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Introduction

In our recent papers [9] and [8] we have introduced and investigated the conditions (Ci), i =

1, 2, 3, 11, 12, in arbitrary bounded lattices and preradicals in bounded modular lattices, re-

spectively. This paper studies the behavior under lattice preradicals of the condition (C11) in

modular lattices. The main ingredient in our study is the concept of a linear morphism of lat-

tices introduced in [5]. As in [9] and [6], we shall also illustrate here a general strategy which

consists on putting a module-theoretical definition/result into a latticial frame, in order to

translate that definition/result to Grothendieck categories and to module categories equipped

with a hereditary torsion theory.

In Section 0 we list some general definitions, notation, and results on lattices from [3], [4],

and [15], as well as two basic results of [9] on C11 lattices, that will be used in the sequel.

Section 1 presents some basic definitions and results of [5] and [8] on linear morphisms of

lattices and lattice preradicals, respectively.

In Section 2 we prove the main result of the paper, which is the latticial counterpart of the

module-theoretical main result of [14] on C11 modules. Our proof is not a simple adaptation
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2 Toma Albu and Mihai Iosif

of the corresponding one in the module case because not all the involved module-theoretical

tools work in a latticial frame.

In Section 3 we describe a weaker version of a lattice preradical, that we used as a first

attempt to specialize our main result to objects of Grothendieck categories. Even if this

attempt was not successfully, the instrument devised for it is worth mentioning in the general

context of lattice preradicals.

In Sections 4 and 5 we do manage to specialize the main result of Section 2 for the lattice

L(X) of all subobjects of an object X of a Grothendieck category G and for the lattice

Satτ (MR) of all τ -saturated submodules of a module MR with respect to a hereditary torsion

theory τ on Mod-R, by using another instrument of specialization proposed by us in [7].

0 Preliminaries

All lattices considered in this paper are assumed to have a least element denoted by 0 and a

greatest element denoted by 1, in other words they are bounded. Throughout this paper, L

will always denote such a lattice. We shall denote by L the class of all (bounded) lattices and

by M the class of all (bounded) modular lattices.

For a lattice L and elements a 6 b in L we write

b/a := [a, b] = { x ∈ L | a 6 x 6 b }.

An initial interval of b/a is any interval c/a for some c ∈ b/a.

An element c ∈ L is a complement (in L) if there exists an element a ∈ L such that

a∧ c = 0 and a∨ c = 1; we say in this case that c is a complement of a (in L). One denotes

by D(L) the set of all complements of L. The lattice L is said to be complemented if every

element of L has a complement in L.

For a lattice L and a, b, c ∈ L, the notation a = b
·
∨ c will mean that a = b ∨ c and

b ∧ c = 0, and we say that a is a direct join of b and c. Similarly, as for modules, one defines

the concepts of a direct join and an independent family of elements of L. (see, e.g., [3, §1.2]

or [4, §1.2]).

An element a ∈ L is said to be an atom of L if a 6= 0 and a/0 = {0, a}. The socle

Soc(L) of a complete lattice L is the join of all atoms of L.

An element b ∈ L is a pseudo-complement (in L) if there exists an element a ∈ L such

that a ∧ b = 0 and b is maximal in the set of all elements c in L with a ∧ c = 0; we say in

this case that b is a pseudo-complement of a. As in [3] or [4], L is called pseudo-complemented

if every element of L has a pseudo-complement, and strongly pseudo-complemented if for all

a, b ∈ L with a ∧ b = 0, there exists a pseudo-complement p of a in L such that b 6 p.

Every upper continuous modular lattice is strongly pseudo-complemented.

An element e ∈ L is said to be essential (in L) if e ∧ x 6= 0 for every x 6= 0 in L. One

denotes by E(L) the set of all essential elements of L.
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An element c ∈ L is said to be closed in L if c 6∈ E(a/0) for all a ∈ L with c < a, and

C(L) will denote the set of all closed elements of L. For an element a ∈ L, we say that c ∈ L
is a closure of a in L if a ∈ E(c/0) and c ∈ C(L). Clearly, c is a closure of a in L if and

only if c is a maximal element in the set {x ∈ L | a ∈ E(x/0)}. A lattice L is called essentially

closed if for each element a ∈ L there exists a closure of a in L. Every strongly pseudo-

complemented lattice (hence every upper continuous modular lattice) is essentially closed by

[3, Theorem 1.2.24] or Theorem [4, Theorem 1.2.24]. We say that a ∈ L has a unique closure

in L if a has exactly one closure in L.

