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Abstract

For a given complex space Y we construct a complex space X such
that Sing(X) =Y.

1 Introduction

For a reduced complex space X we denote by Sing(X) the set of singular
points of X. In this paper we are dealing with the following question: given
a reduced complex space Y, does there exist a reduced complex space X such
that Sing(X) =Y. We show that the answer is "yes”. Namely we prove the
following theorem:

Theorem 1. Let Y be a reduced complex space. Then there exists a reduced
complex space X such that:
1) Sing(X) =Y, dim(X) = dim(Y) + 2.
2) along Reg(Y), the complex space X has only quadratic singularities, (i.e.
the product of a complex manifold of dimension n = dim(Y’) and a surface
with an isolated quadratic 2-dimensional singularity).

Moreover, if Y is normal then X can be chosen to be normal and if Y is
locally irreducible then X can be chosen to be locally irreducible.

*Mathematics Subject Classification (2000): 32C45, 32C15, 32C40
Key words: singularities, desingularization, holomorphically convex space, Remmert
reduction, relatively exceptional, blowing down



If Y is a complex manifold the proof is trivial because one can choose X =
Y x S where S has only one singular point. Obviously this argument does not
work if Sing(Y) # 0 because Sing(Y x S) = Sing(Y)x SUY x Sing(S). To
prove our main theorem we consider a resolution of singularities 7 : Y — Y
(which exists by the results of E. Bierstone and P.D. Milmann [3], and J.M.
Aroca, H. Hironaka, and J.L. Vicente [1]) and over Y we consider a rank 2
vector bundle E — Y which is relatively negative. On each fiber of E we have
the equivalence relation x ~ (—z). If we let F':= E/ ~ we obtain a locally
trivial fibration 7 : F' — Y with typical fiber {(21, 20, 23) € C? : 212, = 23}
which has a quadratic 2-dimensional isolated singularity. From F' we get the
desired complex space X by applying the relative Remmert quotient theorem
(see [12]) and Wiegmann quotient theorem [16].

In the embedded case, i.e. if Y is a complex subspace of a complex
manifold Z, we give another construction of X using only Wiegmann quotient
theorem. In this particular case we obtain:

Theorem 2. Suppose that Z is a complex manifold andY is a closed subspace
of Z. Then there exists a complex space X with the following properties:

1) Sing(X) =Y and dim(X) = dim(Z) + 1.

2) X is locally irreducible.

3) The normalization of X is smooth and therefore X is not normal at any
point of Y.

4) If Z is connected then X is irreducible.

2 Preliminaries

Throughout this paper all complex spaces are assumed to be reduced.
We recall that a complex space X is called holomorphically convex if the
holomorphically convex hull of every compact subset is compact.

Definition 1. A holomorphic map of complex spaces m : X — S s called
holomorphically convez if for any point s € S there exists an open neigh-
borhood U of s such that X(U) := 71 (U) is holomorphically convez. If for
any point s we can find U such that X(U) is Stein then 7 is called a Stein
morphism.

K. Knorr and M. Schneider in [12] proved the following result:



Theorem 3. Suppose that m : X — S is a holomorphically conver map
between two complexr spaces. Then there exist a complexr spaces R and a
holomorphic map p : X — R, called the relative Remmert reduction of ,
such that p,Ox = Og (so p is proper, surjective, and has connected fibers)
and a commutative diagram

X - R
S
with o being a Stein morphism.

Throughout this paper a complex space X is called 1-convex if there exists
a smooth exhaustion function ¢ : X — R which is strictly plurisubharmonic
outside a compact subset K C X.

Definition 2. A holomorphic map © : X — S is called 1-convex if for any
s € S there exists an open neighborhood U of s, a C*® function ¢ : X(U) — R
and a real number co € R such that:

1) @{zex (U):p(z)>co} 15 1-conver,

2) for every ¢ € R we have that T{zex(U):¢(zx)<c} 1S a proper map.

