Real polynomial maps, $F : \mathbb{R}^{n+1} \to \mathbb{R}^n$.

Question: Can we detect the atypical values by variation in the topology of the fiber?

Theorem (Suzuki-Hà-Lê)

Let $F : \mathbb{C}^2 \to \mathbb{C}$ be a polynomial function and let $\lambda_0 \in \mathbb{C} \setminus F(\text{Sing}F)$. Then $\lambda \notin \text{Atyp} F$ if and only if the Euler characteristic of the fibres $\chi(F_{\lambda})$ is constant for λ varying in some small neighbourhood of λ_0 . Question: Can we detect the atypical values by variation in the topology of the fiber?

Theorem (Suzuki-Hà-Lê)

Let $F : \mathbb{C}^2 \to \mathbb{C}$ be a polynomial function and let $\lambda_0 \in \mathbb{C} \setminus F(\text{Sing}F)$. Then $\lambda \notin \text{Atyp} F$ if and only if the Euler characteristic of the fibres $\chi(F_{\lambda})$ is constant for λ varying in some small neighbourhood of λ_0 .

 $Z_f = \{(x,y) \in \mathbb{R}^2 : f(x,y) = 0\}, \ Z_g = \{(x,y) \in \mathbb{C}^2 : g(x,y) = 0\}.$

- $\dim_{\mathbb{R}}(Z_f) < \dim_{\mathbb{R}}(Z_g)$
- If Z_f is a smooth curve then each connected component is either diffeomorphic to ℝ or S¹. The topology of Z_g could be more complicated.
- Z_g does not have compact connected components. Z_f or some of its components could be compact.

< ∃ >

• Z_g does not have isolated points and it is never empty. Z_f might have isolated points or it might me empty.

$$Z_f = \{(x,y) \in \mathbb{R}^2 : f(x,y) = 0\}, \ Z_g = \{(x,y) \in \mathbb{C}^2 : g(x,y) = 0\}.$$

- $\dim_{\mathbb{R}}(Z_f) < \dim_{\mathbb{R}}(Z_g)$
- If Z_f is a smooth curve then each connected component is either diffeomorphic to ℝ or S¹. The topology of Z_g could be more complicated.
- Z_g does not have compact connected components. Z_f or some of its components could be compact.
- Z_g does not have isolated points and it is never empty. Z_f might have isolated points or it might me empty.

$$Z_f = \{(x, y) \in \mathbb{R}^2 : f(x, y) = 0\}, \ Z_g = \{(x, y) \in \mathbb{C}^2 : g(x, y) = 0\}.$$

- $\dim_{\mathbb{R}}(Z_f) < \dim_{\mathbb{R}}(Z_g)$
- If Z_f is a smooth curve then each connected component is either diffeomorphic to ℝ or S¹. The topology of Z_g could be more complicated.
- Z_g does not have compact connected components. Z_f or some of its components could be compact.
- Z_g does not have isolated points and it is never empty. Z_f might have isolated points or it might me empty.

$$Z_f = \{(x, y) \in \mathbb{R}^2 : f(x, y) = 0\}, \ Z_g = \{(x, y) \in \mathbb{C}^2 : g(x, y) = 0\}.$$

- $\dim_{\mathbb{R}}(Z_f) < \dim_{\mathbb{R}}(Z_g)$
- If Z_f is a smooth curve then each connected component is either diffeomorphic to \mathbb{R} or S^1 . The topology of Z_g could be more complicated.
- Z_g does not have compact connected components. Z_f or some of its components could be compact.
- Z_g does not have isolated points and it is never empty. Z_f might have isolated points or it might me empty.

$$Z_f = \{(x,y) \in \mathbb{R}^2 : f(x,y) = 0\}, \ Z_g = \{(x,y) \in \mathbb{C}^2 : g(x,y) = 0\}.$$

- $\dim_{\mathbb{R}}(Z_f) < \dim_{\mathbb{R}}(Z_g)$
- If Z_f is a smooth curve then each connected component is either diffeomorphic to ℝ or S¹. The topology of Z_g could be more complicated.
- Z_g does not have compact connected components. Z_f or some of its components could be compact.
- Z_g does not have isolated points and it is never empty. Z_f might have isolated points or it might me empty.