For all other undefined notation and terminology on lattices, the reader is referred to [3],

[4], [12], and/or [15].

We summarize the following notation that will be used in this paper.

E(L) := the set of all essential elements of L (E for “Essential”),

C(L) := the set of all closed elements of L (C for “Closed”),

D(L) := the set of all complement elements of L (D for “Direct summand”),

We introduced and studied in [9] and [6] the condition (C11) on lattices as the latticial

counterpart of the known corresponding condition on modules (see [13] and [14]).

Definition 0.1. We say that a lattice L satisfies the condition (C11), or shortly, L is a C11

lattice, if for every x ∈ L there exists a pseudo-complement p of x with p ∈ D(L). �

We present below two results that will be used in Section 2.

Proposition 0.2. ([9, Proposition 1.8]). A lattice L ∈ M is C11 ⇐⇒ ∀ x ∈ L, ∃ d ∈ D(L)

with d ∧ x = 0 and d ∨ x ∈ E(L). �

Proposition 0.3. ([9, Proposition 2.5]). Let L ∈M, and let (ai)16i6n be a finite independent

family of elements of L such that 1 =
·∨
16i6n ai and ai/0 is C11 for all 1 6 i 6 n. Then L

is C11. �

1 Linear morphisms of lattices and lattice preradicals

In this section we recall from [5] and [8] the concepts of a linear morphism and of a lattice

preradical, respectively, and list some of their basic properties.

Definition 1.1. ([5, Definitions 1.1]). A mapping f : L −→ L′ between the lattices L and

L′ is called a linear morphism if there exist k ∈ L, called a kernel of f , and a′ ∈ L′ such that

the following two conditions are satisfied.

(1) f(x) = f(x ∨ k), ∀x ∈ L.

(2) f induces an isomorphism of lattices f̄ : 1/k
∼−→ a′/0′, f̄(x) = f(x), ∀x ∈ 1/k, where

0′ is the least element of L′. �
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Proposition 1.2. The following assertions hold for a linear morphism f : L −→ L′ with a

kernel k.

(1) For x, y ∈ L, f(x) = f(y) ⇐⇒ x ∨ k = y ∨ k.

(2) f(k) = 0′ and k is the greatest element of L having this property, so, the kernel of a

linear morphism is uniquely determined.

(3) f commutes with arbitrary joins, i.e., f (
∨
i∈I xi) =

∨
i∈I f(xi) for any family (xi)i∈I

of elements of L, provided both joins exist.

(4) f is an increasing mapping.

(5) f preserves intervals, i.e., for any u 6 v in L, one has f(v/u) = f(v)/f(u).

(6) If L ∈M, then for any a ∈ L, the restriction fa : a/0 −→ L′, fa(x) = f(x), ∀x ∈ a/0,
of f to a/0 is a linear morphism with kernel a ∧ k.

Proof. (1) and (2) are parts of [5, Proposition 1.3], (3) and (5) are exactly [8, Lemma 0.6],

and (4) is exactly [5, Corollary 1.4]).

(6) Set ka := a ∧ k. Since ka 6 k we have f(ka) = 0′. Thus

fa(x) = f(x) = f(x) ∨ f(ka) = f(x ∨ ka) = fa(x ∨ ka), ∀x ∈ a/0.

Now, f induces a lattice isomorphism f : 1/k
∼−→ f(1)/0′, f(x) = f(x), ∀x ∈ L. By a second

restriction, we obtain a lattice isomorphism

g : (a ∨ k)/k
∼−→ f(a ∨ k)/0′, g(x) = f(x), ∀x ∈ (a ∨ k)/k.

By modularity, we have the lattice isomorphism

ϕ : a/(a ∧ k)
∼−→ (a ∨ k)/k, ϕ(x) = x ∨ k, ∀x ∈ a/(a ∧ k).

