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Abstract

For a given complex space Y we construct a complex space X such
that Sing(X) = Y .

1 Introduction

For a reduced complex space X we denote by Sing(X) the set of singular
points of X. In this paper we are dealing with the following question: given
a reduced complex space Y , does there exist a reduced complex space X such
that Sing(X) = Y . We show that the answer is ”yes”. Namely we prove the
following theorem:

Theorem 1. Let Y be a reduced complex space. Then there exists a reduced
complex space X such that:
1) Sing(X) = Y , dim(X) = dim(Y ) + 2.
2) along Reg(Y ), the complex space X has only quadratic singularities, (i.e.
the product of a complex manifold of dimension n = dim(Y ) and a surface
with an isolated quadratic 2-dimensional singularity).

Moreover, if Y is normal then X can be chosen to be normal and if Y is
locally irreducible then X can be chosen to be locally irreducible.
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If Y is a complex manifold the proof is trivial because one can choose X =
Y ×S where S has only one singular point. Obviously this argument does not
work if Sing(Y ) 6= ∅ because Sing(Y ×S) = Sing(Y )×S

⋃
Y ×Sing(S). To

prove our main theorem we consider a resolution of singularities π : Ỹ → Y
(which exists by the results of E. Bierstone and P.D. Milmann [3], and J.M.
Aroca, H. Hironaka, and J.L. Vicente [1]) and over Ỹ we consider a rank 2
vector bundle E → Ỹ which is relatively negative. On each fiber of E we have
the equivalence relation x ∼ (−x). If we let F := E/ ∼ we obtain a locally
trivial fibration τ : F → Ỹ with typical fiber {(z1, z2, z3) ∈ C3 : z1z2 = z2

3}
which has a quadratic 2-dimensional isolated singularity. From F we get the
desired complex space X by applying the relative Remmert quotient theorem
(see [12]) and Wiegmann quotient theorem [16].

In the embedded case, i.e. if Y is a complex subspace of a complex
manifold Z, we give another construction of X using only Wiegmann quotient
theorem. In this particular case we obtain:

Theorem 2. Suppose that Z is a complex manifold and Y is a closed subspace
of Z. Then there exists a complex space X with the following properties:
1) Sing(X) = Y and dim(X) = dim(Z) + 1.
2) X is locally irreducible.
3) The normalization of X is smooth and therefore X is not normal at any
point of Y .
4) If Z is connected then X is irreducible.

2 Preliminaries

Throughout this paper all complex spaces are assumed to be reduced.
We recall that a complex space X is called holomorphically convex if the

holomorphically convex hull of every compact subset is compact.

Definition 1. A holomorphic map of complex spaces π : X → S is called
holomorphically convex if for any point s ∈ S there exists an open neigh-
borhood U of s such that X(U) := π−1(U) is holomorphically convex. If for
any point s we can find U such that X(U) is Stein then π is called a Stein
morphism.

K. Knorr and M. Schneider in [12] proved the following result:
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Theorem 3. Suppose that π : X → S is a holomorphically convex map
between two complex spaces. Then there exist a complex spaces R and a
holomorphic map ρ : X → R, called the relative Remmert reduction of π,
such that ρ∗OX = OR (so ρ is proper, surjective, and has connected fibers)
and a commutative diagram

X
ρ //

π

��@
@@

@@
@@

R

σ
����

��
��

�

S

with σ being a Stein morphism.

Throughout this paper a complex space X is called 1-convex if there exists
a smooth exhaustion function φ : X → R which is strictly plurisubharmonic
outside a compact subset K ⊂ X.

Definition 2. A holomorphic map π : X → S is called 1-convex if for any
s ∈ S there exists an open neighborhood U of s, a C∞ function φ : X(U)→ R
and a real number c0 ∈ R such that:
1) φ|{x∈X(U):φ(x)>c0} is 1-convex,
2) for every c ∈ R we have that π|{x∈X(U):φ(x)≤c} is a proper map.

The following Theorem is Satz. 3.4 in [12], see also [15].

Theorem 4. Every 1-convex map is holomorphically convex.

We recall the definition of a relatively exceptional set given in [12].

