Close the abstract
1. Algebra and Number Theory

Quasifinite fields of prescribed characteristic and Diophantine dimension

Ivan Chipchakov
Institute of Mathematics and Informatics of the Bulgarian Academy of Sciences, Sofia, Bulgaria

Abstract:

Let $\mathbb{P}$ be the set of prime numbers, $\overline {\mathbb{P}}$ the union $\mathbb{P} \cup \{0\}$, and for any field $E$, let char$(E)$ be its characteristic, ddim$(E)$ the Diophantine dimension of $E$, $\mathcal{G}_{E}$ the absolute Galois group of $E$, and cd$(\mathcal{G}_{E})$ the Galois cohomological dimension of $\mathcal{G}_{E}$. It is presently unknown whether the inequality cd$(\mathcal{G}_{E}) \le {\rm ddim}(E)$ always holds.

The main result of this talk proves the existence of quasifinite fields $\Phi _{q}\colon q \in \mathbb{P}$, with ddim$(\Phi _{q})$ infinity and char$(\Phi _{q}) = q$. This is done by modifying the proof of the existence of $\Phi _{0}$, obtained by Ax (in: Proc. Amer. Math. Soc. 16 (1965), 1214-1221).

Our main result also shows that for any integer $m > 0$ and $q \in \overline {\mathbb{P}}$, there is a quasifinite field $\Phi _{m,q}$ such that char$(\Phi _{m,q}) = q$ and ddim$(\Phi _{m,q}) = m$. This is used for proving that for any $q \in \overline {\mathbb{P}}$ and each pair $k$, $\ell \in (\mathbb{N} \cup \{\infty \})$ satisfying $k \le \ell $, there exists a field $E _{k, \ell ; q}$ with char$(E _{k, \ell ; q}) = q$, ddim$(E _{k, \ell ; q}) = \ell $ and cd$(\mathcal{G}_{E_{k, \ell ; q}}) = k$. Furthermore, the field $E _{k, \ell ; q}$ can be chosen to be perfect unless $k = 0 \neq \ell $. Joint work with Boyan Paunov.