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Abstract

In Part I, we introduce the implicative-group (the partially-ordered (lattice-ordered) implicative-
group) as a term equivalent definition of the group (the partially-ordered (lattice-ordered) group,
respectively); two intermediary term equivalent notions are also introduced. The lattice-ordered
implicative-group is the great piece which missed of the puzzle showing the connections between
lattice-ordered groups and some algebras of logic. We establish “horizontal” connections at group
level and “vertical” connections between the group level and the algebras of logic level. We discuss
about the filters (ideals) and the deductive systems of the involved notions.

In Part II, we study the normal filters/ideals and the compatible deductive systems, the repre-
sentability of some of the involved algebras and we establish other “vertical” connections between the
group level and the algebras of logic level. Finally, we introduce and study the implicative-states and
the Bosbach-states on l-groups with strong unit.

Keywords po-group, po-implicative-group, l-group, l-implicative-group, pseudo-BCK algebra,
partially-ordered integral monoid, pseudo-Wajsberg algebra, pseudo-MV algebra, filter, ideal, deduc-
tive system, representability, state, implicative-state, Bosbach-state

AMS classification (2000): 06F15, 06F35, 06D35

1 Introduction

Pseudo-MV algebras, the non-commutative generalizations of Chang’s MV algebras, were introduced in
1999 [13] and developed in [14]. Pseudo-MV algebras are intervals [8] in l-groups and pseudo-Wajsberg
algebras are term equivalent [3], [4] to pseudo-MV algebras. Hence, pseudo-Wajsberg algebras had to be
connected to a notion that is term equivalent to the l-group. That notion is the great piece which missed
of the puzzle showing the connections between algebras of logic and l-groups and was introduced in Part
I [19]: is the l-implicative-group.

l− implicative− group ⇐⇒ l− groups

m m
pseudo−Wajsberg algebras ⇐⇒ pseudo−MV algebras

Note that usually in the literature the case of right-pseudo-MV algebras is considered, since in po-
groups and l-groups the positive cone is usually considered. Note also that if we come from logic, where
the truth is represented by 1, then we arive to consider the left-pseudo-MV algebras (the left-structures
in general) and the negative cone. Therefore, in Part I and in this Part II, we deal with both cases: the
left- and the right- structures.

1



In Part I also we studied the “horizonthal” connections at group-level and also “vertical” connections
between the group-level and the algebras of logic level: pseudo-BCK algebras, pseudo-product algebras
and pseudo-Wajsberg (pseudo-MV) algebras.

In this paper Part II, we continue to study “horizontal” connections at group-level and “vertical”
connections between the group-level and the algebras of logic level. The paper is organized as follows: in
Section 2, we recall some results from Part I.

In Section 3, we study normal filters/ideals and compatible deductive systems. Thus, first we introduce
the notion of compatible deductive system of a po-implicative-group versus the old notion of normal convex
po-subgroup of a po-group and prove the equivalence “compatible if and only if normal” (Theorem 3.3).
Then, we mainly prove that the normality (compatibility) at l-group (l-implicative-group) G level is
inherited by the algebras obtained by restricting the l-group (l-implicative-group) operations to G− and
to G+, to [u′, 0] and to [0, u], and finally to G−−∞ = {−∞} ∪ G− and to G+

+∞ = G+ ∪ {+∞} and, also,
that the equivalence “compatible if and only if normal”, existing at l-group (l-implicative-group) level,
is preserved by the algebras obtained by restricting the l-group (l-implicative-group) operations to G−

and to G+, to [u′, 0] and to [0, u], and finally to G−−∞ and to G+
+∞ (Theorems 3.11, 3.18, 3.22). Other

important results, at general level, are the Theorems 3.8, 3.13, 3.20 and the Corollary 3.23.
In Section 4, we study the representability. First, we find equivalent conditions for an l-implicative-

group to be representable (Theorem 4.6). Then, we prove that representability at l-implicative-group G
level is inherited by the algebras obtained by restricting the operations from G to G− and to G+ (Theorem
4.9). Another important result at this level is Theorem 4.10. The research here must be continued:
connections between the representability at l-group (l-implicative-group) G level and the representability
at [u′, 0] ⊂ G−, [0, u] ⊂ G+ level and at G−−∞, G+

+∞ level must be found.
In Section 5, we study the states. First, we define the distance functions dL

1 , dL
2 and dR

1 , dR
2 on an

l-group and prove some properties (Proposition 5.2), following the ideas in the pseudo-BL algebras case.
Then, we introduce the notions of additive-state, or state for short, on a po-group with strong unit and
implicative-state on a po-implicative-group with strong unit and prove they coincide (Theorem 5.7). Next,
we introduce the notions of state morphism on an l-group with strong unit and implicative-state morphism
on an l-implicative-group with strong unit and prove they coincide, by the same Theorem 5.7. Finally,
we introduce the notion of Bosbach-state on an l-group with strong unit, prove some properties and prove
that any state is a Bosbach-state (Theorem 5.17), following the ideas from [12]. The research from this
section must continue at least with the study of the restrictions of the various kinds of states from the
l-group level to the G−, G+ level, the [u′, 0], [0, u] level and the G−−∞, G+

+∞ level.

2 Preliminaries

Recall first the following notations (where d means “dual”):
(pP) (pseudo-product) ∃ x¯ y

notation= min{z | x ≤ y →L z} = min{z | y ≤ x ;L z},
(pS) (pseudo-sum) ∃ x⊕ y

notation= max{z | x ≥ y →R z} = max{z | y ≥ x ;R z},
(pR) (pseudo-residuum) ∃ y →L z

notation= max{x | x¯ y ≤ z}, x ;L z
notation= max{y | x¯ y ≤ z},

(pcoR) (pseudo-coresiduum) ∃ y →R z
notation= min{x | x⊕ y ≥ z}, x ;R z

notation= min{y | x⊕ y ≥ z},
(pPR)=(pRP) x¯ y ≤ z ⇐⇒ x ≤ y →L z ⇐⇒ y ≤ x ;L z,
(pScoR)=(pcorRS) x⊕ y ≥ z ⇐⇒ x ≥ y →R z ⇐⇒ y ≥ x ;R z,
(pDN) (pseudo-Double Negation) (x∼)− = x = (x−)∼,
(pC) x ∨ y = (x ;L y) →L y = (x →L y) ;L y,
(pCd) x ∧ y = (x →R y) ;R y = (x ;R y) →R y;
(pC) implies (pprel) and (pdiv),
(pCd) implies (ppreld) and (pdivd);
(pprel) (pseudo-prelinearity) (x →L y) ∨ (y →L x) = 1 = (x ;L y) ∨ (y ;L x),
(pdiv) (pseudo-divisibility) x ∧ y = (x →L y)¯ x = x¯ (x ;L y),
(ppreld) (x →R y) ∧ (y →R x) = 0 = (x ;R y) ∧ (y ;R x) ,
(pdivd) x ∨ y = (x →R y)⊕ x = x⊕ (x ;R y) ;
(*) (x¯ z) →L (y ¯ z) = x →L y, (z ¯ x) ;L (z ¯ y) = x ;L y,
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(*d) (x⊕ z) →R (y ⊕ z) = x →R y, (z ⊕ x) ;R (z ⊕ y) = x ;R y;
(pP1) x ∧ x−

L

= 0 = x ∧ x∼
L

,
(pP2) (z−

L

)−
L ¯ [(x¯ z) →L (y ¯ z)] ≤ x →L y, (z∼

L

)∼
L ¯ [(z ¯ x) ;L (z ¯ y)] ≤ x ;L y,

(pP1d) x ∨ x−
R

= 1 = x ∨ x∼
R

,
(pP2d) (z−

R

)−
R ⊕ [(x⊕ z) →R (y ⊕ z)] ≥ x →R y, (z∼

R

)∼
R ⊕ [(z ⊕ x) ;R (z ⊕ y)] ≥ x ;R y.

Recall [16] that the left-pseudo-BCK(pP) algebras (denote one by AL = (AL,≤,→L,;L, 1), where
the pseudo-product is ¯) are categorically equivalent to the left-porims (= partially-ordered residuated
integral left-monoids) (denote the corresponding one by AL

m = (AL,≤,¯, 1), where the pseudo-residuum
is (→L, ;L)), and, dually, the right-pseudo-BCK(pS) algebras (AR = (AR,≤,→R,;R, 0), where the
pseudo-sum is ⊕) are categorically equivalent to the right-porims (= partially-ordered residuated integral
right-monoids) (AR

m = (AR,≤,⊕, 0), where the pseudo-coresiduum is (→R, ;R)). We write for short:

(a) left-pseudo-BCK(pP) algebras ⇐⇒ left-porims and dually
(a’) right-pseudo-BCK(pS) algebras ⇐⇒ right-porims.

Recall also that the (→L, ;L)-deductive systems of AL (the (→R,;R)-deductive systems of AR)
coincide with the filters of the equivalent AL

m (the ideals of the equivalent AR
m, respectively) [19], Theorem

2.16.

Remark 2.1 Thus, we can roughly speak about the (→L, ;L)-deductive systems and the filters of AL (or
of AL

m) and say that they coincide; dually, we can roughly speak about the (→R, ;R)-deductive systems
and the ideals of AR (or of AR

m) and say that they coincide.

Moreover, we have:
(b) left-pseudo-BCK(pP) lattices ⇐⇒ left-l-rims (= lattice-ordered residuated integral left-monoids) and
(b’) right-pseudo-BCK(pS) lattices ⇐⇒ right-l-rims.
It follows, on one hand, that
(c) left-pseudo-BCK(pP) lattices verifying condition (pC) ⇐⇒ left-l-rims verifying condition (pC) and
(c’) right-pseudo-BCK(pS) lattices verifying condition (pCd) ⇐⇒ right-l-rims verifying condition (pCd),
hence
(d) bounded left-pseudo-BCK(pP) lattices verifying (pC) ⇐⇒ bounded left-l-rims verifying (pC) and
(d’) bounded right-pseudo-BCK(pS) lattices verifying (pCd) ⇐⇒ bounded right-l-rims verifying (pCd).

But, recall also ([18], Theorem 10.2.16) that:
the bounded left-pseudo-BCK(pP) lattice verifying (pC) is an equivalent definition of the left-pseudo-
Wajsberg algebra, while the bounded left-l-rim verifying (pC) is an equivalent definition of the left-
pseudo-MV algebra; and left-pseudo-Wajsberg algebras are term equivalent to left-pseudo-MV algebras.
Dually,
the bounded right-pseudo-BCK(pS) lattice verifying (pCd) is an equivalent definition of the right-pseudo-
Wajsberg algebra, while the bounded right-l-rim verifying (pCd) is an equivalent definition of the right-
pseudo-MV algebra; and right-pseudo-Wajsberg algebras are term equivalent to right-pseudo-MV algebras.

On the other hand, it follows that:
(e) bounded left-pseudo-BCK(pP) lattices verifying (prel),(pdiv) (= left-pseudo-Hajék(pP) algebras) ⇐⇒
bounded left-l-rims verifying (prel), (pdiv) (≡ left-pseudo-BL algebras) and
(e’) bounded right-pseudo-BCK(pS) lattices verifying (preld), (pdivd) (= right-pseudo-Hajék(pS) algebras)
⇐⇒ bounded right-l-rims verifying (preld), (pdivd) (≡ right-pseudo-BL algebras),
hence
(f) left-pseudo-Hájek(pP) algebras verifying (pP1), (pP2)⇐⇒ bounded left-l-rims verifying (pprel), (pdiv)
and (pP1), (pP2) (≡ left-pseudo-BL algebras verifying (pP1), (pP2) = left-pseudo-product algebras) and
(f’) right-pseudo-Hájek(pS) algebras verifying (pP1d), (pP2d) ⇐⇒ bounded right-l-rims verifying (ppreld),
(pdivd) and (pP1d), (pP2d) (≡ right-pseudo-BL algebras verifying (pP1d), (pP2d) = right-pseudo-product
algebras).

Consequently, in all these algebras also, the (→L, ;L)-deductive systems (the (→R,;R)-deductive
systems) coincide with the filters (ideals, respectively).

We shall not recall definitions and other properties of algebras of logic, because of lack of space. In this
paper, note that “reversed” pseudo-BCK algebras will be simply called “pseudo-BCK algebras”, left-ones
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or right-ones.
We now recall from Part I some of the necessary results needed in the sequel concerning the (implicative-

) groups.

2.1 Groups, po-groups, l-groups

• Let G = (G, +,−, 0) be a group, in additive notation in this paper. We introduced the new operations
→ and ; on G, called “implications”, defined by: for all x, y ∈ G,

x → y
def.
= −[x + (−y)] = y + (−x), x ; y

def.
= −[(−y) + x] = (−x) + y. (1)

The two implications satisfy the following properties: for all x, y, z ∈ G,

x + y = −(x → (−y)) = (−y) → x, x + y = −(y ; (−x)) = (−x) ; y, (2)

y → z = (z → x) ; (y → x), y ; z = (z ; x) → (y ; x), (3)

(y → x) ; x = y = (y ; x) → x, (4)

−x = x → 0 = x ; 0, (5)

x = y ⇐⇒ x → y = 0 ⇐⇒ x ; y = 0, (6)

x + y = z ⇐⇒ x = y → z ⇐⇒ y = x ; z (see [11], page 160), (7)

x = y ⇐⇒ −y = −x, (8)

0 → x = x = 0 ; x, (9)

z ; (y → x) = y → (z ; x), (10)

z → x = (y → z) → (y → x), z ; x = (y ; z) ; (y ; x), (11)

x → x = 0 = x ; x, (12)

x ; (−y) = y → (−x), (13)

−(x → 0) = x = −(x ; 0), (14)

[(y → x) ; x] → x = y → x, [(y ; x) → x] ; x = y ; x, (15)

x → (y → z) = (x + y) → z, x ; (y ; z) = (y + x) ; z, (16)

x ; y = (−y) → (−x), x → y = (−y) ; (−x), (17)

(−x) ; y = (−y) → x, (18)

(x → y) + x = y = x + (x ; y), (19)

x → (y + x) = y = x ; (x + y), (20)

x → y = (x + z) → (y + z), x ; y = (z + x) ; (z + y), (21)

(y + x) → x = −y = (x + y) ; x, (22)

y → (x → (y + x)) = 0 = y ; (x ; (x + y). (23)

Proposition 2.2 In a group G, the following properties hold: for all x, y, z, x1, x2, . . . , xn ∈ G (n ≥ 2),
(a) (x ; y) + (y ; z) = x ; z,
(a’) (y → z) + (x → y) = x → z,
(b) (x1 ; x2) + (x2 ; x3) + . . . + (xn−1 ; xn) = x1 ; xn,
(b’) (xn−1 → xn) + . . . + (x2 → x3) + (x1 → x2) = x1 → xn.
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• Let now G = (G,≤,+,−, 0) be a partially-ordered group or a po-group for short. Then the following
properties hold: for all x, y, z ∈ G,

(i) x + y ≤ z ⇔ x ≤ y → z ⇔ y ≤ x ; z, and dually (24)

(ii) x + y ≥ z ⇔ x ≥ y → z ⇔ y ≥ x ; z,

x ≤ y =⇒ z → x ≤ z → y and z ; x ≤ z ; y, (25)

x ≤ y =⇒ y → z ≤ x → z and y ; z ≤ x ; z. (26)

Corollary 2.3 Let G be a po-group. For all x, y ∈ G, if x ≤ y then:
x → y ≥ 0, x ; y ≥ 0 and y → x ≤ 0, y ; x ≤ 0.