Definition 3. Suppose that π : X → S is a holomorphic map between two
complex spaces and A ⊂ X is a closed analytic subset such that π|A is proper
and has nowhere discrete fibers. A is called relatively exceptional with respect
to π if there exists a commutative diagram

X
Φ //

π

��@
@@

@@
@@

Y

π′����
��

��
�

S

where Y is a complex space and π′ and Φ are holomorphic maps, such that:
i) π′|Φ(A) has discrete fibers,

ii) Φ induces a biholomorphism X \ A→ Y \ Φ(A),
iii) Φ∗(OX) = OY .
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Definition 4. If π : X → S is a holomorphic map between two complex
spaces and A is a closed analytic subset of X, then A is called maximally
proper over S if π|A is proper, has nowhere discrete fibers and for any closed
analytic subset A′ of X with these two properties we have A′ ⊂ A.

The following result is Satz 5.4 of [12].

Proposition 1. Suppose that π : X → S is a holomorphic map and A ⊂ X
is a closed analytic subspace of X. We assume that A has a neighborhood W
such that π|W is 1-convex and A is maximally proper over S in W . Then A
is relatively exceptional with respect to S.

We identify a vector bundle with the sheaf of germs of local sections in
the bundle. Suppose that X is a compact complex space and p : E →
X is a holomorphic vector bundle of rank r. We let π : P(E) → X be
the holomorphic fiber bundle for which π−1(x) is the space of all (r − 1)-
dimensional linear subspaces of p−1(x). In general, for a coherent sheaf F on
X one ca associate a projective variety over X, P(F), obtaining in this way
a contravariant functor. For details we refer to [9] and [5], Chapter 1. For
the proof of the following theorem see [7] and [11].

Theorem 5. The following statements are equivalent:
a) L = OP(E)(1) is ample.
b) For every coherent sheaf F on X there exists a positive integer m0 such
that Hq(X,F ⊗ Sm(E)) = 0 for every q ≥ 1, m ≥ m0 (Sm(E) denotes the
m-th symmetric power of E).
c) For every coherent sheaf F on X there exists a positive integer m0 such
that F ⊗ Sm(E) is spanned by its global sections.
d) The zero section of E∗ is exceptional.
e) The zero section of E∗ has a strongly pseudoconvex neighborhood.

A vector bundle is called ample if the above equivalent conditions are
satisfied. A vector bundle is called negative if its dual is ample.

We will need the following generalization in the relative case. Suppose
that π : X → S is a proper holomorphic map and p : E → X is a holomorphic
vector bundle.

Definition 5. a) E is called relatively negative if its restriction to every
fiber of π−1(s) is negative in the sense of Grauert, i.e. the null-section has a
strictly pseudoconvex neighborhood.
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b) E is called relatively ample if its dual E∗ is relatively negative.
c) π : X → S is called relatively ample if there exists a relatively ample

line bundle p : L→ X.

For the next Lemma see Corollary 2.7 in [14]

Lemma 1. Suppose that s0 is a point in S and E|π−1(s0) is negative. Then
there exists a neighborhood U of s0 such that π ◦ p is a 1-convex morphism
on p−1(π−1(U)).

Corollary 1. If π has nowhere discrete fibers then E is relatively negative
iff its null-section is relatively exceptional.

Remark: For more general results concerning the relative blowing down of
complex spaces, see [6].

Suppose now that X and Y are complex spaces, f : X → Y is a proper
holomorphic map, and L → X a holomorphic line bundle. It was proved
in [14], Theorem 3.6, (using the results on 1-convex morphisms obtained in
[12]) that L is relatively ample with respect to f if and only if for every
coherent sheaf F on X and every compact set K ⊂ Y there exists a positive
integer n0 = n0(K,F) such that Rqf∗(F(n)) = 0 on K for every n ≥ n0

and every q ≥ 1 (F(n) stands for F ⊗ Ln). At the same time in [2], chapter
4, Théorème 4.1, it was shown that this last property implies that for every
point y ∈ Y there exist a neighborhood V of y and a large enough positive
integer n such that, on f−1(V ), the cannonical morphism f−1(V )→ P(f∗(L

n)
is an embedding. Moreover, in the proof of this theorem of [2] (page 179) it
was shown that by further increasing n we obtain that for every relatively
compact open subset U of Y the cannonical morphism f−1(U)→ P(f∗(L

n))
is an embedding for n large enough (n depending on U). Therefore putting
together Theorem 3.6 in [14] and Theorem 4.1, chapter 4 in [2], when X and
Y are compact, we have:

Theorem 6. If X and Y are compact complex spaces, f : X → Y is a
holomorphic map, and L → X a holomorphic line bundle, the following are
equivalent:
a) L is relatively ample with respect to f .
b) There exists n0 such that Rqf∗(F(n)) = 0 for every n ≥ n0 and every
q ≥ 1.
c) There exists n0 such that the canonical morphism f ∗f∗F(n) → F(n) is
surjective for every n ≥ n0.
d) There exists n1 such that X → P(f∗(L

n)) is an embedding for n ≥ n1.
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Remark. From c) we have an embedding X ↪→ P(f ∗f∗L
n) = P(f∗L

n)×Y X,
hence a map X → P(f∗L

n). d) means that increasing n this map becomes
an embedding.