The following Theorem is Satz. 3.4 in [12], see also [15].
Theorem 4. FEvery 1-convex map is holomorphically convex.
We recall the definition of a relatively exceptional set given in [12].

Definition 3. Suppose that # : X — S is a holomorphic map between two
complex spaces and A C X is a closed analytic subset such that m 4 is proper
and has nowhere discrete fibers. A is called relatively exceptional with respect
to 7 if there exists a commutative diagram

2 Y

S
where Y is a complex space and ©' and ® are holomorphic maps, such that:
i) 7r|’q)(A) has discrete fibers,

ii) ® induces a biholomorphism X \ A — Y \ ®(A),
iii) ©.(Ox) = Oy.
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Definition 4. If 7 : X — S is a holomorphic map between two complex
spaces and A is a closed analytic subset of X, then A is called mazimally
proper over S if w4 is proper, has nowhere discrete fibers and for any closed
analytic subset A" of X with these two properties we have A" C A.

The following result is Satz 5.4 of [12].

Proposition 1. Suppose that w: X — S is a holomorphic map and A C X
i1s a closed analytic subspace of X. We assume that A has a neighborhood W
such that my is 1-convexr and A is mazimally proper over S in W. Then A
15 relatively exceptional with respect to S.

We identify a vector bundle with the sheaf of germs of local sections in
the bundle. Suppose that X is a compact complex space and p : E —
X is a holomorphic vector bundle of rank r. We let 7 : P(E) — X be
the holomorphic fiber bundle for which 7=!(z) is the space of all (r — 1)-
dimensional linear subspaces of p~!(z). In general, for a coherent sheaf F on
X one ca associate a projective variety over X, P(F), obtaining in this way
a contravariant functor. For details we refer to [9] and [5], Chapter 1. For
the proof of the following theorem see [7] and [11].

Theorem 5. The following statements are equivalent:

a) L = Opg)(1) is ample.

b) For every coherent sheaf F on X there exists a positive integer mg such
that H1(X, F @ S™(E)) = 0 for every ¢ > 1, m > my (S™(FE) denotes the
m-th symmetric power of E).

c) For every coherent sheaf F on X there ezists a positive integer mg such
that F @ S™(F) is spanned by its global sections.

d) The zero section of E* is exceptional.

e) The zero section of E* has a strongly pseudoconvez neighborhood.

A vector bundle is called ample if the above equivalent conditions are
satisfied. A vector bundle is called negative if its dual is ample.

We will need the following generalization in the relative case. Suppose
that 7 : X — S is a proper holomorphic map and p : £ — X is a holomorphic
vector bundle.

Definition 5. a) E is called relatively negative if its restriction to every
fiber of m=1(s) is negative in the sense of Grauert, i.e. the null-section has a
strictly pseudoconvex neighborhood.



b) E is called relatively ample if its dual E* is relatively negative.
c) m: X — S is called relatively ample if there ezists a relatively ample
line bundle p: L — X.

For the next Lemma see Corollary 2.7 in [14]

Lemma 1. Suppose that s is a point in S and Ejr-1, s negative. Then
there exists a neighborhood U of sg such that wo p is a 1-convex morphism
on p~!(m7H(U)).

Corollary 1. If m has nowhere discrete fibers then E is relatively negative
off its null-section s relatively exceptional.

Remark: For more general results concerning the relative blowing down of
complex spaces, see [6].