If we set fa := g ◦ ϕ : a/(a ∧ k)
∼−→ f(a ∨ k)/0′, then

fa(x) = g(ϕ(x)) = f(x ∨ k) = f(x) = fa(x), ∀x ∈ a/(a ∧ k),

hence fa induces the lattice isomorphism

fa : a/ka
∼−→ fa(a)/0′, fa(x) = fa(x), ∀x ∈ a/ka ,

i.e., fa is a linear morphism with kernel ka = a ∧ k, as desired.

Proposition 1.3. ([5, Proposition 2.2]). The following statements hold.

(1) The class M of all (bounded ) modular lattices becomes a category, denoted by LM,

if for any L, L′ ∈ M one takes as morphisms from L to L′ all the linear morphisms

from L to L′.
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(2) The isomorphisms in the category LM are exactly the isomorphisms in the full category

M of the category L of all (bounded ) lattices.

(3) The monomorphisms in the category LM are exactly the injective linear morphisms.

(4) The epimorphisms in the category LM are exactly the surjective linear morphisms.

(5) The subobjects of L ∈ LM can be viewed as the intervals a/0, a ∈ L. �

Definitions 1.4. ([11, Definitions 2.1]). Let ∅ 6= C ⊆ L. We say that:

(1) C is an abstract class if it is closed under lattice isomorphisms, i.e., if L,K ∈ L, K ' L,
and L ∈ C, then K ∈ C.

(2) C is hereditary if it is an abstract class and for any L ∈ L and any a 6 b 6 c in L

such that c/a ∈ C, it follows that b/a ∈ C.

For any non-empty subclass C of M we shall denote by LC the full subcategory of LM
having C as the class of its objects.

Proposition 1.5. ([8, Proposition 2.3]). The following assertions are equivalent for an ab-

stract subclass C of M.

(1) C is hereditary.

(2) For any L ∈ C, the subobjects of L in the category LC can be viewed as the initial

intervals a/0 of L = 1/0, a ∈ L.
In this case, the monomorphisms in the category LC are precisely the injective linear

morphisms. �

Definition 1.6. ([8, Definitions 2.1]). Let C be a hereditary subclass of M. A lattice preradical

on C is any functor r : LC −→ LC satisfying the following two conditions.

(1) r(L) 6 L, i.e., r(L) is a subobject of L, for any L ∈ LC.

(2) For any morphism f : L −→ L′ in LC, r(f) : r(L) −→ r(L′) is the restriction of f,

i.e., f(r(L)) ⊆ r(L′).

In other words, a lattice preradical is nothing else than a subfunctor of the identity functor

1LC of the category LC. �

Let C be a hereditary subclass of M, and let r : LC −→ LC be a lattice preradical on

C. By Proposition 1.5, for every L ∈ C and a ∈ L, the subobject r(a/0) of L in LC is

necessarily an initial interval of a/0. We denote

r(a/0) := ar/0.
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If a 6 b in L, then a/0, b/0 are in C because C is hereditary. The inclusion mapping

ι : a/0 ↪→ b/0 is clearly a linear morphism, thus it is a morphism in LC. Applying now r we

obtain r(ι) : ar/0 −→ br/0 as a restriction of ι, and so

a 6 b =⇒ ar 6 br.

Moreover, since ar 6 a, we also have

a 6 b =⇒ ar 6 a ∧ br.

For any lattice L ∈ C and any a, b in L such that a
·
∨ b = 1, the mapping

q : L −→ a/0, q(x) := (x ∨ b) ∧ a,

is a surjective linear morphism with kernel b (see [8, Example 0.2(3)]), so q is a morphism

in LC. This is the latticial counterpart of the canonical projection M ⊕M ′ −→ M for two

modules MR and M ′R.

Because r is a preradical, the linear morphism q : L −→ a/0 entails by restriction the

linear morphism

r(q) : r(L) = r(1/0) = 1r/0 −→ r(a/0) = ar/0,

so r(q)(1r) = q(1r) = (1r ∨ b) ∧ a 6 ar = q(1)r, hence

a
·
∨ b = 1 =⇒ (1r ∨ b) ∧ a 6 ar.

We shall use in the sequel the inequalities above without any further reference.

Proposition 1.7. ([8, Proposition 1.3]). For any lattice L ∈ M and any finite independent

family (ai)16i6n of L, with n a positive integer, one has

( ·∨
16i6n

ai
)r

=

·∨
16i6n

ari .