$$Z_f = \{(x, y) \in \mathbb{R}^2 : f(x, y) = 0\}, \ Z_g = \{(x, y) \in \mathbb{C}^2 : g(x, y) = 0\}.$$

- $\dim_{\mathbb{R}}(Z_f) < \dim_{\mathbb{R}}(Z_g)$
- If Z_f is a smooth curve then each connected component is either diffeomorphic to ℝ or S¹. The topology of Z_g could be more complicated.
- Z_g does not have compact connected components. Z_f or some of its components could be compact.
- Z_g does not have isolated points and it is never empty. Z_f might have isolated points or it might me empty.

Example: (M. Tibăr, A. Zaharia, Asymptotic behavior of families of real curves. Manuscripta Math. 99 (1999), 383–393.)

$$F : \mathbb{R}^2 \to \mathbb{R},$$

$$F(x, y) = x^2 y^3 (y^2 - 25)^2 + 2xy(y^2 - 25)(y + 25) - (y^4 + y^3 - 50y^2 - 51y + 575)$$

- 0 is a regular value of F
- For λ ∈ (-ε, ε), ε small enough, F⁻¹(λ) has five connected components, each one of them diffeomorphic to ℝ.
- F is not a locally trivial fibration at 0.

• Why not?

- Two phenomena: "vanishing" and "splitting".
 - as $\lambda \to 0$ a connected component of $F^{-1}(\lambda)$ might "vanish".
 - as λ → 0 a connected component of F⁻¹(λ) might split in two connected components.
 - as λ → 0 a compact connected component of F⁻¹(λ) might become noncompact.

- ⊒ - ▶

• Why not?

- Two phenomena: "vanishing" and "splitting".
 - as $\lambda \to 0$ a connected component of $F^{-1}(\lambda)$ might "vanish".
 - as λ → 0 a connected component of F⁻¹(λ) might split in two connected components.
 - as λ → 0 a compact connected component of F⁻¹(λ) might become noncompact.

・ロト・雪 ・雪 ・雪 ・ つへの

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへの

・ロト・日本・日本・日本・日本・日本

For polynomial maps $F : \mathbb{R}^2 \to \mathbb{R}$:

• M. Tibăr, A. Zaharia, Asymptotic behavior of families of real curves. Manuscripta Math. 99 (1999), 383–393.

For polynomial maps $F : \mathbb{R}^{n+1} \to \mathbb{R}^n$, $n \ge 2$:

• C. Joița, M. Tibăr: Bifurcation values of families of real curves. Proceedings of the Royal Society of Edinburgh Section A: Mathematics 147 (2017), 1233–1242.

Definition (Vanishing)

We say that there are vanishing components at infinity when λ tends to λ_0 if there is a sequence of points $\lambda_k \in \mathbb{R}^n$, $\lambda_k \to \lambda_0$, such that for some choice of a connected component C_k of $F^{-1}(\lambda_k)$ the sequence of sets $\{C_k\}_{k\in\mathbb{N}}$ is locally finite.

(Locally finite: for any compact $K \subset M$, there is an integer $p_K \in \mathbb{N}$ such that $\forall q \geq p_K$, $C_q \cap K = \emptyset$).

If there are no vanishing components at infinity when λ tends to λ_0 we say that "there is no vanishing at λ_0 " and we abbreviate by $NV(\lambda_0)$.

Exercise: If we have NV(a) for some $a \in \mathbb{R}^n$ there exists a neighborhood U of a such that we have NV(b) for every $b \in U$.

Definition

Let $\{M_k\}_k$ be a sequence of subsets of \mathbb{R}^m . A point $x \in \mathbb{R}^m$ is called a limit point of $\{M_k\}_k$ if there exist

- a sequence of integers $\{k_i\}_i \subset \mathbb{N}$ with $\lim_{i \to \infty} k_i = \infty$,

- a sequence of points $\{x_i\}_{i\in\mathbb{N}}$ with $x_i\in M_{k_i}$ such that $\lim_{i\to\infty}x_i=x$.

The set of all limit points of $\{M_k\}_k$ is denoted by lim M_k .

