or at left the value of r1, the resulting 

physical movement is a spiral orbit which tends asymptotically to the collision. Such that, 

qualitative results are confirmed by numerical results. 



32 

 

REFERENCES 
 

 

1. Aksnes, K., „Short-period and long-period perturbations of a spherical satellite due to 

direct solar radiation”, Celestial Mech. 1976 

2. Anselmo, L. et al., „Orbital perturbations due to radiation pressure for a spacecraft of 

complex shape” Celestial Mech. 1983 

3. Anselmo, L. et al., „Modelling of orbital perturbations due to radiation pressure for 

high Earth satellites in ESA Spacecraft Flight Dynamic”, ESA SP-160, 1981 

4. Arnold, V. I., „Geometrical Methods in the Theory of Ordinary Differential 

Equations”, Berlin: Springer 1983 

5. Arnold V., Kozlov V., Neishtadt A., “Mathematical aspects of classical and celestial 

mechanics”, Springer, Germania, 2006 

6. Barlier, F. et al., „Non-gravitational perturbations on the semimajor axis of 

LAGEOS”, Ann. Geophys., 1986 

7. Bar-Sever Y. and Kuang D., “New Empirically Derived Solar Radiation Pressure 

Model for Global Positioning System Satellites”, IPN Progress Report 42-159, 2004 

8. Barrar, R., “Some remarks on the motion of a satellite of an oblate planet”, The 

Astronomical Journal, vol.66, 1961 

9. Barrie W.J., “Discovering the solar system”, Marea Britanie, 2007 

10. Batrakov, I.V., “Dynamics of Sattelites”, IUTAM Symposium, Paris 1962, Springer-

Verlag, Berlin,  1963 

11. Bertotti, B., Farinella, P., “Physics of the Earth and the Solar System”, Kluwer 

Academic Publishers, 1990 

12. Beutler G., “Methods of celestial mechanics”, vol. 1 și 2, Springer, Germania, 2005 

13. Born, G., „Motion of a Satellite under the influence of an oblate Earth”, 2001 

14. Broucke, R.A., “Numerical integration of periodic orbits in the main problem of 

artificial satellites”, Celestial Mechanics and Dynamical Astronomy, 1994 

15. Brouwer, D., “Solution of the problem of  artificial satellite theory without drag”, the 

Astronomical Journal, vol.64, 1959 

16. Brouwer, D., Clemence, G.M., “Methods of Celestial Mechanics”, Academic Press, 

New York and London, 1961 

17. Burns, A.J., “Elementary Derivation of the Perturbation Equations of Celestial 

Mechanics”, American Journal of Physics, 1976 

18. Capitaine, N., “Systèmes de références spatio-temporelles”, Romanian Astronomical 

Journal, Bucureşti, 2002 

19. Christoiu A., Murray C. D., „A second order Laplace-Lagrange theory applied to the 

uranian satellite system”, 1997 

20. Claessens, S.J., Featherstone, W.E., „Computation of geopotential coefficients from 

gravity anomalies on the ellipsoid”, Western Australian Centre for Geodesy, 2004 

21. Collins G., „The foundations of Celestial Mechanics”, SUA, 2004 

22. Cojocaru, S., „Sistemul global de poziţionare GPS/GLONASS – prezent şi viitor ”, 

Zilele Academiei Clujene, Cluj-Napoca 1996 

23. Cojocaru, S., „Contribuţii la studiul erorilor orbitale ale sateliţilor GPS pe seama 

potenţialului gravitaţional terestru”, Teză de doctorat, Institutul Astronomic, 

Bucureşti, 1997 

24. Cojocaru, S., „Elemente de dinamica sateliţilor GPS”, Editura Academiei Navale 

„Mircea cel Bătrân”, Constanţa, 1999 

25. Cojocaru, S., „Tratat de navigaţie maritimă – Metodele moderne ale navigaţie 

maritime”, Editura Ars Academica, Bucureşti, 2008 



33 

 

26. Cojocaru S., Dragușan A., Lupu S., "Upon a possible common geostationary and GPS 

constellation: a dynamical investigation", Recent Insights into our Universe 

Workshop, 28-29 Oct 2009, Bucuresti, 

27. Dinescu, A., “Introducere în geodezia geometricã spaţială”, Ed.Tehnică, Bucureşti 

1980 

28. Drăgușan A., Contribuții la teoria mișcării sateliților ecuatoriali, Teză de doctorat, 

Institutul Astronomic, Bucureşti 2008 

29. Drăguşan, A., Lupu, S., „Methods for representing the gravitational potential”, 

Romanian Astronomical Journal, vol.16 Supplement, p.127, 2005 

30. Drăguşan, A., Lupu, S., „EPIRB Distress Signal Via Satellite”, Romanian 

Astronomical Journal, 2006 

31. Drăguşan, A., Lupu, S., Cojocaru S., „Astronomical Principles of Satellite 

Positioning”, Exploring the solar system and the Universe, American Institute of 

Physics, 2008 

32. Escobal, P. R., „Methods of orbit determination”, New York, 1965 

33. Eriksson, P., „Orbital and attitude perturbation on a small satellite”, 2002 

34. Expertier, P., “Geopotential from space techniques”, Celestial Mechanics and     

Dynamical Astronomy, 1994 

35. Farinella, P. Et al., „Dynamics of an artificial satellite in an Earth-fixed reference 

frame: efect of polar motions in Reference Coordinate Systems for Earth Dynamics”, 