The following Lemma is a folklore result (see e.g. [10] Exercise 5.12). For
reader’s convenience we provide a proof.

Lemma 2. Suppose that X and Y are compact complex spaces, f : X → Y
a holomorphic map, G → Y an ample line bundle and L → X a relatively
ample line bundle with respect to f . Then L⊗ f ∗G is ample on X.

Proof. Using Theorem 6, we choose a positive integer n such that we have
an embedding j over Y :

X
� � j //

��?
??

??
??

? P(f∗L
n)

{{vvvvvvvvv

Y

such that Ln = j∗(O(1)). By [9], Proposition 1.5, if F1 → F2 is a sheaf
epimorphism then one has an embedding P(F2) ↪→ P(F1) over Y which is
linear over each fiber. Since G is ample it follows that, for ν large enough,
f∗L

n ⊗ Gν is generated by global sections. Hence we have an epimorhism
OkY −→ f∗L

n ⊗ Gν for some k. Because G is a line bundle we have that
P(f∗L

n⊗Gν) = P(f∗L
n). Passing to the associated projective spaces, we get

an embedding h : P(f∗L
n) ↪→ Y × Pk−1 over Y such that O(1) over P(f∗L

n)
is the pull-back by h of the hypersection bundle of Pk−1. Composing with j
and using again the ampleness of G we get that Ln⊗f ∗Gµ is ample for every
µ. In particular it is ample for µ = n and this in turn implies that L⊗ f ∗G
is ample.

We will briefly recall some facts about desingularization of complex spaces
(see [3]).

Let X be a complex space and Z ⊂ X a smooth closed complex subspace.
For any point x0 ∈ X we choose U an open neighborhood of x0 together with
a closed embedding U ↪→ B b CN where B is an open ball in CN . Then Z
corresponds to a complex submanifold W of B and we consider the blow-up
of B with center W . In this blow-up we consider the proper transform of
U and in this way we obtain the blow-up of U with center U ∩ Z. This
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construction does not depend on the local embedding and the local blow-ups
patch-up to get the blow-up of X with (smooth) center Z.

The following result (Theorem 13.4 of [3]) is the fundamental theorem of
global desingularization of complex spaces.

Theorem 7. Any complex space X admits a desingularization π : X̃ → X
such that π is the composition of a locally finite sequence of blow-ups with
smooth centers and π−1(Sing(X)) is a divisor with normal crossings in X̃.

In this theorem locally finite means that on compact sets all but finitely
many blow-ups are trivial.

Corollary 2. The desingularization π : X̃ → X given by Theorem 7 is
relatively ample, the relatively ample line bundle p : L→ X̃ corresponding to
the exceptional divisor of π.

Proof. Let
· · · → X3

π3−→ X2
π2−→ X1

π1−→ X

be the sequence of blow-ups given by Theorem 7 and Lj → Xj the line bundle
corresponding to the exceptional divisor of πj. Each Lj is relatively ample
with respect to πj.

Suppose that x is a point in X. We consider the restrictions of L1 and
L2 to π−1

1 (x) and, respectively, (π1 ◦ π2)−1(x) and we denote them by L1 →
π−1

1 (x) and L2 → (π1 ◦ π2)−1(x). We have that L1 → π−1
1 (x) is ample and

L2 → (π1 ◦π2)−1(x) is relatively ample with respect to π2. We apply Lemma
2 and we deduce that L2 ⊗ π∗2(L1)→ (π1 ◦ π2)−1(x) is ample.

We conclude that L2 ⊗ π∗2(L1) → X is relatively ample with respect to
π1 ◦ π2. We continue inductively this procedure and we obtaine that the line
bundle L defined, by abuse of notation, by L = ⊗i∈NLi → X̃ is relatively
ample with respect to π.