�

Definition 1.8. Let r : LM −→ LM be a lattice preradical. We say that r is hereditary or

left exact if for all L ∈ LM, ar = a ∧ 1r for every a ∈ L. �

For example, by [8, Example 3.6], the assignment L 7→ Soc (L)/0 defines a hereditary

preradical on the full subcategory LMu of LM consisting of all upper continuous modular

lattices.
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2 The main result

In this section we present the latticial counterpart of the main result of [14] concerning the

behavior of C11 modules under module preradicals.

Lemma 2.1. Let C be a hereditary subclass of M, let r be a preradical on C, and let L ∈ C
be a C11 lattice. Then, there exist a1, a2 ∈ L such that

1 = a1
·
∨ a2, 1r = ar1 ∈ E(a1/0), and ar2 = 0.

Moreover, a1 is a closure of 1r in L.

Proof. Because L is a C11 lattice, by Proposition 0.2, there exist a1, a2 ∈ L such that

a1
·
∨ a2 = 1, 1r ∧ a2 = 0, and 1r ∨ a2 ∈ E(L). Notice that both a1/0 and a2/0 are members

of C because C is hereditary. Since ar2 6 1r ∧ a2 = 0 we have ar2 = 0.

Now 1r∨a2 ∈ E(L), so (1r∨a2)∧a1 ∈ E(a1/0). But (1r∨a2)∧a1 6 ar1, thus ar1 ∈ E(a1/0).

By Proposition 1.7, we have

1r = ar1 ∨ ar2 = ar1.

Because a1 is a complement in the modular lattice L, it is also a pseudo-complement in L.

By [3, Proposition 1.2.16] or [4, Proposition 1.2.16], it follows that a1 ∈ C(L), hence a1 is a

closure of 1r in L.

Lemma 2.2. Let L be an essentially closed modular lattice. Suppose that a ∈ L has a unique

closure c in L. Then c is the greatest element of the set {x ∈ L | a ∈ E(x/0) }.

Proof. By definition, c is a maximal element of the set C := {x ∈ L | a ∈ E(x/0) }.
Let x ∈ C. Since L is essentially closed, x has a closure x in L. Then a ∈ E(x/0) because

x ∈ E(x/0). Since x ∈ C(L), it follows that x is a closure of a in L. But a has a unique

closure c in L, so x = c, and then x 6 c. Thus, c is the greatest element of C.

Lemma 2.3. Let L be an is essentially closed modular lattice. Suppose that 1 = a1
·
∨ a2.

Then a1/0 is essentially closed, and for any x ∈ a1/0, if c is a closure of x in a1/0 then

c is a closure of x in L.

Proof. Because a1, a2 ∈ D(L) we have a1, a2 ∈ C(L). Since L is essentially closed, it follows by

[3, Corollary 1.2.23] or [4, Corollary 1.2.23] that 1/a2 is also essentially closed. By modularity,

the assignment t 7→ t ∨ a2 establishes a lattice isomorphism ψ from a1/0 = a1/(a1 ∧ a2) to

(a1 ∨ a2)/a2 = 1/a2, so a1/0 is essentially closed.

Let x ∈ a1/0, and let c be a closure of x in a1/0. Then x ∈ E(c/0) and c ∈ C(a1/0), so,

using the isomorphism ψ above we deduce that c ∨ a2 ∈ C(1/a2). Let e ∈ L with c ∈ E(e/0).

We have c 6 a1 and a1 ∧ a2 = 0, so c ∧ a2 = 0 and consequently, c ∧ (e ∧ a2) = 0. But

c ∈ E(e/0), so e∧a2 = 0. Hence, the assignment s 7→ s∨a2 produces a lattice isomorphism ϕ

from e/0 = e/(e∧ a2) to (e∨ a2)/a2, and so c∨ a2 ∈ E((e∨ a2)/a2). Since c∨ a2 ∈ C(1/a2),

it follows that c∨ a2 = e∨ a2 and, by the isomorphism ϕ above, it follows that c = e. Hence

c ∈ C(L), as desired.
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Theorem 2.4. Let C be a hereditary subclass of M, and let r be a hereditary preradical on

C. Then, the following assertions are equivalent for an essentially closed lattice L ∈ C such

that 1r has a unique closure in L.

(1) L is a C11 lattice.

