
Real polynomial maps, F : Rn+1 → Rn.



Question: Can we detect the atypical values by variation in the topology
of the fiber?

Theorem (Suzuki-Hà-Lê)

Let F : C2 → C be a polynomial function and let λ0 ∈ C \ F (SingF ).
Then λ 6∈ AtypF if and only if the Euler characteristic of the fibres
χ(Fλ) is constant for λ varying in some small neighbourhood of λ0.
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Differences between the real and the complex case: Let f : R2 → R and
g : C2 → C be non-constant polynomial maps,
Zf = {(x , y) ∈ R2 : f (x , y) = 0}, Zg = {(x , y) ∈ C2 : g(x , y) = 0}.

dimR(Zf ) < dimR(Zg )

If Zf is a smooth curve then each connected component is either
diffeomorphic to R or S1. The topology of Zg could be more
complicated.

Zg does not have compact connected components. Zf or some of its
components could be compact.

Zg does not have isolated points and it is never empty. Zf might
have isolated points or it might me empty.
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Example: (M. Tibăr, A. Zaharia, Asymptotic behavior of families of real
curves. Manuscripta Math. 99 (1999), 383–393.)

F : R2 → R,
F (x , y) =
x2y3(y2 − 25)2 + 2xy(y2 − 25)(y + 25)− (y4 + y3 − 50y2 − 51y + 575)

0 is a regular value of F

For λ ∈ (−ε, ε), ε small enough, F−1(λ) has five connected
components, each one of them diffeomorphic to R.

F is not a locally trivial fibration at 0.



Why not?

Two phenomena: ”vanishing” and ”splitting”.

as λ → 0 a connected component of F−1(λ) might ”vanish”.
as λ → 0 a connected component of F−1(λ) might split in two
connected components.
as λ → 0 a compact connected component of F−1(λ) might become
noncompact.
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For polynomial maps F : R2 → R:
• M. Tibăr, A. Zaharia, Asymptotic behavior of families of real curves.
Manuscripta Math. 99 (1999), 383–393.

For polynomial maps F : Rn+1 → Rn, n ≥ 2:
• C. Joiţa, M. Tibăr: Bifurcation values of families of real curves.
Proceedings of the Royal Society of Edinburgh Section A: Mathematics
147 (2017), 1233–1242.



Definition (Vanishing)

We say that there are vanishing components at infinity when λ tends to
λ0 if there is a sequence of points λk ∈ Rn, λk → λ0, such that for some
choice of a connected component Ck of F−1(λk) the sequence of sets
{Ck}k∈N is locally finite.

(Locally finite: for any compact K ⊂ M, there is an integer pK ∈ N such
that ∀q ≥ pK , Cq ∩ K = ∅).

If there are no vanishing components at infinity when λ tends to λ0 we
say that ”there is no vanishing at λ0” and we abbreviate by NV (λ0).

Exercise: If we have NV (a) for some a ∈ Rn there exists a neighborhood
U of a such that we have NV (b) for every b ∈ U.



Definition

Let {Mk}k be a sequence of subsets of Rm. A point x ∈ Rm is called a
limit point of {Mk}k if there exist
- a sequence of integers {ki}i ⊂ N with limi→∞ ki =∞,
- a sequence of points {xi}i∈N with xi ∈ Mki such that limi→∞ xi = x .
The set of all limit points of {Mk}k is denoted by limMk .

Proposition

Suppose that a ∈ Im F \ F (SingF ) and {bk}k∈N is a sequence of points

in Rn such that bk → a. For each k , let C j
bk

be a connected component

of F−1(bk). Then limC j
bk

is either empty or a union of connected

components of F−1(a).



Definition

a) We say that there is no splitting at infinity at a ∈ Rn, and we
abbreviate this by NS(a), if:
- for every sequence {bk}k∈N in Rn such that bk → a,
- for every sequence {pk}k∈N in Rn+1 such that F (pk) = bk ,

if C j
bk

denotes the connected component of F−1(bk) which contains pk ,

then the limit set limC j
bk

is connected.

b) We say that there is strong non-splitting at infinity at a ∈ Rn, and we
abbreviate this by SNS(a), if in addition to the definition of NS(a) we

ask the following: if all the components C j
bk

are compact then the limit

limC j
bk

is compact as well.



