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Abstract. For vector bundles having an involution on the base space, Hermi-

tian-like structures are defined in terms of such an involution. We prove a

universality theorem for suitable self-involutive reproducing kernels on Hermi-
tian-like vector bundles. This result relies on pullback operations involving the

tautological bundle on the Grassmann manifold of a Hilbert space and exhibits

the aforementioned reproducing kernels as pullbacks of universal reproducing
kernels that live on the Hermitian-like tautological bundle. To this end we use

a certain type of classifying morphisms, which are geometric versions of the
coherent state maps from quantum theory. As a consequence of that theorem,

we obtain some differential geometric properties of these reproducing kernels

in this setting.

1. Introduction

This paper belongs to a line of research ([BG08], [BG09], [BG11], [BG14],
[BG15]) on differential geometric aspects of reproducing kernels and their related
structures. As explained below, the present development was suggested by some
problems that claim their origin in the broad interaction between the reproducing
kernels and the quantum theory, more precisely in the applications of the coher-
ent state method such as it is proposed and carried out in [Od88], [Od92], [Od07],
[HO13], among other papers.

Coherent state maps. By coherent state map we mean a smooth (symplectic)
map ζ : Z → CP(H) of a (finite-dimensional Kähler) manifold Z into a complex
projective Hilbert space CP(H), for some complex Hilbert space H. (Recall that
CP(H) may well be viewed as the Grassmannian manifold on H formed by the one-
dimensional subspaces of H.) In usual physical interpretations, Z is to be regarded
as the classical phase space of a mechanical system and CP(H) as the space of pure
quantum states. The transition probability amplitudes in Z can be expressed in
terms of a reproducing kernel K defined on the line bundle L → Z obtained as
the pullback of the tautological bundle E → CP(H), through the map ζ. Indeed,
the existence of the kernel K is equivalent to the existence of the map ζ, and
this fact can be formulated in terms of appropriate equivalent categories. In this
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way, the (Fubini-Study) Hermitian and complex structures on E → CP(H) induce
corresponding Hermitian and complex structures, and associated Chern covariant
derivative, on the bundle L → Z; see [Od88], [Od92]. The area of application of
the coherent state method has been widened to abstract settings of quantization
involving either polarized C∗-algebras ([Od07]) or positive kernels on bundles acted
on by compact groups ([HO13]). In the latter case the space CP(H) is replaced by
the n-Grassmannian on H formed by all the n-dimensional subspaces of H, with
fixed n ∈ N. For links between coherent state maps and algebraic geometry, see
[Be97], [BeSc00], and also [MP97]. Other applications of reproducing kernels in
physics can be seen in [ABG13], [Wi89], for example.

Primary motivation of the present research. Our aim has been the study of
quantization problems related to the above circle of ideas, in an infinite-dimensional
setting, from the perspective of operator theory or operator algebras and their
physical implications. The mathematical framework of this approach is provided
by differential geometry of infinite-dimensional manifolds and Banach-Lie groups
acting on these manifolds. In this connection, some references related in spirit to
the present investigation are [Tu07], [DGP13], [PS11], [AL09], [ALRS97], and also
the measure-free approach of [HzSz12], since the absence of suitable measures for
defining L2-spaces is one of the difficulties encountered in infinite dimensions, which
can be addressed by using reproducing kernel Hilbert spaces instead. It is worth
mentioning that techniques from this area of infinite-dimensional geometry also
turned out to be relevant for applications in quantum chemistry ([ChMe12]), the
study of Berry’s geometrical phase factor ([CoMa01]), quantum optics ([HOT03]),
etc.

One motivation for the proposed study relies on the general observation that the
notions involved in the coherent state method have significant physical meaning
in infinite dimensions. See for example [FKN92], [MR88], [Wi88] and references
therein, for infinite-dimensional Grassmannians. More specific and direct motiva-
tion for the present paper comes from the geometric models of Borel-Weil type for
representations of unitary groups of C∗-algebras, which were obtained in [BR07]
by using reproducing kernels on suitable Hermitian homogeneous vector bundles.
Such kernels yield the representation Hilbert spaces in the geometric models. In
order to include holomorphy and full groups of invertible elements of C∗-algebras
in that theory, the notion of like-Hermitian vector bundle was introduced in [BG08]
in close relationship with the existence of involutions on the base spaces of those
bundles and with the corresponding complexifications. An approach to these topics
in the framework of category theory was developed in [BG11], where several uni-
versality results were established which allow us to recover the reproducing kernels
from the tautological ones associated with universal Grassmann vector bundles. In
this respect, the above-mentioned projective manifold CP(H) is substitued by the
full Grassmannian manifold Gr(H) on H, the line bundle E → CP(H) by the tau-
tological bundle T (H) → Gr(H) and the coherent state map ζ : Z → CP(H) by a
classifying morphism ζ : Z → Gr(H); (it is to be noticed that infinite-dimensional
Grassmannian manifolds are usually considered in physics as classical phase spaces,
whereas they play here the role of a quantization tool) see [BG11, Sect. 5].

Technical aspects: universality and geometry of reproducing kernels.
On the other hand, reproducing kernels and connections or covariant derivatives
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and associated geometric objects often occur simultaneously on vector bundles, as
it happens in the setting worked on in [Od88] and [Od92], for instance. Thus it
sounds sensible to find out possible explanations for such an occurrence in general.
In the Hermitian case, we have recently approached that question by relying on
the basic idea of transferring the geometry of the tautological bundle T (H) →
Gr(H) to the given bundle, say D → Z, on the basis of the universality theorems
and corresponding classifying morphisms. See [BG14] for the construction of the
natural connection induced by a given reproducing kernel K, and the calculation
of the corresponding covariant derivative ∇K . It is shown in [BG15] that ∇K is
essentially the Chern covariant derivative for D → Z; that is, the connection which
is compatible both with the Hermitian and the complex structure (if there is one)
in D → Z. Some possible links with algebraic geometry are also implicit in [BG15].

As is well known, complex structures are very important both in quantization
of mechanical systems and in Borel-Weil realizations. Some examples of the homo-
geneous spaces and vector bundles considered in [BR07], in relation with unitary
representations, are indeed holomorphic, but this is not true in general. In or-
der to include holomorphy and full groups of invertible elements of C∗-algebras in
the theory of [BR07], the notion of like-Hermitian vector bundle was introduced
and studied in [BG08] in close relationship with the existence of involutions on
the base spaces of those bundles and with the corresponding complexifications.
Moreover, the like-Hermitian bundles have been discussed from a categorial view-
point in [BG11]. However, the universality theorem for reproducing kernels on
like-Hermitian bundles, given in [BG11, Th. 5.1], is not entirely satisfactory in the
sense that its proof required a somehow unpleasant additional assumption in the
statement of the theorem —namely, that the classifying morphism should commute
a priori with the involutions on the base spaces of the bundles under consideration.
Since dealing with involutions in the base spaces of vector bundles is essential to
introduce holomorphy in the theory via the complexifications (so is essential to the
level of generality, examples and applications given in [BG08] in particular) one
would like to find an improvement of [BG11, Th. 5.1] which in turn allows us to
transfer geometry from the tautological bundles to bundles with involution.

The present paper is not intended as a merely formal generalization of results
of [BG11] or [BG14]. For the sake of precision, one must insist that the purpose
of this paper is two-fold. Firstly, we give an improvement of [BG11, Th. 5.1]
which seems to be the right theorem of universality for bundles endowed with an
involutive structure (see Theorem 4.1 below). Then a new structure emerges in a
natural manner for the bundles involved -so for the tautological ones in particular-,
which is slightly more general than the like-Hermitian one, in the sense that bilinear
forms must be admitted besides the usual sesquilinear forms of the (like-) Hermit-
ian counterpart. We will refer to these vector bundles in the sequel as having a
Hermitian-like structure. Secondly, we define the proper reproducing kernels asso-
ciated with such bundles, and then we construct their basic differential geometry
by extending results of [BG14]. More advanced aspects of that geometry, such as
compatibility of covariant derivatives with Hermitian-like structures and complex
structures, or positivity of curvatures, in analogy to [BG15] for the Hermitian case,
are left for a forthcoming paper.
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Organization of the present paper. In Section 2 we briefly provide a few ideas
and results on reproducing kernels on Hermitian vector bundles and their geome-
try. These facts are mentioned here for the sake of reader’s motivation, since their
extensions to a Hermitian-like setting are the main results that will be established
in the next sections. We also make some remarks in this respect. This section is
thought of a continuation of the introduction, to explain the basic symbols and fix
notation. Section 3 contains basic definitions, properties and examples of vector
bundles, morphisms in-between and reproducing kernels in the Hermitian-like set-
ting. In Section 4 we prove the universality theorem for self-involutive kernels on
Hermitian-like bundles (Theorem 4.1) and characterize the key notion of admissi-
ble self-involutive kernel (see Definition 4.6, based on Theorem 4.4 and Corollary
4.5). Section 5 is devoted to point out the intrinsic differential geometry of ad-
missible self-involutive kernels. To make the paper as self-contained as possible,
for convenience of the reader, we include definitions and results (without proofs)
of [BG14] about linear connections, their pull-backs and corresponding covariant
derivatives. The new result in this section is Theorem 5.8, which extends [BG14,
Theorem 4.2]. Finally, in Section 6, we apply our general results to the study of
some specific examples, in particular to two-sided Stinespring dilations of tracial
completely positive maps. This example extends [BG11, Proposition 6.1].

2. By way of motivation: the Hermitian setting

Some references for this section are [BG11] and [BG14], but many of these ideas
in the case of line bundles actually go back to [Od88] and [Od92].

If Z is a Banach manifold, then a Hermitian structure on a smooth Banach
vector bundle Π: D → Z is a family {(· | ·)z}z∈Z such that for every z ∈ Z,
(· | ·)z : Dz×Dz → C is a scalar product (C-linear in the first variable and conjugate
C-linear in the second variable) that turns the fiber Dz into a complex Hilbert space,
and this family of scalar products is assumed to depend smoothly on z ∈ Z, in the
sense that the following condition is satisfied: If V is any open subset of Z, and
ΨV : V ×E → Π−1(V ) is a trivializations (whose typical fiber is the complex Hilbert
space E) of the vector bundle Π over V , then the function (z, x, y) 7→ (ΨV (z, x) |
ΨV (z, y))z, V × E × E → C is smooth. A Hermitian bundle is simply any bundle
endowed with a Hermitian structure as above.