The infinite tensor product of line bundles (and the entire construction)
makes sense since the sequence of blow-ups is locally finite.

Definition 6. ([16]) Suppose that (X,OX) is a complex space, F is a subset
of OX(X) and let φF : X → CF , φF (x) = (f(x))f∈F .
a) (X,OX) is called F -separable if φF is injective.
b) (X,OX) is called F -convex if φF is proper.
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F -separable means that functions in F separate the points of X and
F -convex means that for every discrete sequence {xn} in X there exists a
function f ∈ F such that {|f(xn)|} is unbounded.

The following theorem, generalizing a result of R. Remmert, was proved
by K.-W. Wiegmann [16].

Theorem 8. Suppose that (X,OX) is a reduced complex space and F is a
subalgebra of OX(X) such that (X,OX) is F -convex. Then there exists an
F -convex and F -separable reduced Stein space (Y,OY ) together with a proper
surjective holomorphic mapping p : (X,OX) → (Y,OY ) such that if π :
OY (Y )→ OX(X) is the induced morphisms of C-algebras then π(OY (Y )) ⊃
F . Moreover, (Y,OY ) is unique, up to isomorphism, with these properties, if
F is closed in OX(X) then π(OY (Y )) = F and if F = OX(X) then π is an
isomorphism.

The complex space (Y,OY ) is called the Remmert reduction of (X,OX)
with respect to F and is denoted by RF (X,OX). Note that Remmert’s
theorem corresponds to the case F = OX(X).

For a complex space (Z,OZ) we let T (Z,OZ) be the underlying topolog-
ical space Z and, for an open subset U of Z, ΓU(Z,OZ) = OZ(U). We recall
briefly Wiegmann’s construction. The topological space T (RF (X,OX)) is
defined as T (RF (X,OX)) = X/ ∼ and p is the quotient map, where, for
x1, x2 ∈ X, x1 ∼ x2 if and only if f(x1) = f(x2) for every f ∈ F . The struc-
ture sheaf is defined as follows. For y ∈ T (RF (X,OX)) let my by the ideal
of F that contains all function f ∈ F that vanish on p−1(y). For every open
subset U of T (RF (X,OX)), ΓU(RF (X,OX)) is the algebra of all functions
g ∈ OX(p−1(U)) such that for every point y ∈ U there exist a positive integer
k, a convergent power series

∑∞
i1,...,ik

ci1,...,ikT
i1
1 · · ·T

ik
k ∈ C[〈T1, . . . , Tk〉] and

f1, . . . , fk ∈ my such that
∑∞

i1,...,ik
ci1,...,ikf

i1
1 · · · f

ik
k converges uniformly to g

on a neighborhood of p−1(y).

Lemma 3. Suppose that (X,OX) is a reduced complex space, F and G are
two subalgebras of OX(X) such that (X,OX) is F -convex, F ⊂ G and F is
dense in G. Then the canonical morphism RF (X,OX) → RG(X,OX) is an
isomorphism.

Proof. It follows from the discussion after Theorem 8 that if F is a dense
subset of G then T (RF (X,OX)) = T (RG(X,OX)) and that for every open
subset U of T (RF (X,OX)) we have ΓU(RF (X,OX)) ⊂ ΓU(RG(X,OX)). Let
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F be the closure of F (hence G ⊂ F ) and let Y := T (RF (X,OX)). We
have then F ⊂ ΓY (RF (X,OX)) ⊂ ΓY (RG(X,OX)) ⊂ ΓY (RF (X,OX)) = F .
As ΓY (RF (X,OX)) and ΓY (RG(X,OX)) are closed in C(Y ) (the algebra of
continuous functions on Y ) and F is the smallest closed subset containing
F , it follows that the map ΓY (RF (X,OX)) → ΓY (RG(X,OX)) is bijective.
As both RF (X,OX) and RG(X,OX) are reduced Stein spaces it follows that
the canonical morphism RF (X,OX)→ RG(X,OX) is an isomorphism.

In Wiegmann’s theorem one needs X to be F -convex. In particular X
has to be OX(X)-convex which is a strong global condition. On the other
hand, it may happen that OX(X) = C (e.g. if X is compact) and then
the Remmert reduction is just a point. For our purpose we need to apply
Wiegmann’s theorem locally. To be able do this, we need a “patching” result.
This is the purpose of the following proposition.