ed. E M Gasposchkin and B Kolaczek (Dordrecht: Reidel) 1981 

36. Garfinkel, B., “The Orbit of a Satellite of an Oblate Planet”, The Astronomical 

Journal, vol.64, 1959 

37. Geyling F., Wersterman R., “Introduction to orbital mechanics”, Canada, 1971 

38. Gube, M., „Planetary albedo estimates from Meteosat data”, ESA Journal 1982 

39. Heiskanen and Moritz, “Physical Geodesy”, Technical University of Graz, 1967 

40. Hofmann-Wellenhof, B. et al, „GPS - Theory and Practice”, New York 1993. 

41. Huang, S.S., “Some Dynamical properties of natural and artificial satellites”, The 

Astronomical Journal,1961 

42. Iacob, C., “Mecanica teoretică”, Ed. Didactică şi Pedagogică, Bucureşti 1980 

43. Jamet O., Thomas E., „A linear algorithm for computing the spherical harmonic 

coefficients of the gravitational potential from a constant density polyhedron”, Institut 

Geographique National, Laboratoire de Recherche en Geodesie, 2004 

44. Kaula, W.M., “Development of the lunar and solar disturbing functions for a close 

satellite”, The Astronomical Journal, 1962 

45. Kaula, W.M., “Theory of satellite geodesy”, Blaisdell Publ.Co., Waltham 1966 

46. Kovalevsky, J., “Introduction to the celestial mechanics”, Olanda, 1967  

47. Kovalevsky, J., Mueller, Kolaczek, „Reference Frames in Astronomy and 

Astrophysics”, Kluwer Academics, 1989. 

48. Kozai, Y., “Numerical Results from Orbits”, Smithsonian Astrophysical Observatory, 

Special Report 101, 1962 

49. Kozai, Y., “Revised zonal harmonics in the geopotential”, SAO Special Report, 1969 

50. Lala, P., Sechnal, L., “The Earth Shadowing Effects in the Short - Periodic 

Perturbations of the Satellite Orbits”, BAC, 1969 

51. Levallois, J.J., Kovalevsky, J., “Geodesie Generale”, Tome IV, Paris 1971 

52. Lupu S., Zaharescu E., Effects of direct and indirect solar radiation pressure in 

orbital parameters of GPS satelittes, Analele Univ. Ovidius Constanţa, Seria 

Matematică, ISSN 1224-1784, Vol. 22(2), 2014, 141-150, DOI: 10.2478/auom-2014-

0039 

53. Lupu E.C., Lupu S., Adina Petcu, EB lifetime distributions as alternative to the EP 

lifetime distributions, Analele Univ. Ovidius Constanţa, Seria Matematică, ISSN 

1224-1784, Vol. 22(3), 2014, 115-125, DOI: 10.2478/auom-2014-0053 



34 

 

54. Lupu S. „Elemente de dinamica sistemului global de poziționare NAVSTAR - GPS”, 

Ed. Academiei Navale “Mircea cel Bătrân”, Constanța 2011 

55. Lupu S. - The evaluation of gravitational perturbation acceleration actions on GPS 

satellites, Constanta Maritime University’s Annals, Volume 18 - 2012, Ed. Nautica, 

ISSN 1582 – 3601 

56. Lupu S. - The effects caused by non-gravitational perturbations: the anisotropic 

thermal emission and antennas emission on GPS satellites, Constanta Maritime 

University’s Annals, Volume 18 - 2012, Ed. Nautica, ISSN 1582 – 3601 

57. Lupu S., Pocora A., Lupu E.C. – Modelling the eclipse region for GPS satellites, 

“Mircea cel Batran” Naval Academy Scientific Bulletin, Volume XV – 2012 – Issue 1 