Remark 2.1. In this paper we deal with vector bundles endowed with an involution
z ∈ Z 7→ z−∗ ∈ Z in the base space Z, and introduce an extension of the Hermitian
notions which depends explicitly on such an involution. Thus the above structure
{(· | ·)z}z∈Z is replaced by {(· | ·)z,z−∗}z∈Z and it is allowed to be bilinear as well,
to include natural examples (see Definition 3.1).

In the above setting, if we also denote by p1, p2 : Z × Z → Z the Cartesian
projections, then a reproducing kernel on Π is any positive definite section K of
the bundle Hom(p∗2Π,p∗1Π) → Z × Z. That is, K is a family of bounded linear
operators K(s, t) : Dt → Ds depending on s, t ∈ Z and satisfying the following
positivity condition: For every n ≥ 1 and tj ∈ Z, ηj ∈ Dtj (j = 1, . . . , n),

n∑
j,l=1

(
K(tl, tj)ηj | ηl

)
tl
≥ 0.
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For every ξ ∈ D we set Kξ := K(·,Π(ξ))ξ : Z → D, which is a section of the bundle
Π. For ξ, η ∈ D, the prescriptions

(Kξ | Kη)HK := (K(Π(η),Π(ξ))ξ | η)Π(η),

define an inner product (· | ·)HK on span{Kξ : ξ ∈ D} whose completion gives rise
to a Hilbert space denoted by HK , which consists of sections of the bundle Π. The
reproducing kernel K naturally gives rise to the mappings

K̂ : D → HK , K̂(ξ) = Kξ, (2.1)

ζK : Z → Gr(HK), ζK(s) = K̂(Ds), (2.2)

where the bar over K̂(Ds) indicates the topological closure.

Remark 2.2. The above definition of reproducing kernels must be adapted to the
Hermitian-like framework accordingly, relying on the involution z ∈ Z 7→ z−∗ ∈
Z. This is done in Definition 3.5. Central to our approach here is the notion
of self-involutive reproducing kernel, given in terms of involutive quasimorphisms,
whose definition is given prior to Example 3.7. For involutive quasimorphisms, see
Definition 3.4.

Example 2.3 (universal reproducing kernel). For any complex Hilbert space H, its
tautological bundle ΠH : T (H) → Gr(H) has a natural Hermitian structure given
by ((S, x) | (S, y))S := (x | y)H for all S ∈ Gr(H) and x, y ∈ S, where S ∈ Gr(H).
Recall that by definition T (H) = {(S, x) ∈ Gr(H) ×H : x ∈ S} and Gr(H) is the
Grassmann manifold of all closed linear subspaces of H. This Hermitian bundle
carries a natural reproducing kernel QH, called universal reproducing kernel,

QH(S1,S2) := pS1 |S2 : S2 → S1 for S1,S2 ∈ Gr(H).

The orthogonal projection pS on any S ∈ Gr(H) can be regarded as an operator
between different Hilbert spaces pS : H → S, whose adjoint operator is the inclusion
operator ιS : S ↪→ H that is, (pS)∗ = ιS : S → H. This shows that

QH(S1,S2) = pS1
(pS2

)∗ for S1,S2 ∈ Gr(H)

which resembles the expressions of other reproducing kernels, for instance the re-
producing kernel (1− z1z2)−1 of the Hardy space on the unit disk.

In this exemple, the reproducing kernel Hilbert space associated with QH can
be identified with H, and the maps (2.1) and (2.2) are

K̂ : D = T (H)→ H, (S, x) 7→ x,

ζK : Z = Gr(H)→ Gr(H), ζK(S) = S.
The above terminology is motivated by the universality properties of these ker-

nels, established in [BG11]. More precisely, we defined an operation of pull-back
of reproducing kernels via maps between vector bundles, and using this operation,
one has the following theorem:

Theorem 2.4 (universality). Let Π: D → Z be a Hermitian vector bundle endowed
with a reproducing kernel K. If we define

δK := (ζK ◦Π, K̂) : D → T (HK), ξ 7→ (ζK(Π(ξ)), K̂(ξ))

then the pair of maps ∆K := (δK , ζK) defines a map of vector bundles from Π to the
tautological vector bundle of HK which recovers K as the pull-back of the universal
reproducing kernel QHK , which we denote by K = (∆K)∗QHK .
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Remark 2.5. In order to extend Theorem 2.4 to a universal theorem for Hermitian-
like vector bundles, so that it entails the natural correspondence between involutions
in particular, one needs to appeal to self-involutive kernels and also to consider
Hermitian-like structures in the tautological bundle defined by involutive, isometric,
linear or conjugate-linear operators C : H → H on the Hilbert space H. Then the
definition of the universal kernel QH in Example 2.3 is widened to kernels QH,C
given by QH,C(S1, S2) := pS1 ◦ C |C(S2) : C(S2) → S1 for S1, S2 ∈ Gr(H); see
Example 3.7. Conjugate-linear isometries C arise in natural examples like [BG11,
Proposition 6.1], for instance. As said before, the wished-for extension of Theorem
2.4 is Theorem 4.1 below.

Since there the tautological vector bundles carry canonical linear connections, it
is natural to consider their pull-backs through the maps of type ∆K from Theo-
rem 2.4. In order to realize that idea, we must ensure that the components of ∆K

are smooth maps. We proved in [BG14] that this is the case if the reproducing
kernel K is admissible, in the sense that if it has the following properties:

(a) The kernel K is smooth as a section of the bundle Hom(p∗2Π,p∗1Π).
(b) For every s ∈ Z the operator K(s, s) ∈ B(Ds) is invertible.
(c) The mapping ζK : Z → Gr(HK) is smooth.

As proved in [BG14, Ex. 3.7], if the fibers of the Hermitian vector bundle Π: D → Z
are finite dimensional (for instance, if Π is a line bundle), then for every reproducing
kernel K on Π which satisfies the above conditions (a)–(b), the condition (c) is
automatically satisfied hence it is an admissible reproducing kernel.

The conclusion is that on any Hermitian vector bundle Π there exists a canonical
correspondence from admissible reproducing kernels to linear connections, namely
to admissible K there corresponds the pull-back, say ΦK , via ∆K of the univer-
sal connection on the tautological bundle of HK . Every linear connection ΦK has
indeed associated a covariant derivative ∇K (Definition 5.1 below). This deriv-
ative was computed in [BG14, Theorem 4.2]. We recall that the aforementioned
tautological bundle is a holomorphic Hermitian vector bundle and its universal con-
nection is precisely the Chern connection, that is, the unique linear connection that
is compatible both with the Hermitian and with the holomorphic structure.

Remark 2.6. Admissible kernels can be also introduced in the Hermitian-like con-
text almost verbatim; see Definition 4.6. This definition relies here on Corollary 4.5.
Then to any admissible self-involutive reproducing kernel on a Hermitian-like vec-
tor bundle one can associate a canonical linear connection ΦK with corresponding
covariant derivative ∇K . The computation of ∇K is made in Theorem 5.8.

3. Hermitian-like vector bundles and reproducing kernels

3.1. Hermitian-like structures. Here we propose a generalization of the notion
of Hermitian structure in vector bundles endowed with an involution in the base
space. This structure depends substantially of the given involution.

Definition 3.1. Let Z be a real or complex Banach manifold with an involutive
diffeomorphism z 7→ z−∗, Z → Z, that is, (z−∗)−∗ = z for all z ∈ Z. A Hermitian-
like structure on a smooth vector bundle Π: D → Z is a family {(· | ·)z,z−∗}z∈Z
with the following properties:

(a) For every z ∈ Z, (· | ·)z,z−∗ : Dz × Dz−∗ → C is a sesquilinear or bilinear
strong duality pairing.
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(b) For all z ∈ Z, ξ ∈ Dz, and η ∈ Dz−∗ we have

(ξ | η)z,z−∗ = (η | ξ)z−∗,z, if the pairing is sesquilinear,

or
(ξ | η)z,z−∗ = (η | ξ)z−∗,z, if the pairing is bilinear.

(c) If V is any open subset of Z, and

ΨV : V × E → Π−1(V ) and ΨV −∗ : V −∗ × E → Π−1(V −∗)

are trivializations (whose typical fiber is a complex Banach space E) of the
vector bundle Π over V and V −∗ (:= {z−∗ | z ∈ V }), respectively, then
the function (z, x, y) 7→ (ΨV (z, x) | ΨV −∗(z

−∗, y))z,z−∗ , V × E × E → C is
smooth.

We call Hermitian-like vector bundle any bundle endowed with a Hermitian-like
structure as before.

Condition (a) in Definition 3.1 means that the functional (· | ·)z,z−∗ : Dz ×
Dz−∗ → C is continuous, is linear in the first variable and conjugate-linear in the
second variable when the functional is sesquilinear, and both the mappings

ξ 7→ (ξ | ·)z,z−∗ , Dz → (Dz−∗)
∗, and η 7→ (· | η)z,z−∗ , Dz−∗ → D∗z ,

are (not necessarily isometric) isomorphisms of complex Banach spaces in this case.
(Here we denote, for any complex Banach space Z, by Z∗ its dual (complex) Banach
space and by Z the complex-conjugate Banach space.) If (· | ·)z,z−∗ : Dz×Dz−∗ → C
is bilinear then the properties are similar with the only exception that in the duality
one must remove complex conjugation.

Remark 3.2. The difference between Definition 3.1 and the definition in [BG08]
and [BG11] of the so-called there like-Hermitian vector bundles is that we now
allow the pairing (· | ·)z,z−∗ to be bilinear. The usual Hermitian vector bundles are
particular cases of the above definition for −∗ = idZ .

Next, we define a suitable class of morphisms between Hermitian-like bundles.