• Let finally G = (G,∨,∧, +,−, 0) be a lattice-ordered group or an l-group for short. Then we have,
for all x, y, a, b ∈ G:
(G8) a + (x ∨ y) + b = (a + x + b) ∨ (a + y + b) and dually
(G9) a + (x ∧ y) + b = (a + x + b) ∧ (a + y + b);
(G10) −(x ∨ y) = (−x) ∧ (−y) and dually
(G11) −(x ∧ y) = (−x) ∨ (−y);
(G12) x ∨ y = x− (x ∧ y) + y, x ∧ y = x− (x ∨ y) + y,
(G13) The lattice (G,∨,∧) is distributive;

(x ∨ z) → y = (x → y) ∧ (z → y), (x ∨ z) ; y = (x ; y) ∧ (z ; y) and dually (27)

(x ∧ z) → y = (x → y) ∨ (z → y), (x ∧ z) ; y = (x ; y) ∨ (z ; y); (28)

y → (x ∨ z) = (y → x) ∨ (y → z), y ; (x ∨ z) = (y ; x) ∨ (y ; z) and dually (29)

y → (x ∧ z) = (y → x) ∧ (y → z), y ; (x ∧ z) = (y ; x) ∧ (y ; z); (30)

[(x ∧ 0) ; 0] ∧ 0 = 0, [(x ∧ 0) → 0] ∧ 0 = 0 and dually (31)

[(x ∨ 0) ; 0] ∨ 0 = 0, [(x ∨ 0) → 0] ∨ 0 = 0; (32)

(x ∨ y) → (x ∧ y) = (x → y) ∧ (y → x) ∧ 0 ≤ 0, (x ∨ y) ; (x ∧ y) = (x ; y) ∧ (y ; x) ∧ 0 ≤ 0 (33)

and dually

(x ∧ y) → (x ∨ y) = (x → y) ∨ (y → x) ∨ 0 ≥ 0, (x ∧ y) ; (x ∨ y) = (x ; y) ∨ (y ; x) ∨ 0 ≥ 0; (34)

x → (x ∧ y) = 0 ∧ (x → y), x ; (x ∧ y) = 0 ∧ (x ; y), (35)

(x ∧ y) → x = 0 ∨ (y → x), (x ∧ y) ; x = 0 ∨ (y ; x). (36)

2.2 Implicative-groups, po-implicative-groups, l-implicative-groups

• An implicative-group ([19], Definition 4.1) is an algebra G = (G,→, ;, 0) of type (2, 2, 0) such that the
following axioms hold: for all x, y, z ∈ G,
(I1) y → z = (z → x) ; (y → x), y ; z = (z ; x) → (y ; x),
(I2) y = (y → x) ; x, y = (y ; x) → x,
(I3) x = y ⇐⇒ x → y = 0 ⇐⇒ x ; y = 0,
(I4) x → 0 = x ; 0.

The implicative-group is said to be commutative or abelian if x → y = x ; y, for all x, y ∈ G.
Let G be an implicative-group. Then, we have, for all x, y, z ∈ G:

(I7) 0 → x = x = 0 ; x,
(I8) z ; (y → x) = y → (z ; x),
(I9) x → x = 0 = x ; x,

z → x = (y → z) → (y → x), z ; x = (y ; z) ; (y ; x). (37)

An equivalent definition of the implicative-group is the following: an implicative-group is an algebra
G = (G,→,;, 0) of type (2, 2, 0) such that (I1), (I7), (I3), (I4) hold.

The groups and the implicative-groups are termwise equivalent:
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Theorem 2.4 ([19], Theorem 4.13)
(1) Let G = (G, +,−, 0) be a group. Define Φ(G) = (G,→,;, 0) by: for all x, y ∈ G,

x → y
def.
= −(x + (−y)) = −(x− y) = y − x,

x ; y
def.
= −((−y) + x) = −(−y + x) = −x + y.

Then Φ(G) is an implicative-group.
(1’) Conversely, let G = (G,→, ;, 0) be an implicative-group. Define Ψ(G) = (G, +,−, 0) by: for all

x, y ∈ G,

−x
def.
= x → 0

(I4)
= x ; 0,

x + y
def.
= −(x → (−y))

(2)
= −(y ; (−x)).

Then Ψ(G) is a group.
(2) The maps Φ and Ψ are mutually inverse.

The implicative-group is commutative if and only if the term equivalent group is commutative, i.e.
x → y = x ; y for all x, y if and only if x + y = y + x for all x, y.

• A partially-ordered implicative-group or a po-implicative-group for short ([19], Definition 4.17) is a
structure G = (G,≤,→,;, 0), where (G,→,;, 0) is an implicative-group and ≤ is a partial order on G
compatible with →, ;, i.e. we have: for all x, y, z ∈ G,
(I5) x ≤ y implies z → x ≤ z → y and z ; x ≤ z ; y.

The po-groups and the po-implicative-groups are termwise equivalent ([19], Theorem 4.23).
Let G be a po-implicative-group. A deductive system of G ([19], Definition 4.27) is a subset S ⊆ G

which satisfies: for all x, y, a, b ∈ G,
(DS1) 0 ∈ S,
(pDS2)(a) x ∈ S, x → y ∈ S imply y ∈ S (or x ∈ S, x ; y ∈ S imply y ∈ S); (b) x ∈ S implies
x → 0 = x ; 0 ∈ S,
(pDS3) a, b ∈ S and a ≤ x ≤ b imply x ∈ S.

Theorem 2.5 ([19], Theorem 4.28)
Let Gg = (G,≤, +,−, 0) be a po-group and let Gig = (G,≤,→,;, 0) be the term equivalent po-

implicative-group. Then, the convex po-subgroups of Gg coincide with the deductive systems of Gig.

Remark 2.6 Thus, we can roughly speak about the convex po-subgroups and the deductive systems of
Gg (or of Gig) and say that they coincide.

• If the partial order relation ≤ is a lattice order relation, with the lattice operations ∧ and ∨ defined
by: x ≤ y ⇔ x∧ y = x ⇔ x∨ y = y, then G is a lattice-ordered implicative-group or an l-implicative-group
for short, denoted G = (G,∨,∧,→, ;, 0).

The l-groups and the l-implicative-groups are termwise equivalent ([19], Corollary 4.31).

2.3 “Vertical” connections (between group level and algebras of logic level)

• At partial order level, we have:

Theorem 2.7 ([19], Theorem 5.1) Let G = (G,≤, +,−, 0) be a po-group. Then
(1) G− = (G−,≤,¯ = +,1 = 0) is a left-poim (= partially-ordered, integral left-monoid);
(1’) G+ = (G+,≤,⊕ = +,0 = 0) is a right-poim (= partially-ordered, integral right-monoid).

Theorem 2.8 ([19], Theorem 5.2) Let G = (G,≤,+,−, 0) be a po-group and S be a convex po-subgroup
of G. Then,

(1) SL = S ∩G− is a filter of the left-poim G− = (G−,≤,¯ = +,1 = 0) from Theorem 2.7 (1).
(1’) SR = S ∩G+ is an ideal of the right-poim G+ = (G+,≤,⊕ = +,0 = 0) from Theorem 2.7 (1’).
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Recall from part I that, by above theorem, a better name for a “convex po-subgroup” should
be that of “filter-ideal”.

• At lattice order level, we have:

Theorem 2.9 ([19], Theorem 5.3) Let G = (G,∨,∧,→,;, 0) be an l-implicative-group.
(1) Define, for all x, y ∈ G−:

x →L y
def.
= (x → y) ∧ 0, x ;L y

def.
= (x ; y) ∧ 0. (38)

Then, GL = (G−,∧,∨,→L,;L,1 = 0) is a distributive left-pseudo-BCK(pP) lattice (with the pseudo-
product ¯ = +) verifying conditions (pC) and (*) (see condition (pP2) from the definition of a (left-)
pseudo-product algebra and (21)).

(1’) Define, for all x, y ∈ G+:

x →R y
def.
= (x → y) ∨ 0, x ;R y

def.
= (x ; y) ∨ 0. (39)

Then, GR = (G+,∨,∧,→R,;R,0 = 0) is a distributive right-pseudo-BCK(pS) lattice (with the pseudo-
sum ⊕ = +) verifying the dual conditions (pCd) and (*d).

Theorem 2.10 ([19], Theorem 5.9) Let G = (G,∨,∧,→, ;, 0) be an l-implicative-group and S be a
deductive system of G. Then,

(1) SL = S ∩ G− is a (→L, ;L)-deductive system of GL = (G−,∧,∨,→L, ;L,1 = 0) from Theorem
2.9 (1).

(1’) SR = S ∩G+ is a (→R,;R)-deductive system of GR = (G+,∨,∧,→R, ;R,0 = 0) from Theorem
2.9 (1’).

In Part I, we “bounded” the algebras GL and GR from Theorem 2.9 in two different ways: first, with
an “internal” element, second, with an “external” element; we obtained the equivalent of known results,
as follows:

Corollary 2.11 ([19], Corollary 5.8)
(i) Let GL = (G−,∧,∨,→L,;L,1 = 0) from Theorem 2.9 (1). Let us “bound” this algebra in two different
ways:

1) Let us take u′ < 0 from G− and consider the interval [u′, 0]. Then the algebra

GL
1 = ([u′, 0],∧,∨,→L,;L,0 = u′,1 = 0)

is a bounded left-pseudo-BCK(pP) lattice (with the pseudo-product x¯L y
def.
= (x¯ y) ∨ u′ = (x + y) ∨ u′)

with condition (pC), i.e. is an equivalent definition of the left-pseudo-Wajsberg algebra (see [17] and
[21], [10] for the commutative case)

GL
1′ = ([u′, 0],→L,;L,−

L

,∼
L

,0 = u′,1 = 0).

2) Let us consider a symbol −∞ distinct from the elements of G. Define G−−∞
def.
= {−∞} ∪ G− and

extend the operations →L,;L, ¯ from G− to G−−∞ as follows:

x →L
2 y

def.
=





x →L y, if x, y ∈ G−

−∞, if x ∈ G−, y = −∞
0, if x = −∞,

x ;L
2 y

def.
=





x ;L y, if x, y ∈ G−

−∞, if x ∈ G−, y = −∞
0, if x = −∞,

x¯2 y
def.
=

{
x¯ y = x + y, if x, y ∈ G−

−∞, if otherwise.

We extend the lattice order relation ≤ as follows: we put −∞ ≤ x, for any x ∈ G−−∞. Then, the algebra

GL
2 = (G−−∞,∧,∨,→L

2 , ;L
2 ,0 = −∞,1 = 0)
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is a left-pseudo-Hájek(pP) algebra (with the pseudo-product ¯2) verifying conditions (pP1)
and (pP2) (see [17]).

(i’) Let GR = (G+,∨,∧,→R,;R,0 = 0) from Theorem 2.9 (1’). Let us “bound” this algebra in two
different ways:

1’) Let us take u > 0 from G+ and consider the interval [0, u] = {x ∈ G+ | 0 ≤ x ≤ u}. Then the
algebra

GR
1 = ([0, u],∨,∧,→R, ;R,0 = 0,1 = u)

is a bounded right-pseudo-BCK(pS) lattice (with the pseudo-sum x ⊕R y
def.
= (x ⊕ y) ∧ u = (x + y) ∧ u)

with condition (pCd), i.e. is an equivalent definition of the right-pseudo-Wajsberg algebra

GR
1′ = ([0, u],→R,;R,−

R

,∼
R

,0 = 0,1 = u).

2’) Let us consider a symbol +∞ distinct from the elements of G. Define G+
+∞

def.
= G+ ∪ {+∞} and

extend the operations →R,;R, ⊕ from G+ to G+
+∞ as follows:

x →R
2 y

def.
=





x →R y, if x, y ∈ G+

+∞, if x ∈ G+, y = +∞
0, if x = +∞,

x ;R
2 y

def.
=





x ;R, if x, y ∈ G+

+∞, if x ∈ G+, y = +∞
0, if x = +∞,

x⊕2 y
def.
=

{
x⊕ y = x + y, if x, y ∈ G+

+∞, if otherwise.

We extend the lattice order relation ≥ as follows: we put +∞ ≥ x, for any x ∈ G+
+∞. Then, the algebra

GR
2 = (G+

+∞,∨,∧,→R
2 , ;R

2 ,0 = 0,1 = +∞)

is a right-pseudo-Hájek(pS) algebra (with the pseudo-sum ⊕2) verifying the dual conditions
(pP1d) and (pP2d).

Note that in Part I, Theorem 2.9 was formulated equivalently ([19], Theorem 5.10) for l-groups and
(1) left-l-rims GL

m (equivalent to noncommutative left-residuated lattices) and (1’) right-l-rims GR
m. Also

in Part I, the above corollary was formulated equivalently ([19], Corollary 5.12) for: (i) left-l-rims, left-
pseudo-MV algebras GL

m1′ = ([u′, 0],¯L,⊕L,−
L

,∼
L

,0 = u′,1 = 0), where, for every x, y ∈ [u′, 0]:

x¯L y
def.
= (x¯ y) ∨ u′ = (x + y) ∨ u′, x⊕L y

def.
= (x− u′ + y) ∧ 0, x−

L def.
= u′ − x, x∼

L def.
= −x + u′,

and left-pseudo-product algebras and, dually, for: (i’) right-l-rims, right-pseudo-MV algebras GR
m1′ =

([0, u],⊕R,¯R,−
R

,∼
R

,0 = 0,1 = u), where, for every x, y ∈ [0, u]:

x⊕R y
def.
= (x⊕ y) ∧ u = (x + y) ∧ u, x¯R y

def.
= (x− u + y) ∨ 0, x−

R def.
= u− x, x∼

R def.
= −x + u

and right-pseudo-product algebras.
Recall also from Part I that the left-pseudo-MV algebra GL

m1′ is term equivalent to the right-pseudo-
MV algebra GLR

m1′ = ([u′, 0],⊕L,¯L,−
L

,∼
L

,0 = u′,1 = 0) and dually, the right-pseudo-MV algebra GR
m1′

is term equivalent to the left-pseudo-MV algebra GRL
m1′ = ([0, u],¯R,⊕R,−

R

,∼
R

,0 = 0,1 = u).

3 Normal filters/ideals and compatible deductive systems

3.1 po-groups (po-implicative groups) and associated algebras on G−, G+

Recall the following definition:
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Definition 3.1 Let Gg = (G,≤, +,−, 0) be a po-group. A convex po-subgroup S of Gg is normal if the
following condition (Ng) holds:

(Ng) for any g ∈ G, S + g = g + S.

Recall that S + g = g + S means:
(i) for each h ∈ S, there exists h′ ∈ S such that h + g = g + h′;
(ii) for each h′ ∈ S, there exists h ∈ S such that g + h′ = h + g.

We introduce now the following definition:

Definition 3.2 Let Gig = (G,≤,→, ;, 0) be a po-implicative-group. A deductive system S of Gig is
compatible if the following condition (Cig) holds:

(Cig) for any x, y ∈ G, x → y ∈ S ⇐⇒ x ; y ∈ S.

