Real polynomial maps, $F: \mathbb{R}^{n+1} \rightarrow \mathbb{R}^{n}$.

Question: Can we detect the atypical values by variation in the topology of the fiber?

Theorem (Suzuki-Hà-Lê)

Let $F: \mathbb{C}^{2} \rightarrow \mathbb{C}$ be a polynomial function and let $\lambda_{0} \in \mathbb{C} \backslash F($ Sing $F)$ Then $\lambda \notin$ Atyp F if and only if the Euler characteristic of the fibres $\chi\left(F_{\lambda}\right)$ is constant for λ varying in some small neighbourhood of λ_{0}.

Question: Can we detect the atypical values by variation in the topology of the fiber?

Theorem (Suzuki-Hà-Lê)

Let $F: \mathbb{C}^{2} \rightarrow \mathbb{C}$ be a polynomial function and let $\lambda_{0} \in \mathbb{C} \backslash F(\operatorname{Sing} F)$. Then $\lambda \notin$ Atyp F if and only if the Euler characteristic of the fibres $\chi\left(F_{\lambda}\right)$ is constant for λ varying in some small neighbourhood of λ_{0}.

Differences between the real and the complex case: Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ and $g: \mathbb{C}^{2} \rightarrow \mathbb{C}$ be non-constant polynomial maps,
$Z_{f}=\left\{(x, y) \in \mathbb{R}^{2}: f(x, y)=0\right\}, Z_{g}=\left\{(x, y) \in \mathbb{C}^{2}: g(x, y)=0\right\}$.

- $\operatorname{dim}_{\mathbb{R}}\left(Z_{f}\right)<\operatorname{dim}_{\mathbb{R}}\left(Z_{g}\right)$
- If Z_{f} is a smooth curve then each connected component is either diffeomorphic to \mathbb{R} or S^{1}. The topology of Z_{g} could be more complicated.
- Z_{g} does not have compact connected components. Z_{f} or some of its components could be compact.
- Z_{g} does not have isolated points and it is never empty. Z_{f} might have isolated points or it might me empty.

Differences between the real and the complex case: Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ and $g: \mathbb{C}^{2} \rightarrow \mathbb{C}$ be non-constant polynomial maps,

$$
Z_{f}=\left\{(x, y) \in \mathbb{R}^{2}: f(x, y)=0\right\}, Z_{g}=\left\{(x, y) \in \mathbb{C}^{2}: g(x, y)=0\right\}
$$

- $\operatorname{dim}_{\mathbb{R}}\left(Z_{f}\right)<\operatorname{dim}_{\mathbb{R}}\left(Z_{g}\right)$
- If Z_{f} is a smooth curve then each connected component is either diffeomorphic to \mathbb{R} or S^{1}. The topology of Z_{g} could be more complicated.
- Z_{g} does not have compact connected components. Z_{f} or some of its components could be compact.
- Z_{g} does not have isolated points and it is never empty. Z_{f} might have isolated points or it might me empty.

Differences between the real and the complex case: Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ and $g: \mathbb{C}^{2} \rightarrow \mathbb{C}$ be non-constant polynomial maps, $Z_{f}=\left\{(x, y) \in \mathbb{R}^{2}: f(x, y)=0\right\}, Z_{g}=\left\{(x, y) \in \mathbb{C}^{2}: g(x, y)=0\right\}$.

- $\operatorname{dim}_{\mathbb{R}}\left(Z_{f}\right)<\operatorname{dim}_{\mathbb{R}}\left(Z_{g}\right)$
- If Z_{f} is a smooth curve then each connected component is either diffeomorphic to \mathbb{R} or S^{1}. The topology of Z_{g} could be more complicated.
- Z_{g} does not have compact connected components. Z_{f} or some of its components could be compact.
- Z_{g} does not have isolated points and it is never empty. Z_{f} might have isolated points or it might me empty.

Differences between the real and the complex case: Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ and $g: \mathbb{C}^{2} \rightarrow \mathbb{C}$ be non-constant polynomial maps, $Z_{f}=\left\{(x, y) \in \mathbb{R}^{2}: f(x, y)=0\right\}, Z_{g}=\left\{(x, y) \in \mathbb{C}^{2}: g(x, y)=0\right\}$.

