
Complex polynomial maps, F : Cn+1 → Cn, n ≥ 2.



Question: Can we detect the atypical values of F using the variation
in the topology of the fiber?

You have seen that for n = 1, i.e. for polynomial functions
F : C2 → C the atypical values can be detected using the variation
of the Euler characteristic of the fibers (Suzuki-Hà-Le Theorem).
We assume that n ≥ 2.

Question: If χ(F−1(λ)) is constant in a neighborhood of λ0, does it
follow that λ0 6∈ AtypF?

Note that if λ is a regular value then F−1(λ) is an open Riemann
surface, i.e. dimC F−1(λ) = 1, dimR F−1(λ) = 2. Hence we are
dealing with only two Betti numbers b0(F−1(λ) and b1(F−1(λ).
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Example: Hà H.V., Nguyen T.T., On the topology of polynomial
mappings from Cn to Cn−1. Internat. J. Math. 22 (2011), 435–448.

F : C3 → C2, F (x , y , z) = (xy + 1, (xyz + 1)(xyz + z − 1)).
Then:
- (0, 0) ∈ C2 is a regular value;
- F−1(0, 0) = C∗,
- for a generic λ, F−1(λ) = C∗ t C∗

Exercise: prove it!

χ(C∗) = χ(C∗ t C∗) = 0



This shows that the Euler characteristic is a too ”coarse” invariant.
What about the Betti numbers?

Example: C. Joiţa, M. Tibăr: Bifurcation set of multi-parameter
families of complex curves. Journal of Topology 11 (2018), 739–751.
F : C3 → C2,
F (x , y , z) =

(
x , [(x − 1)(xz + y2) + 1][x(xz + y2)− 1]

)
.

Then (0, 0) ∈ C2 is a regular value and all fibers are isomorphic

F−1(λ) ' C t C

Exercise: prove it!

(0, 0) is not a typical value for F !
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Why not?

Similar phenomenon as in the real case:

As λ→ (0, 0), one connected component of F−1(λ) (i.e. one copy
of C) ”vanishes”.

The other connected component of F−1(λ) ”splits” in the two
connected components of F−1(0, 0).
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Question: What if we do not have vanishing?

Theorem (C. Joiţa, M. Tibăr)

Let λ0 be an interior point of the set Im F \ F (SingF ). Then
λ0 6∈ AtypF if and only if the Euler characteristic of the fibres is
constant for λ varying in some neighborhood of λ0 and no connected
component of F−1(λ) is vanishing at infinity when λ→ λ0.

The proof is more difficult and requires a more sophisticated
machinery.
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One important step in the proof:

Theorem

Let p : M → B be a holomorphic map between connected complex
manifolds, dimC M = dimC B + 1, and λ0 be an interior point of the set
Im p \ p(Singp). We asume that:

• the fibers are connected,

• the Betti numbers b0(λ) and b1(λ) of every fiber p−1(λ) are finite,

• M is Stein.

Then λ0 6∈ Atypp if and only if the Euler characteristic of the fibres is
constant for λ varying in some neighborhood of λ0.



Main ingredients of the proof

C.F.B. Palmeira, Open manifolds foliated by planes, Ann. of Math. 107
(1978), 109–131.
G. Meigniez: Submersions, fibrations and bundles. Trans. Amer. Math.
Soc. 354 (2002), 3771–3787.

Theorem

A surjective smooth submersion with all fibres diffeomorphic to Rp is a
locally trivial fibration.
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In our case the fibers of p : M → B are smooth and have complex
dimension 1. Hence they are Riemann surfaces.

In general they are not diffeomorphic to R2 because they are not
simply connected.

We can look at their universal cover.

Considering the universal cover of each fiber separately is not
enough!
We need to put them ”together”.
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Y. S. Ilyashenko, Covering manifolds for analytic families of leaves of
foliations by analytic curves. Topol. Methods Nonlinear Anal. 11 (1998),
361–373.
Y. S. Ilyashenko, Foliations by analytic curves. Mat. Sb. (N.S.) 88 (130)
(1972), 558–577.