Using Remark 2.6, we formulate the following complex result (which brings together more results):

Theorem 3.3
Let Gig = (G,≤,→, ;, 0) be a po-implicative-group (or let Gg = (G,≤,+,−, 0) be a po-group). Let S

be a deductive system of Gig (or, equivalently, a convex po-subgroup of Gg).
Then, S is compatible if and only if S is normal, i.e. (Cig) ⇐⇒ (Ng).

Proof. (Cig) =⇒ (Ng): Suppose that (Cig) holds and let g ∈ G.
(i) Let h ∈ S; denote y

notation= h + g and remark that by (19) we have

(g → y) + g = y = g + (g ; y).

Hence, y = h + g = (g → y) + g, which implies that h = g → y. Hence, g → y ∈ S. By (Cig), it follows
that g ; y ∈ S also. Hence, there exists h′ = g ; y ∈ S such that
h + g = (g → y) + g = y = g + (g → y) = g + h′.
(ii) Similarly, let h′ ∈ S; denote x

notation= g + h′ and remark that by (19) we have

(g → x) + g = x = g + (g ; x).

Hence, x = g + h′ = g + (g ; x), which implies h′ = g ; x. Hence, g ; x ∈ S. By (Cig), it follows that
g ; x ∈ S too. Hence, there exists h = g → x ∈ S such that
g + h′ = g + (g ; x) = x = (g → x) + g = h + g.
By (i) and (ii), we obtain that (Ng) holds.

(Ng) =⇒ (Cig): Suppose that (Ng) holds and that x → y ∈ S. By (19), we have

(x → y) + x = y = x + (x ; y).

Put then h = x → y ∈ S; hence, h + x = y = x + (x ; y). By (Ng), there exists h′ ∈ S such that
h + x = y = x + h′. Hence, y = x + (x ; y) = x + h′. It follows that x ; y = h′. Thus, x ; y ∈ S.
Similarly, x ; y ∈ S implies that x → y ∈ S.
Thus, (Cig) holds. 2

We introduce now the following definition:

Definition 3.4
(1) Let ML = (ML,≤,¯, 1) be a left-poim. A filter SL of ML is normal if the following condition

(NL) holds:
(NL) for any x ∈ ML, SL ¯ x = x¯ SL.

(1’) Let MR = (MR,≤,⊕, 0) be a right-poim. An ideal SR of MR is normal if the following condition
(NR) holds:

(NR) for any x ∈ MR, SR ⊕ x = x⊕ SR.
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Then we have the following result:

Proposition 3.5 Let G = (G,≤, +,−, 0) be a po-group and S be a normal convex po-subgroup of G. Then,
(1) SL = S ∩ G− is a normal filter of the left-poim G− = (G−,≤,¯ = +,1 = 0) from the Theorem 2.7
(1).
(1’) SR = S ∩G+ is a normal ideal of the right-poim G+ = (G+,≤,⊕ = +,0 = 0) from the Theorem 2.7
(1’).

Proof. (1): By Theorem 2.8 (1), SL is a filter of G−. It remains to prove that is a normal filter, i.e. (NL)
holds.
(i) Let h ∈ SL = S ∩G−, i.e. h ∈ S and h ≤ 0. S being normal, by (Ng) it follows that there exists h′ ∈ S
such that

s
notation= h + x = x + h′.

We must prove that h′ ≤ 0. First, notice that s ≤ x, since h ≤ 0 implies that s = h + x ≤ 0 + x = x.
Then, s ≤ x implies that s = x + h′ ≤ x, and therefore h′ ≤ 0.
Thus, h′ ∈ SL = S ∩GL and h¯ x = x¯ h′.
(ii) Similarly, for h′ ∈ SL, there exists h ∈ SL, such that x¯ h′ = h¯ x. By (i) and (ii), (NL) holds.

(1’) has a similar proof. 2

Recall the following definition.

Definition 3.6 (see ([20], Definition 2.2.1)
(1) Let AL = (AL,≤,→L, ;L, 1) be a left-pseudo-BCK algebra. We say that a (→L, ;L)-deductive

system SL of AL is compatible if the following condition (CL) holds:

(CL) for any x, y ∈ AL, x →L y ∈ SL ⇐⇒ x ;L y ∈ SL.

(1’) Let AR = (AR,≤,→R, ;R, 0) be a right-pseudo-BCK algebra. We say that a (→R,;R)-deductive
system SR of AR is compatible if the following condition (CR) holds:

(CR) for any x, y ∈ AR, x →R y ∈ SR ⇐⇒ x ;R y ∈ SR.

3.2 l-groups (l-implicative groups) and associated algebras on G−, G+

In lattice order case, we have the following result:

Proposition 3.7 Let G = (G,∨,∧,→,;, 0) be an l-implicative-group and S be a compatible deductive
system of G. Then,
(1) SL = S ∩ G− is a compatible (→L, ;L)-deductive system of the left-pseudo-BCK(pP) lattice GL =
(G−,∧,∨,→L, ;L,1 = 0) from Theorem 2.9 (1).
(1’) SR = S ∩G+ is a compatible (→R, ;R)-deductive system of the right-pseudo-BCK(pS) lattice GR =
(G+,∨,∧,→R, ;R,0 = 0) from Theorem 2.9 (1’).

Proof. (1): By Theorem 2.10 (1), SL is a (→L,;L)-deductive system of GL. It remains to prove that
SL is compatible, i.e. for all x, y ∈ G−:

x →L y ∈ SL ⇐⇒ x ;L y ∈ SL. (40)

Since x →L y ∈ G−, x ;L y ∈ G−, it remains to prove that

x →L y ∈ S ⇐⇒ x ;L y ∈ S. (41)

But x →L y = (x → y) ∧ 0 = (x → y) ∧ (x → x)
(30)
= x → (y ∧ x) and similarly x ;L y = x ; (y ∧ x) and

since S is compatible, we have

x → (y ∧ x) ∈ S ⇐⇒ x ; (y ∧ x) ∈ S. (42)
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It follows that (41) holds, hence (40) holds.
(1’) has a similar proof. 2

Using Remark 2.1 and (b), (b’), we formulate the following complex result:

Theorem 3.8
(1) Let AL = (AL,∧,∨,→L,;L, 1) be a left-pseudo-BCK(pP) lattice verifying (pdiv) (or let AL

m =
(AL,∧,∨,¯, 1) be a left-l-rim verifying (pdiv)). Let SL be a (→L, ;L)-deductive system of AL (or,
equivalently, a filter of AL

m).
Then SL is compatible if and only if is normal, i.e. (CL) ⇐⇒ (NL).

(1’) Let AR = (AR,∨,∧,→R,;R, 0) be a right-pseudo-BCK(pS) lattice verifying (pdivd) (or let AR
m =

(AR,∨,∧,⊕, 0) be a right-l-rim verifying (pdivd)). Let SR be a (→R, ;R)-deductive system of AR (or,
equivalently, an ideal of AR

m).
Then SR is compatible if and only if is normal, i.e. (CR) ⇐⇒ (NR).

Proof. (1): Suppose that SL is compatible, i.e. that (CL) holds. We must prove that SL is normal, i.e.
that (NL) holds. Indeed, let x ∈ AL.
(i) Let h ∈ SL. We put s

notation= h ¯ x. First, notice that s ≤ x, since h ¯ x ≤ x. Then, by (pdiv), we
have

s = x ∧ s = (x →L s)¯ x = x¯ (x ;L s).

But x →L s = x →L (h ¯ x) ≥ h, by ([18] page 354, property (10.3)). Hence x →L s ≥ h and h ∈ SL.
Since SL is a filter, it follows that x →L s ∈ SL. Then, by (CL), we obtain that x ;L s ∈ SL too; hence,
there exists h′ notation= x ;L s ∈ SL such that h¯ x = x¯ h′.
(ii) Similarly, for h′ ∈ SL, there exists h ∈ SL such that x¯ h′ = h¯ x.
By (i) and (ii), (NL) holds.

Suppose now that SL is normal, i.e. that (NL) holds. We must prove that SL is compatible, i.e. that
(CL) holds. Indeed, let x, y ∈ AL.
Assume x →L y ∈ SL. Then putting h = x →L y, by (NL) there exists h′ ∈ SL such that h¯ x = x¯ h′.
But, by (pdiv),

x ∧ y = (x →L y)¯ x = x¯ (x ;L y),

i.e. x ∧ y = h¯ x = x¯ (x ;L y). Hence, x ∧ y = x¯ h′ = x¯ (x ;L y).
We must prove that x ;L y ∈ SL. Indeed, x ;L y = x ;L (x ∧ y) = x ;L (x¯ h′) ≥ h′,
by ([18] page 367, property (10.49) and page 354, property (10.3)).
Hence, x ;L y ≥ h′ and h′ ∈ SL; since SL is a filter, it follows that x ;L y ∈ SL.
Similarly, assuming x ;L y ∈ SL, we shall obtain that x →L y ∈ SL.
Thus, (CL) holds.

(1’): similarly. 2

Remark 3.9 Note that condition (pdiv) ((pdivd) respectively) is a necessary condition in order to have
that “compatible property is equivalent to normal property”. In the absence of condition (pdiv) ((pdivd)
respectively), we may have any situation.

Open problem 3.10 Find an example of left-pseudo-BCK(pP) lattice, for instance, not verifying (pdiv),
which has a filter that is normal but not compatible, or is compatible but not normal.

Finally, using the Remarks 2.6 and 2.1, we formulate the following complex result:

Theorem 3.11
Let Gig = (G,∨,∧,→, ;, 0) be an l-implicative-group (or let Gg = (G,∨,∧,+,−, 0) be an l-group). Let

S be a compatible deductive system of Gig (or, equivalently, a normal convex l-subgroup of Gg).
Then,
(1) SL = S ∩ G− is a compatible (→L, ;L)-deductive system of the left-pseudo-BCK(pP) lattice GL =
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(G−,∧,∨,→L, ;L,1 = 0) (or, equivalently, SL is a normal filter of the left-l-rim GL
m = (G−,∧,∨,¯ =

+,1 = 0)), and SL is compatible if and only if is normal, i.e. (CL) ⇐⇒ (NL).
(1’) SR = S∩G+ is a compatible (→R, ;R)-deductive system of the right-pseudo-BCK(pS) lattice GR =

(G+,∨,∧,→R, ;R,0 = 0) (or, equivalently, SR is a normal ideal of the right-l-rim GR
m = (G+,∨,∧,⊕ =

+,0 = 0)), and SR is compatible if and only if is normal, i.e. (CR) ⇐⇒ (NR).

Proof. (1): SL is a compatible (→L,;L)-deductive system of GL by Proposition 3.7 (1).
SL is a normal filter of GL

m by Proposition 3.5 (1).
(CL) ⇐⇒ (NL) by Theorem 3.8 (1), since GL (GL

m) verifies condition (pC) and (pC) implies (pdiv).
(1’) has a similar proof. 2

In other words, the above Theorem 3.11 says that normality (compatibility) at l-group (l-implicative-
group) G level is inherited by the algebras obtained by restricting the l-group (l-implicative-group)
operations to the negative cone G− and to the positive cone G+. Also, it says that the equivalence
(Cig) ⇐⇒ (Ng) (compatible if and only if normal), existing at l-group (l-implicative-group) level (Theo-
rem 3.3), is preserved by the algebras obtained by restricting the l-group (l-implicative-group) operations
to G− and to G+.

3.3 l-groups (l-implicative groups) and associated algebras on [u′, 0], [0, u]

Remarks 3.12
(a) It is proved in [13], ([14] Lemma 3.2) that in right-pseudo-MV algebras, an ideal is normal if

and only if is compatible. Hence, dually, in left-pseudo-MV algebras, a filter is normal if and only if is
compatible.

(b) Note that these dual results follow by Theorem 3.8 (1’) and (1), since in a left-pseudo-MV algebra
(right-pseudo-MV algebra) condition (pdiv) (condition (pdivd) respectively) is verified.

We shall clarify in this subsection how the results from the above Remark are connected with those
from l-groups (l-implicative-groups) level.

First note that we have the following general theorem that generalizes the Corollary 2.11, (1),(1’).

Theorem 3.13
(1) Let AL = (AL,∧,∨,→L,;L, 1) be a left-pseudo-BCK(pP) lattice (with the pseudo-product ¯)

verifying condition (pC). Let us “bound” this algebra with an “internal” element in the following way: let
us take u′ < 1 from AL and consider the interval [u′, 1] = {x ∈ AL | u′ ≤ x ≤ 1} ⊂ AL. Then the algebra

AL
1 = ([u′, 1],∧,∨,→L, ;L,0 = u′, 1)

is a bounded left-pseudo-BCK(pP) lattice (with the pseudo-product x¯L y
def.
= (x¯ y)∨ u′) with condition

(pC), i.e. is an equivalent definition of the left-pseudo-Wajsberg algebra (see [17])

AL
1′ = ([u′, 1],→L, ;L,−

L

,∼
L

,0 = u′, 1).

(1’) Let AR = (AR,∨,∧,→R,;R, 0) be a right-pseudo-BCK(pS) lattice (with the pseudo-sum ⊕)
verifying condition (pcd). Let us “bound” this algebra in the following way: let us take u > 0 from AR

and consider the interval [0, u] = {x ∈ AR | 0 ≤ x ≤ u} ⊂ AR. Then the algebra

AR
1 = ([0, u],∨,∧,→R, ;R, 0,1 = u)

is a bounded right-pseudo-BCK(pS) lattice (with the pseudo-sum x ⊕R y
def.
= (x ⊕ y) ∧ u) with condition

(pCd), i.e. is an equivalent definition of the right-pseudo-Wajsberg algebra

AR
1′ = ([0, u],→R, ;R,−

R

,∼
R

, 0,1 = u).
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Proof. (1): [u′, 1] is obviously closed under ∧ and ∨. [u′, 1] is closed under →L: let x, y ∈ [u′, 1];
y ≤ 1 implies x →L y ≤ x →L 1 = 1; u′ ≤ y implies x →L u′ ≤ x →L y and u′ ≤ x →L u′; hence
u′ ≤ x →L y ≤ 1. Similarly, [u′, 1] is closed under ;L. It follows that AL

1 is a bounded left-pseudo-BCK

lattice verifying (pC). Then, it verifies (pDN), where x− = x−
L def.

= x →L u′ and x∼ = x∼
L def.

= x ;L u′,
for any x ∈ [u′, 1]. Consequently, there exists

x¯L y = (x →L y−)∼ = (x →L (y →L u′)) ;L u′ = ((x¯ y) →L u′) ;L u′
(pC)
= (x¯ y) ∨ u′.

Thus, AL
1 is a bounded left(pseudo-BCK(pP) lattice with pseudo-product ¯L, verifying (pC).

(1’) has a similar proof. 2

Open problem 3.14 It remains an open problem if there are other examples than l-implicative-groups
producing left-pseudo-BCK(pP) lattices verifying condition (pC) (right-pseudo-BCK(pS) lattices verifying
condition (pCd), respectively).