- $\operatorname{dim}_{\mathbb{R}}\left(Z_{f}\right)<\operatorname{dim}_{\mathbb{R}}\left(Z_{g}\right)$
- If Z_{f} is a smooth curve then each connected component is either diffeomorphic to \mathbb{R} or S^{1}. The topology of Z_{g} could be more complicated.
- Z_{g} does not have compact connected components. Z_{f} or some of its components could be compact.
- Z_{g} does not have isolated points and it is never empty. Z_{f} might have isolated points or it might me empty.

Differences between the real and the complex case: Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ and $g: \mathbb{C}^{2} \rightarrow \mathbb{C}$ be non-constant polynomial maps, $Z_{f}=\left\{(x, y) \in \mathbb{R}^{2}: f(x, y)=0\right\}, Z_{g}=\left\{(x, y) \in \mathbb{C}^{2}: g(x, y)=0\right\}$.

- $\operatorname{dim}_{\mathbb{R}}\left(Z_{f}\right)<\operatorname{dim}_{\mathbb{R}}\left(Z_{g}\right)$
- If Z_{f} is a smooth curve then each connected component is either diffeomorphic to \mathbb{R} or S^{1}. The topology of Z_{g} could be more complicated.
- Z_{g} does not have compact connected components. Z_{f} or some of its components could be compact.
- Z_{g} does not have isolated points and it is never empty. Z_{f} might have isolated points or it might me empty.

Differences between the real and the complex case: Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ and $g: \mathbb{C}^{2} \rightarrow \mathbb{C}$ be non-constant polynomial maps, $Z_{f}=\left\{(x, y) \in \mathbb{R}^{2}: f(x, y)=0\right\}, Z_{g}=\left\{(x, y) \in \mathbb{C}^{2}: g(x, y)=0\right\}$.

- $\operatorname{dim}_{\mathbb{R}}\left(Z_{f}\right)<\operatorname{dim}_{\mathbb{R}}\left(Z_{g}\right)$
- If Z_{f} is a smooth curve then each connected component is either diffeomorphic to \mathbb{R} or S^{1}. The topology of Z_{g} could be more complicated.
- Z_{g} does not have compact connected components. Z_{f} or some of its components could be compact.
- Z_{g} does not have isolated points and it is never empty. Z_{f} might have isolated points or it might me empty.

Example: (M. Tibăr, A. Zaharia, Asymptotic behavior of families of real curves. Manuscripta Math. 99 (1999), 383-393.)
$F: \mathbb{R}^{2} \rightarrow \mathbb{R}$,
$F(x, y)=$
$x^{2} y^{3}\left(y^{2}-25\right)^{2}+2 x y\left(y^{2}-25\right)(y+25)-\left(y^{4}+y^{3}-50 y^{2}-51 y+575\right)$

- 0 is a regular value of F
- For $\lambda \in(-\varepsilon, \varepsilon), \varepsilon$ small enough, $F^{-1}(\lambda)$ has five connected components, each one of them diffeomorphic to \mathbb{R}.
- F is not a locally trivial fibration at 0 .
- Why not?
- Two phenomena: "vanishing" and "splitting".
- as $\lambda \rightarrow 0$ a connected component of $F^{-1}(\lambda)$ might "vanish"
- as $\lambda \rightarrow 0$ a connected component of $F^{-1}(\lambda)$ might split in two connected components.
- as $\lambda \rightarrow 0$ a compact connected component of $F^{-1}(\lambda)$ might become noncompact.
- Why not?
- Two phenomena: "vanishing" and "splitting".
- as $\lambda \rightarrow 0$ a connected component of $F^{-1}(\lambda)$ might "vanish".
- as $\lambda \rightarrow 0$ a connected component of $F^{-1}(\lambda)$ might split in two connected components.
- as $\lambda \rightarrow 0$ a compact connected component of $F^{-1}(\lambda)$ might become noncompact.

For polynomial maps $F: \mathbb{R}^{2} \rightarrow \mathbb{R}$:

- M. Tibăr, A. Zaharia, Asymptotic behavior of families of real curves. Manuscripta Math. 99 (1999), 383-393.