Let Π: D → Z and Π̃ : D̃ → Z̃ be Hermitian-like vector bundles (which we assume
not necessarily of the same sesquilinear or bilinear type), and assume that each of

the manifolds Z and Z̃ is endowed with an involutive diffeomorphism denoted by
z 7→ z−∗ for both manifolds.

Definition 3.3. A quasimorphism of Π into Π̃ is a pair Θ = (δ, ζ) such that

δ : D → D̃ and ζ : Z → Z̃ are mappings such that:

(i) Π ◦ ζ = δ ◦ Π̃;

(ii) the mapping δz := δ|Dz : Dz → D̃ζ(z) is a bounded operator which is allowed
to be either linear for all z ∈ Z or conjugate-linear for all z ∈ Z;

(iii) for all z ∈ Z we have ζ(z−∗) = ζ(z)−∗.

By Definition 3.1, for every z ∈ Z there exists a unique bounded operator

(δz)
−∗ : D̃ζ(z)−∗ → Dz−∗ defined by

(∀ξ ∈ Dz, η ∈ D̃ζ(z)−∗) ((δz)
−∗η | ξ)z−∗,z = (η | δzξ)ζ(z)−∗,ζ(z) (3.1)

in the cases: 1) Π and Π̃ have sesquilinear structures and δ is linear on fibers (then

δ−∗ is also linear on fibers), 2) Π and Π̃ have bilinear structures and δ is linear

on fibers (then δ−∗ is also linear on fibers), 3) Π sesquilinear, Π̃ bilinear and δ
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conjugate-linear (then δ−∗ linear), 4) Π bilinear, Π̃ sesquilinear and δ conjugate-
linear (then δ−∗ linear); or by

(∀ξ ∈ Dz, η ∈ D̃ζ(z)−∗) ((δz)
−∗η | ξ)z−∗,z = (η | δzξ)ζ(z)−∗,ζ(z) (3.2)

in the cases: 1) Π and Π̃ sesquilinear, δ conjugate-linear (then δ−∗ conjugate-linear),

2) Π and Π̃ bilinear, δ conjugate-linear (then δ−∗ conjugate-linear), 3) Π sesquilin-

ear, Π̃ bilinear and δ linear (then δ−∗ conjugate-linear), 4) Π bilinear, Π̃ sesquilinear
and δ linear (then δ−∗ conjugate-linear), depending on the (not necessarily simul-
taneous) sesquilinear or bilinear character of the Hermitian-like structures in Π

and Π̃. Notice that the linearity or conjugate-linearity of the mapping (δz)
−∗ also

depends on these structures and the given linearity or conjugate-linearity of δz.

Definition 3.4. An involutive quasimorphism on a Hermitian-like bundle Π: D →
Z is any quasimorphism of the form Θ = (τ,−∗), where −∗ is the involutive dif-
feomorphism in Z and τ : D → D is a smooth map such that τ2 = idD, with
τ(Ds) ⊆ Ds−∗ (s ∈ Z), and for all s ∈ Z, ξ ∈ Ds, η ∈ Ds−∗ we have

(i) (τ(ξ) | τ(η))s−∗,s = (η | ξ)s−∗,s if τ is fiberwise linear and Π is bilinear, or
τ is fiberwise conjugate-linear and Π is sesquilinear; and

(ii) (τ(ξ) | τ(η))s−∗,s = (η | ξ)s−∗,s, if τ is fiberwise linear and and Π is sesquilin-
ear, or τ is fiberwise conjugate-linear and Π is bilinear.

Hermitian-like vector bundles admit a suitable notion of reproducing kernels on
them.

Definition 3.5. Let Π: D → Z be a Hermitian-like bundle. A reproducing (−∗)-
kernel on Π is a smooth section of the bundle Hom(p∗2Π,p∗1Π) → Z × Z such that
the mappings

K(s, t) : Dt−∗ → Ds (s, t ∈ Z)

are linear if the Hermitian-like structure is sesquilinear (respectively, they are
conjugate-linear if that structure is bilinear), and such that it is (−∗)-positive def-
inite in the following sense: For every n ≥ 1 and tj ∈ Z, ηj ∈ Dt−∗j

(j = 1, . . . , n),

n∑
j,l=1

(
K(tl, tj)ηj | ηl

)
tl,t
−∗
l

≥ 0.

Here p1, p2 : Z × Z → Z are the natural projection mappings.

Here the main difference we have in relation with the definition of reproducing
(−∗)-kernel given in [BG08] and [BG11] is that the domain of the bounded linear
mapping K(s, t) is supposed to be now Dt−∗ , whereas it was Dt in the quoted refer-
ences. We prefer to take domains Dt−∗ in the present work to better reflect formally
formulae and properties concerning classical reproducing kernels. The theory de-
veloped for (−∗)-kernels in [BG08] and [BG11] is readily adapted to domains Dt−∗ .
Throughout the paper we will use properties of the kernels in accordance with the
new notation, without any further explanation, unless it seems to be necessary for
a better understanding.

Reproducing kernels are important because they yield Hilbert spaces. In our
case, this is as follows. For every ξ ∈ D we set Kξ := K(·,Π(ξ)−∗)ξ : Z → D. The
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functions Kξ (for ξ ∈ D) are smooth sections of the bundle Π. For ξ ∈ Ds, η ∈ Dt

with s, t ∈ Z, the prescriptions

(Kξ | Kη)HK := (K(Π(η)−∗,Π(ξ)−∗)ξ | η)t−∗,t,

when Π is sesquilinear Hermitian-like, and

(Kξ | Kη)HK := (K(Π(η)−∗,Π(ξ)−∗)ξ | η)t−∗,t,

when Π is bilinear Hermitian-like, define an inner product (· | ·)HK on span{Kξ :
ξ ∈ D} whose completion gives rise to a Hilbert space denoted by HK .

In analogy with the notion of pull-back of kernels introduced in [BG11], we now
make the following definition.

Definition 3.6. Let Π: D → Z and Π̃ : D̃ → Z̃ be two smooth Hermitian-like
vector bundles such that there is a quasimorphism Θ = (δ, ζ) from Π to Π̃. Assume

that K̃ is a reproducing (−∗)-kernel on Π̃. The pull-back of the reproducing (−∗)-
kernel K̃ through Θ is the reproducing (−∗)-kernel Θ∗K̃ on Π defined by

(∀s, t ∈ Z) Θ∗K̃(s, t) = (δs−∗)
−∗ ◦ K̃(ζ(s), ζ(t)) ◦ δt−∗ ; (3.3)

that is, the diagram

D̃ζ(t−∗)
K̃(ζ(s),ζ(t))−−−−−−−−→ D̃ζ(s)

δt−∗

x y(δs−∗ )−∗

Dt−∗
Θ∗K̃(s,t)−−−−−−→ Ds

is commutative for all s, t ∈ Z.
Given an involutive quasimorphism Θτ = (τ,−∗) of the Hermitian-like bundle Π,

we say that a reproducing (−∗)-kernel K on Π is self-involutive if K = Θ∗τK, that
is, if

(∀s, t ∈ Z) K(s, t) = τ−1 ◦K(s−∗, t−∗) ◦ τ |Dt−∗ , (3.4)

One basic example of Hermitian-like vector bundle is the universal bundle of a
Hilbert space H provided with an involutive isometry on H:

Example 3.7. Universal bundles. Put G = GL(H), the full group of invertible
bounded operators on H, and U = U(H), the subgroup of unitary bounded opera-
tors. Let ΠH : T (H) → Gr(H) be the bundle of Example 2.3. This is a holomor-
phic vector bundle on which G and U act holomorphically through the inclusion
G ↪→ B(H); see [Up85, Ex. 3.11 and 6.20]. We call ΠH the universal (tautological)
vector bundle associated with the Hilbert space H.

For every S ∈ Gr(H) we denote by pS : H → S the corresponding orthogonal
projection. Take S0 ∈ Gr(H) and put p := pS0 . Let GrS0(H) denote the orbit of
S0 in Gr(H) under the usual operator action by G. The orbit GrS0(H) coincides
with the unitary orbit of S0 and with the connected component of S0 in Gr(H), so
it is given by

GrS0(H) = {gS0 | g ∈ G} = {uS0 | u ∈ U}

= {S ∈ Gr(H) | dimS = dimS0 and dimS⊥ = dimS⊥0 }

' U/(U(S0)×U(S⊥0 )) = U/U(p) ' G/G([p]),

where U(p) := {u ∈ U | uS0 = S0} and G([p]) := {g ∈ G | gS0 = S0}. (See for
instance [Up85, Prop. 23.1] or [BG09, Lemma 4.3].)
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Set TS0(H) := {(S, x) ∈ T (H) | S ∈ GrS0(H)}. The universal vector bundle at
S0 is the holomorphic vector bundle ΠS0 : TS0(H) → GrS0(H) obtained by restric-
tion of ΠH to TS0

(H). The maps G ×G([p]) S0 3 [(g, x)] 7→ (gS0, gx) ∈ TS0
(H) and

U ×U(p) S0 3 [(u, x)] 7→ (uS0, ux) ∈ TS0(H) induce biholomorphic diffeomorphisms
between ΠH,S0

: TS0
(H)→ GrS0

(H) and the vector bundles G×G([p])S0 → G/G([p])
and U ×U(p) S0 → U/U(p), respectively. See [BG09, Prop. 4.5].

Let C : H → H be an involutive isometric, linear or conjugate-linear, operator
on H. Then the mapping

S 7→ S−∗ := C(S), Gr(H)→ Gr(H)

is a smooth involution in the Grassmann manifold Gr(H). The universal bundle
ΠH is Hermitian-like if we endow it with the Hermitian-like pairings

(x | y)S,S−∗ := (x | Cy)H (S ∈ Gr(H), x ∈ S, y ∈ C(S)).

(Notice that these pairings are bilinear if C is conjugate-linear). Further, this
structure admits a reproducing kernel QH,C defined by

QH,C(S1, S2) := pS1 ◦ C |C(S2) : S−∗2 → S1 for S1, S2 ∈ Gr(H).