Note that we can reformulate Theorem 3.13 equivalently, by (c), (c’) and (d), (d’), as follows:

Theorem 3.15
(1) Let AL

m = (AL,∧,∨,¯, 1) be a left-l-rim (with the pseudo-residuum (→L, ;L)) verifying condition
(pC). Let us “bound” this algebra with an “external” element in the following way: let us take u′ < 1 from
AL and consider the interval [u′, 1] ⊂ AL. Then the algebra

AL
m1 = ([u′, 1],∧,∨,¯L,0 = u′, 1)

is a bounded left-l-rim (with x ¯L y
def.
= (x ¯ y) ∨ u′ and the pseudo-residuum (→L, ;L)) with condition

(pC), i.e. is an equivalent definition of the left-pseudo-MV algebra (see [17])

AL
m1′ = ([u′, 1],¯L,⊕L,−

L

,∼
L

,0 = u′, 1).

(1’) Let AR
m = (AR,∨,∧,⊕, 0) be a right-l-rim (with the pseudo-coresiduum (→R, ;R)) verifying

condition (pcd). Let us “bound” this algebra in the following way: let us take u > 0 from AR and consider
the interval [0, u] ⊂ AR. Then the algebra

AR
m1 = ([0, u],∨,∧,⊕R, 0,1 = u)

is a bounded right-l-rim (with x⊕R y
def.
= (x⊕ y)∧u) with condition (pCd), i.e. is an equivalent definition

of the right-pseudo-MV algebra

AR
m1′ = ([0, u],⊕R,¯R,−

R

,∼
R

, 0,1 = u).

A filter of the left-pseudo-MV algebra AL
m1′ is a filter of the left-poim ([u′, 1],≤,¯L, 1) and an ideal

of the right-pseudo-MV algebra AR
m1′ is an ideal of the right-poim ([0, u],≤,⊕R, 0). Then we have the

following result.

Proposition 3.16 Let G = (G,∨,∧, +,−, 0) be an l-group and S be a convex l-subgroup of G. Then,
(1) for any u′ < 0 and SL = S ∩ G−, the set SL

[ ] = S ∩ [u′, 0] = SL ∩ [u′, 0] is a filter of the
left-pseudo-MV algebra

GL
m1′ = ([u′, 0],¯L,⊕L,−

L

,∼
L

,0 = u′,1 = 0).

(1’) for any u > 0 and SR = S ∩ G+, the set SR
[ ] = S ∩ [0, u] = SR ∩ [0, u] is an ideal of the

right-pseudo-MV algebra
GR

m1′ = ([0, u],⊕R,¯R,−
R

,∼
R

,0 = 0,1 = u).

13



Proof. (1): First, note that by Theorem 2.8(1), SL is a filter of G−.
We prove that SL

[ ] = SL ∩ [u′, 0] is a filter of GL
m1′ :

(F1): 0 ∈ SL
[ ] since 0 ∈ SL and 0 ∈ [u′, 0].

(F2): Let x, y ∈ SL
[ ], i.e. x, y ∈ SL and x, y ∈ [u′, 0]. We must prove that x¯L y ∈ SL

[ ]. Since SL is a filter
of G−, it follows that x ¯ y ∈ SL; but x ¯L y = (x ¯ y) ∨ u′ ≥ x ¯ y, hence x ¯L y ∈ SL. On the other
hand, u′ ≤ x, y ≤ 0 imply that

u′ ≤ x¯L y = (x¯ y) ∨ u′ = (x + y) ∨ u′ ≤ 0,

hence x¯L y ∈ [u′, 0]. Thus, x¯L y ∈ SL ∩ [u′, 0] = SL
[ ].

(F3): Let x ∈ SL
[ ], x ≤ y (y ∈ [u′, 0]). We must prove that y ∈ SL

[ ]. But SL is a filter of G−, hence y ∈ SL.
Since y ∈ [u′, 0], we obtain that y ∈ SL ∩ [u′, 0] = SL

[ ].
(1’): has a similar proof. 2

Proposition 3.17 Let G = (G,∨,∧,→, ;, 0) be an l-implicative-group and S be a compatible deductive
system of G. Then,

(1) for any u′ < 0 and SL = S ∩G−, the set SL
[ ] = S ∩ [u′, 0] = SL ∩ [u′, 0] is a compatible (→L,;L)-

deductive system of the bounded left-pseudo-BCK(pP) lattice verifying condition (pC)

GL
1 = ([u′, 0],∧,∨,→L,;L,0 = u′,1 = 0)

from Corollary 2.11(i) (i.e. of the left-pseudo-Wajsberg algebra GL
1′).

(1’) for any u > 0 and SR = S ∩G+, the set SR
[ ] = S ∩ [0, u] = SR ∩ [0, u] is a compatible (→R, ;R)-

deductive system of the bounded right-pseudo-BCK(pS) lattice verifying condition (pCd)

GR
1 = ([0, u],∨,∧,→R, ;R,0 = 0,1 = u)

from Corollary 2.11(i’) (i.e. of the right-pseudo-Wajsberg algebra GR
1′).

Proof. (1): First, note that by Proposition 3.5 (1), SL is a compatible (→L,;L)-deductive system of
GL.
Second, SL

[ ] is a (→L, ;L)-deductive system of [u′, 0] since:
(ds1): 1 = 0 ∈ SL, [u′, 0], hence 0 ∈ SL

[ ].
(ds2): Let x ∈ SL

[ ] and x ≤ y (y ∈ [u′, 0]). It follows that y ∈ SL. Since we also have that y ∈ [u′, 0], it
follows that y ∈ SL ∩ [u′, 0] = SL

[ ].
Third, we prove that SL

[ ] is compatible. Indeed, let x, y ∈ [u′, 0].
Assume that x →L y ∈ SL

[ ], i.e. x →L y ∈ SL and x →L y ∈ [u′, 0]. SL being compatible, it follows
that x ;L y ∈ SL too. Since [u′, 0] is closed under →L and ;L ([19], Lemma 5.7), it follows that
x ;L y ∈ [u′, 0]. Hence, x ;L y ∈ SL ∩ [u′, 0] = SL

[ ].
Assume that x ;L y ∈ SL

[ ]. We obtain similarly that x →L y ∈ SL
[ ]. Thus, SL

[ ] is compatible.
(1’): has a similar proof. 2

Finally, using the Remarks 2.6 and 2.1, we formulate the following complex result:

Theorem 3.18
Let Gig = (G,∨,∧,→, ;, 0) be an l-implicative-group (or let Gg = (G,∨,∧,+,−, 0) be an l-group). Let

S be a compatible deductive system of Gig (or, equivalently, a normal convex l-subgroup of Gg).
Then,
(1) for any u′ < 0 and SL = S ∩ G−, the set SL

[ ] = S ∩ [u′, 0] = SL ∩ [u′, 0] is a compatible (→L,;L)-
deductive system of the bounded left-pseudo-BCK(pP) lattice verifying condition (pC)

GL
1 = ([u′, 0],∧,∨,→L,;L,0 = u′,1 = 0)
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from Corollary 2.11(i), i.e. of the left-pseudo-Wajsberg algebra GL
1′ (or, equivalently, SL

[ ] is a normal filter
of the bounded left-l-rim verifying condition (pC)

GL
m1 = ([u′, 0],∧,∨,¯L,0 = u′,1 = 0),

i.e. of the left-pseudo-MV algebra GL
m1′), and SL

[ ] is compatible if and only if is normal, i.e. (CL) ⇐⇒
(NL).

(1’) for any u > 0 and SR = S ∩G+, SR
[ ] = S ∩ [0, u] = SR∩ [0, u] is a compatible (→R,;R)-deductive

system of the bounded right-pseudo-BCK(pS) lattice verifying condition (pCd)

GR
1 = ([0, u],∨,∧,→R, ;R,0 = 0,1 = u)

from Corollary 2.11(i’), i.e. of the right-pseudo-Wajsberg algebra GR
1′ (or, equivalently, SR

[ ] is a normal
ideal of the bounded right-l-rim verifying condition (pCd)

GR
m1 = ([0, u],∨,∧,⊕R,0 = 0,1 = u),

i.e. of the right-pseudo-MV algebra GR
m1′), and SR

[ ] is compatible if and only if is normal, i.e. (CR) ⇐⇒
(NR).

Proof. (1): SL
[ ] is a compatible (→L,;L)-deductive system of GL

1 by Proposition 3.17 (1).
SL

[] is a filter of GL
m1 (i.e. [u′, 0]) by Proposition 3.16(1).

(CL) ⇐⇒ (NL) by Theorem 3.8 (1), since GL
1 verifies condition (pC) and (pC) implies (pdiv); hence SL

[ ]

is a normal filter of [u′, 0].
(1’): has a similar proof. 2

In other words, the above Theorem 3.18 says that normality (compatibility) at l-group (l-implicative-
group) G level is inherited by the algebras obtained by restricting the l-group (l-implicative-group) op-
erations to any segment [u′, 0] ⊂ G− and to any segment [0, u] ⊂ G+. Also, it says that the equivalence
(Cig) ⇐⇒ (Ng) (compatible if and only if normal), existing at l-group (l-implicative-group) level (Theorem
3.3), is preserved by the algebras obtained by restricting the l-group (l-implicative-group) operations to
[u′, 0] and to [0, u] (see also Remarks 3.12 (a)).

Open problem 3.19 Find a direct proof that a normal convex l-group of an l-group G produces a normal
filter of GL

m1′ (a normal ideal of GR
m1′) (see Proposition 3.16 and Theorem 3.18).

3.4 l-groups (l-implicative groups) and associated algebras on {−∞} ∪ G−,
G+ ∪ {+∞}

First note that we have the following general theorem that generalizes the Corollary 2.11, (2),(2’):

Theorem 3.20
(i) Let AL = (AL,∧,∨,→L, ;L, 1) be a left-pseudo-BCK(pP) lattice (with the pseudo-product ¯)

verifying (pC) and (*). Let us “bound” this algebra in the following way (the usual way of “bounding” the
Hilbert algebras - in the commutative case): let us consider a symbol −∞ distinct from the elements of

AL. Define AL
−∞

def.
= {−∞} ∪AL and extend the operations →L,;L, ¯ from AL to AL

−∞ as follows:

x →L
2 y

def.
=





x →L y, if x, y ∈ AL

−∞, if x ∈ AL, y = −∞
1, if x = −∞,

x ;L
2 y

def.
=





x ;L y, if x, y ∈ AL

−∞, if x ∈ AL, y = −∞
1, if x = −∞,

x¯2 y
def.
=

{
x¯ y, if x, y ∈ AL

−∞, if otherwise.

We extend the lattice order relation ≤ as follows: we put −∞ ≤ x, for any x ∈ AL
−∞. Then, the algebra

AL
2 = (AL

−∞,∧,∨,→L
2 , ;L

2 ,0 = −∞, 1)
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is a left-pseudo-Hájek(pP) algebra (with the pseudo-product ¯2) verifying conditions (pP1)
and (pP2) (see [17]).

(i’) Let AR = (AR,∨,∧,→R, ;R, 0) be a right-pseudo-BCK(pS) lattice (with the pseudo-sum ⊕) veri-
fying conditions (pCd) and (*d). Let us “bound” this algebra in the following way: let us consider a symbol

+∞ distinct from the elements of AR. Define AR
+∞

def.
= AR ∪ {+∞} and extend the operations →R,;R,

⊕ from AR to AR
+∞ as follows:

x →R
2 y

def.
=





x →R y, if x, y ∈ AR

+∞, if x ∈ AR, y = +∞
0, if x = +∞,

x ;R
2 y

def.
=





x ;R, if x, y ∈ AR

+∞, if x ∈ AR, y = +∞
0, if x = +∞,

x⊕2 y
def.
=

{
x⊕ y, if x, y ∈ AR

+∞, if otherwise.

We extend the lattice order relation ≥ as follows: we put +∞ ≥ x, for any x ∈ AR
+∞. Then, the algebra

AR
2 = (AR

+∞,∨,∧,→R
2 , ;R

2 , 0,1 = +∞)

is a right-pseudo-Hájek(pS) algebra (with the pseudo-sum ⊕2) verifying the dual conditions
(pP1d) and (pP2d).

Proof. (i): Obviously, AL
2 is a bounded left-pseudo-BCK(pP) lattice, with the pseudo-product ¯2 (by

condition (pP)):

x¯2 y
def.
= min{z ∈ AL

−∞ | x ≤ y →L
2 z}=

= min{z ∈ AL
−∞ | x ≤





y →L z, if y, z ∈ AL

−∞, if y ∈ AL, z = −∞}
1, if y = −∞

=
{

x¯ y, if x, y ∈ AL

−∞, if otherwise.

AL verifies condition (pC), hence it verifies conditions (pprel) and (pdiv). We shall prove that AL
2

does not verifies (pC) anymore, but it satisfies (pprel) and (pdiv). Indeed,
- AL

2 does not verifies (pC), since for −∞ and any x 6= 1, we have:
x = −∞∨ x 6= (x →L −∞) ;L −∞ = −∞ ;L −∞ = 1.
- AL

2 verifies (pprel): since AL verifies (pprel), it is sufficient to prove that

(x →L
2 y) ∨ (y →L

2 x) = 1 = (x ;L
2 y) ∨ (y ;L

2 x), for x, y 6∈ AL.

Indeed, for x = −∞ and y ∈ AL, we have (−∞→L
2 y) ∨ (y →L

2 −∞) = 1 ∨ −∞ = 1 and
for x, y = −∞, we have (−∞→L

2 −∞) ∨ (−∞→L
2 −∞) = 1 ∨ 1 = 1,

and similarly for ;L
2 .

- AL
2 verifies (pdiv): since AL verifies (pdiv), it is sufficient to prove that

x ∧ y = (x →L
2 y)¯2 x = x¯2 (x ;L

2 y), for x, y 6∈ AL.

Indeed,
· for x = −∞ and y ∈ AL, we have −∞ ∧ y = −∞, (−∞ →L

2 y) ¯2 −∞ = 1 ¯2 −∞ = −∞ and
−∞¯2 (−∞ ;L

2 y) = −∞¯2 1 = −∞;
· for x ∈ AL and y = −∞, we have x ∧ −∞ = −∞, (x →L

2 −∞) ¯2 x = −∞ ¯2 x = −∞ and
x¯2 (x ;L

2 −∞) = x¯2 −∞ = −∞;
· for x, y = −∞, we have x ∧ y = −∞, (−∞ →L

2 −∞) ¯2 −∞ = 1 ¯2 −∞ = −∞ and −∞¯2 (−∞ ;L
2

−∞) = −∞¯2 1 = −∞.
Thus, AL

2 is a left-pseudo-Hájek(pP) algebra.
-AL

2 verifies (pP1). Indeed,

x− = x →L
2 −∞ =

{
x →L

2 −∞, if x ∈ AL

−∞→L
2 −∞, if x = −∞ =

{ −∞, if x ∈ AL

1, if x = −∞.

Similarly, x∼ = x ;L
2 −∞ =

{
x ;L

2 −∞, if x ∈ AL

−∞ ;L
2 −∞, if x = −∞ =

{ −∞, if x ∈ AL

1, if x = −∞.
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Note that x− = x∼, for all x ∈ AL
2 .

Then, x ∧ x− = x ∧
{ −∞, if x ∈ AL

1, if x = −∞.
=

{
x ∧ −∞, if x ∈ AL

x ∧ 1, if x = −∞.
= −∞

and similarly x ∧ x∼ = −∞.
-AL

2 verifies (pP2). Denote first

F
notation= (x¯2 z) →L

2 (y ¯2 z) and E
notation= (z−)− ¯2 F.

We must prove that
E ≤ x →L

2 y.

