Close the abstract
4. Ordinary and Partial Differential Equations, Controlled Differential Systems
Convergence estimates for some semilinear second order
differential equations with two small parameters in Hilbert space
Andrei Perjan
Moldova State University, Chişinău, Moldova
Abstract:
In the real Hilbert space $H$ we consider the following Cauchy
problem:
$$
\left\{
\begin{array}{l}
\varepsilon u''_{\varepsilon\delta}(t)+\delta\,u'_{\varepsilon\delta}(t)+
A u_{\varepsilon\delta}(t)+ B\big(u_{\varepsilon\delta}(t)\big)=f_{\varepsilon}(t), \quad t \in (0, T), \\
u_{\varepsilon\delta}(0)=u_{0\varepsilon},\quad u'_{\varepsilon\delta}(0)=u_{1\varepsilon},\
\end{array}
\right.\ (Eq\, P_{\varepsilon \delta})
$$
where $A:V\subset H\to H$, be a linear self-adjoint operator and
$B$ is nonlinear $A^{1/2}$ lipschitzian or monotone operator,
$u_{0\varepsilon}, u_{1\varepsilon}\in H, f_{\varepsilon}: [0,T]
\to H$ and $\varepsilon, \delta$ are two small parameters. We
investigate the behavior of solutions $u_{\varepsilon\delta}$ to
the
problem ($P_{\varepsilon\delta}$) in two different cases:
(i) $\varepsilon\to 0$ and $\delta \geq \delta_0>0 $, relative
to the solutions to the following
unperturbed system:
$$
\left\{
\begin{array}{l} \delta l_\delta'(t)+ A
l_\delta(t)+B\big(l_\delta(t)\big)=f(t),\quad t\in(0,T),\\
l_\delta(0)=u_0;
\end{array}
\right.\ (Eq\, P_{\delta})
$$
(ii) $\varepsilon\to 0$ and $\delta \to 0$,
relative to the solutions to the following
system:
$$
A v(t)+B\big(v(t)\big)= f(t),\quad t\in[0,T)\
(Eq\, P_{0})
$$
The mathematical model ${(P_{\varepsilon \delta})}$ governs
various physical processes, which are described by the
Klein-Gordon equation, the Sine-Gordon equation, the Plate
equation and others equations.