Proposition

Suppose that $a \in \text{Im } F \setminus \overline{F(\text{Sing }F)}$ and $\{b_k\}_{k \in \mathbb{N}}$ is a sequence of points in \mathbb{R}^n such that $b_k \to a$. For each k, let $C_{b_k}^j$ be a connected component of $F^{-1}(b_k)$. Then $\lim C_{b_k}^j$ is either empty or a union of connected components of $F^{-1}(a)$.

Definition

a) We say that there is no splitting at infinity at $a \in \mathbb{R}^n$, and we abbreviate this by NS(a), if:

- for every sequence $\{b_k\}_{k\in\mathbb{N}}$ in \mathbb{R}^n such that $b_k \to a$,
- for every sequence $\{p_k\}_{k\in\mathbb{N}}$ in \mathbb{R}^{n+1} such that $F(p_k) = b_k$,

if $C_{b_k}^j$ denotes the connected component of $F^{-1}(b_k)$ which contains p_k , then the limit set lim $C_{b_k}^j$ is connected.

b) We say that there is strong non-splitting at infinity at $a \in \mathbb{R}^n$, and we abbreviate this by SNS(a), if in addition to the definition of NS(a) we ask the following: if all the components $C_{b_k}^j$ are compact then the limit $\lim C_{b_k}^j$ is compact as well.

Theorem

Let $F : \mathbb{R}^{n+1} \to \mathbb{R}^n$ be a polynomial map. Let a be an interior point of the set $\operatorname{Im} F \setminus \overline{F(\operatorname{Sing} F)} \subset \mathbb{R}^n$. Then $a \notin \operatorname{Atyp} F$ if and only if the following two conditions are satisfied:

- the Euler characteristic χ(F⁻¹(λ)) is constant when λ varies within some neighbourhood of a,
- there is no component of F⁻¹(λ) which vanishes at infinity as λ tends to a.

Theorem

Let $F : \mathbb{R}^{n+1} \to \mathbb{R}^n$ be a polynomial map. Let a be an interior point of the set $\operatorname{Im} F \setminus \overline{F(\operatorname{Sing} F)} \subset \mathbb{R}^n$. Then $a \notin \operatorname{Atyp} F$ if and only if the following two conditions are satisfied:

- the Betti numbers of F⁻¹(λ) are constant for λ in some neighbourhood of a,
- there is no splitting at infinity at a.

Theorem

Let $F : \mathbb{R}^{n+1} \to \mathbb{R}^n$ be a polynomial map. Let a be an interior point of the set $\operatorname{Im} F \setminus \overline{F(\operatorname{Sing} F)} \subset \mathbb{R}^n$. Then $a \notin \operatorname{Atyp} F$ if and only if the following two conditions are satisfied:

- there is no component of F⁻¹(λ) which vanishes at infinity as λ tends to a.
- there is strong no splitting at infinity at a.

To summarise:

- χ constant + $NV \Longrightarrow$ locally trivial
- b_0 and b_1 constant + $NS \implies$ locally trivial
- $NV + SNS \implies$ locally trivial

- The connected components of F⁻¹(λ) are lines or circles and hence the Euler characteristic counts the number of line components.
- As λ ∈ ℝⁿ approaches a, the compact connected components of F⁻¹(λ) might survive or not but no new compact component is created because we are dealing with regular values.
- If we have χ constant + NV then we have also SNS: any splitting would create new line components. As no line component of $F^{-1}(\lambda)$ vanishes, the number of line components of $F^{-1}(a)$ would go up. This implies also that b_0 and b_1 are constant.
- If we have b₀ and b₁ constant + NS then we have also NV: since no new compact component is created, and b₁ is constant, no compact component vanishes. Also no compact component "mutate" into a noncompact one. This means that no new line component is created. As b₀ is constant, no line component vanishes either.