For polynomial maps $F: \mathbb{R}^{n+1} \rightarrow \mathbb{R}^{n}, n \geq 2$:

- C. Joița, M. Tibăr: Bifurcation values of families of real curves. Proceedings of the Royal Society of Edinburgh Section A: Mathematics 147 (2017), 1233-1242.

Definition (Vanishing)

We say that there are vanishing components at infinity when λ tends to λ_{0} if there is a sequence of points $\lambda_{k} \in \mathbb{R}^{n}, \lambda_{k} \rightarrow \lambda_{0}$, such that for some choice of a connected component C_{k} of $F^{-1}\left(\lambda_{k}\right)$ the sequence of sets $\left\{C_{k}\right\}_{k \in \mathbb{N}}$ is locally finite.
(Locally finite: for any compact $K \subset M$, there is an integer $p_{K} \in \mathbb{N}$ such that $\left.\forall q \geq p_{K}, C_{q} \cap K=\emptyset\right)$.

If there are no vanishing components at infinity when λ tends to λ_{0} we say that "there is no vanishing at λ_{0} " and we abbreviate by $N V\left(\lambda_{0}\right)$.

Exercise: If we have $N V(a)$ for some $a \in \mathbb{R}^{n}$ there exists a neighborhood U of a such that we have $N V(b)$ for every $b \in U$.

Definition

Let $\left\{M_{k}\right\}_{k}$ be a sequence of subsets of \mathbb{R}^{m}. A point $x \in \mathbb{R}^{m}$ is called a limit point of $\left\{M_{k}\right\}_{k}$ if there exist

- a sequence of integers $\left\{k_{i}\right\}_{i} \subset \mathbb{N}$ with $\lim _{i \rightarrow \infty} k_{i}=\infty$,
- a sequence of points $\left\{x_{i}\right\}_{i \in \mathbb{N}}$ with $x_{i} \in M_{k_{i}}$ such that $\lim _{i \rightarrow \infty} x_{i}=x$. The set of all limit points of $\left\{M_{k}\right\}_{k}$ is denoted by $\lim M_{k}$.

Proposition

Suppose that $a \in \operatorname{Im} F \backslash \overline{F(\operatorname{Sing} F)}$ and $\left\{b_{k}\right\}_{k \in \mathbb{N}}$ is a sequence of points in \mathbb{R}^{n} such that $b_{k} \rightarrow a$. For each k, let $C_{b_{k}}^{j}$ be a connected component of $F^{-1}\left(b_{k}\right)$. Then $\lim C_{b_{k}}^{j}$ is either empty or a union of connected components of $F^{-1}(a)$.

Definition

a) We say that there is no splitting at infinity at $a \in \mathbb{R}^{n}$, and we abbreviate this by $N S(a)$, if:

- for every sequence $\left\{b_{k}\right\}_{k \in \mathbb{N}}$ in \mathbb{R}^{n} such that $b_{k} \rightarrow a$,
- for every sequence $\left\{p_{k}\right\}_{k \in \mathbb{N}}$ in \mathbb{R}^{n+1} such that $F\left(p_{k}\right)=b_{k}$, if $C_{b_{k}}^{j}$ denotes the connected component of $F^{-1}\left(b_{k}\right)$ which contains p_{k}, then the limit set $\lim C_{b_{k}}^{j}$ is connected.
b) We say that there is strong non-splitting at infinity at $a \in \mathbb{R}^{n}$, and we abbreviate this by $\operatorname{SNS}(a)$, if in addition to the definition of $N S(a)$ we ask the following: if all the components $C_{b_{k}}^{j}$ are compact then the limit $\lim C_{b_{k}}^{j}$ is compact as well.

Theorem

Let $F: \mathbb{R}^{n+1} \rightarrow \mathbb{R}^{n}$ be a polynomial map. Let a be an interior point of the set $\operatorname{Im} F \backslash \overline{F(\operatorname{Sing} F)} \subset \mathbb{R}^{n}$. Then $a \notin \operatorname{Atyp} F$ if and only if the following two conditions are satisfied:

- the Euler characteristic $\chi\left(F^{-1}(\lambda)\right)$ is constant when λ varies within some neighbourhood of a,
- there is no component of $F^{-1}(\lambda)$ which vanishes at infinity as λ tends to a.