Proposition 2. Suppose that (X,OX) is a reduced complex space and {Vi}i∈N
is a locally finite open covering of X. Let Fi be a closed subalgebra of OX(Vi),
∼i be the equivalence relation on Vi induced by Fi (x1 ∼i x2 iff f(x1) = f(x2)
∀f ∈ Fi), and Fij = Fji be a closed subalgebra of OX(Vi ∩ Vj). We assume
that:
a) OX |Vi is Fi-convex,
b) Fi|Vi∩Vj

is a dense subset of Fij for every i, j ∈ N,
c) Vi ∩ Vj is saturated with respect to ∼i for every i, j ∈ N.

Then there exists a reduced complex space (Y,OY ), a proper holomorphic
map p : X → Y and an open covering {Ui}i of Y such that (Ui,OY |Ui

) is
isomorphic to RFi

(Vi,OX |Vi) and p|Ui
is the canonical morphism given by

Theorem 8.

Proof. We define the following relation on X: x ∼ y if and only if there exists
i ∈ N such that x, y ∈ Vi and x ∼i y. Note that if x ∈ Vi, y ∈ Vi ∩ Vj and
x ∼i y then using c) we get that x ∈ Vi ∩ Vj and by b) and Lemma 3 we get
that x ∼j y. This shows that ∼ is an equivalence relation. Moreover, each Vi
is saturated with respect to ∼. Let Y = X/ ∼, endowed with the quotient
topology, and p : X → Y be the quotient map. We set Ui = p(Vi) which is an
open subset of Y . By Wiegmann’s construction of RFi

(Vi,OX |Vi) explained
above we have that T (RFi

(Vi,OX |Vi)) = Ui. We define the structure sheaf
OY as follows: if Ω is an open subset of Y and f ∈ C(Ω) then f ∈ OY (Ω)
if and only if for every point y ∈ Ui for some i ∈ I there exists D an open
subset of Y such that D ⊂ Ω∩Ui and f|D ∈ ΓD(RFi

(Vi,OX |Vi)). By Lemma
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3 this definition does not depend on the choice of i. The fact that (Ui,OY |Ui
)

is isomorphic to RFi
(Vi,OX |Vi) follows from the construction of the relative

Remmert reduction.

Example. Suppose that X = P1. Let B1, B2, B3 be three balls (in local
coordinate charts) such that B1 ∪ B2 ∪ B3 = P1 and Bi ∩ Bj is Runge in Bi

for every i, j ∈ {1, 2, 3}. We assume that a := [0 : 1] ∈ B1 \ (B2 ∪ B3). Let
F2 = F22 = O(B2), F3 = F33 = O(B3), F1 = F11 = {f ∈ O(B1) : f ′(a) = 0}
and, for i 6= j, Fi,j = O(Bi∩Bj). Then we are in the hypothesis of Proposition
2. Note that a holomorphic function f , defined in a neighborhood of the
origin 0 ∈ C, satisfies f ′(0) = 0 if and only if there exists a holomorphic
function F of two variables, defined in a neighborhood of the origin in C2,
such that f(z) = F (z3, z2) and the map z → (z3, z2) is a parametrization of
the cusp singularity {(x, y) ∈ C2 : x2 = y3}.

We deduce that the complex space that we obtaine by applying Propo-
sition 2 is Y = {[z0 : z1 : z2] ∈ P2 : z2

0z2 = z3
1} and p : P1 → Y is given by

p([x0 : x1]) = [x3
0 : x2

0x1 : x3
1].

3 The results

Lemma 4. If X is a complex space then any open covering has a locally
finite open refinement {Ωm}m∈N such that Ωm is Stein for every m ∈ N and
the pair (Ωm1 ,Ωm1 ∩ Ωm2) is Runge for every m1,m2 ∈ N.

Proof. We consider {Wj}j∈N, {Vj}j∈N, {Uj}j∈N locally finite countable open
covering of X such that {Uj}j∈N is a refinement of the given covering, Wj b
Vj b Uj and Uj is Stein for every j ∈ N. For each j ∈ N and each x ∈ W j

we choose φj,x : Uj → [0,∞) a plurisubharmonic function such that:
a) φj,x(x) = 0 and {z ∈ Uj : φj,x(z) < 1} ⊂ Vj,
b) if, for some k ∈ N, {z ∈ Uj : φj,x(z) < 1}∩V k 6= ∅ then {z ∈ Uj : φj,x(z) <
1} ⊂ Uk.