Suppose now that X and Y are complex spaces, f : X — Y is a proper
holomorphic map, and L — X a holomorphic line bundle. It was proved
in [14], Theorem 3.6, (using the results on 1-convex morphisms obtained in
[12]) that L is relatively ample with respect to f if and only if for every
coherent sheaf F on X and every compact set K C Y there exists a positive
integer ng = no(K,F) such that RIf.(F(n)) = 0 on K for every n > ng
and every ¢ > 1 (F(n) stands for F ® L"). At the same time in [2], chapter
4, Théoreme 4.1, it was shown that this last property implies that for every
point y € Y there exist a neighborhood V' of y and a large enough positive
integer n such that, on f~1(V), the cannonical morphism f~1(V) — P(f,(L")
is an embedding. Moreover, in the proof of this theorem of [2] (page 179) it
was shown that by further increasing n we obtain that for every relatively
compact open subset U of Y the cannonical morphism f~1(U) — P(f.(L"))
is an embedding for n large enough (n depending on U). Therefore putting
together Theorem 3.6 in [14] and Theorem 4.1, chapter 4 in [2], when X and
Y are compact, we have:

Theorem 6. If X and Y are compact complex spaces, f : X — Y is a
holomorphic map, and L — X a holomorphic line bundle, the following are
equivalent:

a) L is relatively ample with respect to f.

b) There exists ng such that R1f.(F(n)) = 0 for every n > ng and every
q=1

c¢) There exists ng such that the canonical morphism f*f.F(n) — F(n) is
surjective for every n > ny.

d) There exists ny such that X — P(f.(L")) is an embedding for n > n;.
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Remark. From ¢) we have an embedding X — P(f*f.L") = P(f.L") xy X,
hence a map X — P(f.L"). d) means that increasing n this map becomes
an embedding.

The following Lemma is a folklore result (see e.g. [10] Exercise 5.12). For
reader’s convenience we provide a proof.

Lemma 2. Suppose that X and Y are compact complex spaces, f : X — Y
a holomorphic map, G — Y an ample line bundle and L — X a relatively
ample line bundle with respect to f. Then L ® f*G is ample on X.

Proof. Using Theorem 6, we choose a positive integer n such that we have
an embedding 7 over Y:

p(am—— T )
N

such that L™ = j*(O(1)). By [9], Proposition 1.5, if 7| — F, is a sheaf
epimorphism then one has an embedding P(F;) < P(F;) over Y which is
linear over each fiber. Since G is ample it follows that, for v large enough,
fL™ ® G¥ is generated by global sections. Hence we have an epimorhism
0% — f.L" ® G for some k. Because G is a line bundle we have that
P(f.L"®G") =P(f.L"). Passing to the associated projective spaces, we get
an embedding h : P(f,L") — Y x P*~! over Y such that O(1) over P(f,L")
is the pull-back by h of the hypersection bundle of P*~!. Composing with j
and using again the ampleness of G we get that L" ® f*G* is ample for every
. In particular it is ample for ¢ = n and this in turn implies that L ® f*G
is ample.

O

We will briefly recall some facts about desingularization of complex spaces
(see [3]).

Let X be a complex space and Z C X a smooth closed complex subspace.
For any point xy € X we choose U an open neighborhood of xj together with
a closed embedding U < B &€ C¥» where B is an open ball in CV. Then Z
corresponds to a complex submanifold W of B and we consider the blow-up
of B with center W. In this blow-up we consider the proper transform of
U and in this way we obtain the blow-up of U with center U N Z. This
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construction does not depend on the local embedding and the local blow-ups
patch-up to get the blow-up of X with (smooth) center Z.

The following result (Theorem 13.4 of [3]) is the fundamental theorem of
global desingularization of complex spaces.

Theorem 7. Any complex space X admits a desingularization 7 : X — X
such that w is the composition of a locally finite sequence of blow-ups with
smooth centers and w1 (Sing(X)) is a divisor with normal crossings in X.

In this theorem locally finite means that on compact sets all but finitely
many blow-ups are trivial.

Corollary 2. The desingularization ™ : X — X gwen_ by Theorem 7 is
relatively ample, the relatively ample line bundle p : L — X corresponding to
the exceptional divisor of m.