- The connected components of F⁻¹(λ) are lines or circles and hence the Euler characteristic counts the number of line components.
- As λ ∈ ℝⁿ approaches a, the compact connected components of F⁻¹(λ) might survive or not but no new compact component is created because we are dealing with regular values.
- If we have χ constant + NV then we have also SNS: any splitting would create new line components. As no line component of $F^{-1}(\lambda)$ vanishes, the number of line components of $F^{-1}(a)$ would go up. This implies also that b_0 and b_1 are constant.
- If we have b₀ and b₁ constant + NS then we have also NV: since no new compact component is created, and b₁ is constant, no compact component vanishes. Also no compact component "mutate" into a noncompact one. This means that no new line component is created. As b₀ is constant, no line component vanishes either.

- The connected components of F⁻¹(λ) are lines or circles and hence the Euler characteristic counts the number of line components.
- As λ ∈ ℝⁿ approaches a, the compact connected components of F⁻¹(λ) might survive or not but no new compact component is created because we are dealing with regular values.
- If we have χ constant + NV then we have also SNS: any splitting would create new line components. As no line component of $F^{-1}(\lambda)$ vanishes, the number of line components of $F^{-1}(a)$ would go up. This implies also that b_0 and b_1 are constant.
- If we have b₀ and b₁ constant + NS then we have also NV: since no new compact component is created, and b₁ is constant, no compact component vanishes. Also no compact component "mutate" into a noncompact one. This means that no new line component is created. As b₀ is constant, no line component vanishes either.

- The connected components of F⁻¹(λ) are lines or circles and hence the Euler characteristic counts the number of line components.
- As λ ∈ ℝⁿ approaches a, the compact connected components of F⁻¹(λ) might survive or not but no new compact component is created because we are dealing with regular values.
- If we have χ constant + NV then we have also SNS: any splitting would create new line components. As no line component of $F^{-1}(\lambda)$ vanishes, the number of line components of $F^{-1}(a)$ would go up. This implies also that b_0 and b_1 are constant.
- If we have b₀ and b₁ constant + NS then we have also NV: since no new compact component is created, and b₁ is constant, no compact component vanishes. Also no compact component "mutate" into a noncompact one. This means that no new line component is created. As b₀ is constant, no line component vanishes either.

- The connected components of F⁻¹(λ) are lines or circles and hence the Euler characteristic counts the number of line components.
- As λ ∈ ℝⁿ approaches a, the compact connected components of F⁻¹(λ) might survive or not but no new compact component is created because we are dealing with regular values.
- If we have χ constant + NV then we have also SNS: any splitting would create new line components. As no line component of $F^{-1}(\lambda)$ vanishes, the number of line components of $F^{-1}(a)$ would go up. This implies also that b_0 and b_1 are constant.
- If we have b₀ and b₁ constant + NS then we have also NV: since no new compact component is created, and b₁ is constant, no compact component vanishes. Also no compact component "mutate" into a noncompact one. This means that no new line component is created. As b₀ is constant, no line component vanishes either.

To show local triviality around $a \in \mathbb{R}^n$, for each connected component C of $F^{-1}(a)$ we have to find an open neighborhood $U \supset C$ that does not intersect any other connected component and $F_{|}: U \rightarrow F(U)$ is a trivial fibration.

It easy to deal with compact components.

Proposition

Suppose that X and Y are manifolds and $f : X \to Y$ is a continuous function. If $b \in Y$ is a point such that $f^{-1}(b)$ is compact then there exists an open neighborhood U of $f^{-1}(b)$ and an open neighborhood V of b such that $f(U) \subset V$ and the map $f_{|} : U \to V$ is proper.

Hence if C is compact connected component of $F^{-1}(a)$ we choose a neighborhood U of C such that $F_{|}: U \to F(U)$ is both a submersion and a proper map and we can apply Ehresmann fibration theorem.

To show local triviality around $a \in \mathbb{R}^n$, for each connected component C of $F^{-1}(a)$ we have to find an open neighborhood $U \supset C$ that does not intersect any other connected component and $F_{|}: U \rightarrow F(U)$ is a trivial fibration.

It easy to deal with compact components.

Proposition

Suppose that X and Y are manifolds and $f : X \to Y$ is a continuous function. If $b \in Y$ is a point such that $f^{-1}(b)$ is compact then there exists an open neighborhood U of $f^{-1}(b)$ and an open neighborhood V of b such that $f(U) \subset V$ and the map $f_{|} : U \to V$ is proper.