Then {z ∈ Uj : φj,x(z) < 1}x∈W j
is an open covering of W j. We extract

a finite subcovering {z ∈ Uj : φj,s(z) < 1}s∈Aj
where Aj is a finite set and

we set Ωj,s := {z ∈ Uj : φj,s(z) < 1}. The {Ωj,s}j,s is a locally finite open
covering of X. Since φj,x is plurisubharmonic on Uj each Ωj,s is Stein. On
the other hand, if Ωj,s ∩ Ωk,l 6= ∅, as Ωk,l ⊂ Vk, we have that Ωj,s ∩ Vk 6= ∅
and hence by property b) above we have that Ωj,s ⊂ Uk This implies that
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Ωj,s ∩ Ωk,l = {z ∈ Ωj,s : φk,l(z) < 1} which is Runge in Ωj,s, see [13]. If we
choose a bijection χ : N → {(j, s) : j ∈ N, s ∈ Aj} and we set Ωm := Ωχ(m)

we get the desired family.

Proof of Theorem 1. Let ν : Y1 → Y be the normalization map and τ : Z →
Y1 be a desingularization map which is relatively ample. Let p : L → Z
be a relatively negative line bundle (which exists by Corollary 2)and set
E := L⊕ L.

Let σ : C2 → C2, σ(w) = −w. Clearly σ ◦ σ is the identity of C2 and
therefore we obtain a linear action of Z2 on C2. It is easy to see that C2/Z2

is isomorphic to {(z1, z2, z3) ∈ C3 : z1z2 = z2
3} which is a normal surface

with only one singular point of quadratic type. By linearity we obtain an
action of Z2 on any rank-two vector bundle and in particular on the vector
bundle E defined above. Let Ẽ be the quotient space of E through this
action. We get then a locally trivial fibration p̃ : Ẽ → Z with typical
fiber {(z1, z2, z3) ∈ C3 : z1z2 = z2

3}. Note that Sing(Ẽ) = Z (the zero
section). The composition f := τ ◦ p̃ : Ẽ → Y1 is 1-convex, and hence is a
holomorphically convex map. Thus we can consider the relative Remmert
quotient associated to f . We obtain a complex space W1 together with a
map g : Ẽ → W1 such that g∗OẼ = OW1 . We get then a closed embedding
σ : Y1 ↪→ W1. Via this embedding Y1 is the image through g of the null-
section of Ẽ. Note that g is biholomorphic outside the null-section and
hence W1 has singularities precisely on Y1. There is a natural holomorphic
retraction r : W1 → Y1, which is a Stein morphism, corresponding to the
projection map f : Ẽ → Y1. Over the regular part of Y1 the space W1 has
only quadratic singularities.

At this moment we reduced the proof of Theorem 1 to the following
Lemma (relative contraction for finite maps) which will be applied to the
normalization map.

Lemma 5. Let A and B be complex spaces and m : A → B be a finite
surjective holomorphic map. We assume that A is a closed complex space of
a complex space S and m admits a holomorphic extension m̃ : S → B which
is a Stein morphism. Then there exists a complex space T and a holomorphic
map α : S → T such that T contains B as a closed complex subspace, α|A = m
and, outside B, α is a biholomorphism between S \ A and T \B.

Proof. Using Lemma 4 we choose a locally finite Stein covering {Di}i∈N of
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B such that Di ∩ Dj is Runge in Di and in Dj for every i, j ∈ N and
m̃−1(Di) ⊂ S is Stein. Therefore m̃−1(Di ∩ Dj) is Runge in m̃−1(Di) and
in m̃−1(Dj) for every i, j ∈ N. On m̃−1(Di) we consider the set Fi of all
holomorphic functions f ∈ O(m̃−1(Di)) such that f|A∩m̃−1(Di) comes from a
holomorphic function on Di, i.e. there exists a holomorphic function g ∈
O(Di) with f|A∩m̃−1(Di) = g ◦ m. Then Fi is a subalgebra of O(m̃−1(Di))
and m̃−1(Di) is Fi-holomorphically convex. Similarly we define the set Fij
of all holomorphic functions f ∈ O(m̃−1(Di ∩Dj)) such that f|A∩m̃−1(Di∩Dj)

comes from a holomorphic function on Di∩Dj. Applying Wiegmann quotient
theorem to the subalgebras Fi we get a Stein complex space Ti containing
Di as a closed complex subspace. Using Proposition 2, these complex spaces
{Ti}i∈N can be glued together and we get the desired complex space T . This
concludes the proof of Lemma 5 and of Theorem 1.