(2) There exist a1, a2 ∈ L such that 1 = a1
·
∨ a2, ar1 ∈ E(a1/0), ar2 = 0, and the lattices

a1/0 and a2/0 are both C11.

Proof. (1)=⇒(2): Using Lemma 2.1, there exist a1, a2 ∈ L such that

1 = a1
·
∨ a2, 1r = ar1 ∈ E(a1/0), ar2 = 0, and a1 is a closure of 1r in L.

By hypothesis, a1 is the unique closure of 1r in L.

First, we prove that a1/0 is a C11 lattice. To do that, let x ∈ a1/0. Since L is a C11

lattice, by Proposition 0.2, there exist d1, d2 ∈ L such that 1 = d1
·
∨ d2, (x ∨ a2) ∧ d1 = 0,

and x ∨ a2 ∨ d1 ∈ E(L). Consider the linear morphism

q1 : L −→ a1/0, q1(t) = (t ∨ a2) ∧ a1, ∀ t ∈ L,

which has the kernel a2. Then, by Proposition 1.2(6), its restriction

q′1 : d1/0 −→ q1(d1)/0, q
′
1(t) = q1(t), ∀ t ∈ d1/0,

has the kernel a2∧d1. But a2∧d1 6 (x∨a2)∧d1 = 0, so a2∧d1 = 0, and hence q′1 is a lattice

isomorphism. It follows that r(q′1) : d r1 /0 −→ q1(d1)
r/0 is a lattice isomorphism. Therefore

q1(d
r
1 ) = q′1(d

r
1 ) = r(q′1)(d

r
1 ) = q1(d1)

r.

Because r is a hereditary preradical, we have

q1(d1)
r = q1(d1) ∧ a r1 = q1(d1) ∧ 1r,

and so,

q1(d
r
1 ) = q′1(d

r
1 ) = q1(d1) ∧ 1r.

Since 1r ∈ E(a1/0) and q1(d1) 6 a1, we deduce that

q′1(d
r
1 ) = q1(d1) ∧ 1r ∈ E(q1(d1)/0) = E(q′1(d1)/0),

and then d r1 ∈ E(d1/0) because q′1 is a lattice isomorphism.

We have dr2 6 d2 and d1 ∧ d2 = 0, so d1 ∧ dr2 = 0. It follows that d r1 ∨ dr2 ∈ E((d1 ∨ d r2 )/0)

by [3, Lemma 1.2.7] or [4, Lemma 1.2.7]. By Proposition 1.7, we have 1r = d r1 ∨ dr2, hence

1r ∈ E((d1 ∨ d r2 )/0). Since L is essentially closed and a1 is the unique closure of 1r, by

Lemma 2.2 it follows that a1 is the greatest element of the set {x ∈ L | 1r ∈ E(x/0) }.
Therefore d1 ∨ dr2 6 a1, and so d1 6 a1.

By modularity we have

a1 = d1
·
∨ (a1 ∧ d2),
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so d1 ∈ D(a1/0), and since x ∨ d1 6 a1, we also have

x ∨ d1 = x ∨ d1 ∨ 0 = (x ∨ d1) ∨ (a2 ∧ a1) = (x ∨ d1 ∨ a2) ∧ a1.

Since x ∨ d1 ∨ a2 ∈ E(L), we deduce that x ∨ d1 ∈ E(a1/0). Now observe that x ∧ d1 6
(x ∨ a2) ∧ d1 = 0, and then, by Proposition 0.2 it follows that a1/0 is a C11 lattice.

Now, we are going to prove that a2/0 is a C11 lattice. To this end, let y ∈ a2/0. Since L is

a C11 lattice, by Proposition 0.2, there exist e1, e2 ∈ L such that 1 = e1
·
∨ e2, (y∨a1)∧e1 = 0,

and y ∨ a1 ∨ e1 ∈ E(L).

We have a1 ∧ e1 6 (y ∨ a1)∧ e1 = 0, thus a1 ∧ e1 = 0. We also have er1 6 e1 ∧ 1r, and since

1r 6 a1, we deduce that e1 ∧ 1r 6 e1 ∧ a1 = 0, and so er1 = 0. By Proposition 1.7, we obtain

1r = er1 ∨ er2 = er2 6 e2.