Proof. Let

e ™ ™
o X = X, S X S X

be the sequence of blow-ups given by Theorem 7 and L; — X the line bundle
corresponding to the exceptional divisor of m;. Each L; is relatively ample
with respect to ;.

Suppose that x is a point in X. We consider the restrictions of L; and
Ly to m; *(z) and, respectively, (7, o 72)~!(x) and we denote them by L; —
7 (z) and Ly — (m o mp)~Y(x). We have that L; — 7, ' (z) is ample and
Ly — (w1 0om) " (2) is relatively ample with respect to . We apply Lemma
2 and we deduce that Ly ® 75(L;) — (m o m3) () is ample.

We conclude that Ly ® 75(L;) — X is relatively ample with respect to
m 0 mo. We continue inductively this procedure and we obtaine that the line
bundle L defined, by abuse of notation, by L = ®;enL; — X is relatively
ample with respect to 7.

The infinite tensor product of line bundles (and the entire construction)
makes sense since the sequence of blow-ups is locally finite. O

Definition 6. ([16]) Suppose that (X, Ox) is a complex space, F is a subset
of Ox(X) and let ¢p : X — C¥, ¢p(x) = (f(2))ser-

a) (X, Ox) is called F-separable if ¢ is injective.

b) (X,Ox) is called F-convez if ¢r is proper.



F-separable means that functions in F separate the points of X and
F-convex means that for every discrete sequence {z,} in X there exists a
function f € F such that {|f(x,)|} is unbounded.

The following theorem, generalizing a result of R. Remmert, was proved
by K.-W. Wiegmann [16].

Theorem 8. Suppose that (X,Ox) is a reduced complex space and F is a
subalgebra of Ox(X) such that (X,Ox) is F-convex. Then there exists an
F-convex and F-separable reduced Stein space (Y, Oy) together with a proper
surjective holomorphic mapping p : (X,0x) — (Y,Oy) such that if 7 :
Oy (Y) — Ox(X) is the induced morphisms of C-algebras then w(Oy(Y)) D
F. Moreover, (Y,Oy) is unique, up to isomorphism, with these properties, if
F is closed in Ox(X) then 1(Oy(Y)) = F and if F = Ox(X) then 7 is an

1somorphism.

The complex space (Y, Oy) is called the Remmert reduction of (X, Ox)
with respect to F' and is denoted by Rp(X,Ox). Note that Remmert’s
theorem corresponds to the case F' = Ox(X).

For a complex space (Z,0y) we let T(Z,Oz) be the underlying topolog-
ical space Z and, for an open subset U of Z, I'y/(Z,0z) = Oz(U). We recall
briefly Wiegmann’s construction. The topological space T(Rp(X,Ox)) is
defined as T(Rp(X,0Ox)) = X/ ~ and p is the quotient map, where, for
x1, Ty € X, 11 ~ x9 if and only if f(z1) = f(z3) for every f € F. The struc-
ture sheaf is defined as follows. For y € T(Rp(X,Ox)) let m, by the ideal
of F that contains all function f € F' that vanish on p~!(y). For every open
subset U of T(Rp(X,Ox)), T'v(Rr(X,Ox)) is the algebra of all functions
g € Ox(p~'(U)) such that for every point y € U there exist a positive integer
k, a convergent power series ) ° . ¢i G0 T € C(Th,...,Th)] and
fi,.-., fx € my such that ZZ) 77777 o ‘
on a neighborhood of p~(y).

Lemma 3. Suppose that (X, Ox) is a reduced complex space, F' and G are
two subalgebras of Ox(X) such that (X, Ox) is F-conver, F C G and F is
dense in G. Then the canonical morphism Rp(X,Ox) — Ra(X,Ox) is an
1somorphism.

