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“Localisation at infinity”

We regard R2 as an open subset of the projective space P2:
- (x , y) are the coordinates in R2

- A point in P2 is an equivalence class [x : y : z ]

- R2 is identified with {[x : y : z ] ∈ P2 | z 6= 0} through the map
(x , y)→ [x : y : 1]

- L∞ := {[x : y : z ] ∈ P2 | z = 0} ' P1 denotes the line at infinity.
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A fiber of F : R2 → R, {(x , y) ∈ R2 : F (x , y) = t}, is compactified and
we obtain {[x : y : z ] ∈ P2 : F̃ (x , y , z) = tzd}.
Here F̃ denotes the homogenization of F in the variables z .

Note that all {[x : y : z ] ∈ P2 : F̃ (x , y , z) = tzd} are compact.

Even if {(x , y) ∈ R2 : F (x , y) = t} was smooth, the compactification
might introduce singularities at infinity.



We will use the theorem that says (NV )+(SNS) is equivalent to local
triviality.

Instead of talking about
vanishing and splitting “at infinity”

we would like to talk about
vanishing and splitting “at a given point infinity”.

Remarks:

In R2, compact connected components do not vanish.

The two types of splitting: the splitting of a line component F−1(t)
as t → a or the transformation of a compact component of F−1(t)
into a line component are similar phenomena when seen from
“infinity”.
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We fix a point (p, λ) ∈ L∞ × R. Without loss of generality we may
assume that p = [0 : 1 : 0].
We consider a local chart U ' R2 ⊂ P2 with origin at p.
Let gt : (R2, 0)→ (R, 0), gt(x , z) := F̃ (x , 1, z)− tzd and
Ct := {gt = 0} = {[x : y : z ] ∈ P2 : F̃ (x , y , z) = tzd} ∩ U.

Definition

a) We say that F has a splitting at (p, λ), shortly (S(p,λ)), if there is a
small disk Dε at p ∈ U ' R2 such that, for all t 6= λ close enough to λ,
Ct ∩ Dε has a connected component C i

t such that p 6∈ C i
t , C i

t ∩ ∂Dε 6= ∅
and the Euclidean distance dist(C i

t , p)→ 0 as t → λ.

b) We say that F has a vanishing loop at (p, λ), shortly (V(p,λ)), if there
is a small disk Dε at p ∈ R2 such that, for all t 6= λ close enough to λ,
Ct ∩ Dε\{p} has a non-empty connected component C i

t\{p} with
C i
t ∩ ∂Dε = ∅ and limt→λ C

i
t ∩ Dε = {p}.



Theorem

A regular value λ is an atypical value of F if and only if there exists
p ∈ L∞ such that we have either (S(p,λ)) or (V(p,λ)).

Remark: One can prove actually a more general statement in which one
drops the regularity of the fibre F−1(λ) and allow SingF−1(λ) to be a
compact set. In exchange we replace “atypical value” with the notion of
“atypical values at infinity”.



Searching for atypical points at infinity.

• We would like first to find a finite set that contains all possible atypical
points.

• For each such point, we would like to be able to test if that point is
actually atypical.
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Another useful way to look at the picture:

X := {([x : y : z ], t) ∈ P2 × R | F̃ (x , y , z)− tzd = 0}

X∞ := X ∩ (L∞ × R)

σ : X→ P2 and τ : X→ R are the canonical projections

Note that σ(X∞) is a finite set.

Also note that the fiber of τ above t, τ−1(t) is precisely
{[x : y : z ] ∈ P2 : F̃ (x , y , z) = tzd}, i.e. the compactification of F−1(t).

We identify R2 with an open subset of X via

(x , y) 7→ (x , y , f (x , y)) 7→ ([x : y : 1], f (x , y)) ∈ X



Definition

Let ρ : R2 → R, ρ(x , y) = x2 + y2, be the square of the Euclidean
distance from the origin. The Milnor set of F , denoted by M(F ), is the
critical locus of the mapping (F , ρ) : R2 → R2.