Theorem

Let F : Rn+1 → Rn be a polynomial map. Let a be an interior point of
the set Im F \ F (SingF ) ⊂ Rn . Then a 6∈ AtypF if and only if the
following two conditions are satisfied:

the Euler characteristic χ(F−1(λ)) is constant when λ varies within
some neighbourhood of a,

there is no component of F−1(λ) which vanishes at infinity as λ
tends to a.
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To summarise:

• χ constant + NV =⇒ locally trivial

• b0 and b1 constant + NS =⇒ locally trivial

• NV + SNS =⇒ locally trivial



A few words about the proofs.

Remarks:

The connected components of F−1(λ) are lines or circles and hence
the Euler characteristic counts the number of line components.

As λ ∈ Rn approaches a, the compact connected components of
F−1(λ) might survive or not but no new compact component is
created because we are dealing with regular values.

If we have χ constant + NV then we have also SNS : any splitting
would create new line components. As no line component of F−1(λ)
vanishes, the number of line components of F−1(a) would go up.
This implies also that b0 and b1 are constant.

If we have b0 and b1 constant + NS then we have also NV : since no
new compact component is created, and b1 is constant, no compact
component vanishes. Also no compact component ”mutate” into a
noncompact one. This means that no new line component is
created. As b0 is constant, no line component vanishes either.
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To show local triviality around a ∈ Rn, for each connected component C
of F−1(a) we have to find an open neighborhood U ⊃ C that does not
intersect any other connected component and F| : U → F (U) is a trivial
fibration.

It easy to deal with compact components.

Proposition

Suppose that X and Y are manifolds and f : X → Y is a continuous
function. If b ∈ Y is a point such that f −1(b) is compact then there
exists an open neighbprhood U of f −1(b) and an open neighborhood V
of b such that f (U) ⊂ V and the map f| : U → V is proper.

Hence if C is compact connected component of F−1(a) we choose a
neighborhood U of C such that F| : U → F (U) is both a submersion and
a proper map and we can apply Ehresmann fibration theorem.
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What about line components?

Proposition

Let M be a smooth manifold of dimension m + 1 and g : M → Rm be a
smooth submersion without singularities and such that all its fibres
g−1(t) are and diffeomorphic to R. Then g is a C∞ trivial fibration.

Let C 1
a , . . . ,C

l
a be the components of F−1(a).

• For each j = 1, . . . , l , we choose a point zj ∈ C j
a and, we fix a small

enough ball Bj 3 zj such that Bj ∩ F−1(a) is connected and that the
restriction of F to Bj is a trivial fibration.
• We may assume that the small balls B1, . . . ,Bl are pairwise disjoint.
and hence for each b ∈ ∩jF (Bj), Bj intersects exactly one connected
component of F−1(b).
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Therefore we can define a function Φb on the set {1, . . . , l} with values
in the set of connected components of F−1(b) by setting Φb(j) to be the
unique component of F−1(b) which intersects Bj .

The function Φb might be or might not be injective and it might be or
might not be surjective.

Roughly speaking:
Failure of Φb to be surjective corresponds to vanishing.
Failure of Φb to be injective corresponds to splitting.

If b0 is constant Φ is surjective iff it is injective iff it is bijective.
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Suppose that one of three sets of conditions holds:
- χ constant + NV ,
- b0 and b1 constant + NS ,
- NV + SNS .

Then:

There exists an open neighborhood of a, D ⊂ Rn such that Φb is
bijective for b ∈ D.

We consider a line component C i
a of F−1(a).

Let Li denote the union over all b ∈ D of the connected
components of F−1(b) which intersect Bi .

Each such connected component of F−1(b) is a line component.
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If C i
a and C j

a are two different components of F−1(a) then
Li ∩ Lj = ∅.

Each Li is open.

F| : Li → F (Li ) is a submersion that has all fibers diffeomorphic to
R.

We deduce that F| : Li → F (Li ) is a trivial fibration.
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