Proof of Theorem 2. Suppose that Ω is a Stein manifold and A is a closed
analytic subset of Ω. We denote by π : Ω× C → Ω the standard projection
and we identify a holomorphic function f ∈ O(Ω) with f ◦π. Hence we have
O(Ω) ⊂ O(Ω × C). Let λ be the coordinate function on C and F := {f ∈
O(Ω× C) : ∂f

∂λ
≡ 0 on A× {0}}. Then:

- F is a closed subalgebra of O(Ω× C) and F ⊃ O(Ω),
- if f ∈ O(Ω× C) and f|A×{0} ≡ 0 then f 2 ∈ F .

Suppose that K is a compact subset of Ω × C. Then K̂F , the holo-
morphically convex hull of K with respect to F is a subset of K̂OΩ×C ∪ A.
Indeed, if z ∈ Ω × C \ (K̂OΩ×C ∪ A) then there exists f ∈ OΩ×C such that
f|A×{0} ≡ 0 and |f(z)| > ‖f‖K . It follows that |f 2(z)| > ‖f 2‖K and f 2 ∈ F .

At the same time from O(Ω) ⊂ F we get that K̂F ⊂ π−1( π̂(K)
OΩ

). Hence

K̂F ⊂ (K̂OΩ×C ∪ A) ∩ π−1( π̂(K)
OΩ

), which implies that K̂F is compact and
hence Ω× C is F -convex.

Similarly we can show that Ω × C is F -separable. Namely, for any two
points x, y ∈ Ω × C, if x, y ∈ A × {0} then we can choose f ∈ O(Ω) with
f(x) 6= f(y) and if at least one of them is not in A we can choose f ∈
O(Ω × C)) such that f 2(x) 6= f 2(y). Let (Y,OY ) = RF (Ω × C,OΩ×C),
p : Ω × C → Y the canonical morphism and B = p(A × {0}), which is a
closed analytic subset of Y . Since Ω×C is F -separable it follows that p is a
homeomorphism.

We want to show next that p : Ω×C\A×{0} → Y \B is a biholomorphism
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and hence, in particular Sing(Y ) ⊂ B. It suffices to show that for any open
subset U of Ω×C \A×{0} and any x ∈ U we have that every holomorphic
function f on U can be approximated, uniformly on a neighborhood of x by
functions in F (this will imply that the functions in F give local coordinates
outside A× {0}). Let c ∈ C be such that f(x) + c 6= 0. We choose an open
neighborhood V of x such that V b U , V ∩ A = ∅, V is holomorphically
convex and there exists a holomorphic function g defined on a neighborhood
of V such that g2 = f + c. It follows that we can find {hj}j≥0, hj ∈ O(Ω)
such that hj |A×{0} ≡ 0 and hj → g uniformly on V . It remains to notice that

h2
j − c ∈ F and h2

j − c→ f uniformly on V .
Notice also that F ⊃ O(Ω) implies that p|Ω×{0} : Ω × {0} → p(Ω × {0})

is a biholomorphism and hence p|A : A→ B is a biholomorphism.
We claim now that B ⊂ Sing(Y ). Let y ∈ B and x = p−1(y) ∈ A. If Y

were smooth in y, it would be normal in y, hence it would be normal in a
neighborhood of y, and therefore we could find U ⊂ X an open neighborhood
of x and W ⊂ Y an open neighborhood of y such that p(U) = W and
p : U → W is a biholomorphism. Therefore for every holomorphic function
f : U → C we would have that f ◦ p−1 is holomorphic on W . This would
imply that we can approximate f , uniformly on a neighborhood of x, with
functions from F . However the coordinate function λ : U → C does not
satisfy this property.

Lemma 6. Let M be a Stein manifold, A ⊂M a closed analytic subset and
U ⊂ M a Runge open subset of M . Then {f|U×C : f ∈ O(M × C), ∂f

∂λ
≡

0 on A× {0}} is dense in {f ∈ O(U × C) : ∂f
∂λ
≡ 0 on A ∩ U × {0}} with

the topology of uniform convergence on compacts. Here λ is the coordinate
function on C.