We will use the notation ΠH,C to refer to this Hermitian-like universal bundle in
the sequel.

Fix an element S0 in Gr(H) such that C(S0) = S0. Then the orbit GrS0
(H) is

invariant under the involution S 7→ C(S) of Gr(H), and therefore by restriction we
get the Hermitian-like vector ΠS0,C : TS0

(H) → GrS0
(H) as a subbundle of ΠH,C .

Denote by QS0,C the restriction of the kernel QH,C to the bundle ΠS0,C . For
every S ∈ GrS0(H) there exists u ∈ U such that uS0 = S and uS⊥0 = S⊥. Then
upS0 = pSu, that is, pS = upS0u

−1. Thus for all u1, u2 ∈ U and x1, x2 ∈ S0 we
have

QS0,C(u1S0, u2S0)(Cu2x2) = pu1S0(u2x2) = u1pS0(u−1
1 u2x2).

For the above assertions, see [BG11, Def. 4.2 and Rem. 4.3].
Any of the bundles ΠH,C or ΠS0,C will be called here universal vector bundle.

The Hermitian ones correspond to the choice C = idH.
Just defining τC : (S, x) 7→ (C(S), C(x)), T (H) → T (H) one obtains an involu-

tive quasimorphism on the universal vector bundles. Note that the kernels QH,C
and QS0,C are self-involutive with respect to C and τC .

4. Universality theorem and admissible kernels

Here we prove the universality theorem for self-involutive kernels. By following

[BG11, Th. 5.1], let us define K̂(ξ) := Kξ = K(·,Π(ξ)−∗)ξ for ξ ∈ D, and

ζK : s 7→ K̂(Ds), Z → Gr(HK),

where the bar over K̂(Ds) means topological closure. Put δK := (ζK ◦Π, K̂).

Theorem 4.1. Let Π: D → Z be a Hermitian-like vector bundle having a self-
involutive reproducing kernel K with respect to an involutive smooth quasimorphism
(τ,−∗). Then there exist an involutive, isometric operator C := C(τ) : HK → HK ,
and a vector bundle quasimorphism ∆K := (δK , ζK) from Π into the universal
bundle ΠHK ,C such that

K = (∆K)∗QHK ,C ;
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that is, for all s, t ∈ Z,

K(s, t) = ((δK)s−∗)
−∗ ◦QHK ,C(ζK(s), ζK(t)) ◦ (δK)t−∗ .

Proof. We prove the assertion when Π has a sesquilinear structure and the quasi-
morphism (τ,−∗) is conjugate-linear on the fibers. The other cases are similar.

Let HK be the Hilbert space generated by the kernel K, which is to say, by the
basic sections Kξ, ξ ∈ D. Since K is self-involutive we can do as in [BG11, Cor.
3.7, Prop. 3.6] to get an involutive conjugate-linear isometry τ : HK → HK such
that τ(Kξ) = Kτ(ξ), (ξ ∈ D), and

(τF )(t) = τ(F (t−∗)) for all t ∈ Z and F ∈ HK .

Then take C = τ . Since ζK(s) is a closed subspace of HK , it is readily seen that
C(ζK(s)) = ζK(s−∗) for each s ∈ Z. Finally, let us check that K can be recovered
from QHK ,C by the pull-back operation with ∆K .

Put δz := (δK)z, for z ∈ Z, for short. Take s, t ∈ Z. For all η ∈ Dt−∗ and
ξ ∈ Ds−∗ we have

((∆K)∗QHK ,C(ζK(s), ζK(t))(η) | ξ)s,s−∗
=
(
(δs−∗)

−∗ ◦QHK ,C(ζK(s), ζK(t))(δt−∗)(η) | ξ
)
s,s−∗

=
(
QHK ,C(ζK(s), ζK(t))(Kη) | Kξ

)
ζCK(s),ζCK(s−∗)

=
(
(pζK(s) ◦ C)(Kη) | C(Kξ)

)
HK

= (C(Kη) | C(Kξ))HK

= (Kη | Kξ)HK = (K(s, t)η | ξ)s−∗ ,

as we wanted to show. �

Remark 4.2. (i) We will call the quasimorphism ∆K constructed in Theorem 4.1
the classifying quasimorphism associated with the kernel K.

(ii) Note that the Hermitian case, that is, the case involving Hermitian vector
bundles, in Theorem 4.1 corresponds to the choice of τ and C as the respective
identity maps. Thus Theorem 4.1 extends the Hermitian result contained in [BG11,
Th. 5.1 and Th. 6.2].

(iii) It is also possible to construct classifying morphisms in certain cases even
though the reproducing kernel is not assumed to be self-involutive. For instance,
this happens when the vector bundle Π: D → Z is acted on by a Banach-Lie
group and the associated kernel K is compatible with the corresponding action.
The resulting morphism then takes values in a complexification of the tautological
bundle, see [BG11, Th. 5.14].

With geometric applications of the above theorem in mind, we study in the next
subsection when the first component of a classifying quasimorphism is a fiberwise
isomorphism.

4.1. Quantization maps and kernels. Motivated by the significant physical in-
terpretation given in [Od88] and [Od92] (see also [MP97] and [BG11]) to maps from
manifolds into the projective space of a complex Hilbert space, we gave in [BG14]
the following notion.
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Definition 4.3. Let Z and H be a Banach manifold and a complex Hilbert space,
respectively. Any smooth mapping ζ : Z → Gr(H) will be termed a quantization
map from Z to H.

Set Dζ := {(s, x) ∈ Z ×H : s ∈ Z, x ∈ ζ(s)}. Then Dζ is a Banach manifold of
the same class as Z, and the projection Πζ : (s, x) ∈ Dζ 7→ s ∈ Z defines a vector
bundle, with local trivializations

(Πζ)−1(Ωs) ' Ωs × ζ(s) for Ωs := ζ−1(Grζ(s)(H)), s ∈ Z,
where the fiber at s ∈ Z is identified to ζ(s). Put now

ψζ(s, x) := (ζ(s), x), s ∈ Z, x ∈ ζ(s) ⊆ H,
so that (ψζ , ζ) is a vector bundle morphism from Πζ : Dζ → Z to the universal
bundle T (H) → Gr(H). In fact, by identifying Dζ with {(s, (ζ(s), x)) | s ∈ Z, x ∈
ζ(s)} one has that Πζ : Dζ → Z is diffeomorphic to the pull-back bundle of T (H)→
Gr(H) defined by the mapping ζ.

Assume in addition that there exist an involutive diffeomorphism s 7→ s−∗, Z →
Z and a linear or conjugate-linear isometry C : H → H such that ζ(s−∗) = C(ζ(s))
for all s ∈ Z. Then we provide the bundle Dζ → Z with the Hermitian-like structure
given by ( · | · )s,s−∗ := ( · | C(·) )H. Such a bundle admits the reproducing kernel
given by

Kζ,C(s, t) := pζ(s) ◦ C|ζ(t−∗) : ζ(t−∗)→ ζ(s) (s, t ∈ Z).

Clearly, C ◦ Kζ,C(s−∗, s−∗) = idζ(s) for every s ∈ Z. (The case −∗ = idZ and
C = idH was considered in [BG14].)

Thus to every quantization map ζ there corresponds a self-involutive Hermitian-
like reproducing kernel Kζ,C such that Kζ,C(s, s) is invertible, from the fiber on s−∗

onto the fiber on s, for all s ∈ Z, and it is natural to investigate the correspondence
in the opposite direction.

Let Π: D → Z be a Hermitian-like vector bundle with an involutive (smooth)

quasimorphism and a self-involutive (−∗)-reproducing kernel K. Let K̂(ξ) := Kξ,

for ξ ∈ D, and ζK be as prior to Theorem 4.1. Note that K̂ is continuous on Ds for

all s ∈ D, since for every ξ ∈ Ds we have ‖K̂(ξ)‖2 = (Kξ | Kξ)HK = (K(s, s−∗)ξ |
ξ)s,s−∗ . Let C : HK → HK be the involutive isometry whose existence is ensured
by Theorem 4.1. In the following result the bundle ΠζK : DζK → Z is endowed with
the C-Hermitian-like structure and kernel KζK ,C introduced above.

Theorem 4.4. In the above setting, suppose that for every s ∈ Z the mapping

K̂|Ds : ξ 7→ K̂(ξ), Ds → HK

is injective and has closed range. Then:

(i) The mapping Ǩ := (Π, K̂) is a bijection from D onto DζK and therefore

∆ζK := (Ǩ, idZ) is an algebraic isomorphism and a fiberwise topological
isomorphism

D
Ǩ−−−−→ DζK

Π

y yΠζK

Z
idZ−−−−→ Z

of vector bundles. In addition, if K̂ is smooth then the isomorphism ∆ζK

is smooth.
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(ii) The quasimorphism ∆K = (δK , ζK) of Theorem 4.1 factorizes according to
the commutative diagram

δK : D
Ǩ−−−−→ DζK

ψK−−−−→ T (HK)yΠ

yΠζK

yΠHK

ζK : Z
idZ−−−−→ Z

ζK−−−−→ Gr(HK),

where ψK := ψζK is as after Definition 4.3. In particular, for ζK smooth,
the vector bundle Π: D → Z is diffeomorphic to the pull-back vector bundle
induced by ζK : Z → Gr(HK).

(iii) Set ΘζK := (Ǩ, idZ). Then the pull-back relation K = ∆∗ζKQH,C factorizes
as

K = Θ∗KKζK ,C = Θ∗ζK (ψK , ζK)∗QH,C = ∆∗ζKQH,C .

Proof. Parts (i) and (ii) can be proved by mimicking the arguments of [BG14,
Theorem 3.11].