Theorem

Let $F: \mathbb{R}^{n+1} \rightarrow \mathbb{R}^{n}$ be a polynomial map. Let a be an interior point of the set $\operatorname{Im} F \backslash \overline{F(\operatorname{Sing} F)} \subset \mathbb{R}^{n}$. Then $a \notin \operatorname{Atyp} F$ if and only if the following two conditions are satisfied:

- the Betti numbers of $F^{-1}(\lambda)$ are constant for λ in some neighbourhood of a,
- there is no splitting at infinity at a.

Theorem

Let $F: \mathbb{R}^{n+1} \rightarrow \mathbb{R}^{n}$ be a polynomial map. Let a be an interior point of the set $\operatorname{Im} F \backslash \overline{F(\operatorname{Sing} F)} \subset \mathbb{R}^{n}$. Then $a \notin \operatorname{Atyp} F$ if and only if the following two conditions are satisfied:

- there is no component of $F^{-1}(\lambda)$ which vanishes at infinity as λ tends to a.
- there is strong no splitting at infinity at a.

To summarise:

- χ constant $+N V \Longrightarrow$ locally trivial
- b_{0} and b_{1} constant $+N S \Longrightarrow$ locally trivial
- $N V+S N S \Longrightarrow$ locally trivial

A few words about the proofs.

A few words about the proofs.

Remarks:

- The connected components of $F^{-1}(\lambda)$ are lines or circles and hence the Euler characteristic counts the number of line components.
$F^{-1}(\lambda)$ might survive or not but no new compact component is created because we are dealing with regular values.
- If we have χ constant + NV then we have also SNS: any splitting would create new line components. As no line component of $F^{-1}(\lambda)$ vanishes, the number of line components of $F^{-1}(a)$ would go up. This implies also that b_{0} and b_{1} are constant.
- If we have b_{0} and b_{1} constant $+N S$ then we have also $N V$: since no new compact component is created, and b_{1} is constant, no compact component vanishes. Also no compact component "mutate" into a noncompact one. This means that no new line component is created. As b_{0} is constant, no line component vanishes either.

A few words about the proofs.

Remarks:

- The connected components of $F^{-1}(\lambda)$ are lines or circles and hence the Euler characteristic counts the number of line components.
- As $\lambda \in \mathbb{R}^{n}$ approaches a, the compact connected components of $F^{-1}(\lambda)$ might survive or not but no new compact component is created because we are dealing with regular values.
- If we have χ constant + NV then we have also SNS: any splitting would create new line components. As no line component of $F^{-1}(\lambda)$ vanishes, the number of line components of $F^{-1}(a)$ would go up. This implies also that b_{0} and b_{1} are constant.
- If we have b_{0} and b_{1} constant $+N S$ then we have also $N V$: since no new compact component is created, and b_{1} is constant, no compact component vanishes. Also no compact component "mutate" into a noncompact one. This means that no new line component is created. As b_{0} is constant, no line component vanishes either.

A few words about the proofs.

Remarks:

- The connected components of $F^{-1}(\lambda)$ are lines or circles and hence the Euler characteristic counts the number of line components.
- As $\lambda \in \mathbb{R}^{n}$ approaches a, the compact connected components of $F^{-1}(\lambda)$ might survive or not but no new compact component is created because we are dealing with regular values.
- If we have χ constant $+N V$ then we have also SNS: any splitting would create new line components. As no line component of $F^{-1}(\lambda)$ vanishes, the number of line components of $F^{-1}(a)$ would go up. This implies also that b_{0} and b_{1} are constant.
- If we have b_{0} and b_{1} constant $+N S$ then we have also $N V$: since no new compact component is created, and b_{1} is constant, no compact component vanishes. Also no compact component "mutate" into a noncompact one. This means that no new line component is created. As b_{0} is constant, no line component vanishes either.

A few words about the proofs.

