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Theorem (Suzuki-Ha-L&)

Let F : C?2 — C be a polynomial function and let Ao € C\ F(SingF).
Then A &€ AtypF if and only if the Euler characteristic of the fibres
X(F») is constant for X varying in some small neighbourhood of \g.
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Differences between the real and the complex case: Let f : R?> — R and
g : C2 — C be non-constant polynomial maps,
Zr = {(x,y) € R?: f(x,y) = 0}, Zg = {(x,y) € C*: g(x,y) = O}.

o dimg(Zr) < dimp(Zg)

@ If Zr is a smooth curve then each connected component is either

diffeomorphic to R or S. The topology of Z, could be more
complicated.

@ Z, does not have compact connected components. Zr or some of its
components could be compact.

@ Z, does not have isolated points and it is never empty. Zf might
have isolated points or it might me empty.



Example: (M. Tibar, A. Zaharia, Asymptotic behavior of families of real
curves. Manuscripta Math. 99 (1999), 383-393.)

F:R? > R,
F(x,y) =
x2y3(y? — 25)% + 2xy(y? — 25)(y + 25) — (y* + y* — 50y? — 51y + 575)

e 0 is a regular value of F

@ For )\ € (—¢,¢), € small enough, F~1()) has five connected
components, each one of them diffeomorphic to R.

@ F is not a locally trivial fibration at 0.



e Why not?



e Why not?

@ Two phenomena: "vanishing” and "splitting”.

e as A — 0 a connected component of F~!()\) might "vanish”.

e as A — 0 a connected component of F~1(\) might split in two
connected components.

e as A — 0 a compact connected component of F~!()) might become
noncompact.












For polynomial maps F : R? — R:
e M. Tibar, A. Zaharia, Asymptotic behavior of families of real curves.
Manuscripta Math. 99 (1999), 383-393.

For polynomial maps F : R™1 — R", n > 2:

e C. Joita, M. Tibar: Bifurcation values of families of real curves.
Proceedings of the Royal Society of Edinburgh Section A: Mathematics
147 (2017), 1233-1242.



Definition (Vanishing)

We say that there are vanishing components at infinity when A tends to
Ao if there is a sequence of points Ay € R”, A, — Ag, such that for some
choice of a connected component Cy of F‘l()\k) the sequence of sets
{Cx}ken is locally finite.

(Locally finite: for any compact K C M, there is an integer px € N such
that Vg > px, CgN K =0).

If there are no vanishing components at infinity when A tends to A\g we
say that "there is no vanishing at A\¢" and we abbreviate by NV/(\o).

Exercise: If we have NV/(a) for some a € R" there exists a neighborhood
U of a such that we have NV/(b) for every b € U.



Definition

Let { My}« be a sequence of subsets of R™. A point x € R™ is called a
limit point of { M} if there exist

- a sequence of integers {k;}; C N with lim;_ o ki = o0,

- a sequence of points {x;};en with x; € My, such that lim;_,, x; = x.
The set of all limit points of { My}, is denoted by lim M.

Proposition

Suppose that a € Im F \ F(SingF) and {bx}xen is a sequence of points
in R" such that b, — a. For each k, let C{,k be a connected component

of F~Y(bk). Then lim C{;k is either empty or a union of connected
components of F~1(a).




Definition

a) We say that there is no splitting at infinity at a € R”, and we
abbreviate this by NS(a), if:

- for every sequence { by }ren in R” such that by — a,

- for every sequence {pk }ken in R™! such that F(px) = by,

if Cik denotes the connected component of F~1(bx) which contains py,

then the limit set lim Cik is connected.

b) We say that there is strong non-splitting at infinity at a € R”, and we
abbreviate this by SNS(a), if in addition to the definition of NS(a) we
ask the following: if all the components Cf,k are compact then the limit

lim G}, is compact as well.