Let M(F )
X
⊂ X be the closure in X of the Milnor set. It is an analytic

set.

Theorem

The set of atypical points at infinity (i.e. those points (p, λ) where we

have (S(p,λ)) or (V(p,λ))) is contained in the set M := M(F )
X
∩ L∞ ×R,

in particular it is finite.



Definition

Let ρ : R2 → R, ρ(x , y) = x2 + y2, be the square of the Euclidean
distance from the origin. The Milnor set of F , denoted by M(F ), is the
critical locus of the mapping (F , ρ) : R2 → R2.

Let M(F )
X
⊂ X be the closure in X of the Milnor set. It is an analytic

set.

Theorem

The set of atypical points at infinity (i.e. those points (p, λ) where we

have (S(p,λ)) or (V(p,λ))) is contained in the set M := M(F )
X
∩ L∞ ×R,

in particular it is finite.



Suppose that we have a point (p, λ) ∈M ⊂ L∞ × R and we want to
decide if it is atypical or not.

We can choose a small disk Dε at p such that:
- (Cλ ∩ Dε) \ {p} is smooth
- all connected components of Cλ ∩ Dε pass through p
- no connected components of Cλ ∩ Dε is a loop.

Then, notice that:
- If there exists a sequence of points tk → λ and for each k a connected
component C i

tk with C i
tk ∩ ∂Dε 6= ∅, p 6∈ C i

tk , then we must have
dist(C i

tk , p)→ 0. Hence splitting. If we do not have such a sequence,
obviously we do not have splitting.
- If there exists a sequence of points tk → λ such that each Ctk ∩Dε\{p}
contains a loop that passes through p, then this loop has to ”shrink” to
p as tk → λ. Hence vanishing. If we do not have such a sequence,
obviously we do not have vanishing.
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This shows that we do not have to worry about checking dist(C i
t , p)→ 0

or limt→λ C
i
t ∩ Dε = {p}.

We have only to check ”the structure” of each Ct ∩ Dε.

Problem: we cannot write an algorithm that checks this structure for
every t in some interval.
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Theorem

Let λ ∈ R, let (p, λ) ∈M and let R2 be an affine chart of P2 containing
p ∈ L∞. There exists ε0 > 0 such that for any 0 < ε ≤ ε0 the maps:

τ| : (X ∩ Dε)× (λ, λ+ δ) −→ (λ, λ+ δ)

τ| : (X ∩ Dε)× (λ− δ, λ) −→ (λ− δ, λ)

are locally trivial fibrations for any small enough δ depending on ε.

The choice of ε0 and δ:
- ε0 > 0 such that the circles ∂Dε are transversal to Cλ for every
0 < ε ≤ ε0
- If we fix ε (for example for ε = ε0), we choose δ = δ(ε) such that ∂Dε
is transversal to Ct for every t ∈ (λ− δ, λ+ δ).



Corollary

Let ε0 and δ(ε0) > 0 be such that the previous theorem holds. Let
t0 ∈ (λ− δ, λ) ∪ (λ, λ+ δ) Then:

Ct0 ∩Dε has a loop at 0 if and only if Ct ∩Dε has a loop at 0, for all
t in the same interval as t0.

Ct0 ∩ Dε has a connected component not containing p if and only if
Ct ∩ Dε has a connected component not containing p, for all t in
the same interval as t0.

Consequence: we have to check for loops or connected components not
containing p only at one point in the interval (λ− δ, λ) and one point in
the interval (λ, λ+ δ)



The main steps of the algorithmic procedures:

• Find a finite set of points B containing the set M.

• For each such point (p, λ) ∈ B, find an effective tube neighbourhood
Dε × (−δ + λ, δ + λ)

• Test the existence of vanishing or of splitting at some point (p, λ) ∈ B.