(iii) Assume that Π has a sesquilinear structure and that C is conjugate-linear.
For every s, t ∈ Z, ξ ∈ Ds−∗ and η ∈ Dt−∗ we have

(Θ∗KKζK ,C(η) | ξ)s,s−∗ = (pζK(s)(C(Kη)) | C(Kξ)HK
= (Kη | Kξ)HK = (K(s, t)η | ξ)s,s−∗ ,

and then it follows that K = Θ∗ζKKζK ,C as claimed. For the remaining part of the
statement, just note that

(ψK , ζK) ◦ΘζK = (ψK , ζK) ◦ ((Π, K̂), idZ),

(ψK ◦ (Π, K̂), ζK) = (δK , ζK) = ∆K

and we are done. The other cases are similar. �

Corollary 4.5. Let Π: D → Z be a Hermitian-like vector bundle with a self-
involutive reproducing (−∗)-kernel K. Then the following assertions are equivalent:

(i) K̂|Ds is injective and has closed range for all s ∈ Z.
(ii) K(s, s) is invertible from Ds−∗ onto Ds, for all s ∈ Z.

(iii) For every s ∈ Z there exists z = z(s) ∈ Z such that the operator K(s, z) is
invertible from Dz−∗ onto Ds.

Proof. (i) ⇒ (ii). As seen before Ǩ is a fiberwise topological isomorphism on D.
Moreover, for η ∈ Ds−∗ , η 6= 0, and ξ ∈ Ds,

((Ǩ)−∗((s−∗,Kη)) | ξ)s−∗,s = ((s−∗,Kη) | (s,Kξ))s−∗,s

= (C(Kη) | Kξ)HK
[

or = (C(Kη) | Kξ)HK
]
.

Hence,

‖(Ǩ)−∗((s−∗,Kη))‖Ds−∗ = sup
‖ξ‖Ds≤1

|(C(Kη) | Kξ)HK |

≥ ‖Kη‖2HK/‖η‖s−∗ ≥ c‖Kη‖HK ≡ c‖(s−∗,Kη)‖(DζK )s−∗
,

where we have taken ξ = τ(η)/‖τ(η)‖Ds for the first inequality, and have used that

K̂ is a fiberwise open mapping for the second inequality. It follows that (Ǩ)−∗ is
injective and has closed range on fibers.
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Moreover, if ξ ∈ Ds satisfies
(
(Ǩ)−∗((s−∗,Kη)) | ξ

)
s−∗,s

= 0 for every η ∈ Ds−∗

then in particular

0 =
(
(s−∗,Kη)) | (s,Kξ)

)
s−∗,s

= (C(Kξ) | Kξ)HK = ‖Kξ‖2HK
and therefore Kξ = 0, so ξ = 0.

Thus (Ǩ)−∗ is a topological isomorphism from (DζK )s−∗ onto Ds−∗ for all s ∈ Z.
Then the invertibility of K(s, s) for all s ∈ Z is a consequence of the commutativity
of the diagram

(DζK )s−∗ ≡ ζK(s−∗)
KζK (s,s)
−−−−−−→ ζK(s)

Ǩ≡K̂

x y(Ǩ)−∗

Ds−∗
K(s,s)−−−−→ Ds

(ii) ⇒ (iii). This is obvious.
(iii) ⇒ (i). First, observe that the order of s and z as components of K(s, z) is

irrelevant, see [BG11, p. 137]. Then, by hypothesis, for every s ∈ Z, ξ ∈ Ds−∗ and
z = z(s), we have

‖ξ‖Ds ≤ ‖K(z, s)−1‖‖K(z, s)ξ‖
and moreover K(z, s)ξ = θz(Kξ) for the bounded linear operator θz : HK → Dz

defined by
(θz(h) | η)z,z−∗ := (h | Kη)HK , h ∈ HK , η ∈ Dz−∗ ,

see [BG08, p. 2896]. Hence, for some constant C(s), ‖ξ‖Ds ≤ C(s)‖Kξ‖HK , whence
statement (i) follows. �

Definition 4.6. A self-involutive (−∗)-reproducing kernel K on a vector bundle
endowed with an involutive quasimorphism is called admissible if:
(i) The kernel K is smooth as a section of the bundle Hom(pr∗2Π,pr∗1Π)
(ii) For every s ∈ Z the operator K(s, s) : Ds−∗ → Ds is invertible .
(iii) The mapping ζK : Z → Gr(HK) is smooth.

Let us remark that condition (i) of the above definition implies that the mapping

K̂ : D → HK is smooth (see [BG14, Lemma 3.3]).

5. Geometry of self-involutive kernels

It was shown in [BG14] and [BG15] that reproducing kernels on Hermitian vector
bundles entail a number of differential geometric features. Namely, a manner to
construct linear connections from reproducing kernels on such bundles was given
in [BG14], along with the calculation of the corresponding covariant derivatives.
We then proved in [BG15] that the existence of a reproducing kernel K on a Her-
mitian holomorphic vector bundle Π implies the Griffith positivity of the curvature
associated with the (unique) Chern covariant derivative on Π.

It is our aim in this section to extend the results of [BG14] to the setting of
Hermitian-like vector bundles.

5.1. Connections on vector bundles. Recall that a connection on a vector
(fiber) bundle Π: D → Z is a smooth map Φ: TD → TD with the following
properties:

(i) Φ ◦ Φ = Φ;
(ii) the pair (Φ, idD) is an endomorphism of the tangent bundle τD : TD → D;
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(iii) the pair (Φ, idTZ) is a linear endomorphism of the vector bundle TΠ: TD →
TZ (i.e., if Φ is linear on the fibers of the bundle TΠ); see [KM97, subsect.
37.27].

(iv) for every ξ ∈ D, if we denote Φξ := Φ|TξD : TξD → TξD, then we have
Ran (Φξ) = Ker (TξΠ), so that we get an exact sequence

0→ HξD ↪→ TξD
Φξ−→TξD

TξΠ−→TΠ(ξ)Z → 0.

Here TΠ: TD → TZ is the tangent map of Π and HξD := Ker (Φξ) is a closed
linear subspace of TξD called the space of horizontal vectors at ξ ∈ D. Similarly,
the space of vertical vectors at ξ ∈ D is VξD := Ker (TξΠ). Then we have the direct
sum decomposition TξD = HξD ⊕ VξD, for every ξ ∈ D. Let Let VD = Ker (TΠ)
denote the vertical subbundle of the tangent bundle τD : TD → D whose fibers are
the spaces VξD, ξ ∈ D (cf. [KM97, subsect. 37.2]).

Next let Ω1(Z,D) the space of locally defined smooth differential 1-forms on
Z with values in the bundle Π: D → Z, hence the set of smooth mappings
η : τ−1

Z (Zη) → D, where τZ : TZ → Z is the tangent bundle and Zη is a suitable
open subset of Z, such that for every z ∈ Zη we have a bounded linear operator
ηz := η|TzZ : TzZ → Dz = Π−1(z). (So the pair (η, idZ) is a homomorphism of
vector bundles from the tangent bundle τD|Zη to the bundle Π.) For the sake of
simplicity we actually omit the subscript η in Zη, as if the forms were always defined
throughout Z; in fact, the algebraic operations are performed on the intersections
of the domains, and so on. Similarly, we let Ω0(Z,D) be the space of locally defined
smooth sections of the vector bundle Π.

Definition 5.1. The covariant derivative associated with the linear connection Φ
is the linear mapping ∇ : Ω0(Z,D)→ Ω1(Z,D), defined for every σ ∈ Ω0(Z,D) by
the composition

∇σ : TZ
Tσ−→TD

Φ−→VD r−→D

that is, ∇σ = (r ◦Φ)◦Tσ. (The composition r ◦Φ is the so-called connection map.)

One has the following technical, fundamental, result (see [BG14, Proposition
A.4]

Proposition 5.2. Let Π: D → Z and Π̃ : D̃ → Z̃ be vector bundles endowed with

the linear connections Φ and Φ̃, with the corresponding covariant derivatives ∇ and

∇̃, respectively. Assume that Θ = (δ, ζ) is a homomorphism of vector bundles from

Π into Π̃ (that is, the diagram

D
δ−−−−→ D̃

Π

y yΠ̃

Z
ζ−−−−→ Z̃

is commutative and both δ and ζ are smooth) such that Tδ ◦ Φ = Φ̃ ◦ Tδ. If

σ ∈ Ω0(Z,D) and σ̃ ∈ Ω0(Z̃, D̃) such that δ ◦ σ = σ̃ ◦ ζ, then δ ◦ ∇σ = ∇̃σ̃ ◦ Tζ.

5.2. Pull-backs of connections. A definition of pull-back of connections on infi-
nite-dimensional vector bundles has been given in [BG14] which, unlike the various
notions of pull-back that one can find in the literature on finite-dimensional bundles,
requires neither connection maps, nor connection forms, nor covariant derivatives,
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but rather the connection itself. The definition (which is also valid in the finite-
dimensional case) relies on the following result.

Proposition 5.3. Let Π: D → Z and Π̃ : D̃ → Z̃ be vector bundles, and let

Θ = (δ, ζ) be a smooth vector bundle homomorphism from Π into Π̃. In addition,
assume that for every s ∈ Z the mapping δ induces a (linear or conjugate-linear)

bounded isomorphism of the fiber Ds := Π−1({s}) onto the fiber D̃ζ(s) := Π̃−1(ζ(s)).

Then for every (linear or conjugate-linear) connection Φ̃ on the vector bundle

Π̃ : D̃ → Z̃ there exists a unique (linear or conjugate-linear) connection Φ on the
bundle Π: D → Z such that the diagram

TD
Tδ−−−−→ TD̃

Φ

y yΦ̃

TD
Tδ−−−−→ TD̃

is commutative.

Proof. See [BG14, Proposition A.6 and Definition A.7]. �

Definition 5.4. In the setting of Proposition 5.3 we say that the connection Φ is

the pull-back of the connection Φ̃ and we denote Φ = Θ∗(Φ̃).

The intertwining property of the covariant derivatives follows at once.

Corollary 5.5. Let Φ and Φ̃ be two connections such that Φ = Θ∗(Φ̃) as above.

Let ∇ and ∇̃ be the corresponding covariant derivatives, respectively. If we have

σ ∈ Ω0(Z,D) and σ̃ ∈ Ω0(Z̃, D̃) such that δ ◦ σ = σ̃ ◦ ζ, then δ ◦ ∇σ = ∇̃σ̃ ◦ Tζ.