There are eight cases:
1. x ∈ AL, y ∈ AL, z ∈ AL,
2. x ∈ AL, y ∈ AL, z = −∞,
3. x ∈ AL, y = −∞, z ∈ AL,
4. x ∈ AL, y = −∞, z = −∞,
5. x = −∞, y ∈ AL, z ∈ AL,
6. x = −∞, y ∈ AL, z = −∞,
7. x = −∞, y = −∞, z ∈ AL,
8. x = −∞, y = −∞, z = −∞.

Recall that z− =
{ −∞, if z ∈ AL

1, if z = −∞,
hence

(z−)− =
{ −∞−, if z ∈ AL

1−, if z = −∞ =
{

1, if z ∈ AL

−∞, if z = −∞.
We then obtain:
1: (z−)− = 1, E = 1¯2 F = F

(∗)
= x →L y = x →L

2 y.
2: (z−)− = −∞, E = −∞¯2 F = −∞ < x →L

2 y.
3: (z−)− = 1, E = 1¯2 F = F = (x¯ z) →L

2 (−∞¯2 z) = (x¯ z) →L
2 −∞ = −∞ = x →L

2 −∞.
4: (z−)− = −∞, E = −∞¯2 F = −∞ = x →L

2 −∞.
5: (z−)− = 1, E = 1¯2 F = F = (−∞¯2 z) →L

2 (y ¯2 z) = −∞→L
2 (y ¯2 z) = 1 = −∞→L

2 y.
6: (z−)− = −∞, E = −∞¯2 F = −∞ < −∞→L

2 y = 1.
7: (z−)− = 1, E = 1¯2 F = F = (−∞¯2 z) →L

2 (−∞¯2 z) = −∞→L
2 −∞ = 1 = x →L

2 y.
8: (z−)− = −∞, E = −∞¯2 F = −∞ < x →L

2 y = 1.
Similarly one can prove the second inequality. (i’) has a similar proof. 2

Open problem 3.21 It remains an open problem if there are other examples than l-implicative-groups
producing left-pseudo-BCK(pP) lattices verifying condition (pC) and (*) (right-pseudo-BCK(pS) lattices
verifying condition (pCd) and (*d), respectively).

Note also that we can reformulate Theorem 3.20 equivalently, by using (c), (c’) and (f), (f’); this is left to
the reader.

Let now Gig = (G,∨,∧,→,;, 0) be an l-implicative-group (or let Gg = (G,∨,∧, +,−, 0) be an l-group).
Let S ⊆ G be a deductive system of Gig (or, equivalently, a convex l-subgroup of Gg). Note that:

(1) if SL = S ∩G−, −∞ 6∈ G and G−−∞ = {−∞} ∪G− (see Corollary 2.11(i)(2)), then

S ∩G−−∞ = S ∩ ({−∞} ∪G−)
distributivity

= (S ∩ {−∞}) ∪ (S ∩G−) = ∅ ∪ SL = SL.
(1’) similarly, if SR = S ∩G+, −∞ 6∈ G and G+

+∞ = G+ ∪ {+∞} (see Corollary 2.11(i’)(2’)), then
S ∩G+

+∞ = SR.
Hence, using the Remarks 2.6 and 2.1, we formulate the following complex result:

Theorem 3.22
Let Gig = (G,∨,∧,→, ;, 0) be an l-implicative-group (or let Gg = (G,∨,∧,+,−, 0) be an l-group). Let

S be a compatible deductive system of Gig (or, equivalently, a normal convex l-subgroup of Gg).
Then,
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(1) S ∩G−−∞ = SL is a compatible (→L
2 , ;L

2 )-deductive system of the left-pseudo-Hájek(pP) algebra (with
the pseudo-product ¯2) verifying conditions (pP1), (pP2) (see Corollary 2.11(i)(2))

GL
2 = (G−−∞,∧,∨,→L

2 , ;L
2 ,0 = −∞,1 = 0)

(or, equivalently, SL is a normal filter of the left-pseudo-product algebra (see [19], Corollary 5.12(i)(2))

GL
m2′ = (G−−∞,∧,∨,¯2,→L

2 , ;L
2 ,0 = −∞,1 = 0)),

and SL is compatible if and only if is normal, i.e. (CL) ⇐⇒ (NL).
(1’) S ∩G+

+∞ = SR is a compatible (→R
2 , ;R

2 )-deductive system of the right-pseudo-Hájek(pS) algebra
(with the pseudo-sum ⊕2) verifying conditions (pP1d), (pP2d) (see Corollary 2.11(i’)(2’))

GR
2 = (G+

+∞,∨,∧,→R
2 , ;R

2 ,0 = 0,1 = +∞)

(or, equivalently, SR is a normal filter of the right-pseudo-product algebra (see [19], Corollary 5.12(i’)(2’))

GR
m2′ = (G+

+∞,∨,∧,⊕2,→R
2 , ;R

2 ,0 = 0,1 = +∞)),

and SR is compatible if and only if is normal, i.e. (CR) ⇐⇒ (NR).

Proof. (1): SL ⊆ G− is a compatible (→L, ;L)-deductive system of GL, by Proposition 3.7 (1). It
follows obviously that SL is a compatible (→L

2 ,;L
2 )-deductive system of GL

2 .
SL is a normal filter of GL

m, by Proposition 3.5 (1). It follows obviously that SL is a normal filter of GL
m2′ .

(CL) ⇐⇒ (NL) by Theorem 3.8 (1), since GL
2 (GL

m2′) verifies condition (pdiv).
(1’) has a similar proof. 2

In other words, the above Theorem 3.22 says that normality (compatibility) at l-group (l-implicative-
group) G level is inherited by the algebras obtained by restricting the l-group (l-implicative-group) op-
erations to G−−∞ and to G+

+∞. Also, it says that the equivalence (Cig) ⇐⇒ (Ng) (compatible if and
only if normal), existing at l-group (l-implicative-group) level (Theorem 3.3), is preserved by the algebras
obtained by restricting the l-group (l-implicative-group) operations to G−−∞ and to G+

+∞.
Finally, we have the following general complex result:

Corollary 3.23
(1) Let AL = (AL,∧,∨,→L, ;L, 0, 1) be a left-pseudo-Hájek(pP) algebra (with the pseudo-product ¯)

verifying (pP1), (pP2) (or let AL
m′ = (AL,∧,∨,¯,→L,;L, 0, 1) be a left-pseudo-product algebra). Let SL

be a (→L,;L)-deductive system of AL (or, equivalently, a filter of AL
m′).

Then SL is compatible if and only if is normal, i.e. (CL) ⇐⇒ (NL).
(1’) Let AR = (AR,∨, wedge,→R, ;R, 0, 1) be a right-pseudo-Hájek(pS) algebra (with the pseudo-sum

⊕) verifying (pP1d), (pP2d) (or let AR
m′ = (AR,∨,∧,⊕,→R,;R, 0, 1) be a right-pseudo-product algebra).

Let SR be a (→R, ;R)-deductive system of AR (or, equivalently, an ideal of AR
m′).

Then SR is compatible if and only if is normal, i.e. (CR) ⇐⇒ (NR).

Proof. (1): It follows by Theorem 3.8, because both AL and AL
m′ satisfy condition (pdiv).

(1’): similarly. 2

4 Representability

4.1 Representable l-groups, l-implicative-groups

Recall (see [1], for example) that an l-group is representable if it is a subdirect product of totally-ordered
groups. Recall also the following theorem that gives characterizations of representable l-groups, some of
them needed in the sequel.
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Theorem 4.1 (see [1], Theorem 4.1.1)
The following are equivalent for an l-group G = (G,∨,∧, +,−, 0):

(a) G is representable.
(b) For all a, b ∈ G, 2(a ∧ b) = 2a ∧ 2b;
(bd) For all a, b ∈ G, 2(a ∨ b) = 2a ∨ 2b.
(c) For all a, b ∈ G, a ∧ (−b− a + b) ≤ 0;
(cd) For all a, b ∈ G, a ∨ (−b− a + b) ≥ 0.
(d) Each polar subgroup is normal.
(e) Each minimal prime subgroup is normal.
(f) For each a ∈ G, a > 0, a ∧ (−b + a + b) > 0, for all b ∈ G;
(fd) For each a ∈ G, a < 0, a ∨ (−b + a + b) < 0, for all b ∈ G.
Note that d means “dual”.

Remarks 4.2 Note that in commutative l-groups we have, for all a, b ∈ G:

2(a ∧ b) = 2a ∧ 2b ⇐⇒ (b → a) ∧ (a → b) ≤ 0.

2(a ∨ b) = 2a ∨ 2b ⇐⇒ (b → a) ∨ (a → b) ≥ 0.

Indeed, for example:
2(a ∨ b) = 2a ∨ 2b ⇐⇒
(a ∨ b) + (a ∨ b) = 2a ∨ 2b ⇐⇒
2a ∨ 2b = [a + (a ∨ b)] ∨ [b + (a ∨ b)] ⇐⇒
2a ∨ 2b = 2a ∨ (a + b) ∨ (b + a) ∨ 2b ⇐⇒
2a ∨ 2b = 2a ∨ 2b ∨ (a + b) ⇐⇒
2a ∨ 2b ≥ a + b ⇐⇒
(2a ∨ 2b)− b ≥ a ⇐⇒
(2a− b) ∨ b ≥ a ⇐⇒
[(2a− b) ∨ b]− a ≥ 0 ⇐⇒
(a− b) ∨ (b− a) ≥ 0 ⇐⇒
(b → a) ∨ (a → b) ≥ 0.

We obtain in the non-commutative case the following results.

Proposition 4.3 Let G = (G,∨,∧, +,−, 0) be an l-group. Then

(b) ⇐⇒ (b1) ⇐⇒ (b2), (bd) ⇐⇒ (b1d) ⇐⇒ (b2d),

where:
(b1) for all a, b ∈ G, (b → a) ∧ (a ; b) ≤ 0 ∧ [(b ; a) ; (b → a)],
(b2) for all a, b ∈ G, (b ; a) ∧ (a → b) ≤ 0 ∧ [(b → a) → (b ; a)];
(b1d) for all a, b ∈ G, (b → a) ∨ (a ; b) ≥ 0 ∨ [(b ; a) ; (b → a)],
(b2d) for all a, b ∈ G, (b ; a) ∨ (a → b) ≥ 0 ∨ [(b → a) → (b ; a)].

Proof.
(bd) ⇐⇒ (b1d): 2(a ∨ b) = 2a ∨ 2b ⇐⇒

(a ∨ b) + (a ∨ b) = 2a ∨ 2b ⇐⇒
[a + (a ∨ b)] ∨ [b + (a ∨ b)] = 2a ∨ 2b ⇐⇒
2a ∨ (a + b) ∨ (b + a) ∨ 2b = 2a ∨ 2b ⇐⇒
2a ∨ 2b ∨ (a + b) ∨ (b + a) = 2a ∨ 2b ⇐⇒
2a ∨ 2b ≥ (a + b) ∨ (b + a) ⇐⇒
(2a ∨ 2b)− b ≥ [(a + b) ∨ (b + a)]− b ⇐⇒
(2a− b) ∨ b ≥ a ∨ (b + a− b) ⇐⇒
−a + [(2a− b) ∨ b] ≥ −a + [a ∨ (b + a− b)] ⇐⇒
(a− b) ∨ (−a + b) ≥ 0 ∨ (−a + b + a− b) ⇐⇒
(b → a) ∨ (a ; b) ≥ −a + b + [(−b + a) ∨ (a− b)] = −(−b + a) + [(b ; a) ∨ (b → a)] ⇐⇒
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(b → a) ∨ (a ; b) ≥ (b ; a) ; [(b ; a) ∨ (b → a)]
(29)
= 0 ∨ [(b ; a) ; (b → a)].

(bd) ⇐⇒ (b2d): 2(a ∨ b) = 2a ∨ 2b ⇐⇒ . . . ⇐⇒
2a ∨ 2b ≥ (b + a) ∨ (a + b) ⇐⇒
[a ∨ (2b− a)] + a ≥ [b ∨ (a + b− a)] + a ⇐⇒
a ∨ (2b− a) ≥ b ∨ (a + b− a) ⇐⇒
b + [(−b + a) ∨ (b− a)] ≥ b + [0 ∨ (−b + a + b− a)] ⇐⇒
(−b + a) ∨ (b− a) ≥ 0 ∨ (−b + a + b− a) ⇐⇒
(b ; a) ∨ (a → b) ≥ [(a− b) ∨ (−b + a)] + b− a ⇐⇒
(b ; a) ∨ (a → b) ≥ [(a− b) ∨ (−b + a)]− (a− b) ⇐⇒
(b ; a) ∨ (a → b) ≥ (b → a) → [(b → a) ∨ (b ; a)] = 0 ∨ [(b → a) → (b ; a)].

The rest of the proof is similar. 2

Remarks 4.4 (see Remarks 4.2)
Note that

(b1) =⇒ (b1”), (b2) =⇒ (b2”); (b1d) =⇒ (b1d”), (b2d) =⇒ (b2d”),

where:
(b1”) for all a, b ∈ G, (b → a) ∧ (a ; b) ≤ 0,
(b2”) for all a, b ∈ G, (b ; a) ∧ (a → b) ≤ 0;
(b1d”) for all a, b ∈ G, (b → a) ∨ (a ; b) ≥ 0,
(b2d”) for all a, b ∈ G, (b ; a) ∨ (a → b) ≥ 0.

Note that the converse implications are not true.
Note also that (b1”) and (b2”) coincide and that (b1d”) and (b2d”) coincide.

Proposition 4.5 Let G = (G,∨,∧, +,−, 0) be an l-group. Then

(c) ⇐⇒ (c1) ⇐⇒ (c2), (cd) ⇐⇒ (c1d) ⇐⇒ (c2d),

where:
(c1) for all x, y, z, w ∈ G, (x ; y) ∧ (([((y ; x) ; z) ; z] → w) → w) ≤ 0,
(c2) for all x, y, z, w ∈ G, (x → y) ∧ (([((y → x) → z) → z] ; w) ; w) ≤ 0;
(c1d) for all x, y, z, w ∈ G, (x ; y) ∨ (([((y ; x) ; z) ; z] → w) → w) ≥ 0,
(c2d) for all x, y, z, w ∈ G, (x → y) ∨ (([((y → x) → z) → z] ; w) ; w) ≥ 0.

Proof.
(cd) =⇒ (c1d): (x ; y) ∨ (([((y ; x) ; z) ; z] → w) → w) =

(−x + y) ∨ (([−(−(−y + x) + z) + z] → w) → w) =
(−x + y) ∨ (([−(−x + y + z) + z] → w) → w) =
(−x + y) ∨ (([−z − y + x + z] → w) → w) =
(−x + y) ∨ ((w − [−z − y + x + z]) → w) =
(−x + y) ∨ ((w − z − x + y + z) → w) =
(−x + y) ∨ (w − (w − z − x + y + z)) =
(−x + y) ∨ (w − z − y + x + z − w) =
(−x + y) ∨ ((w − z)− (−x + y) + (z − w)) =
a ∨ (−b− a + b) ≥ 0, by (cd).