Hence if C is compact connected component of $F^{-1}(a)$ we choose a neighborhood U of C such that $F_{|}: U \to F(U)$ is both a submersion and a proper map and we can apply Ehresmann fibration theorem.

To show local triviality around $a \in \mathbb{R}^n$, for each connected component C of $F^{-1}(a)$ we have to find an open neighborhood $U \supset C$ that does not intersect any other connected component and $F_{|}: U \rightarrow F(U)$ is a trivial fibration.

It easy to deal with compact components.

Proposition

Suppose that X and Y are manifolds and $f : X \to Y$ is a continuous function. If $b \in Y$ is a point such that $f^{-1}(b)$ is compact then there exists an open neighborhood U of $f^{-1}(b)$ and an open neighborhood V of b such that $f(U) \subset V$ and the map $f_{|} : U \to V$ is proper.

Hence if C is compact connected component of $F^{-1}(a)$ we choose a neighborhood U of C such that $F_{|}: U \to F(U)$ is both a submersion and a proper map and we can apply Ehresmann fibration theorem.

What about line components?

Proposition

Let M be a smooth manifold of dimension m + 1 and $g : M \to \mathbb{R}^m$ be a smooth submersion without singularities and such that all its fibres $g^{-1}(t)$ are and diffeomorphic to \mathbb{R} . Then g is a \mathbb{C}^{∞} trivial fibration.

Let C_a^1, \ldots, C_a^l be the components of $F^{-1}(a)$. • For each $j = 1, \ldots, l$, we choose a point $z_j \in C_a^j$ and, we fix a small enough ball $B_j \ni z_j$ such that $B_j \cap F^{-1}(a)$ is connected and that the restriction of F to B_j is a trivial fibration. • We may assume that the small balls B_1, \ldots, B_l are pairwise disjoint. and hence for each $b \in \bigcap_j F(B_j)$, B_j intersects exactly one connected

What about line components?

Proposition

Let M be a smooth manifold of dimension m + 1 and $g : M \to \mathbb{R}^m$ be a smooth submersion without singularities and such that all its fibres $g^{-1}(t)$ are and diffeomorphic to \mathbb{R} . Then g is a C^{∞} trivial fibration.

Let C_a^1, \ldots, C_a' be the components of $F^{-1}(a)$. • For each $j = 1, \ldots, l$, we choose a point $z_j \in C_a^j$ and, we fix a small enough ball $B_j \ni z_j$ such that $B_j \cap F^{-1}(a)$ is connected and that the restriction of F to B_j is a trivial fibration. • We may assume that the small balls B_1, \ldots, B_l are pairwise disjoint. and hence for each $b \in \bigcap_j F(B_j)$, B_j intersects exactly one connected component of $F^{-1}(b)$.

What about line components?

Proposition

Let M be a smooth manifold of dimension m + 1 and $g : M \to \mathbb{R}^m$ be a smooth submersion without singularities and such that all its fibres $g^{-1}(t)$ are and diffeomorphic to \mathbb{R} . Then g is a C^{∞} trivial fibration.

Let C_a^1, \ldots, C_a' be the components of $F^{-1}(a)$.

• For each j = 1, ..., I, we choose a point $z_j \in C_a^j$ and, we fix a small enough ball $B_j \ni z_j$ such that $B_j \cap F^{-1}(a)$ is connected and that the restriction of F to B_j is a trivial fibration.

• We may assume that the small balls B_1, \ldots, B_l are pairwise disjoint. and hence for each $b \in \bigcap_j F(B_j)$, B_j intersects exactly one connected component of $F^{-1}(b)$.

The function Φ_b might be or might not be injective and it might be or might not be surjective.

Roughly speaking: Failure of Φ_b to be surjective corresponds to vanishing. Failure of Φ_b to be injective corresponds to splitting.

The function Φ_b might be or might not be injective and it might be or might not be surjective.

Roughly speaking: Failure of Φ_b to be surjective corresponds to vanishing. Failure of Φ_b to be injective corresponds to splitting.

The function Φ_b might be or might not be injective and it might be or might not be surjective.