Theorem

Let p : M → B be a holomorphic surjective submersion between
connected complex manifolds such that dimC M = dimC B + 1 and M is
Stein.
Then there exist a complex manifold M̃ and a locally biholomorphic map
π : M̃ → M such that the restriction π| : π−1(p−1(x))→ p−1(x) is the
universal cover of p−1(x), for every x ∈ B.

In particular the fibers of p ◦ π : M̃ → B are diffeomorphic to R2.



Therefore we have the following diagram

M̃
p◦π

��

π // M

p
��

B

We know that p ◦ π is a smooth submersion with fibers diffeomorphic to
R2.
By Palmeira-Meigniez theorem, p ◦ π is a locally trivial fibration.

We want to prove that p is a locally trivial fibration.



Definition

A map π : E → B between two manifolds is called a Serre fibration if for
any simplex X , any homotopy f : X × [0, 1]→ B and f̃0 a lifting of
f|X×{0}, there exists a lifting f̃ : X × [0, 1]→ E of f such that

f̃|X×{0} = f̃0.

Proposition (G. Meigniez)

Suppose that M and B are smooth manifolds such that
dimR M = dimR B + 2 and p : M → B is a surjective smooth map. If p is
both a submersion and a Serre fibration then p : M → B is a locally
trivial fibre bundle.



Exercise: if in the diagram

M̃
p◦π

��

π // M

p
��

B

both π and p ◦ π are Serre fibrations then p is a Serre fibration.

We need to show that π is a Serre fibration. Suffices show that π is
a covering map.

We need some sort of “control” of the fundamental group of p−1(x)
when x moves in B.
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Every smooth real manifold can embedded as a closed submanifold
in some affine space RN .

Not true for complex manifolds. E.g. compact complex manifolds
cannot be embedded in CN .

A complex manifold is called Stein if it can embedded as a closed
complex submanifold in some affine space CN .

Examples:
- A compact manifold of positive dimension is not Stein.
- Cn \ {0} is not Stein.
- Any convex open subset of Cn is Stein.
- Any open Riemann surface is Stein.
- A closed submanifold of a Stein manifold is Stein
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Suppose that M is Stein complex manifold and Ω ⊂ M is a Stein
open subset. Ω is called Runge in M if every holomorphic function
f : Ω→ C can be approximated uniformly on compacts with
holomorphic functions defined on M.

Suppose that M is Stein complex manifold and Ω ⊂ M is a Stein
open subset which is Runge in M. If N ⊂ M is a closed submanifold
then N ∩ Ω is Runge in N.

If S is an open Riemann surface and D is an open subset, then D is
Runge in S if and only if the morphism H1(D,G )→ H1(S ,G )
induced by the inclusion D ↪→ S is injective for any abelian group G .
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Corollary

We consider a polynomial map F : Cn+1 → Cn.
We denote by Fλ the closure of the fibre F−1(λ) in Pn+1 in some fixed
system of coordinates.
Let λ0 be an interior point of the set Im F \ F (SingF ) ⊂ Cn.
If the degree deg Fλ and the Euler characteristic χ(F−1(λ)) are constant
for λ varying in some neighborhood of λ0, then λ0 6∈ AtypF .

Note: If n = 1 then F is just a polynomial function and deg Fλ is equal
to the degree of the polynomial F for every λ.



Corollary

Let λ0 be a point in the interior of the set Im F \ F (SingF ) ⊂ Cn.

Assume that for λ in some neighborhood of λ0 the fibers F−1(λ)
have constant Euler characteristic and the Betti number b1 of each
of their components is at least 2. Then λ0 6∈ AtypF .

Assume that for λ in some neighborhood of λ0 the fibers F−1(λ)
have constant Betti numbers b0(t) and b1(t) and the Betti number
b1 of each of their components is at least 1. Then λ0 6∈ AtypF .