Remarks:

- The connected components of $F^{-1}(\lambda)$ are lines or circles and hence the Euler characteristic counts the number of line components.
- As $\lambda \in \mathbb{R}^{n}$ approaches a, the compact connected components of $F^{-1}(\lambda)$ might survive or not but no new compact component is created because we are dealing with regular values.
- If we have χ constant $+N V$ then we have also SNS: any splitting would create new line components. As no line component of $F^{-1}(\lambda)$ vanishes, the number of line components of $F^{-1}(a)$ would go up. This implies also that b_{0} and b_{1} are constant.
- If we have b_{0} and b_{1} constant $+N S$ then we have also $N V$: since no new compact component is created, and b_{1} is constant, no compact component vanishes. Also no compact component " mutate" into a noncompact one. This means that no new line component is created. As b_{0} is constant, no line component vanishes either.

To show local triviality around $a \in \mathbb{R}^{n}$, for each connected component C of $F^{-1}(a)$ we have to find an open neighborhood $U \supset C$ that does not intersect any other connected component and $F_{\mid}: U \rightarrow F(U)$ is a trivial fibration.

It easy to deal with compact components.
\square
Droposition
Suppose that X and Y are manifolds and $f: X \rightarrow Y$ is a continuous
 exists an open neighbprhood U of $f^{-1}(b)$ and an open neighborhood V of b such that $f(U) \subset V$ and the map $f_{1}: U \rightarrow V$ is proper.

Hence if C is compact connected component of $F^{-1}(a)$ we choose a neighborhood U of C such that $F_{1}: U \rightarrow F(U)$ is both a submersion and
a proper map and we can apply Ehresmann fibration theorem

To show local triviality around $a \in \mathbb{R}^{n}$, for each connected component C of $F^{-1}(a)$ we have to find an open neighborhood $U \supset C$ that does not intersect any other connected component and $F_{\mid}: U \rightarrow F(U)$ is a trivial fibration.

It easy to deal with compact components.

To show local triviality around $a \in \mathbb{R}^{n}$, for each connected component C of $F^{-1}(a)$ we have to find an open neighborhood $U \supset C$ that does not intersect any other connected component and $F_{\mid}: U \rightarrow F(U)$ is a trivial fibration.

It easy to deal with compact components.

Proposition

Suppose that X and Y are manifolds and $f: X \rightarrow Y$ is a continuous function. If $b \in Y$ is a point such that $f^{-1}(b)$ is compact then there exists an open neighbprhood U of $f^{-1}(b)$ and an open neighborhood V of b such that $f(U) \subset V$ and the map $f_{\mid}: U \rightarrow V$ is proper.

Hence if C is compact connected component of $F^{-1}(a)$ we choose a neighborhood U of C such that $F_{1}: U \rightarrow F(U)$ is both a submersion and a proper map and we can apply Ehresmann fibration theorem.

What about line components?

Proposition

Let M be a smooth manifold of dimension $m+1$ and $g: M \rightarrow \mathbb{R}^{m}$ be a smooth submersion without singularities and such that all its fibres $g^{-1}(t)$ are and diffeomorphic to \mathbb{R}. Then g is a C^{∞} trivial fibration.

Let $C_{a}^{1}, \ldots, C_{a}^{\prime}$ be the components of $F^{-1}(a)$.

- For each $j=1, \ldots, l$, we choose a point $z_{j} \in C_{a}$ and, we fix a small enough ball $B_{j} \ni z_{j}$ such that $B_{j} \cap F^{-1}(a)$ is connected and that the restriction of F to B_{j} is a trivial fibration.
- We may assume that the small balls B_{1}, \ldots, B_{l} are pairwise disjoint. and hence for each $b \in \cap_{j} F\left(B_{j}\right), B_{j}$ intersects exactly one connected component of $F^{-1}(b)$.

What about line components?

Proposition

Let M be a smooth manifold of dimension $m+1$ and $g: M \rightarrow \mathbb{R}^{m}$ be a smooth submersion without singularities and such that all its fibres $g^{-1}(t)$ are and diffeomorphic to \mathbb{R}. Then g is a C^{∞} trivial fibration.