5.3. Linear connections induced by reproducing kernels. Let Π: D → Z
be a Hermitian-like vector bundle endowed with an admissible self-involutive re-
producing (−∗)-kernel K such that K(z, s) is invertible from Ds−∗ onto Ds for all
s ∈ Z and corresponding z = z(s) ∈ Z (see Corollary 4.5).

Let ∆K = (δK , ζK) and C be the classifying quasimorphism for K and isometry
of HK , respectively, constructed in Theorem 4.1. Assume that S0 in Gr(HK) is
such that C(S0) = S0 and ζK(Z) ⊆ GrS0(HK), and therefore δK(D) ⊆ TS0(HK),
so we have that ∆K is a quasimorphism from Π to the universal bundle ΠS0,C at
S0 ⊆ HK :

D
δK−−−−→ TS0

(HK)

Π

y yΠS0,C

Z
ζK−−−−→ GrS0

(HK).

Let Ep be the conditional expectation, associated to the orthogonal projection
p := pS0

: HK → S0, given by

Ep(T ) := pTp+ (1− p)T (1− p), T ∈ B(HK)

Then the mapping ΦS0
: T (TS0

(H)) → T (TS0
(H)) defined for u ∈ GL(HK),

T ∈ B(H), and x, y ∈ S0 by

[((u, T ), (x, y))] 7→ [((u,Ep(T )), (x, y))] = [((u, 0), (x,Ep(T )x+ y))],

is a connection on the tautological bundle ΠH,S0
: TS0

(H)→ GrS0
(H). We call ΦS0

the universal connection on ΠH,S0
. See [BG14, Definition 2.11].
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Since K is assumed to be admissible Ǩ and ζK in Theorem 4.4 are smooth, hence
so is δK and ∆K . Moreover, that K is admissible in particular implies that the

map δK is a fiberwise linear or conjugate-linear isomorphism from Ds onto K̂(Ds).
Thus one can apply Definition 5.4.

Definition 5.6. Under the above conditions, we call connection on Π induced by
K the pull-back connection ΦK given by

ΦK := (∆K)∗(ΦS0).

We compute now the covariant derivative for the connection ΦK . First of all,
one needs to find the covariant derivative corresponding to the universal connection
ΦS0 . This has been settled in [BG14], by giving a formula which emphasizes the
role of the orthogonal projections on closed subspaces. The following is Proposition
2.13 of [BG14].

Proposition 5.7. Let S0 ∈ Gr(H). If σ ∈ Ω0(GrS0(H), TS0(H)) is a smooth
section, then there exists a unique smooth function Fσ ∈ C∞(GrS0(H),H) such that
σ(·) = ( · , Fσ(·)) and we have

∇σ(X) = (S, pS(dFσ(X))), S ∈ GrS0(H), X ∈ TS(GrS0(H)),

where pS is the orthogonal projection from H onto S.

We now can establish the general result on covariant derivatives associated to
kernels. The proof goes along the same argument as in [BG14, Theorem 4.2] up to
the necessary adaptation to the Hermitian-like case.

Theorem 5.8. In the setting of Definition 5.6, let ∇K : Ω0(Z,D) → Ω1(Z,D) be
the covariant derivative for the connection induced by K.

If σ ∈ Ω0(Z,D) has the property that there exists σ̃ ∈ Ω0(GrS0
(HK), TS0

(HK))
such that δK ◦ σ = σ̃ ◦ ζK , then for s, z = z(s) ∈ Z and X ∈ TsZ we have

(∇Kσ)(X) = K(z(s), s−∗)−1
((

(pζK(s)(d(K̂ ◦ σ)(X)))
)︸ ︷︷ ︸

∈HK⊆Ω0(Z,D)

(z(s))
)
.

Proof. Recall that for every ξ ∈ D we have K̂(ξ) = Kξ = K(·,Π(ξ)−∗)ξ and

δK(ξ) = (ζK(Π(ξ)), K̂(ξ)). Let s ∈ Z and X ∈ TsZ arbitrary, with z ∈ Z such that

K(z, s−∗) is invertible. Since δK ◦σ = σ̃ ◦ ζK , we obtain δK ◦∇Kσ = ∇̃K σ̃ ◦T (ζK)

by Proposition 5.2, where ∇̃K denotes the covariant derivative for the universal
connection on the tautological vector bundle ΠH,S0

: TS0
(HK) → GrS0

(HK). In
particular we get

(ζK(s), K̂((∇σ)(X))) = δK((∇Kσ)(X)) = ∇̃K σ̃(T (ζK)X). (5.1)

On the other hand, since σ̃ ∈ Ω0(GrS0(HK), TS0(HK)), there exists a uniquely
determined function Fσ̃ ∈ C∞(GrS0(HK),HK) with σ̃(·) = (·, Fσ̃(·)). Then by
Proposition 5.7 we get

∇̃K σ̃(T (ζK)X) = (ζK(s), pζK(s)(dFσ̃(T (ζK)X))). (5.2)

By using δK ◦ σ = σ̃ ◦ ζK again, we obtain Fσ̃ ◦ ζK = K̂ ◦ σ = K̂ ◦ σ : Z → HK ,
hence by differentiation,

dFσ̃ ◦ T (ζK) = d(K̂ ◦ σ). (5.3)
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It now follows by (5.1)–(5.3) that

K̂((∇Kσ)(X)) = pζK(s)(d(K̂ ◦ σ)(X)) ∈ HK .
Both sides of the above equality are sections in the bundle Π: D → Z, and moreover
(∇Kσ)X ∈ Ds. By evaluating the left-hand side at the point z ∈ Z we obtain the
value K(z, s−∗)

(
(∇Kσ)X) ∈ Dz. Hence by evaluating both sides of the above

equality at z and then applying the operator K(z, s−∗)−1 to both sides of the
equality obtained after the evaluation we obtain

(∇Kσ)(X) = K(z, s−∗)−1
(
(pζK(s)(d(K̂ ◦ σ)(X)))(z)

)
,

as we wanted to show. �

Remark 5.9. We have seen that there is a correspondence from admissible (self-
involutive) reproducing kernels to linear connections (and covariant derivatives).
In the Hermitian case (for the involution −∗ = id) such a correspondence takes the
form of a (unique) functor between suitable categories (see [BG14, Section 4.2]).
Similar results can be obtained in the more general framework of Hermitian-like
vector bundles, once one has introduced the appropriate, correspondingly, cate-
gories.

6. Examples

6.1. Kernels on trivial bundles. Examples of linear connections and covariant
derivatives associated with reproducing kernels on trivial bundles have been given in
[BG14] in the hermitian case. Here we show more general Hermitian-like structures
on trivial bundles.

So, let X be a Banach manifold and let H be a Hilbert space. Assume that
κ : X × X → B(H) is a smooth map that, also, is the reproducing kernel of a
Hilbert space denoted by Hκ. This means in particular that, for every xi ∈ X ,
vi ∈ H, i = 1, . . . , n,

n∑
i,j=1

(κ(xi, xj)vj | vi)H ≥ 0,

and that Hκ is the Hilbert space of H-valued functions on X generated by the space
span{κx ⊗ v : x ∈ X , v ∈ H}, where

κx ⊗ v := κ(·, x)v : X → H,
with respect to the inner product given by

(κx ⊗ v | κy ⊗ w)Hκ := (κ(y, x)v | w)H,

see [Ne00, Theorem I.1.4, (2) and (a)].
Assume in addition that κ(x, x) is invertible in B(H) for all x, and that there exist

a diffeomorphic involution x ∈ X 7→ x−∗ ∈ X and a (conjugate-)linear isometry
C : H → H related through the equation

Cκ(x−∗, y−∗)C = κ(x, y) ∀x, y ∈ X .
We define a Hermitian-like structure on the trivial vector bundle X ×H → X by(

(x, u) | (x−∗, v
)
)x,x−∗ := (u | v)H , (x ∈ X ;u, v ∈ H),

and a kernel, accordingly, given by the family of operators K(x, y) defined by

{y−∗} ×H 3 (y−∗, v) 7→ (x, κ(x, y)v) ∈ {x} ×H.
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whenever x, y ∈ X . It is readily seen that K is a reproducing kernel on the afore-
mentioned trivial bundle. Moreover, for x, y ∈ X and v ∈ H, we have

K(x,v)(y) = K(y, x−∗)(x, v) = (y, κx−∗(y)v),

and therefore there is the correspondence K(x,v) ←→ κx−∗ ⊗ v. Also, it is readily
seen that if (x, v), (y, w) ∈ X ×H then(

K(x,v) | K(y,w)

)
HK = (κx−∗ ⊗ v | κy−∗ ⊗ w)Hκ .

Thus we get that HK = Hκ.
Define the involution

τ : X ×H 3 (x, v) 7→ (x−∗, Cv) ∈ X ×H.

For every x, y ∈ X and v ∈ H,

(τ ◦K(x−∗, y−∗) ◦ τ)(y−∗, v)) = (τ ◦K(x−∗, y−∗))(y, Cv)

= τ
(
(x−∗, κ(x−∗, y−∗)Cv)

)
= (x,Cκ(x−∗, y−∗)Cv)

= (x, κ(x, y)v) = K(x, y)(y−∗, v),

so that K is self-involutive with respect to τ . Further, transferring Cτ := C(τ)
from HK to Hκ gives us

Cτ (κx−∗ ⊗ v) = κx ⊗ Cv, (x ∈ X , v ∈ H).

The classifying quasimorphism for K is

(x, v) ∈ X ×H δK−−−−→ (κx∗−∗ ⊗H, κx∗−∗ ⊗ v) ∈ T (Hκ)

pX

y yΠHκ

x ∈ X ζK−−−−→ κx∗−∗ ⊗H ∈ Gr(Hκ) .

In the Hermitian case, which correspond to the choice −∗ = idX and C = idH
simultaneously, the covariant derivative formula for the connection induced by the
reproducing kernel K when H = C was given in [BG14]. Then moreover it was
applied to examples of classical reproducing kernels of holomorphic Hilbert spaces.
We are not going ahead here with the corresponding formulas for general involutions
−∗ and C, which so are left to prospective readers.