Theorem

Let F : R™1 — R" be a polynomial map. Let a be an interior point of
the set Im F \ F(SingF) C R" . Then a & AtypF if and only if the
following two conditions are satisfied:
e the Euler characteristic x(F~1(\)) is constant when \ varies within
some neighbourhood of a,

e there is no component of F~1()\) which vanishes at infinity as \
tends to a.
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Let F : R™1 — R" be a polynomial map. Let a be an interior point of
the set Im F \ F(SingF) C R" . Then a & AtypF if and only if the
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Theorem

Let F : R™1 — R" be a polynomial map. Let a be an interior point of
the set Im F \ F(SingF) C R" . Then a & AtypF if and only if the
following two conditions are satisfied:

e there is no component of F~1(\) which vanishes at infinity as \
tends to a.

@ there is strong no splitting at infinity at a.




To summarise:
e x constant + NV = locally trivial
e by and by constant + NS = locally trivial

o NV + SNS = locally trivial
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A few words about the proofs.

Remarks:

@ The connected components of F~1()) are lines or circles and hence
the Euler characteristic counts the number of line components.

@ As A\ € R" approaches a, the compact connected components of
F~1(\) might survive or not but no new compact component is
created because we are dealing with regular values.

o If we have y constant + NV then we have also SNS: any splitting
would create new line components. As no line component of F~1(})
vanishes, the number of line components of F~1(a) would go up.
This implies also that by and b; are constant.

@ If we have by and b; constant + NS then we have also NV: since no
new compact component is created, and b; is constant, no compact
component vanishes. Also no compact component "mutate” into a
noncompact one. This means that no new line component is
created. As by is constant, no line component vanishes either.
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To show local triviality around a € R", for each connected component C
of F~1(a) we have to find an open neighborhood U O C that does not
intersect any other connected component and £ : U — F(U) is a trivial
fibration.

It easy to deal with compact components.

Proposition

Suppose that X and Y are manifolds and f : X — Y is a continuous
function. If b € Y is a point such that f=(b) is compact then there
exists an open neighbprhood U of f=1(b) and an open neighborhood V
of b such that f(U) C V and the map f; : U — V s proper.

Hence if C is compact connected component of F~!(a) we choose a
neighborhood U of C such that F: U — F(U) is both a submersion and
a proper map and we can apply Ehresmann fibration theorem.



What about line components?



What about line components?

Proposition

Let M be a smooth manifold of dimension m+ 1 and g : M — R™ be a
smooth submersion without singularities and such that all its fibres
g~ 1(t) are and diffeomorphic to R. Then g is a C* trivial fibration.




What about line components?

Proposition

Let M be a smooth manifold of dimension m+ 1 and g : M — R™ be a
smooth submersion without singularities and such that all its fibres
g~ 1(t) are and diffeomorphic to R. Then g is a C* trivial fibration.

Let CL,..., C! be the components of F~1(a).

e Foreach j=1,...,/, we choose a point z; € Cl and, we fix a small
enough ball B; 5 z; such that B; N F~1(a) is connected and that the
restriction of F to B; is a trivial fibration.

e \We may assume that the small balls By, ..., B, are pairwise disjoint.
and hence for each b € N;F(B;), B; intersects exactly one connected
component of F~1(b).



Therefore we can define a function ®;, on the set {1,...,/} with values
in the set of connected components of F~1(b) by setting ®,(j) to be the
unique component of F~1(b) which intersects B;.
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Therefore we can define a function ®;, on the set {1,...,/} with values
in the set of connected components of F~1(b) by setting ®,(j) to be the
unique component of F~1(b) which intersects B;.

The function ®;, might be or might not be injective and it might be or
might not be surjective.

Roughly speaking:
Failure of ®, to be surjective corresponds to vanishing.

Failure of ®,, to be injective corresponds to splitting.

If by is constant ® is surjective iff it is injective iff it is bijective.
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Suppose that one of three sets of conditions holds:
- x constant + NV,

- bg and by constant + NS,

- NV + SNS.

Then:

@ There exists an open neighborhood of a, D C R" such that &, is
bijective for b € D.

e We consider a line component C! of F~1(a).
Let £; denote the union over all b € D of the connected
components of F~1(b) which intersect B;.

e Each such connected component of F~1(b) is a line component.
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o If C! and C] are two different components of F~1(a) then
LiN ﬁj = 0.

e Each L; is open.

o F:L;— F(L;) is a submersion that has all fibers diffeomorphic to
R.

o We deduce that F|: £; — F(L;) is a trivial fibration.