(c1d) =⇒ (cd): Take x = 0, y = a, z = 0, w = −b in (c1d); we obtain:
(0 ; a) ∨ (([((a ; 0) ; 0) ; 0] → −b) → −b) ≥ 0 ⇐⇒
a ∨ ((−a → −b) → −b) ≥ 0 ⇐⇒
a ∨ ((−b− (−a)) → −b) ≥ 0 ⇐⇒
a ∨ ((−b + a) → −b) ≥ 0 ⇐⇒
a ∨ (−b− (−b + a)) ≥ 0 ⇐⇒
a ∨ (−b− a + b) ≥ 0. Thus (cd) ⇐⇒ (c1d).
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(cd) =⇒ (c2d): (x → y) ∨ (([((y → x) → z) → z] ; w) ; w) =
(y − x) ∨ (([z − (z − (x− y))] ; w) ; w) =
(y − x) ∨ (([z − (z + y − x)] ; w) ; w) =
(y − x) ∨ (([z + x− y − z] ; w) ; w) =
(y − x) ∨ ((−[z + x− y − z] + w) ; w) =
(y − x) ∨ ((z + y − x− z + w) ; w) =
(y − x) ∨ (−(z + y − x− z + w) + w) =
(y − x) ∨ (−w + z + x− y − z + w) =
a ∨ (−b− a + b) ≥ 0, by (cd).

(c2d) =⇒ (cd): Take x = 0, y = a, z = 0, w = b in (c2d); we obtain:
(0 → a) ∨ (([((a → 0) → 0) → 0] ; b) ; b) ≥ 0 ⇐⇒
a ∨ ((−a ; b) ; b) ≥ 0 ⇐⇒
a ∨ ((a + b) ; b) ≥ 0 ⇐⇒
a ∨ (−b− a + b) ≥ 0. Thus (cd) ⇐⇒ (c2d).

The rest of the proof is similar. 2

We shall say that an l-implicative-group is representable if it is a subdirect product of totally-ordered
implicative-groups. Consequently, an l-implicative-group is representable if and only if its term equivalent
l-group is representable. Then we have the following result, needed in the sequel.

Theorem 4.6
The following are equivalent for an l-implicative-group G = (G,∨,∧,→, ;, 0):

(a) G is representable, (b1), (b2), (b1d), (b2d), (c1), (c2), (c1d), (c2d).

Proof. By Theorem 4.1 and Propositions 4.3, 4.5. 2

We can put together Theorems 4.1 and 4.6 in the following resuming statement:

Theorem 4.7 Let G = (G,∨,∧, +,−, 0) be an l-group or, equivalently, let G = (G,∨,∧,→, ;, 0) be an
l-implicative-group. The following are equivalent:
(a) G is representable.

(b) For all a, b ∈ G, 2(a ∧ b) = 2a ∧ 2b,
(b1) For all a, b ∈ G, (b → a) ∧ (a ; b) ≤ 0 ∧ [(b ; a) ; (b → a)],
(b2) For all a, b ∈ G, (b ; a) ∧ (a → b) ≤ 0 ∧ [(b → a) → (b ; a)].

(bd) For all a, b ∈ G, 2(a ∨ b) = 2a ∨ 2b,
(b1d) For all a, b ∈ G, (b → a) ∨ (a ; b) ≥ 0 ∨ [(b ; a) ; (b → a)],
(b2d) For all a, b ∈ G, (b ; a) ∨ (a → b) ≥ 0 ∨ [(b → a) → (b ; a)].

(c) For all a, b ∈ G, a ∧ (−b− a + b) ≤ 0,
(c1) For all x, y, z, w ∈ G, (x ; y) ∧ (([((y ; x) ; z) ; z] → w) → w) ≤ 0,
(c2) For all x, y, z, w ∈ G, (x → y) ∧ (([((y → x) → z) → z] ; w) ; w) ≤ 0.

(cd) For all a, b ∈ G, a ∨ (−b− a + b) ≥ 0,
(c1d) For all x, y, z, w ∈ G, (x ; y) ∨ (([((y ; x) ; z) ; z] → w) → w) ≥ 0,
(c2d) For all x, y, z, w ∈ G, (x → y) ∨ (([((y → x) → z) → z] ; w) ; w) ≥ 0.

(d) Each polar subgroup is normal.
(e) Each minimal prime subgroup is normal.
(f) For each a ∈ G, a > 0, a ∧ (−b + a + b) > 0, for all b ∈ G;
(fd) For each a ∈ G, a < 0, a ∨ (−b + a + b) < 0, for all b ∈ G.
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4.2 Connections between the representability at l-implicative-group G level
and the representability at G−, G+ level

• Recall that in the commutative case:
A left-residuated lattice AL = (AL,∧,∨,¯,→L, 1) or, equivalently, a left-BCK(P) lattice AL =

(AL,∧,∨,→L, 1) with product:
(P) there exist x¯ y

notation= min{z | x ≤ y →L z}, for all x, y ∈ AL,
is representable if it is a subdirect product of linearly-ordered ones. It is known that representable such
algebras are characterized by the prelinearity condition:

(prel) (x →L y) ∨ (y →L x) = 1.

Dually, a right-residuated lattice AR = (AR,∨,∧,⊕,→R, 0) or, equivalently, a right-BCK(S) lattice
AR = (AR,∨,∧,→R, 0) with sum:
(S) there exist x⊕ y

notation= max{z | x ≥ y →R z}, for all x, y ∈ AR,
is representable if it is a subdirect product of linearly-ordered ones; representable such algebras are char-
acterized by the dual prelinearity condition:

(preld) (x →R y) ∧ (y →R x) = 0.

Then we have the following result:

Theorem 4.8 Let G = (G,∨,∧,→, 0) be a representable commutative l-implicative-group.
(1) Define, for all x, y ∈ G−:

x →L y
def.
= (x → y) ∧ 0. (43)

Then, GL = (G−,∧,∨,→L,1 = 0) is a representable left-BCK(P) lattice.
(1’) Define, for all x, y ∈ G+:

x →R y
def.
= (x → y) ∨ 0. (44)

Then, GR = (G+,∨,∧,→R,0 = 0) is a representable right-BCK(S) lattice.

Proof.
(1): By Theorem 2.9, GL is a left-BCK(P) lattice. To prove that it is representable, we must prove that

(prel) holds. Indeed, (x →L y) ∨ (y →L x) = [(x → y) ∧ 0] ∨ [(y → x) ∧ 0] = [(x → y) ∨ (y → x)] ∧ 0 = 0,
by Theorem 4.1 and Remarks 4.2.

(1’) By Theorem 2.9, GR is a right-BCK(S) lattice. To prove that it is representable, we must prove that
(preld) holds. Indeed, (x →R y)∧ (y →R x) = [(x → y)∨ 0]∧ [(y → x)∨ 0] = [(x → y)∧ (y → x)]∨ 0 = 0,
by Theorem 4.1 and Remarks 4.2. 2

• Recall that in the non-commutative case, a non-commutative left-residuated lattice
AL = (AL,∧,∨,¯,→L, ;L, 1) or, equivalently, a left-pseudo-BCK(pP) lattice AL = (AL,∧,∨,→L, ;L

, 1) (with the pseudo-product ¯) is representable if it is a subdirect product of linearly-ordered ones. C.J.
van Alten [2] proved that such non-commutative algebras are representable if and only if they satisfy the
identity:

(x ;L y) ∨ (([((y ;L x) ;L z) ;L z] →L w) →L w) = 1, (45)

or the identity
(x →L y) ∨ (([((y →L x) →L z) →L z] ;L w) ;L w) = 1. (46)

Dually, a non-commutative right-residuated lattice AR = (AR,∨,∧,⊕,→R, ;R, 0) or, equivalently, a
right-pseudo-BCK(pS) lattice AR = (AR,∨,∧,→R, ;R, 0) (with the pseudo-sum ⊕) is representable if it
is a subdirect product of linearly-ordered ones; representable such algebras are characterized then by the
dual condition:

(x ;R y) ∧ (([((y ;R x) ;R z) ;R z] →R w) →R w) = 0, (47)
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or
(x →R y) ∧ (([((y →R x) →R z) →R z] ;R w) ;R w) = 0. (48)

We shall prove the following result:

Theorem 4.9 (see Theorem 2.9)
Let G = (G,∨,∧,→, ;, 0) be a representable l-implicative-group. Then,
(1) GL = (G−,∧,∨,→L, ;L,1 = 0) is a representable left-pseudo-BCK(pP) lattice (with the pseudo-

product ¯ = +).
(1’) GR = (G+,∨,∧,→R, ;R,0 = 0) is a representable right-pseudo-BCK(pS) lattice (with the pseudo-

sum ⊕ = +).

Proof.
(1): By Theorem 2.9, GL is a left-pseudo-BCK(pP) lattice. To prove that GL is representable, we must

prove that condition (45), for example, holds. First denote:

A
notation= ((y ;L x) ;L z) ;L z,

B
notation= (A →L w) →L w,

C
notation= (x ;L y) ∨B.

We must prove, by (45), that C = 1. Indeed,
• First proof:

A = ((y ;L x) ;L z) ;L z = ([(−y + x) ∧ 0] ;L z) ;L z =
[(−[(−y + x) ∧ 0] + z) ∧ 0] ;L z =
[([(−x + y) ∨ 0] + z) ∧ 0] ;L z =
[[(−x + y + z) ∨ z] ∧ 0] ;L z =
(−[[(−x + y + z) ∨ z] ∧ 0] + z) ∧ 0 =
([−((−x + y + z) ∨ z) ∨ 0] + z) ∧ 0 =
([[(−z − y + x) ∧ (−z)] ∨ 0] + z) ∧ 0 =
(([(−z − y + x) ∧ (−z)] + z) ∨ z) ∧ 0 =
(((−z − y + x + z) ∧ 0) ∨ z) ∧ 0 =
[(−z − y + x + z) ∧ 0] ∨ z =
[(−z − y + x + z) ∨ z] ∧ 0.

B = (A →L w) →L w =
[(w −A) ∧ 0] →L w =
(w − [(w −A) ∧ 0]) ∧ 0 =
(w + [(A− w) ∨ 0]) ∧ 0 =
((w + A− w) ∨ w) ∧ 0 =
[(w + ([(−z − y + x + z) ∨ z] ∧ 0)− w) ∨ w] ∧ 0 =
[([(w + [(−z − y + x + z) ∨ z]) ∧ w]− w) ∨ w] ∧ 0 =
[([[(w − z − y + x + z) ∨ (w + z)] ∧ w]− w) ∨ w] ∧ 0 =
[([(w − z − y + x + z − w) ∨ (w + z − w)] ∧ 0) ∨ w] ∧ 0 =
[[(w − z − y + x + z − w) ∧ 0] ∨ [(w + z − w) ∧ 0] ∨ w] ∧ 0 =
[(w − z − y + x + z − w) ∧ 0] ∨ [(w + z − w) ∧ 0] ∨ w ≥
(w − z − y + x + z − w) ∧ 0.

Hence,
C = (x ;L y) ∨B ≥
[(−x + y) ∧ 0] ∨ [(w − z − y + x + z − w) ∧ 0] =
[(−x + y) ∨ (w − z − y + x + z − w)] ∧ 0 =
[a ∨ (−b− a + b)] ∧ 0, with a = −x + y, b = z − w.
But G is representable, hence by Theorem 4.1 (cd), for all a, b ∈ G, a ∨ (−b − a + b) ≥ 0. Hence C ≥ 0
and thus C = 0, i.e. C = 1.

• Second proof: Denote
D

notation= ((y ; x) ; z) ; z,
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E
notation= (D → w) → w.

By Theorem 4.6 (c1d), we have
(x ; y) ∨ E ≥ 0. (49)

Then,

A = ((y ;L x) ;L z) ;L z = [([(y ; x) ∧ 0] ; z) ∧ 0] ;L z
(28)
=

[(((y ; x) ; z) ∨ (0 ; z)) ∧ 0] ;L z =
[(((y ; x) ; z) ∨ z) ∧ 0] ;L z

distrib.=
[[((y ; x) ; z) ∧ 0] ∨ (z ∧ 0)] ;L z

([[((y ; x) ; z) ∧ 0] ∨ z] ; z) ∧ 0
(27)
=

([((y ; x) ; z) ∧ 0] ; z) ∧ (z ; z) ∧ 0
(28)
=

([((y ; x) ; z) ; z] ∨ (0 ; z)) ∧ 0 = (D ∨ z) ∧ 0.

B = (A →L w) →L w = ([(D ∨ z) ∧ 0] → w) ∧ 0] →L w
(28)
=

[[((D ∨ z) → w) ∨ (0 → w)] ∧ 0] →L w =

([[((D ∨ z) → w) ∨ w] ∧ 0] → w) ∧ 0
(28)
=

(([((D ∨ z) → w) ∨ w] → w) ∨ (0 → w)) ∧ 0
(27)
=

([(((D ∨ z) → w) → w) ∧ (w → w)] ∨ w) ∧ 0 distrib.=
[[(((D ∨ z) → w) → w) ∨ w] ∧ (0 ∨ w)] ∧ 0 =

[(((D ∨ z) → w) → w) ∨ w] ∧ 0
(27)
=

[([(D → w) ∧ (z → w)] → w) ∨ w] ∧ 0
(28)
=

[[((D → w) → w) ∨ ((z → w) → w))] ∨ w] ∧ 0 =
[E ∨ ((z → w) → w) ∨ w] ∧ 0.

C = (x ;L y) ∨B =
[(x ; y) ∧ 0] ∨ [(E ∨ ((z → w) → w) ∨ w) ∧ 0] distrib.=
[(x ; y) ∨ E ∨ ((z → w) → w) ∨ w] ∧ 0 = 0,
since (x ; y) ∨ E ∨ ((z → w) → w) ∨ w ≥ (x ; y) ∨ E ≥ 0, by (49), and hence [(x ; y) ∨ E] ∧ 0 = 0.
Thus, C = 1.

(1’) has a similar proof, using Theorem 4.1 (c), in the first proof, and Theorem 4.6 (c1), in the second
proof. 2

Finaly, we present some intermediary results and an open problem.

Theorem 4.10 (see Theorem 2.9)
Let G = (G,∨,∧,→, ;, 0) be a representable l-implicative-group. Then,
(1) the reversed left-pseudo-BCK(pP) lattice GL = (G−,∧,∨,→L, ;L,1 = 0) (with the pseudo-product

¯ = +), verifying condition (pC), verifies also the following conditions: for all a, b ∈ G−,
(i) (a ∨ b)2 = a2 ∨ b2, i.e. (a ∨ b)¯ (a ∨ b) = (a¯ a) ∨ (b¯ b),
(ii) Condition (i) is equivalent with condition

[b →L (a ;L (a¯ a))] ∨ [a ;L (b →L (b¯ b))] = 1. (50)

(iii) (b →L a) ∨ (a ;L b) = 1,
(iv) Condition (iii) implies condition (50).