Let $C_{a}^{1}, \ldots, C_{a}^{l}$ be the components of $F^{-1}(a)$

- For each $j=1, \ldots, l$, we choose a point $z_{j} \in C_{a}^{j}$ and, we fix a small enough ball $B_{j} \ni z_{j}$ such that $B_{j} \cap F^{-1}(a)$ is connected and that the restriction of F to B_{j} is a trivial fibration
- We may assume that the small balls B_{1}, \ldots, B_{1} are pairwise disjoint and hence for each $b \in \cap_{j} F\left(B_{j}\right), B_{j}$ intersects exactly one connected component of $F^{-1}(b)$

What about line components?

Proposition

Let M be a smooth manifold of dimension $m+1$ and $g: M \rightarrow \mathbb{R}^{m}$ be a smooth submersion without singularities and such that all its fibres $g^{-1}(t)$ are and diffeomorphic to \mathbb{R}. Then g is a C^{∞} trivial fibration.

Let $C_{a}^{1}, \ldots, C_{a}^{l}$ be the components of $F^{-1}(a)$.

- For each $j=1, \ldots, l$, we choose a point $z_{j} \in C_{a}^{j}$ and, we fix a small enough ball $B_{j} \ni z_{j}$ such that $B_{j} \cap F^{-1}(a)$ is connected and that the restriction of F to B_{j} is a trivial fibration.
- We may assume that the small balls B_{1}, \ldots, B_{I} are pairwise disjoint. and hence for each $b \in \cap_{j} F\left(B_{j}\right), B_{j}$ intersects exactly one connected component of $F^{-1}(b)$.

Therefore we can define a function Φ_{b} on the set $\{1, \ldots, /\}$ with values in the set of connected components of $F^{-1}(b)$ by setting $\Phi_{b}(j)$ to be the unique component of $F^{-1}(b)$ which intersects B_{j}.

The function Φ_{b} might be or might not be injective and it might be or might not be surjective.

Roughly speaking:
Failure of Φ_{b} to be surjective corresponds to vanishing.
Failure of Φ_{b} to be injective corresponds to splitting.

If b_{0} is constant Φ is surjective iff it is injective iff it is bijective.

Therefore we can define a function Φ_{b} on the set $\{1, \ldots, /\}$ with values in the set of connected components of $F^{-1}(b)$ by setting $\Phi_{b}(j)$ to be the unique component of $F^{-1}(b)$ which intersects B_{j}.

The function Φ_{b} might be or might not be injective and it might be or might not be surjective.

Roughly speaking:
Failure of Φ_{b} to be surjective corresponds to vanishing. Failure of Φ_{b} to be injective corresponds to splitting.

If b_{0} is constant Φ is surjective iff it is injective iff it is bijective.

Therefore we can define a function Φ_{b} on the set $\{1, \ldots, /\}$ with values in the set of connected components of $F^{-1}(b)$ by setting $\Phi_{b}(j)$ to be the unique component of $F^{-1}(b)$ which intersects B_{j}.

The function Φ_{b} might be or might not be injective and it might be or might not be surjective.

Roughly speaking:
Failure of Φ_{b} to be surjective corresponds to vanishing.
Failure of Φ_{b} to be injective corresponds to splitting.
If b_{0} is constant Φ is surjective iff it is injective iff it is bijective.

Therefore we can define a function Φ_{b} on the set $\{1, \ldots, /\}$ with values in the set of connected components of $F^{-1}(b)$ by setting $\Phi_{b}(j)$ to be the unique component of $F^{-1}(b)$ which intersects B_{j}.

The function Φ_{b} might be or might not be injective and it might be or might not be surjective.

Roughly speaking:
Failure of Φ_{b} to be surjective corresponds to vanishing.
Failure of Φ_{b} to be injective corresponds to splitting.
If b_{0} is constant Φ is surjective iff it is injective iff it is bijective.

Suppose that one of three sets of conditions holds:

- χ constant $+N V$,
- b_{0} and b_{1} constant $+N S$,
- NV + SNS.

Then:

- There exists an open neighborhood of $a, D \subset \mathbb{R}^{n}$ such that Φ_{b} is bijective for $b \in D$.
- We consider a line component C_{a}^{i} of $F^{-1}(a)$. Let \mathcal{L}_{i} denote the union over all $b \in D$ of the connected components of $F^{-1}(b)$ which intersect B_{i}
- Each such connected component of $F^{-1}(b)$ is a line component.