Proof. Let f : U × C → C be a holomorphic function such that ∂f
∂λ
≡ 0 on

A ∩ U × {0}. Because U × C is Runge in M × C there exists a sequence
of holomorphic functions {gn}n≥1, gn ∈ O(M × C), such that gn ≡ 0 on
A∩U ×{0} and {gn|U×C}n≥1 converges to ∂f

∂λ
. At the same time there exists

a sequence {hn}n≥1, hn ∈ O(M) such that {hn|U}n≥1 converges to f(z, 0).
For each n ≥ 1 we consider the following primitive with respect to λ of gn:
fn(z, λ) =

∫
γ
gn(z, ξ)dξ+hn(z) where γ : [0, 1]→ C is a path that joins 0 ∈ C

with λ. For γ(t) = tz we get fn(z, λ) =
∫ 1

0
gn(z, tλ)λdt+hn(z). We have then

∂fn

∂λ
= gn ≡ 0 on A×{0}. At the same time, since both f and

∫ 1

0
∂f
∂λ

(z, tλ)λdt

are primitives for ∂f
∂λ

, we have f(z, λ) =
∫ 1

0
∂f
∂λ

(z, tλ)λdt+ f(z, 0). Hence
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fn(z, λ)− f(z, λ) =

∫ 1

0

(
gn(z, tλ)− ∂f

∂λ
(z, tλ)

)
λdt+ (hn(z)− f(z, 0)).

Now, if K ⊂M ×C is a compact set, we choose K0, a compact subset of
M , and B ⊂ C a compact disk centered at the origin such that K ⊂ K0×B.
Using ‖gn − ∂f

∂λ
‖K0×B → 0 and ‖hn − f(z, 0)‖K0 → 0 we obtain easily that

‖fn − f‖K → 0.

Let now Z be a complex manifold and Y a closed complex subspace of Z.
We use Lemma 4 and we choose an open Stein covering {Ωi}i∈N of Z such that
the pair (Ωi,Ωi∩Ωj) is Runge for every i, j ∈ N. Let Fi := {f ∈ O((Ωi)×C) :
∂f
∂λ
≡ 0 on Y × {0}} and, similarly, Fij := {f ∈ O((Ωi ∩ Ωj) × C) : ∂f

∂λ
≡

0 on Y × {0}}.
We apply Wiegmann’s quotient theorem to Fi and we use Proposition 2,

to glue together the complex spaces thus obtained and we get the desired
complex space X. Note that because a positive codimension analytic subset
does not disconnect a complex manifold it follows that X is locally irreducible
and, if Z is connected, X is irreducible. At the same time it follows from our
proof that the normalization of X is Z × C.

Remarks: 1) In [4] the following result was proved : given a closed
analytic subset A of Cn, codim(A) ≥ 2, there exists an irreducible analytic
hypersurfaceH ⊂ Cn such that Sing(H) = A. This shows, in particular, that
one can prescribe singularities for Stein spaces. However the construction in
[4] cannot be used for arbitrary singularities since it is not functorial and
the local models cannot be glued together to obtain a complex space with
prescribed singularities.
2) The following problem was raised to the first author by C. Bănică in
connection with the duality on complex spaces: could every complex space
Z of bounded Zariski dimension be embedded as a closed analytic subset of
a complex manifold?
3) The following problem remains open: suppose that Y is a reduced complex
space, not necessarily normal. Is it possible to find a normal complex space
X such that Sing(X) = Y ?
4) If Y is a projective algebraic variety then one can construct a normal
projective algebraic variety X such that Sing(X) = Y . We would like to
thank Iustin Coandă for this remark.
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Fibrés vectoriels, fibrés projectifs, fibrés en drapeaux. Séminaire Henri
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[10] R. Hartshorne: Algebraic geometry. Graduate Texts in Mathematics,
No. 52. Springer-Verlag, New York-Heidelberg, 1977

15



[11] R. Hartshorne: Ample vector bundles. Publ. Math. Inst. Hautes Études
Sci. No. 29 (1966), 63–94.

[12] K. Knorr; M. Schneider: Relativexzeptionelle analytische Mengen.
Math. Ann. 193 (1971), 238–254.

[13] R. Narasimhan: The Levi problem for complex spaces. II. Math. Ann.
146 (1962), 195–216.

[14] M. Schneider: Familien negativer Vektorraumbündel und 1-konvexe Ab-
bildungen. Abh. Math. Sem. Univ. Hamburg 47 (1978), 150–170.
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