Quasifinite fields of prescribed characteristic and Diophantine dimension
Ivan Chipchakov
Institute of Mathematics and Informatics of the Bulgarian Academy of Sciences, Sofia, Bulgaria
Abstract:
Let $\mathbb{P}$ be the set of prime numbers,
$\overline {\mathbb{P}}$ the union $\mathbb{P} \cup \{0\}$, and for any field $E$,
let char$(E)$ be its characteristic, ddim$(E)$ the Diophantine dimension of $E$,
$\mathcal{G}_{E}$ the absolute Galois group of $E$, and cd$(\mathcal{G}_{E})$
the Galois cohomological dimension of $\mathcal{G}_{E}$.
It is presently unknown whether the inequality cd$(\mathcal{G}_{E}) \le {\rm ddim}(E)$ always holds.
The main result of this talk proves the existence of quasifinite fields $\Phi _{q}\colon q \in \mathbb{P}$, with ddim$(\Phi _{q})$ infinity and char$(\Phi _{q}) = q$.
This is done by modifying the proof of the existence of $\Phi _{0}$, obtained by
Ax (in: Proc. Amer. Math. Soc. 16 (1965), 1214-1221).
Our main result also shows that for any integer $m > 0$ and $q \in \overline {\mathbb{P}}$, there is a quasifinite field $\Phi _{m,q}$ such that char$(\Phi _{m,q}) = q$ and ddim$(\Phi _{m,q}) = m$. This is used for proving that for any $q
\in \overline {\mathbb{P}}$ and each pair $k$, $\ell \in (\mathbb{N} \cup \{\infty \})$ satisfying $k \le \ell $, there exists a field $E _{k, \ell ; q}$ with char$(E _{k, \ell ; q}) = q$,
ddim$(E _{k, \ell ; q}) = \ell $ and cd$(\mathcal{G}_{E_{k, \ell ; q}}) = k$. Furthermore, the field $E _{k, \ell ; q}$ can be chosen to be perfect unless $k = 0 \neq \ell $. Joint work with Boyan Paunov.