Proof. 1t follows from the discussion after Theorem 8 that if F' is a dense
subset of G then T'(Rp(X,0x)) = T(Rs(X,Ox)) and that for every open
subset U of T(Rp(X,Ox)) we have I'y(Rp(X, Ox)) C I'v(Ra(X,Ox)). Let
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F be the closure of F (hence G C F) and let Y := T(Rp(X,0x)). We
have then F' C Fy(RF(X, Ox)) C Fy(Rg(X, Ox)) C Fy(Rf<X, OX)) =F.
As Ty (Rp(X,Ox)) and I'y (Re(X, Ox)) are closed in C(Y) (the algebra of
continuous functions on Y) and F is the smallest closed subset containing
F, it follows that the map I'y (Rr(X,0x)) — I'y(Ra(X, Ox)) is bijective.
As both Rp(X,Ox) and Rg(X, Ox) are reduced Stein spaces it follows that
the canonical morphism Rp(X,Ox) — Rg(X,Ox) is an isomorphism. [

In Wiegmann’s theorem one needs X to be F-convex. In particular X
has to be Ox(X)-convex which is a strong global condition. On the other
hand, it may happen that Ox(X) = C (e.g. if X is compact) and then
the Remmert reduction is just a point. For our purpose we need to apply
Wiegmann’s theorem [ocally. To be able do this, we need a “patching” result.
This is the purpose of the following proposition.

Proposition 2. Suppose that (X, Ox) is a reduced complex space and {V;}ien
is a locally finite open covering of X. Let F; be a closed subalgebra of Ox (V;),
~; be the equivalence relation on V; induced by F; (11 ~; xo iff f(z1) = f(x2)
Vf e F;), and F;; = Fj; be a closed subalgebra of Ox(V; N'V;). We assume
that:

a) Ox|V; is F;-conver,

b) Fijv,nv, is a dense subset of Fi; for everyi,j € N,

c) V;N'Vj is saturated with respect to ~; for every i,j € N.

Then there exists a reduced complez space (Y,Oy), a proper holomorphic
map p : X — Y and an open covering {U;}; of Y such that (U;, Oy y,) is
isomorphic to Rp,(V;, Ox|V;) and py, is the canonical morphism given by
Theorem 8.

Proof. We define the following relation on X: x ~ y if and only if there exists
¢ € N such that z,y € V; and x ~; y. Note that if x € V;, y € V; NV, and
x ~; y then using c) we get that x € V;N'V; and by b) and Lemma 3 we get
that o ~; y. This shows that ~ is an equivalence relation. Moreover, each V;
is saturated with respect to ~. Let Y = X/ ~, endowed with the quotient
topology, and p : X — Y be the quotient map. We set U; = p(V;) which is an
open subset of Y. By Wiegmann’s construction of Rp,(V;, Ox|V;) explained
above we have that T'(Rp,(V;, Ox|V;)) = U;. We define the structure sheaf
Oy as follows: if 2 is an open subset of Y and f € C(Q2) then f € Oy(Q)
if and only if for every point y € U; for some ¢ € I there exists D an open
subset of Y such that D € QNU; and fip € I'p(Rf,(Vi, Ox|Vi)). By Lemma
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3 this definition does not depend on the choice of i. The fact that (Us, Oy y,)
is isomorphic to Rg,(V;, Ox|V;) follows from the construction of the relative
Remmert reduction. ]

Example. Suppose that X = P!. Let By, By, By be three balls (in local
coordinate charts) such that By U By U By = P! and B; N B; is Runge in B;
for every i,j € {1,2,3}. We assume that a := [0: 1] € By \ (B U B3). Let
F2 = FQQ = O(BQ), F3 = F33 = O(Bg), F1 = F11 = {f € O(Bl) . f’(a) = 0}
and, for i # j, F; ; = O(B;NB;). Then we are in the hypothesis of Proposition
2. Note that a holomorphic function f, defined in a neighborhood of the
origin 0 € C, satisfies f/(0) = 0 if and only if there exists a holomorphic
function F' of two variables, defined in a neighborhood of the origin in C?,
such that f(z) = F(23,2%) and the map z — (23, 2?) is a parametrization of
the cusp singularity {(x,y) € C?: 2% = ¢y3}.