6.2. Hermitian-like homogeneous fiber bundles. Let GA and GB be two
Banach-Lie groups, GB Banach-Lie subgroup of GA, with an involutive diffeo-
morphism “∗” in GA for which GB is stable. For every g ∈ GA, put g−∗ :=
(g∗)−1 and then define the involutive diffeomorphism −∗ in the homogeneous space
GA/GB by (gGB)−∗ := g−∗GB for every g ∈ GA. Let ρA : GA → B(HA) and
ρB : GB → B(HB) be uniformly continuous ∗-representations into Hilbert spaces
HB and HA respectively, such that HB ⊆ HA, ρB(g) = ρA(g)|HB for g ∈ GB and
HA = span ρA(GA)HB .

Let us consider the homogeneous vector bundle Π: GA ×GB HB → GA/GB ,
induced by the representation ρB , with the involutive diffeomorphism −∗ in the
base GA/GB . We endow Πρ with the Hermitian-like structure given by(

[(u, f)], [(u−∗, h)]
)
s,s−∗

:= (f | h)H, u ∈ GA, f, h ∈ H.
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Let P : HA → HB be the orthogonal projection. We define the reproducing (−∗)-
kernel Kρ on the vector bundle Π: D = GA ×GB HB → GA/GB by

Kρ(uGB , vGB)[(v−∗, f)] = [(u, P (ρA(u−1)ρA(v−∗)f))], (6.1)

for uGB , vGB ∈ D and f ∈ HB (see [BG08]).

Proposition 6.1. In the above setting,

(a) the mapping K̂ρ is smooth;
(b) for every s ∈ GA/GB the bounded linear operator Kρ(s, s

−∗) is invertible

on Ds, so K̂ρ|Ds : Ds → HKρ is injective and its range is closed;
(c) the mapping

ζKρ : GA/GB → Gr(HKρ), ζKρ(s) := K̂ρ(Ds),

is smooth.

Proof. Clearly, Kρ(s, s
−∗) = idDs for all s ∈ GA/GB . Thus property (b) holds by

Corollary 4.5. Now, by similar arguments to those of [BG08, Sect. 4] one obtains
that there exists a unitary operator W : HK → HA such that W (Kη) = πA(v)g
whenever η = [(v, g)] ∈ D. Then the one can prove (a) and (b) in essentially the
same way as in [BG14, Proposition 5.2]. �

In general, the vector bundle Πρ need not have an involution τ as in Definition
3.4. It is possible to provide Πρ with such an involution if we assume the following.

Suppose that there exists an involutive isometry C : HA → HA such that

(i)C(HB) = HB , and (ii) ρA(u−∗) = CρA(u)C, (u ∈ GA). (6.2)

(Note that in the above assumptions we can take C as the identity whenever ρ is a
unitary representation.)

Then let τC be the involution in D := GA ×GB HB given by

τC : [(u, f)] ∈ D 7→ [(u−∗, C(f))] ∈ D,
which is well defined because of condition 6.2 (ii). As a matter of fact, the kernel
Kρ is self-involutive with respect to the involution τ . To see this, first we prove the
following simple lemma.

Lemma 6.2. Let H be a Hilbert space. For any closed subspace S of H we denote
by PS the orthogonal projection P : H → S. Then we have

PC(S) = CPSC.

Proof. Given any x ∈ H, we know that PS(x) is characterized as the only element
in S such that

(x− PS(x) | y)H = 0, (y ∈ S).

Hence, if C is linear, we have for every y ∈ S,(
x− (CPC(S)C)(x) | y

)
H =

(
C(Cx− PC(S)(Cx)) | y

)
H

=
(
Cx− PC(S)(Cx) | Cy

)
H = 0

since Cy ∈ C(S). (If the isometry C is conjugate-linear, then the last equality
should be replaced by

(
Cy | Cx− PC(S)(Cx)

)
H = 0.) So by uniqueness we get the

wished-for equation PC(S) = CPSC. �

Proposition 6.3. The reproducing kernel Kρ is self-involutive with respect to the
involution τC .
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Proof. (a) Write K = Kρ, τ = τC and recall that P = PHB . For s = uGB , t =
vGB ∈ GA/GB and f ∈ HB , one has(

τ ◦K(s−∗, t−∗) ◦ τ
) (

[(v−∗, f)]
)

=
(
τ ◦K(s−∗, t−∗)

)
([(v, Cf)])

= τ
(
[(u−∗, P (ρA(u∗v)Cf))]

)
= [(u,CPHB (ρ(u∗v)Cf))]

=
[(
u, PC(HB)(Cρ(u∗v)Cf)

)]
=
[(
u, P (u−1v−∗)f)

)]
= K(s, t)

(
[(v−∗, f)]

)
,

by Lemma 6.2 for the fourth equality and (6.2) for the next-to-last equality. �

Remark 6.4. Part (b) of Proposition 6.1 for the kernel Kρ is in accordance with
Corollary 4.5 (ii), since Kρ(s, s) : Ds−∗ → Ds is an invertible (surjective) operator
for all s ∈ GA/GB : If Kρ(uGB , uGB([(u−∗, f)]) = 0 for some [(u−∗, f)] ∈ Ds−∗ ,
with s = uGB , then (ρA(u−1)ρA(u−∗)f | h)HA = 0 for all h ∈ HB , and so
‖ρA(u−∗)f‖2HA = 0 by taking h = f . Hence f = 0. Thus K(s, s) is injective.

Similarly, if h ∈ HB and 0 = (PHB (ρA(u−1)ρA(u−∗)f) | h)HA for all f ∈ HB then,
taking f = h, we obtain h = 0, so the linear space PHB (ρA(u−1u−∗)HB) is dense
in HB . Moreover, for f ∈ HB , f 6= 0, one has

‖PHB (ρA(u−1u−∗)f‖HB = sup
‖h‖HB≤1

|(PHB (ρA(u−1u−∗)f | h)HB |

≥ 1

‖f‖HB
|(ρA(u−∗)f | ρA(u−∗)f)HA |

=
1

‖f‖HB
‖ρA(u−∗)f‖2HA

≥ 1

‖ρA(u∗)‖HA→HA
‖ρA(u−∗)f‖HA

≥ ‖ρA(u−1u−∗)f‖HA
‖ρA(u−1)‖ ‖ρA(u∗)‖

,

whence it follows that PHB (ρA(u−1u−∗)HB) is closed in HB . In summary, Kρ(s, s)
is a linear bijection.

Using the unitary operator W referred to in the proof of Proposition 6.1, one
gets the identification HKρ = HA, so that the classifying quasimorphism (δKρ , ζKρ)
takes the form

δKρ : [(g, f)] 7→ (ρA(g)HB , ρA(g)f), GA ×GB HB → THB (HA),

and
ζKρ : gGB 7→ ρA(g)HB , GA/GB → GrHB (HA).

Then Theorem 4.1 applies, so that the kernelKρ can be recovered from the tautolog-
ical kernel QHK ,C (Notice that this is also consequence of [BG11, Theorem 5.1] since
the involution S 7→ C(S) in GrHB (HA) satisfies C(ζKρ(uGB)) = C(ρ(u)HB) =
ρ(u−∗)HB = ζKρ(u

−∗GB) by (6.2)(ii) and the discussion in [BG11, p. 158].)
It is straighforward to check that the map Φρ : T (GA×GBHB)→ T (GA×GBHB)

given for every g ∈ GA, X ∈ gA and f, h ∈ HB by

Φρ : [((g,X), (f, h))] 7→ [((g, 0), (f, P (dρ(X)f) + h)]
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is a linear connection on the homogeneous bundle Π: GA ×GB HB → GA/GB . In
fact such a connection is equal to the connection on Πρ obtained as the pull-back
ΦKρ := ∆∗KρΦEP , where ∆Kρ = (δKρ , ζKρ). This fact is immediate to prove, since

the definition of both connections ΦKρ and Φρ is given by the fiberwise composi-

tion Φ = (TδKρ)
−1 ◦ ΦEP ◦ TδKρ irrespective the Hermitian-like structure that we

consider in the tautological vector bundle T (HA)→ Gr(HA).

Definition 6.5. In the above setting, we say that Φρ ≡ ΦKρ is the natural con-
nection associated with Πρ.

In order to compute the covariant derivative associated with the connection Φρ,
note that if gA and gB are the Lie algebras of GA and GB , respectively, then the
adjoint action of GB on gA gives rise to a linear action on the quotient gA/gB
and we can then form the homogeneous vector bundle GA ×GB (gA/gB), which is
isomorphic to the tangent bundle T (GA/GB). For any closed linear subspace m of
gA such that gA = gB u m we have a linear topological isomorphism m ' gA/gB ,
which gives rise to a natural linear action of GB on m, hence to a homogeneous
vector bundle GA ×GB m which can be identified with T (GA/GB).

Proposition 6.6. Fix m as above so that T (GA/GB) = GA ×GB m. Let φ : GA →
HB be any smooth function such that φ(uw) = ρA(w)−1φ(u), u ∈ GA and w ∈
GB, and let σ be the associated smooth section defined by σ : uGB ∈ GA/GB 7→
[(u, φ(u))] ∈ GA×GB HB. Let σ̃ : GrHB (HA)→ THB (HA) be a smooth section such
that σ̃(ρA(u)HB) := (ρA(u)HB , ρA(u)φ(u)), for all u ∈ GA.

Then for every tangent vector [(u,X)] ∈ GA ×GB m we have

(∇σ)([(u,X)]) = [(u,dφ(u,X) + ρA(u)−1pρA(u)HBρA(u)dρ(X)(φ(u)))].

In particular, if ρA is in addition unitary then

(∇σ)([(u,X)]) = [(u,dφ(u,X) + P (dρA(X)φ(u)))].

Proof. Notice first that the formula in the case when ρA is unitary on HA follows
from the general formula, since then pρA(u) = ρA(u)PρA(u)−1 for all u ∈ GA.