Roughly speaking: Failure of Φ_b to be surjective corresponds to vanishing. Failure of Φ_b to be injective corresponds to splitting.

The function Φ_b might be or might not be injective and it might be or might not be surjective.

Roughly speaking: Failure of Φ_b to be surjective corresponds to vanishing. Failure of Φ_b to be injective corresponds to splitting.

- χ constant + NV,
- b_0 and b_1 constant + NS,
- NV + SNS.

Then:

- There exists an open neighborhood of a, D ⊂ ℝⁿ such that Φ_b is bijective for b ∈ D.
- We consider a line component Cⁱ_a of F⁻¹(a).
 Let L_i denote the union over all b ∈ D of the connected components of F⁻¹(b) which intersect B_i.
- Each such connected component of $F^{-1}(b)$ is a line component.

- χ constant + NV,
- b_0 and b_1 constant + NS,
- NV + SNS.

Then:

- There exists an open neighborhood of a, D ⊂ ℝⁿ such that Φ_b is bijective for b ∈ D.
- We consider a line component Cⁱ_a of F⁻¹(a).
 Let L_i denote the union over all b ∈ D of the connected components of F⁻¹(b) which intersect B_i.
- Each such connected component of $F^{-1}(b)$ is a line component.

- χ constant + NV,
- b_0 and b_1 constant + NS,
- NV + SNS.

Then:

- There exists an open neighborhood of a, D ⊂ ℝⁿ such that Φ_b is bijective for b ∈ D.
- We consider a line component Cⁱ_a of F⁻¹(a).
 Let L_i denote the union over all b ∈ D of the connected components of F⁻¹(b) which intersect B_i.

• Each such connected component of $F^{-1}(b)$ is a line component.

- χ constant + NV,
- b_0 and b_1 constant + NS,
- NV + SNS.

Then:

- There exists an open neighborhood of a, D ⊂ ℝⁿ such that Φ_b is bijective for b ∈ D.
- We consider a line component Cⁱ_a of F⁻¹(a).
 Let L_i denote the union over all b ∈ D of the connected components of F⁻¹(b) which intersect B_i.
- Each such connected component of $F^{-1}(b)$ is a line component.

- If C_a^i and C_a^j are two different components of $F^{-1}(a)$ then $\mathcal{L}_i \cap \mathcal{L}_j = \emptyset$.
- Each \mathcal{L}_i is open.
- $F_{\parallel}: \mathcal{L}_i \to F(\mathcal{L}_i)$ is a submersion that has all fibers diffeomorphic to \mathbb{R} .
- We deduce that $F_{|}: \mathcal{L}_{i} \to F(\mathcal{L}_{i})$ is a trivial fibration.

- If C_a^i and C_a^j are two different components of $F^{-1}(a)$ then $\mathcal{L}_i \cap \mathcal{L}_j = \emptyset$.
- Each \mathcal{L}_i is open.
- $F_{\parallel}: \mathcal{L}_i \to F(\mathcal{L}_i)$ is a submersion that has all fibers diffeomorphic to \mathbb{R} .
- We deduce that $F_{|}: \mathcal{L}_{i} \to F(\mathcal{L}_{i})$ is a trivial fibration.

- If C_a^i and C_a^j are two different components of $F^{-1}(a)$ then $\mathcal{L}_i \cap \mathcal{L}_j = \emptyset$.
- Each \mathcal{L}_i is open.
- $F_{|}: \mathcal{L}_{i} \to F(\mathcal{L}_{i})$ is a submersion that has all fibers diffeomorphic to \mathbb{R} .
- We deduce that $F_{|} : \mathcal{L}_{i} \to F(\mathcal{L}_{i})$ is a trivial fibration.

- If C_a^i and C_a^j are two different components of $F^{-1}(a)$ then $\mathcal{L}_i \cap \mathcal{L}_j = \emptyset$.
- Each \mathcal{L}_i is open.
- $F_{|}: \mathcal{L}_{i} \to F(\mathcal{L}_{i})$ is a submersion that has all fibers diffeomorphic to \mathbb{R} .
- We deduce that $F_{|}: \mathcal{L}_{i} \to F(\mathcal{L}_{i})$ is a trivial fibration.