We deduce that the complex space that we obtaine by applying Propo-
sition 218 Y = {[20 : 21 : 29] € P? : 2825 = 2%} and p : P! — Y is given by
p([zo : 1)) = [23 : 232y 2 2.

3 The results

Lemma 4. If X is a complex space then any open covering has a locally
finite open refinement {Qy, bmen such that §, is Stein for every m € N and
the pair (L, Qg N Qy) is Runge for every my, mg € N.

Proof. We consider {W,};en, {V;}jen, {U,};jen locally finite countable open
covering of X such that {U,},ey is a refinement of the given covering, W, &€
V; @ U; and Uj is Stein for every j € N. For each j € N and each z € Wj
we choose ¢;, : U; — [0, 00) a plurisubharmonic function such that:
a) ¢j.(r) =0and {z € U; : ¢,(2) <1} C V],
b) if, for some k € N, {z € U; : ¢;.(2) < 1}NVy # D then {z € U; : ¢;.(2) <
1} C Uy.

Then {z € U; : ¢.(2) < 1},cp, is an open covering of W;. We extract
a finite subcovering {2 € U; : ¢;,(2) < 1}seca; where A; is a finite set and
we set Q= {2z € U;j : ¢;5(2) < 1}. The {Q;,};5 is a locally finite open
covering of X. Since ¢;, is plurisubharmonic on U; each €; is Stein. On
the other hand, if Q; N Q. # 0, as Qx; C Vi, we have that Q; NV, # 0
and hence by property b) above we have that €2;; C Uy This implies that
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Qs Ny ={2 € Qs ¢pi(2) < 1} which is Runge in €, 4, see [13]. If we
choose a bijection x : N — {(j,s) : 7 € N, s € A;} and we set €y, := Q(m)
we get the desired family. O

Proof of Theorem 1. Let v :Y; — Y be the normalization map and 7: Z —
YY) be a desingularization map which is relatively ample. Let p : L — Z
be a relatively negative line bundle (which exists by Corollary 2)and set
E:=L&L.

Let 0 : C* — C?, o(w) = —w. Clearly o o ¢ is the identity of C* and
therefore we obtain a linear action of Zy on C?. It is easy to see that C?/Z,
is isomorphic to {(z1,29,23) € C3 : 2129 = 22} which is a normal surface
with only one singular point of quadratic type. By linearity we obtain an
action of Zs on any rank-two vector bundle and in particular on the vector
bundle E defined above. Let E be the quotient space of E through this
action. We get then a locally trivial fibration p : E — Z with typical
fiber {(z1,22,23) € C® : 212 = 22}. Note that Sing(E) = Z (the zero
section). The composition f := 7o p: E — Y, is 1-convex, and hence is a
holomorphically convex map. Thus we can consider the relative Remmert
quotient associated to f. We obtain a complex space W; together with a
map ¢ : £ — W, such that 9.0 = Ow,. We get then a closed embedding
oY), — Wj. Via this embedding Y; is the image through g of the null-
section of E. Note that ¢ is biholomorphic outside the null-section and
hence W, has singularities precisely on Y;. There is a natural holomorphic
retraction r : W7 — Y7, which is a Stein morphism, corresponding to the
projection map f : E — Y;. Over the regular part of ¥; the space W; has
only quadratic singularities.

At this moment we reduced the proof of Theorem 1 to the following
Lemma (relative contraction for finite maps) which will be applied to the
normalization map.

Lemma 5. Let A and B be complex spaces and m : A — B be a finite
surjective holomorphic map. We assume that A is a closed complex space of
a complex space S and m admits a holomorphic extension m : S — B which
1s a Stein morphism. Then there exists a complex space T and a holomorphic
map o : S — T such that T' contains B as a closed complex subspace, o g = m
and, outside B, « is a biholomorphism between S\ A and T\ B.