Next, we prove the general formula by specializing Theorem 5.8 to our case.
Recall there is the identification HA = HKρ given by ι(h) = [(·, P (ρA(·)−1h))]

for every h ∈ HA. Hence

(∀u ∈ GA) ι(h)(uGB) = [(u, P (ρA(u)−1h))]. (6.3)

Then, for all [(v, f)] ∈ GA ×GB HB ,

K[(v,f)]=K̂([(v, f)]) = K(·, v−∗)[(v, f)] = ι(ρ(v)f) ∈ HA.
Now pick any [(u,X)] ∈ GA ×GB m and define the curves ΓX(t) := expGA(tX),
γX(t) := ΓX(t)GB , and uγX(t) := uΓX(t)GB for all t ∈ R. For every t ∈ R we
have σ(uγX(t)) = [(uΓX(t), φ(uΓX(t)))], so

K̂(σ(uγX(t))) = ι(ρA(u)ρA(ΓX(t))φ(uΓX(t))).

Therefore
d

dt

∣∣∣
t=0

K̂(σ(uγX(t))) = ι(ρA(u)(dρA(X)φ(u) + dφ(u,X))),

which entails

pρA(u)HB (
d

dt

∣∣∣
t=0

K̂(σ(uγX(t)))) = ι(pρA(u)HB (ρA(u)dρA(X)φ(u))+ρA(u)dφ(u,X))
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since dφ(u,X) ∈ HB . Finally, since K(s, s−∗) = idDs with D = GA ×GB HB , for
every s ∈ GA/GB , an application of Theorem 5.8 along with (6.3) concludes the
proof. �

6.3. Involutive homogeneous bundles and CP mappings. We discuss here
an example that illustrates Proposition 6.3 by using completely positive mappings
(CP mappings, for short) and conditional expectations suitably related in between.
We first give a result on dilations of CP maps acting on the right.

Lemma 6.7. Let A be any unital C∗-algebra, H0 be any complex Hilbert space,
and Ψ: A→ B(H0) be any unital CP map. Assume that Ψ is tracial, that is,

Ψ(ab) = Ψ(ba), (a, b ∈ A).

Then there exist a Hilbert space H, an isometry V : H0 → H, and a unital ∗-
representation ρ : GA → B(H) such that

Ψ(a) = V ∗ρ(a−1)V, (a ∈ GA).

Proof. First we sketch briefly how to find H and V , by using the method of proof
of Stinespring’s theorem as given for instance in [Pa02, Theorem 4.1].

Define a nonnegative sesquilinear form on A⊗H0 by the formula( n∑
j=1

bj ⊗ ηj |
n∑
i=1

ai ⊗ ξi
)

=

n∑
i,j=1

(Φ(a∗i bj)ηj | ξi)

for all a1, . . . , an, b1, . . . , bn ∈ A, ξ1, . . . , ξn, η1, . . . , ηn ∈ H0 and n ≥ 1. Consider
the linear space N = {x ∈ A ⊗ H0 | (x | x) = 0} and denote by K0 the Hilbert
space obtained as the completion of (A⊗H0)/N with respect to the scalar product
defined by (· | ·) on this quotient space. Then denote by V : H0 → K0 the bounded
linear map obtained as the composition

V : H0 → A⊗H0 → (A⊗H0)/N ↪→ K0,

where the first map is defined by A 3 h 7→ 1⊗ h ∈ A⊗H0 and the second map is
the natural quotient map. It is readily seen that V is an isometry since Ψ is unital.

Next we are going to construct ρ by linear maps on A⊗H0. So define

(∀x ∈ A, a ∈ GA)(∀η ∈ H0) ρ(a)(x⊗ η) = xa−1 ⊗ η.
For yi ∈ A, i = 1, . . . , n, and b ∈ A the following inequality between positive

matrices in Mn(A) holds:

(y∗i b
∗byj)i,j ≤ ‖b∗b‖ (y∗i yj)i,j ; (6.4)

see [Pa02, p. 44].
Take then xi ∈ A, ξi ∈ H0, i = 1, . . . , n, and a ∈ GA. Since Ψ is tracial we have

Ψ(a−∗x∗jxia
−1) = Ψ(xia

−1a−∗x∗j ). Hence,

(

n∑
i=1

xia
−1 ⊗ ξi |

n∑
j=1

xja
−1 ⊗ ξj) =

n∑
i,j=1

(
Ψ(a−∗x∗jxia

−1)ξ | ξj
)
H0

=

n∑
i,j=1

(
Ψ(xia

−1a−∗x∗j )ξ | ξj
)
H0

≤ ‖a−1a−∗‖
n∑

i,j=1

(
Ψ(xix

∗
j )ξ | ξj

)
H0
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= ‖a−1‖2 (

n∑
i=1

xia
−1 ⊗ ξi |

n∑
j=1

xja
−1 ⊗ ξj),

where, for the above inequality, we used (6.4) and the complete positivity of Ψ.
Thus in particular N is invariant under the action of ρ, so that the linear map

ρ(a) extends to a linear map (which we continue denoting in the same way) on
A×H0 defined by

ρ(a) : x⊗ ξ ∈ A⊗H0 7→ xa−1 ⊗ ξ ∈ A⊗H0,

which extends in turn as a continuous linear mapping from H into itself because of
the preceding inequality.

Now, it is straightforward to check that the map ρ : GA → B(H) defined as above
is a ∗-representation and satisfies the equation Ψ(a) = V ∗ρ(a−1)V , (a ∈ GA). �

Recall that if, instead of the inverse-right multiplication x ⊗ ξ 7→ xa−1 ⊗ ξ in
A⊗H0, one considers the left multiplication x⊗ ξ 7→ ax⊗ ξ, a ∈ GA, then one gets
precisely the Stinespring dilation λ of Ψ on H, which satisfies Ψ(a) = V ∗λ(a)V for
all a ∈ A.

We call two-sided Stinespring representation of a tracial completely positive map-
ping Ψ: A → B(H) the group representation σ : GA → B(H) which is the compo-
sition of the above representations λ and ρ:

σ(a) = λ(a) ◦ ρ(a) = ρ(a) ◦ λ(a) , (a ∈ GA).

Proposition 6.8. Suppose that 1 ∈ B ⊆ A are C∗-algebras with a conditional
expectation E : A → B and that there exists a tracial, unital completely positive
map Ψ: A → B(H0) satisfying Ψ ◦ E = Ψ, where H0 is a complex Hilbert space.
Suppose also that there exists a conjugate-linear isometry C0 : H0 → H0 such that

Ψ(a∗) = C0 ◦Ψ(a) ◦ C0, (a ∈ A).

Denote by σA : A → B(HA) and σB : B → B(HB) the two-sided Stinespring rep-
resentations associated with Φ and Φ|B, respectively. Let C : HA → HA be the
conjugate-linear isometry from HA onto itself induced by the mapping

a⊗ f 7→ a∗ ⊗ C0(f), A⊗H0 → A⊗H0.

Then HB ⊆ HA, C(HB) = HB, and the kernel Kσ given, for u, v ∈ GA and
f ∈ HB, by

Kσ(uGB , vGB)
(
[(v−∗, f)]

)
:=
[
(u, PHB (σA(uv−∗)f))

]
is self-involutive with respect to the involution τC in Dσ := GA ×GB ,σ HB defined
as

τC : [(a, h)] 7→ [(a−∗, Ch)], (a ∈ GA, h ∈ HB).

Proof. In [BG08, Lemma 6.7], it has been proven that HB ⊆ HA and that for every
h0 ∈ H0 and b ∈ B we have the commutative diagrams

A
ιh0−−−−→ HA

λA(b)−−−−→ HA

E

y PHB

y yPHB
B

ιh0−−−−→ HB
λB(b)−−−−→ HB

where ιh0
: A→ HA is the map induced by a 7→ a⊗ h0. In fact, the commutativity

of the right diagram is the simple part, and by a similar argument it can be shown
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that ρB(b) ◦ PHB = PHB ◦ ρB(b) for all b ∈ B. Having in mind that σ = ρ ◦ λ we
get the commutativity, for every b ∈ B, of the diagram

A
ιh0−−−−→ HA

σA(b)−−−−→ HA

E

y PHB

y yPHB
B

ιh0−−−−→ HB
σB(b)−−−−→ HB

This enables us to conclude that the kernel Kσ is well defined.
As for the definition of the isometry C we do observe that for ai ∈ A, hi ∈ H0,

with i = 1, . . . , n, we have

(

n∑
i=1

a∗i⊗C0hi |
n∑
j=1

a∗j ⊗ C0hj)HΨ
=

n∑
i,j=1

(Ψ(aja
∗
i )C0hi | C0hj)H0

=

n∑
i,j=1

(Ψ(a∗i aj)C0hi | C0hj)H0
=

n∑
i,j=1

(
C0Ψ(a∗jai)hi | C0hj

)
H0

=

n∑
i,j=1

(
hj | Ψ(a∗jai)hi

)
H0

= (

n∑
j=1

aj ⊗ hj |
n∑
i=1

aj ⊗ hi)HΨ ,

whence it follows that the conjugate-linear mapping C : A⊗H0 → A⊗H0 defined
by the prescription a ⊗ h 7→ a∗ ⊗ C0h is an isometry and leaves invariant the null
subspace N := {α ∈ A⊗H0 : (α | α)HΨ = 0}. Thus it extends as a conjugate-linear
isometry to H.

To end the proof we are going to apply Proposition 6.3, so it only remains to
show that σA(a−∗) = CσA(a)C for each a ∈ GA. To do this, take f := (x⊗h) +N
in H with x ∈ A and h ∈ H0. Then,

CσA(a)Cf = (CσA(a)C) ((x⊗ h) +N)

= (CσA(a)) ((x∗ ⊗ C0h) +N)

= C((ax∗a−1 ⊗ C0h) +N)

= ((ax∗a−1)∗ ⊗ h) +N = σA(a−∗)f.

Now the desired equality follows by linearity and density. �

Remark 6.9. Tracial completely positive maps from C∗-algebras into the algebra
of bounded operators on a separable Hilbert space are characterized in [ChTs83];
see the theorem on page 59 of the above reference.
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