• Finding the set B containing M.

- We first determine the intersection of M(F )
P2

⊂ P2 with the line at
infinity L∞.
(Homogenise with the variable z the equation y ∂F∂x (x , y)− x ∂F∂y (x , y) = 0

and then take z = 0. )

- For each point p ∈ M(F )
P2

∩ L∞ we determine the finite subset

τ(M(F )
P2

∩ {p} × R) ⊂ R.

This set is:
Sp(F ) = {t | ∃{(xj , yj)}j∈N ⊂ M(F ), [xj : yj : 1]→ p, F (xj , yj)→ t}.

Let p = [0 : 1 : 0] ∈ L∞ and work in the chart {y 6= 0} with coordinates
(x , z).

Let F̂ (x , z) := F̃ (x , 1, z). Then lim[x :y :1]→p F (x , y) = limz→0
F̂ (x,z)
zd

.



Let ĥ(x , z) = 0 be the equation that defines M(F ) around p and let d be
the degree of F .

Finding Sp(F ) is equivalent to the following:

find all limits lim F̂ (x,z)
zd

for (x , z)→ 0 along ĥ(x , z) = 0.

We pass to complex variables. At the end we will select only the real
values.
We find all the Puiseux roots of ĥ(x , z) = 0 using the Newton-Puiseux
algorithm.

A Puiseux parametrisation of some root of ĥ(x , z) = 0 looks like z = T n,
x =

∑
j≥1 λjT

j , and the series may be infinite even if ĥ(x , z) is a
polynomial.



However

lim
T→0

F̂ (
∑

j≥1 λkT
j ,T n)

T dn
= lim

T→0

F̂ (
∑

1≤j≤dn λjT
j ,T n)

T dn
.

Hence, we only need the first dn terms in the expansion of x of it to
compute the limit.

We still need to find the value of n, hence to give a bound for the
number of steps in the Newton-Puiseux process.

Let ĥ(x , z) be general in x of order k > 0 (i.e. k is the lowest point on
the x-axis in the Newton polygon of ĥ).

One can show that n = min{k!, d} works and hence we have to run at
most d ·min{k!, d} steps in the Newton-Puiseux algorithm.



• Finding an effective tube neighbourhood Dε × (−δ + λ, δ + λ) for
(p, λ) ∈ B.

Again we assume that we work in an affine chart with p = [0 : 1 : 0] as
the origin.

We have to find ε0 > 0 and δ = δ(ε0) > 0 such that:

(A) for every 0 < ε ≤ ε0, the circle ∂Dε intersects {gλ = 0} ⊂ R2

transversally, and

(B) ∂Dε0 intersects {gt = 0} transversally, for every t ∈ (λ− δ, λ+ δ).



For (A) we find the distance:

∆(p,λ) := dist

(
(0, 0),

{
z
∂gλ
∂x

(x , z)− x
∂gλ
∂z

(x , z) = 0

}
∩ {gλ = 0}

)
,

and we may then take ε0 := ∆(p,λ)/2 > 0.

After fixing ε0 we compute minimum s > 0 of the function

h(x , z) := g2
λ +

(
z ∂gλ∂x (x , z)− x ∂gλ∂z (x , z)

)2
on ∂Dε0 .

One can show that δ(ε0) :=
√
s

εd0 (d+1)
satisfies condition (B).



• Testing the existence of vanishing or of splitting at some point
(p, λ) ∈ B.

Once that we have ε0 and δ we may now choose any value t in (λ− δ, λ)
and in (λ, λ+ δ). For example, the mid-points.

For these points we have to check for loops or connected components not
containing p.

One can write an algorithm doing that by following closely the one given
in Section 11.6 of
S. Basu, R. Pollack, M-F. Roy, Algorithms in real algebraic geometry.
Second edition. Algorithms and Computation in Mathematics, 10.
Springer-Verlag, Berlin, 2006.