Proof. Using Lemma 4 we choose a locally finite Stein covering {D; };en of
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B such that D; N D; is Runge in D; and in D; for every ¢,7 € N and
m~(D;) C S is Stein. Therefore m~*(D; N D;) is Runge in m*(D;) and
in m~Y(D;) for every i,j € N. On m~'(D;) we consider the set F; of all
holomorphic functions f € O(m~'(D;)) such that fiaqm-1(p,) comes from a
holomorphic function on D;, i.e. there exists a holomorphic function g €
O(D;) with flanm-1(p;) = g o m. Then F; is a subalgebra of O(m~'(D;))
and m~(D;) is F-holomorphically convex. Similarly we define the set F};
of all holomorphic functions f € O(m~"(D; N D;)) such that fianm-1(p,np,)
comes from a holomorphic function on D;ND;. Applying Wiegmann quotient
theorem to the subalgebras F; we get a Stein complex space T; containing
D; as a closed complex subspace. Using Proposition 2, these complex spaces
{T}}ien can be glued together and we get the desired complex space T'. This
concludes the proof of Lemma 5 and of Theorem 1. n

Proof of Theorem 2. Suppose that ) is a Stein manifold and A is a closed
analytic subset of €. We denote by 7 : 2 x C — € the standard projection
and we identify a holomorphic function f € O(f2) with fom. Hence we have
O(2) € O(2 x C). Let A be the coordinate function on C and F := {f €
O xC): % =0on A x {0}}. Then:

- F is a closed subalgebra of O(2 x C) and F' D O(1),

-if f e O x C) and fiaxgoy =0 then f? € F.

Suppose that K is a compact subset of 2 x C. Then KF , the holo-
morphically convex hull of K with respect to F' is a subset of K Oaxc Y A.
Indeed, if z € Q x C\ (K92x¢ U A) then there exists f € Oqxc such that
fiaxgoy = 0 and |f(2)| > ||f|lx- It follows that | f?(z)| > | f?||x and f* € F.

~ —0
At the same time from O(Q2) C F we get that K C 7 '( n(K) Q) Hence

KF c (K%xc U A)nrY( @OQ), which implies that K ¥ is compact and
hence Q x C is F-convex.

Similarly we can show that 2 x C is F-separable. Namely, for any two
points z,y € Q x C, if x,y € A x {0} then we can choose f € O(Q) with
f(x) # f(y) and if at least one of them is not in A we can choose f €
O(Q x C)) such that f?(z) # f*(y). Let (Y,Oy) = Rr(2 x C,Oqxc),
p: Q x C — Y the canonical morphism and B = p(A x {0}), which is a
closed analytic subset of Y. Since 2 x C is F-separable it follows that p is a
homeomorphism.

We want to show next that p : @xC\ Ax{0} — Y\ B is a biholomorphism
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and hence, in particular Sing(Y) C B. It suffices to show that for any open
subset U of @ x C\ A x {0} and any x € U we have that every holomorphic
function f on U can be approximated, uniformly on a neighborhood of = by
functions in F' (this will imply that the functions in F' give local coordinates
outside A x {0}). Let ¢ € C be such that f(z)+ ¢ # 0. We choose an open
neighborhood V' of x such that V € U, VN A = 0, V is holomorphically
convex and there exists a holomorphic function ¢ defined on a neighborhood
of V such that g2 = f + c. It follows that we can find {h;};50, h; € O(Q)
such that hYI Ax{0} = = 0 and h; — ¢ uniformly on V. It remains to notice that
hj —ce F and hj2 — ¢ — f uniformly on V.

Notice also that F' D O(£2) implies that pjox oy : 2 x {0} — p(Q x {0})
is a biholomorphism and hence p|4 : A — B is a biholomorphism.