Suppose that one of three sets of conditions holds:

- χ constant $+N V$,
- b_{0} and b_{1} constant $+N S$,
- NV + SNS.

Then:

- There exists an open neighborhood of $a, D \subset \mathbb{R}^{n}$ such that Φ_{b} is bijective for $b \in D$.
- We consider a line component C_{a}^{i} of $F^{-1}(a)$. Let \mathcal{L}_{i} denote the union over all $b \in D$ of the connected components of $F^{-1}(b)$ which intersect B_{i}
- Each such connected component of $F^{-1}(b)$ is a line component.

Suppose that one of three sets of conditions holds:

- χ constant $+N V$,
- b_{0} and b_{1} constant $+N S$,
- NV + SNS.

Then:

- There exists an open neighborhood of $a, D \subset \mathbb{R}^{n}$ such that Φ_{b} is bijective for $b \in D$.
- We consider a line component C_{a}^{i} of $F^{-1}(a)$. Let \mathcal{L}_{i} denote the union over all $b \in D$ of the connected components of $F^{-1}(b)$ which intersect B_{i}.
- Each such connected component of $F^{-1}(b)$ is a line component.

Suppose that one of three sets of conditions holds:

- χ constant $+N V$,
- b_{0} and b_{1} constant $+N S$,
- NV + SNS.

Then:

- There exists an open neighborhood of $a, D \subset \mathbb{R}^{n}$ such that Φ_{b} is bijective for $b \in D$.
- We consider a line component C_{a}^{i} of $F^{-1}(a)$. Let \mathcal{L}_{i} denote the union over all $b \in D$ of the connected components of $F^{-1}(b)$ which intersect B_{i}.
- Each such connected component of $F^{-1}(b)$ is a line component.
- If C_{a}^{i} and C_{a}^{j} are two different components of $F^{-1}(a)$ then $\mathcal{L}_{i} \cap \mathcal{L}_{j}=\emptyset$.
- Each \mathcal{L}_{i} is open.
- $F_{l}: \mathcal{L}_{i} \rightarrow F\left(\mathcal{L}_{i}\right)$ is a submersion that has all fibers diffeomorphic to
- We deduce that $F_{\mid}: \mathcal{L}_{i} \rightarrow F\left(\mathcal{L}_{i}\right)$ is a trivial fibration.
- If C_{a}^{i} and C_{a}^{j} are two different components of $F^{-1}(a)$ then $\mathcal{L}_{i} \cap \mathcal{L}_{j}=\emptyset$.
- Each \mathcal{L}_{i} is open.
- $F_{l}: \mathcal{L}_{i} \rightarrow F\left(\mathcal{L}_{i}\right)$ is a submersion that has all fibers diffeomorphic to
- We deduce that $F_{1}: \mathcal{L}_{i} \rightarrow F\left(\mathcal{L}_{i}\right)$ is a trivial fibration.
- If C_{a}^{i} and C_{a}^{j} are two different components of $F^{-1}(a)$ then $\mathcal{L}_{i} \cap \mathcal{L}_{j}=\emptyset$.
- Each \mathcal{L}_{i} is open.
- $F_{\mid}: \mathcal{L}_{i} \rightarrow F\left(\mathcal{L}_{i}\right)$ is a submersion that has all fibers diffeomorphic to \mathbb{R}.
- We deduce that $F_{\mid}: \mathcal{L}_{i} \rightarrow F\left(\mathcal{L}_{i}\right)$ is a trivial fibration.
- If C_{a}^{i} and C_{a}^{j} are two different components of $F^{-1}(a)$ then $\mathcal{L}_{i} \cap \mathcal{L}_{j}=\emptyset$.
- Each \mathcal{L}_{i} is open.
- $F_{\mid}: \mathcal{L}_{i} \rightarrow F\left(\mathcal{L}_{i}\right)$ is a submersion that has all fibers diffeomorphic to \mathbb{R}.
- We deduce that $F_{\mid}: \mathcal{L}_{i} \rightarrow F\left(\mathcal{L}_{i}\right)$ is a trivial fibration.