(1’) the reversed right-pseudo-BCK(pS) lattice GR = (G+,∨,∧,→R, ;R,0 = 0) (with the pseudo-sum
⊕ = +), verifying the dual condition (pCd), verifies also the following conditions: for all a, b ∈ G+,
(i’) 2(a ∧ b) = 2a ∧ 2b, i.e. (a ∧ b)⊕ (a ∧ b) = (a⊕ a) ∧ (b⊕ b),
(ii’) Condition (i’) is equivalent with condition

[b →R (a ;R (a⊕ a))] ∨ [a ;R (b →R (b⊕ b))] = 0. (51)

(iii’) (b →R a) ∧ (a ;R b) = 0,
(iv’) Condition (iii’) implies condition (51).
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Proof. We prove (1). We denote →=→L and ;=;L.
(i): follows obviously by Theorem 4.7 (bd), since G is representable.
(ii): We shall prove that (i) ⇐⇒ (50). Indeed,
(i) =⇒ (50):

(i) (a ∨ b)¯ (a ∨ b) = (a¯ a) ∨ (b¯ b) ⇐⇒
[(a ∨ b)¯ a] ∨ [(a ∨ b)¯ b] = (a¯ a) ∨ (b¯ b) ⇐⇒
a¯ a ∨ b¯ a ∨ a¯ b ∨ b¯ b = a¯ a ∨ b¯ b ⇐⇒

a¯ b ∨ b¯ a ≤ a¯ a ∨ b¯ b. (52)

And (52) =⇒
a¯ b ≤ a¯ a ∨ b¯ b =⇒
b → (a¯ b) ≤ b → (a¯ a ∨ b¯ b) =⇒

a ; (b → (a¯ b)) ≤ a ; (b → (a¯ a ∨ b¯ b)). (53)

But a ; (b → (a¯ b) = b → (a ; (a¯ b)) ≤ b → b = 1, since b ≤ a ; (a¯ b). Hence, (53) =⇒
a ; (b → (a¯ a ∨ b¯ b)) = 1

(pprel)⇐⇒
a ; [(b → a¯ a) ∨ (b → b¯ b)] = 1

(pprel)⇐⇒
[a ; (b → a¯ a)] ∨ [a ; (b → b¯ b)] = 1 ⇐⇒
[b → (a ; (a¯ a))] ∨ [a ; (b → (b¯ b))] = 1, i.e.(50) holds.
Note we have used an equivalent condition with (pprel) denoted (pprel⇒∨) in [18], pag. 386:
(pprel⇒∨) x → (y ∨ z) = (x → y) ∨ (x → z) and x ; (y ∨ z) = (x ; y) ∨ (x ; z).

50) =⇒ (i):
(50) [b → (a ; (a¯ a))] ∨ [a ; (b → (b¯ b))] = 1 ⇐⇒
[a ; (b → (a¯ a))] ∨ [a ; (b → (b¯ b))] = 1

(pprel)⇐⇒
a ; (b → (a¯ a ∨ b¯ b)) = 1 ⇐⇒
1 ≤ a ; (b → (a¯ a ∨ b¯ b)) =⇒
a = a¯ 1 ≤ a¯ [a ; (b → (a¯ a ∨ b¯ b))]

(pdiv)⇐⇒
a ≤ a ∧ (b → (a¯ a ∨ b¯ b)) ≤ a =⇒
a = a ∧ (b → (a¯ a ∨ b¯ b)) ⇐⇒
a ≤ (b → (a¯ a ∨ b¯ b)) =⇒
a¯ b ≤ (b → (a¯ a ∨ b¯ b))¯ b

(pdiv)⇐⇒
a¯ b ≤ b ∧ (a¯ a ∨ b¯ b) ≤ a¯ a ∨ b¯ b =⇒
a¯ b ≤ a¯ a ∨ b¯ b.
Similarly,
b¯ a ≤ b¯ b ∨ a¯ a,
i.e. a¯ a ∨ b¯ b is an upper bound of a¯ b and b¯ a. It follows that
a¯ b ∨ b¯ a ≤ a¯ a ∨ b¯ b, i.e. (52) holds. And we have seen above that (52) ⇐⇒ (i).

(iii): (b →L a) ∨ (a ;L b) = [(b → a) ∧ 0] ∨ [(a ; b) ∧ 0] =
[(b → a) ∨ (a ; b)] ∧ 0 ≥ (0 ∨ [(b ; a) ; (b → a)]) ∧ 0 = 0 = 1, by Theorem 4.7 ((a) ⇐⇒ (b1d).

(iv): Condition (iii) implies condition (50). Indeed,
since a ≤ a ;L (a¯ a) and b ≤ b →L (b¯ b) by [18], condition (10.3), it follows that
b →L a ≤ b →L [a ;L (a¯ a)] and a ;L b ≤ a ;L [b →L (b¯ b)], hence
1 = (b →L a) ∨ (a ;L b) ≤ (b →L [a ;L (a¯ a)]) ∨ (a ;L [b →L (b¯ b)]), hence
(b →L [a ;L (a¯ a)]) ∨ (a ;L [b →L (b¯ b)]) = 1.

(1’) has a similar proof. 2

Proposition 4.11 (see Theorem 2.9) Let G = (G,∨,∧,→, ;, 0) be an l-implicative-group.
(1) If G verifies the condition (b1d”) from Remarks 4.4:

(b1d”) for all a, b ∈ G, (b → a) ∨ (a ; b) ≥ 0,
then the reversed left-pseudo-BCK(pP) lattice GL = (G−,∧,∨,→L,;L,1 = 0) verifies the condition (iii)
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from Theorem 4.10 (1):
(iii) for all a, b ∈ G−, (b →L a) ∨ (a ;L b) = 1 = 0.

(1’) If G verifies the condition (b1”) from Remarks 4.4:
(b1”) for all a, b ∈ G, (b → a) ∧ (a ; b) ≤ 0,
then the reversed right-pseudo-BCK(pS) lattice GR = (G+,∨,∧,→R, ;R,0 = 0) verifies the condition
(iii’) from Theorem 4.10 (1’):
(iii’) for all a, b ∈ G+, (b →R a) ∧ (a ;R b) = 0 = 0.

Proof. (1): (b →L a) ∨ (a ;L b) = [(b → a) ∧ 0] ∨ [(a ; b) ∧ 0] distrib.=

[(b → a) ∨ (a ; b)] ∧ 0
(b1d”)

= 0 = 1.
(1’): (b →R a) ∧ (a ;R b) = [(b → a) ∨ 0] ∧ [(a ; b) ∨ 0] =

[(b → a) ∧ (a ; b)] ∨ 0
(b1”)
= 0 = 0. 2

Open problems 4.12
(1) Find if there are connections between the representability of GL = (G−,∧,∨,→L,;L,1 = 0) (or

of the left-pseudo-MV algebra [u′, 0]) and the conditions (i) ⇐⇒ (50), (iii).
(1’) Find if there are connections between the representability of GR = (G+,∨,∧,→R, ;R,0 = 0) (or

of the right-pseudo-MV algebra [0, u]) and the conditions (i’) ⇐⇒ (51), (iii’).

Open problem 4.13 Find connections between the representability at l-group (l-implicative-group) G
level and the representability at [u′, 0] ⊂ G−, [0, u] ⊂ G+ level and at G−−∞, G+

+∞ level.

5 States

We study the additive-states on po-groups [15] and on l-groups and we introduce and study the implicative-
states and the Bosbach-states. New properties needed will be first proved.

5.1 New properties

Following the ideas from [7], we define the following distances:

Definition 5.1 Let (G,∨,∧, +,−, 0) be an l-group. We define the following distance functions, by (33)
and (34):

dL
1 (x, y)

def.
= (x ∨ y) → (x ∧ y) ∈ G−, dL

2 (x, y)
def.
= (x ∨ y) ; (x ∧ y) ∈ G−,

dR
1 (x, y)

def.
= (x ∧ y) → (x ∨ y) ∈ G+, dR

2 (x, y)
def.
= (x ∧ y) ; (x ∨ y) ∈ G+.

Proposition 5.2 (G,∨,∧,+,−, 0) be an l-group. Then the above defined distance functions verify the
following properties (see [7]): for all x, y, z ∈ G,
(1) dL

1 (x, y) = dL
1 (y, x), dL

2 (x, y) = dL
2 (y, x),

(1’) dR
1 (x, y) = dR

1 (y, x), dR
2 (x, y) = dR

2 (y, x),
(2) dL

1 (x, y) = 0 ⇐⇒ x = y ⇐⇒ dL
2 (x, y) = 0,

(2’) dR
1 (x, y) = 0 ⇐⇒ x = y ⇐⇒ dR

2 (x, y) = 0,

(3) dL
1 (x, 0) = dL

2 (x, 0) =
{ −x , if x ≥ 0

x , if x < 0,

(3’) dR
1 (x, 0) = dR

2 (x, 0) =
{ −x , if x ≤ 0

x , if x > 0,

(4) dL
1 (x, y) = dL

2 (−x,−y), dL
2 (x, y) = dL

1 (−x,−y),
(4’) dR

1 (x, y) = dR
2 (−x,−y), dR

2 (x, y) = dR
1 (−x,−y),

(5) dL
2 (x, y) + dL

2 (y, z) + dL
2 (x, y) ≤ dL

2 (x, z), dL
2 (y, z) + dL

2 (x, y) + dL
2 (y, z) ≤ dL

2 (x, z),
(6) dL

1 (x, y) + dL
1 (y, z) + dL

1 (x, y) ≤ dL
1 (x, z), dL

1 (y, z) + dL
1 (x, y) + dL

1 (y, z) ≤ dL
1 (x, z),

(5’) dR
2 (x, y) + dR

2 (y, z) + dR
2 (x, y) ≥ dR

2 (x, z), dR
2 (y, z) + dR

2 (x, y) + dR
2 (y, z) ≥ dL

2 (x, z),
(6’) dR

1 (x, y) + dR
1 (y, z) + dR

1 (x, y) ≥ dR
1 (x, z), dR

1 (y, z) + dR
1 (x, y) + dR

1 (y, z) ≥ dR
1 (x, z).
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Proof.
(1), (1’): Obvious, by (33) and (34).
(2): dL

1 (x, y) = 0 ⇐⇒ (x → y)∧ (y → x)∧ 0 = 0 ⇐⇒ (x → y)∧ (y → x) ≥ 0 ⇐⇒ x → y ≥ 0, y → x ≥
0 ⇐⇒ y − x ≥ 0, x− y ≥ 0 ⇐⇒ y ≥ x, x ≥ y ⇐⇒ x = y. The other equivalence has a similar proof.

(2’): has a similar proof.
(3): By (33), dL

1 (x, 0) = (x → 0) ∧ (0 → x) ∧ 0 = (−x) ∧ x ∧ 0:
- if x ≥ 0, then −x ≤ 0, hence dL

1 (x, 0) = 0 ∧ (−x) = −x;
- if x ≤ 0, then −x ≥ 0, hence dL

1 (x, 0) = x ∧ 0 = x.
dL
2 (x, 0) = (x ; 0) ∧ (0 ; x) ∧ 0 = (−x) ∧ x ∧ 0 = dL

1 (x, 0).
(3’): has a similar proof.

(4): dL
1 (x, y) = (x → y) ∧ (y → x) ∧ 0

(17)
= [(−y) ; (−x)] ∧ [(−x) ; (−y)] ∧ 0 = dL

2 (−x,−y).

dL
2 (x, y) = (x ; y) ∧ (y ; x) ∧ 0

(17)
= [(−y) → (−x)] ∧ [(−x) → (−y)] ∧ 0 = dL

1 (−x,−y).
(4’): has a similar proof.
(5): by (G9) and Proposition 2.2 (a), we obtain:

dL
2 (x, y) + dL

2 (y, z) + dL
2 (x, y) =

[(x ; y) ∧ (y ; x) ∧ 0] ∧ [(y ; z) ∧ (z ; y) ∧ 0] ∧ [(x ; y) ∧ (y ; x) ∧ 0] =
a ∧ b ∧ c ∧d ∧ e ∧ f ∧m ∧ n ∧ p∧
a′ ∧ b′ ∧ c′ ∧d′ ∧ e′ ∧ f ′ ∧m′ ∧ n′ ∧ p′∧
a′′ ∧ b′′ ∧ c′′ ∧d′′ ∧ e′′ ∧ f ′′ ∧m′′ ∧ n′′ ∧ p′′,
where:
a = (x ; y) + (y ; z) + (x ; y), b = (x ; y) + (y ; z) + (y ; x), c = (x ; y) + (y ; z) + 0 = x ; z,
d = (x ; y) + (z ; y) + (x ; y), e = (x ; y) + (z ; y) + (y ; x), f = (x ; y) + (z ; y) + 0,
m = (x ; y) + 0 + (x ; y), n = (x ; y) + 0 + (y ; x) = 0, p = (x ; y) + 0 + 0,

a′ = (y ; x) + (y ; z) + (x ; y), b′ = (y ; x) + (y ; z) + (y ; x), c′ = (y ; x) + (y ; z) + 0,
d′ = (y ; x) + (z ; y) + (x ; y), e′ = (y ; x) + (z ; y) + (y ; x), f ′ = (y ; x) + (z ; y) + 0,
m′ = (y ; x) + 0 + (x ; y) = 0, n′ = (y ; x) + 0 + (y ; x), p′ = (y ; x) + 0 + 0,

a′′ = 0 + (y ; z) + (x ; y), b′′ = 0 + (y ; z) + (y ; x), c′′ = 0 + (y ; z) + 0,
d′′ = 0 + (z ; y) + (x ; y), e′′ = 0 + (z ; y) + (y ; x) = z ; x, f ′′ = 0 + (z ; y) + 0,
m′′ = 0 + 0 + (x ; y), n′′ = 0 + 0 + (y ; x), p′′ = 0 + 0 + 0 = 0.
But, dL

2 (x, y) + dL
2 (y, z) + dL

2 (x, y) ≤ c ∧ e′′ ∧ p′′ = (x ; z) ∧ (z ; x) ∧ 0 = dL
2 (x, z).

The second inequality of (5) has a similar proof.
(6), (5’), (6’) have similar proofs. 2

5.2 Additive-states and implicative-states

We generalize to arbitrary po-groups with strong unit the definition of states for the abelian po-groups
from [15].

Definition 5.3 (see also [9]) Let G = (G,≤,+,−, 0) be a po-group with strong unit u (i.e. u ≥ 0 and
for every x ∈ G, there exists some positive integer n such that x ≤ u + u + . . . + u︸ ︷︷ ︸

n times

) and let R = (R,≤

, +,−, 0)) be the additive abelian po-group of real numbers with strong unit 1.
An additive-state or a state for short on G is any positive (or equivalently order preserving) group

homomorphism s : G −→ R verifying s(u) = 1, i.e. s is a state iff the following properties hold: for all
x, y ∈ G,
(s1) s(x + y) = s(x) + s(y),
(s2) x ≥ 0 implies s(x) ≥ 0,
(s3) s(u) = 1.
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Proposition 5.4 Let s be a state on (G, u). Then, the following properties hold: for all x, y ∈ G
(s4) s(0) = 0,
(s5) s(−x) = −s(x),
(s6) x ≤ y implies s(x) ≤ s(y),
(s7) s(x → y) = s(x) → s(y) = s(x ; y).

Proof.
(s4): s(x) = s(x + 0) = s(x) + s(0) implies s(0) = 0.
(s5): 0 = s(0) = s(x + (−x)) = s(x) + s(−x) implies s(−x) = −s(x).
(s6): x ≤ y implies y − x ≥ 0 implies s(y − x) ≥ s(0), i.e. s(y) + s(−x) ≥ 0, hence s(y) − s(x) ≥ 0

hence s(x) ≤ s(y).
(S7): s(x → y) = s(y − x) = s(y) + s(−x) = s(y)− s(x) = s(x) → s(y) and s(x ; y) = s(−x + y) =

s(−x) + s(y) = −s(x) + s(y) = s(x) ; s(y) = s(x) → s(y). 2

Definition 5.5 Let G = (G,≤,→,;, 0) be a po-implicative-group with strong unit u and let (R,≤,→, 0)
be the abelian po-implicative-group with strong unit 1 of real numbers.