Published by “Mircea cel Batran” Naval Academy Press, Constanta, ISSN 1454-864X 

58. Lupu S., Lupu E.C., Crețu G. – Some remarks on GPS satellites orbites, “Mircea cel 

Batran” Naval Academy Scientific Bulletin, Volume XIV – 2011 – Issue 2 Published 

by “Mircea cel Batran” Naval Academy Press, Constanta, ISSN 1454-864X  

59. Manakov, Yu. M., „Perturbing effect of terrestrial thermal radiation pressure on an 

artificial Earth satellite Geodesy”, Mapping and Photogrammetry 1977 

60. Mathuna D., „Integrable systems in celestial mechanics”, Springer, SUA, 2008 

61. McFadden L.A., Weissman P.R., Johnson T.V., „Encyclopedia of the Solar System”, 

Academic Press, 2007 

62. Milani, A., and all, „Non-gravitational perturbations and satelitte geodesy”, 

Dipartamento di Matematica, Universita di Pisa, Adam Hilger, Bristol, 1987 

63. Milone E., Wilson W., “Solar system astrophysics”, Springer, New York, 2008 

64. Mioc, V., Radu, E., “Aerodynamic Drag Perturbations in Artificial Satellite Nodal 

Period”, Astron.Nachr., 5, p.327-334, 1991 

65. Mioc, V., Radu, E., “A complete first-order approximation for the motion in a 

noncentral attraction field”, Rev. dAnalyse Num.et de Theorie de lApprox., 1993 

66. Mioc, V., Stoica, C., “The Schwarzschild problem in astrophysics”, 1997 

67. Mioc, V., “Teza de doctorat”, Universitatea Babeş Boliay, Cluj-Napoca 1980 

68. Moore P., “The data book of astronomy”, Institute of Physics, SUA, 2000 

69. Mueller, I., “Spherical and Practical Astronomy”, Frederick Ungar Publ. Co., New 

York 1969 

70. Munyamba, N. “Derivation of a Solar Radiation Pressure Model of the latest 

GLONASS Spacecraft”, 2010  

71. Murray C., Solar system dynamics, 1999 

72. Nakiboglu, S.M., Krakiwski, E.J., Schwary. K.P., Buffet, B., Wanless, B., „a multi-

station, multi-pass approach to Global Positioning System improvement and precise 

positioning”, Geodesy Survey of Canada, Rep. 85-003, Ottawa 1985  

73. Pal, A., Ureche, V., “Astronomie”, Ed.Didacticã şi Pedagogicã, Bucureşti 1983 

74. Rodrigues-Solano, C. Master Thesis: „Impact of albedo modelling on GPS orbits”, 

2009 

75. Rodrigues-Solano, C. Et al. „Estimating on-orbit optical properties for GNSS 

satellites”, Bremen 2010  

76. Seeber, G., „Satellite Geodesy - Foundations, Methods and Applications”, Berlin, 

1993 

77. Sehnal, L., „Effects of the terrestrial infrared radiation pressure on the motion of an 

artificial satellite”, Celestial Mech. 1981 

78. Sehnal, L., “The Theory of Orbits in the Solar System and in Stellar Systems”, IAU 

Symposium, Thessaloniki, Academic Press 1964 

79. Syma A., Thesis: “Thermal Re-Radiation Modelling for the Precise Prediction and 

Determination of Spacecraft Orbits”, 2005 

80. Smith, D. E., „Earth-reflected radiation pressure in Dynamics of Satellites”, ed. B 

Morando (Berlin: Springer) 1970 



35 

 

81. Su, H., “Precise orbit determination of global navigation satellite system of second 

generation”, Germania, 2000 

82. Tataru N., Lupu S. „The optimization of the calculus of the distances on the electronic 

charts”, Buletinul Institutului Politehnic Iaşi, Tomul LII (LVI), Fasc. 5, 2006 

83. Tscherning, C.C., Sanso, M., „Prediction of spherical harmonic coefficients using 

Least-Squares Collocation”, Copenhagen, Danemarca, 2000 

84. Vascoviak, S.N., Funcția Teni b Zadace o Vlianii Svetogo Davlenia na Dviscenie, 

V.M.U., Ser. fiz.-astr., 5, p.584, 1974. 

85. Zierbart M., Thesis: “Hight Precision Analitical Solar Radiation Pressure Modelling 

for GNSS Spacecraft”, 2001 

86. Xu G., „GPS Theory, Algorithms and applications”, Springer, Germania, 2007 

87. Xu G., „Orbits”, Springer, Germania, 2008 

88. Wolf, R., “Satellite orbit and ephemeris determination using inter satellite link”, 

Germania, 2000  

89. ftp://tycho.usno.navy.mil/pub/gps/  

90. http://www.bsu.edu 

91. http://ceres-tool.larc.nasa.gov/org_tool/srbavg  

92. http://www.esa.int 

93. http://www.hyperphysics.phy-astr.gsu.edu   

94. http://www.icgem.gfz-postdam.de  

95. http://www.iers.org 

96. http://igs.org/igscb/product/1780/ 

97. http:// www.imcce.fr/en/ephemerides/formulaire 

98. http://www.nasa.gov    

99. http://www.scienceworld.wolfram.com  

100. http://www.spaceandtech.com  

101. *** IERS Annual Report 2001”, International Earth Rotation Service, Verlag 

des Bundesamts für Kartographie und Geodäsie, Frankfurt am Main 2002 

102. GRANT - „Studiul erorilor orbitale ale sateliţilor de poziţionare GPS” poz. 80 din 

Planul Sectorial de Cercetare Dezvoltare al Ministerului Apărării Naționale pe anul 

2009  

ftp://tycho.usno.navy.mil/pub/gps/
http://www.bsu.edu/
http://ceres-tool.larc.nasa.gov/org_tool/srbavg
http://www.esa.int/
http://www.hyperphysics.phy-astr.gsu.edu/
http://www.icgem.gfz-postdam.de/
http://www.iers.org/
http://www.imcce.fr/en/ephemerides/formulaire
http://www.nasa.gov/
http://www.scienceworld.wolfram.com/
http://www.spaceandtech.com/

	sumary thesis primele pagini.pdf
	sumary thesis.pdf