We claim now that B C Sing(Y). Let y € Band z = p~!(y) € A. If Y
were smooth in y, it would be normal in y, hence it would be normal in a
neighborhood of y, and therefore we could find U C X an open neighborhood
of x and W C Y an open neighborhood of y such that p(U) = W and
p: U — W is a biholomorphism. Therefore for every holomorphic function
f : U — C we would have that f o p~! is holomorphic on W. This would
imply that we can approximate f, uniformly on a neighborhood of x, with
functions from F. However the coordinate function A : U — C does not
satisfy this property.

Lemma 6. Let M be a Stein manifold, A C M a closed analytic subset cmd
U C M a Runge open subset of M. Then {fiuxc : f € O(M x C), U =
0 on A x {0}} is dense in {f € O(U x C) : g{ =0on ANU x {0}} with
the topology of uniform convergence on compacts. Here X is the coordinate
function on C.

Proof. Let f: U x C — C be a holomorphic function such that gf\f =0 on
ANU x {0}. Because U x C is Runge in M x C there exists a sequence
of holomorphic functions {g,}n>1, gn € O(M x C), such that g, = 0 on
ANU x {0} and {gny«c fn>1 converges to . At the same time there exists
a sequence {h,}n>1, h, € O(M) such that {hn|U}n21 converges to f(z,0).
For each n > 1 we consider the following primitive with respect to A of g,:

fu(z,A) f gn(2,€)dE+hy,(2) where 7 : [0, 1] — C is a path that joins 0 € C
with A. For v(t) = tz we get f,.(z,A) fol Gn (2, tA)AdE+h,,(2). We have then
6f" =g, =0o0n Ax {O} At the same time, since both f and fo 98 (2, t\)Adt

we have f(z,\) = [} 2L (z, tA)MdE + f(z,0). Hence

are primitives for 2 0 Bx

8>\’
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falz,A) = f(z,\) = /0 (gn(z,t)\) — %(z,t)\)) Adt + (hp(2) — f(2,0)).

Now, if K C M x C'is a compact set, we choose Ky, a compact subset of
M, and B C C a compact disk centered at the origin such that K C Ky x B.
Using ||gn — %HKoxB — 0 and ||h, — f(2,0)]|x, — O we obtain easily that

1o = fllx = 0.

Let now Z be a complex manifold and Y a closed complex subspace of Z.
We use Lemma 4 and we choose an open Stein covering {€2; };en of Z such that
the pair (£2;, ©;N€2;) is Runge for every i, j € N. Let F; := {f € O((€%;) xC) :
9 =0onY x {0}} and, similarly, F; :== {f € O(( N Q) xC) : & =
OonY x {0}}.

We apply Wiegmann’s quotient theorem to F; and we use Proposition 2,
to glue together the complex spaces thus obtained and we get the desired
complex space X. Note that because a positive codimension analytic subset
does not disconnect a complex manifold it follows that X is locally irreducible
and, if Z is connected, X is irreducible. At the same time it follows from our
proof that the normalization of X is Z x C.

O

Remarks: 1) In [4] the following result was proved : given a closed
analytic subset A of C", codim(A) > 2, there exists an irreducible analytic
hypersurface H C C" such that Sing(H) = A. This shows, in particular, that
one can prescribe singularities for Stein spaces. However the construction in
[4] cannot be used for arbitrary singularities since it is not functorial and
the local models cannot be glued together to obtain a complex space with
prescribed singularities.

2) The following problem was raised to the first author by C. Banica in
connection with the duality on complex spaces: could every complex space
Z of bounded Zariski dimension be embedded as a closed analytic subset of
a complex manifold?

3) The following problem remains open: suppose that Y is a reduced complex
space, not necessarily normal. Is it possible to find a normal complex space
X such that Sing(X)=Y7

4) If Y is a projective algebraic variety then one can construct a normal
projective algebraic variety X such that Sing(X) =Y. We would like to
thank Iustin Coanda for this remark.
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