An implicative-state on (G, u) is any map s : G −→ R verifying: for all x, y ∈ G,
(is-1) s(x → y) = s(x) → s(y) = s(x ; y),
(is-2) x ≥ 0 implies s(x) ≥ 0,
(is-3) s(u) = 1.

Proposition 5.6 Let s be an implicative-state on the po-implicative-group G = (G,≤,→, ;, 0) with strong
unit u. Then, the following property holds: for all x, y ∈ G
(is-4) s(0) = 0,
(is-5) s(−x) = −s(x).

Proof.
(is-4): s(0)

(I9)
= s(x → x) = s(x) → s(x)

(I9)
= 0,

(is-5): s(−x) = s(x → 0) = s(x) → 0 = −s(x). 2

Theorem 5.7 The states on the po-group Gg = (G,≤, +,−, 0) with strong unit u coincide with the
implicative-states on the term equivalent po-implicative-group Gig = (G,≤,→, ;, 0).

Proof.
• Let s be a state on Gg. To prove that s is an implicative-state on Gig it is sufficient to prove that

(is-1) holds for all x, y ∈ G. Indeed,
s(x → y) = s(y − x) = s(y) + s(−x) = s(y) + (−s(x)) = s(x) → s(y) and s(x ; y) = s(−x + y) =
s(−x) + s(y) = −s(x) + s(y) = s(x) ; s(y) = s(x) → s(y).

• Let s be an implicative-state on Gig. To prove that s is a state on Gg it is sufficient to prove that
(s1) holds for all x, y ∈ G. Indeed,
s(x + y) = s(−(x → (−y)) = −s(x → (−y)) = −(s(x) → s(−y)) = −(s(x) → (−s(y))) = s(x) + s(y). 2

5.3 State morphisms and implicative-state morphisms

Definition 5.8 Let G = (G,∨,∧, +,−, 0) be an l-group with strong unit u and let R = (R, max,min, +,−, 0)
be the additive abelian l-group of real numbers with strong unit 1.

A state morphism on G is a state s on G verifying the following property: for all x, y ∈ G,
(s0) s(x ∧ y) = s(x) ∧ s(y) = min(s(x), s(y)).

Note that (s0) can be replaced by the weaker condition

s(x) ∧ s(y) ≤ s(x ∧ y),

since s(x ∧ y) ≤ s(x) ∧ s(y) always holds (indeed, x ∧ y ≤ x, y implies s(x ∧ y) ≤ s(x), s(y), i.e. s(x ∧ y)
is a lower bound of s(x), s(y); hence, s(x ∧ y) ≤ s(x) ∧ s(y)).
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Proposition 5.9 Let s be a state-morphism on the l-group with strong unit G = (G,∨,∧, +,−, 0). Then,
for all x, y ∈ G:
(s0’) s(x ∨ y) = s(x) ∨ s(y) = max(s(x), s(y)).

Proof. s(x∨y)
(G12)
= s(x−(x∧y)+y) = s(x)−s(x∧y) = s(y) = s(x)−s(x)∧s(y)+s(y)

(G12)
= s(x)∨s(y). 2

Note that an equivalent definition of a state-morphism on an l-group G with strong unit would be, by
Proposition 5.9 and by (G12), the following:
A state-morphism on G is any state s on G verifying the following property: for all x, y ∈ G,
(s0’) s(x ∨ y) = s(x) ∨ s(y) = max(s(x), s(y)),
and then (s0) will follow.

Definition 5.10 Let G = (G,∨,∧,→, ;, 0) be an l-implicative-group with strong unit u and let R =
(R, max,min,→, 0) be the abelian l-implicative-group of real numbers with strong unit 1.

An implicative-state morphism on G is an implicative-state s on G verifying (s0).

By Theorem 5.7, we immediately obtain that the states morphisms on the l-group Gg = (G,∨,∧, +,−, 0)
with strong unit u coincide with the implicative-states morphisms on the term equivalent
l-implicative-group Gig = (G,∨,∧,→, ;, 0).

5.4 Bosbach-states

In this subsection, G = (G,∨,∧, +,−, 0) is an l-group with strong unit u and R = (R,∨,∧, +,−, 0) is the
additive l-group of real numbers with the strong unit 1; we denote them (G, u) and (R, 1) respectively.

Proposition 5.11 (See [12], Proposition 2.1)
Let s : G −→ R such that s(0) = 0. Then, the following are equivalent:

(i) s(x ∨ y) + s(dL
1 (x, y)) = s(x ∧ y),

(ii) s(y) + s((y → x) ∧ 0) = s(x ∧ y),
(iii) s(x) + s((x → y) ∧ 0) = s(y) + s((y → x) ∧ 0).

Proof.
(i) ⇐⇒ (ii): Let us consider a ≤ b in G; then a ∧ b = a and a ∨ b = b, hence dL

1 (a, b) = b → a. It
follows, by (i), that

s(b) + s(b → a) = s(a). (54)

Let us take a = x ∧ y and b = y. By (54), we obtain:
s(y) + s((y → x) ∧ 0) = s(y) + s(y → (x ∧ y)) = s(x ∧ y), i.e. (ii) holds.

(ii) ⇐⇒ (iii): s(x) = s((x → y) ∧ 0)
(ii)
= s(y ∧ x) = s(x ∧ y) = s(y) + s((y → x) ∧ 0), i.e. (iii) holds.

(iii) ⇐⇒ (i): s(x ∨ y) + s(dL
1 (x, y)) = s(x ∨ y) + s((x ∨ y) → (x ∧ y))

(33)
=

s(x ∨ y) + s([(x ∨ y) → (x ∧ y)] ∧ 0)
(iii)
= s(x ∧ y) + s([(x ∧ y) → (x ∨ y)] ∧ 0) = s(x ∧ y) + s(0) = s(x ∧ y),

since
(x ∨ y) → (x ∧ y) ≤ 0 and hence (x ∨ y) → (x ∧ y) = [(x ∨ y) → (x ∧ y)] ∧ 0 and since

x ∧ y ≤ x ∨ y and hence [(x ∧ y) → (x ∨ y)]
Corollary 2.3

≥ 0. 2

The following proposition has a similar proof:

Proposition 5.12 (See [12], Proposition 2.2)
Let s : G −→ R such that s(0) = 0. Then, the following are equivalent:

(i) s(x ∨ y) + s(dL
2 (x, y)) = s(x ∧ y),

(ii) s(y) + s((y ; x) ∧ 0) = s(x ∧ y),
(iii) s(x) + s((x ; y) ∧ 0) = s(y) + s((y ; x) ∧ 0).

Dually, we have:
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Proposition 5.13
Let s : G −→ R such that s(0) = 0. Then, the following are equivalent:

(i’) s(x ∧ y) + s(dR
1 (x, y)) = s(x ∨ y),

(ii’) s(y) + s((y → x) ∨ 0) = s(x ∨ y),
(iii’) s(x) + s((x → y) ∨ 0) = s(y) + s((y → x) ∨ 0).

Proof.
(i’) ⇐⇒ (ii’): Let us consider a ≤ b in G; then a ∧ b = a and a ∨ b = b, hence dL

1 (a, b) = b → a. It
follows, by (i’), that

s(a) + s(a → b) = s(b). (55)

Let us take a = y and b = x ∨ y. By (55), we obtain:
s(y) + s((y → x) ∨ 0) = s(y) + s(y → (x ∨ y)) = s(x ∨ y), i.e. (ii’) holds.

(ii’) ⇐⇒ (iii’): s(x) = s((x → y) ∨ 0)
(ii′)
= s(y ∨ x) = s(x ∨ y) = s(y) + s((y → x) ∨ 0), i.e. (iii’) holds.

(iii’) ⇐⇒ (i’): s(x ∧ y) + s(dR
1 (x, y)) = s(x ∧ y) + s((x ∧ y) → (x ∨ y))

(33)
=

s(x ∧ y) + s([(x ∧ y) → (x ∨ y)] ∨ 0)
(iii′)
= s(x ∨ y) + s([(x ∨ y) → (x ∧ y)] ∨ 0) = s(x ∨ y) + s(0) = s(x ∨ y),

since

x ∧ y ≤ x ∨ y and hence [(x ∧ y) → (x ∨ y)]
Corollary 2.3

≥ 0. 2

The following proposition has a similar proof:

Proposition 5.14
Let s : G −→ R such that s(0) = 0. Then, the following are equivalent:

(i’) s(x ∧ y) + s(dR
2 (x, y)) = s(x ∨ y),

(ii’) s(y) + s((y ; x) ∨ 0) = s(x ∨ y),
(iii’) s(x) + s((x ; y) ∨ 0) = s(y) + s((y ; x) ∨ 0).

Definition 5.15 A Bosbach-state on (G, u) is a function s : G −→ R such that: for all x, y ∈ G,
(S1) s(x) + s((x → y) ∧ 0) = s(y) + s((y → x) ∧ 0),
(S2) s(x) + s((x ; y) ∧ 0) = s(y) + s((y ; x) ∧ 0),
(S1’) s(x) + s((x → y) ∨ 0) = s(y) + s((y → x) ∨ 0),
(S2’) s(x) + s((x ; y) ∨ 0) = s(y) + s((y ; x) ∨ 0),
(S3) s(0) = 0, s(u) = 1,
(S3’) x ≥ 0 implies s(x) ≥ 0.

Note that Propositions 5.11, 5.12 (5.13, 5.14) give equivalent conditions to (S1), (S2) ((S1’), (S2’)
respectively).

Proposition 5.16 (See [12], Proposition 2.7)
Let s be a Bosbach-state on G. Then, for all x, y ∈ G:

(S4) s((x → y) ∧ 0) = s((x ; y) ∧ 0),
(S4’) s((x → y) ∨ 0) = s((x ; y) ∨ 0),
(S5) s(dL

1 (x, y)) = s(dL
2 (x, y)),

(S5’) s(dR
1 (x, y)) = s(dR

2 (x, y)),
(S6) s(x) + s(−x ∧ 0) = s(x ∧ 0),
(S6’) s(x) + s(−x ∨ 0) = s(x ∨ 0),
(S7) s(−x) = −s(x),
(S8) x ≤ y implies s(y → x) = s(y ; x) = s(y) → s(x),
(S8’) x ≤ y implies s(x → y) = s(x ; y) = s(x) → s(y),
(S9) x ≤ y implies s(x) ≤ s(y).

Proof.
(S4): (s(x) + s((x → y)∧ 0) = s(y ∧ x) = s(x) + s((x ; y)∧ 0), by Propositions 5.11 (ii) and 5.12 (ii).

Hence, s((x → y) ∧ 0) = s((x ; y) ∧ 0).
(S4’): (s(x) + s((x → y) ∨ 0) = s(y ∨ x) = s(x) + s((x ; y) ∨ 0), by Propositions 5.13 (ii’) and 5.14

(ii’). Hence, s((x → y) ∨ 0) = s((x ; y) ∨ 0).
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(S5): s(x ∨ y) + s(dL
1 (x, y)) = s(x ∧ y) = s(x ∨ y) + s(dL

2 (x, y)), by Propositions 5.11 (i) and 5.12 (i).
Hence, s(dL

1 (x, y)) = s(dL
2 (x, y)).

(S5’): Similarly, by Propositions 5.13 (i’) and 5.14 (i’).

(S6): s(x) + s(−x ∧ 0)
(5)
= s(x) + s((x → 0) ∧ 0)

(S1)
= s(0) + s((0 → x) ∧ 0)

(9)
= 0 + s(x ∧ 0) = s(x ∧ 0).

(S6’): s(x) + s(−x ∨ 0)
(5)
= s(x) + s((x → 0) ∨ 0)

(S1′)
= s(0) + s((0 → x) ∨ 0)

(9)
= 0 + s(x ∨ 0) = s(x ∨ 0).

(S7): First, we prove that:
s(−x) + s(x ∧ 0) = s(−x ∧ 0). (56)

Indeed, s(−x) + s(x ∧ 0) = s(−x) + s((−(−x)) ∧ 0)
(S6)
= s(−x ∧ 0).

Now, s(x ∧ 0)
(S6)
= s(x) + s(−x ∧ 0)

(56)
= s(x) + s(−x) + s(x ∧ 0). It follows that s(x) + s(−x) = 0, i.e.

s(−x) = −s(x).
(S8): Let x ≤ y; then x → y ≥ 0, x ; y ≥ 0 and y → x ≤ 0, y ; x ≤ 0, by Corollary 2.3. Then:

s(y) + s(y → x) = s(y) + s((y → x) ∧ 0)
(S1)
= s(x) + s((x → y) ∧ 0) = s(x) + s(0) = s(x); hence,

s(y → x) = s(x)− s(y) = s(y) → s(x). Similarly,

s(y) + s(y ; x) = s(y) + s((y ; x) ∧ 0)
(S2)
= s(x) + s((x ; y) ∧ 0) = s(x) + s(0) = s(x); hence,

s(y ; x) = s(x)− s(y) = s(y) → s(x).
(S8’): Let x ≤ y; then x → y ≥ 0, x ; y ≥ 0 and y → x ≤ 0, y ; x ≤ 0, by Corollary 2.3. Then:

s(y) = s(y) + 0 = s(y) + s(0) = s(y) + s((y → x)∨ 0)
(S1′)
= s(x) + s((x → y)∨ 0) = s(x) + s(x → y); hence,

s(x → y) = s(y)− s(x) = s(x) → s(y). Similarly, s(x ; y) = s(y)− s(x) = s(x) → s(y).
(S9): Let x ≤ y; hence x → y ≥ 0. By (S3’), s(x → y) ≥ 0; but, by (S8’), s(x → y) = s(y) − s(x); it

follows that s(y)− s(x) ≥ 0, hence s(x) ≤ s(y). 2

Theorem 5.17 Any state is a Bosbach-state.

Proof. By definitions of states and Bosbach-states, it remains to prove (S1)-(S2’). Indeed,
(S1): s(x) + s((x → y)∧ 0) = s((x → y)∧ 0) + s(x) s state= s([(x → y)∧ 0] + x) = s([(x → y) + x]∧x) =

s(y ∧ x) = s(x ∧ y) = . . . = s(y) + s((y → x) ∧ 0).
(S2): s(x) + s((x ; y) ∧ 0) s state= s(x + [(x ; y) ∧ 0]) = s([x + (x ; y)] ∧ x) = s(y ∧ x) = s(x ∧ y) =

. . . = s(y) + s((y ; x) ∧ 0).
(S1’): s(x)+ s((x → y)∨ 0) = s((x → y)∨ 0)+ s(x) s state= s([(x → y)∨ 0]+x) = s([(x → y)+x]∨x) =

s(y ∨ x) = s(x ∨ y) = . . . = s(y) + s((y → x) ∨ 0).
(S2’): s(x) + s((x ; y) ∨ 0) s state= s(x + [(x ; y) ∨ 0]) = s([x + (x ; y)] ∨ x) = s(y ∨ x) = s(x ∨ y) =

. . . = s(y) + s((y ; x) ∨ 0). 2

Open problem 5.18 Study the restrictions of the various kinds of states from the l-group level to the
G−, G+ level, the [u′, 0], [0, u] level and the G−−∞, G+

+∞ level.
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