By Lemma 2.3, e2/0 is essentially closed. Let f be a closure of 1r in e2/0. Again by Lemma

2.3, f is also a closure of 1r in L and, since 1r has a unique closure a1 in L, we deduce that

f = a1, so a1 6 e2. By modularity, we have

e2 = 1 ∨ e2 = (a1 ∨ a2) ∧ e2 = a1 ∨ (a2 ∧ e2),

hence

1 = e1 ∨ a1 ∨ (a2 ∧ e2).

Set z := (e1 ∨ a1) ∧ a2 ∈ a2/0. By modularity, we have

a2 = 1 ∧ a2 = ((e1 ∨ a1) ∨ (a2 ∧ e2)) ∧ a2 = ((e1 ∨ a1) ∧ a2) ∨ (a2 ∧ e2) = z ∨ (a2 ∧ e2),

and

z ∧ (a2 ∧ e2) = (e1 ∨ a1) ∧ e2 ∧ a2 = (a1 ∨ (e1 ∧ e2)) ∧ a2 = (a1 ∨ 0) ∧ a2 = a1 ∧ a2 = 0.

Therefore

a2 = z
·
∨ (a2 ∧ e2),

i.e., z ∈ D(a2/0).

In order to prove that a2/0 is a C11 lattice, by Proposition 0.2, it is sufficient to show

that y ∧ z = 0 and y ∨ z ∈ E(a2/0).

By modularity, we have

y ∧ z = y ∧ ((e1 ∨ a1) ∧ a2) = y ∧ (e1 ∨ a1) = y ∧ (y ∨ a1) ∧ (e1 ∨ a1) =

= y ∧ (((y ∨ a1) ∧ e1) ∨ a1) = y ∧ (0 ∨ a1) = y ∧ a1 6 a2 ∧ a1 = 0.

so y ∧ z = 0.

In order to prove that y ∨ z ∈ E(a2/0), observe that

y ∨ z = y ∨ z ∨ (a1 ∧ a2) = (y ∨ z ∨ a1) ∧ a2.
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By modularity, we have,

z ∨ a1 = ((e1 ∨ a1) ∧ a2) ∨ a1 = (e1 ∨ a1) ∧ (a2 ∨ a1) = (e1 ∨ a1) ∧ 1 = e1 ∨ a1,

and so

y ∨ z = (y ∨ z ∨ a1) ∧ a2 = (y ∨ e1 ∨ a1) ∧ a2.

But, by the choice of e1 and e2, we have y ∨ e1 ∨ a1 ∈ E(L) and, thus y ∨ z ∈ E(a2/0), that

ends the proof.

(2)=⇒(1): Apply Proposition 0.3.

Corollary 2.5. Let C be a hereditary subclass of M, and let r be a hereditary preradical on

C. Then, following assertions are equivalent for an essentially closed lattice L ∈ C such that

1r is closed in L.

(1) L is a C11 lattice.

(2) There exists a ∈ L with 1 = 1r
·
∨ a such that the lattices 1r/0 and a/0 are both C11.

Proof. (1)=⇒(2): Notice that 1r being closed, it has a unique closure, so we can apply

Theorem 2.4 to deduce that there exist a1, a2 ∈ L such that

1 = a1
·
∨ a2, ar1 ∈ E(a1/0), ar2 = 0, and both lattices a1/0 and a2/0 are C11.

Moreover, 1r = (a1
·
∨ a2)r = ar1

·
∨ ar2 = ar1, thus 1r ∈ E(a1/0). By hypothesis, 1r ∈ C(L),

hence a1 = 1r. If we set a = a2 we obtain (2).

(2)=⇒(1): Apply 0.3.

3 Weakly lattice preradicals

According to our strategy explained in the Introduction, we are going to apply the latticial

results from the previous section to Grothendieck categories and to module categories equipped

with a hereditary torsion theory. However, the classes of lattices that are involved in these

categorical and relative cases are not abstract (i.e., they are not necessarily closed under lattice

isomorphisms), so, we have to adjust the latticial concepts and results of Section 2 to them,

This was our first attempt to weaken our construction and to describe it is exactly the purpose

of this section.

Thus, we present in this section weaker versions of the concepts of hereditary class of

lattices and lattice preradical and show that any weakly lattice preradical r on a weakly

hereditary class C of modular lattices can be uniquely extended to a lattice preradical r̃ on

the smallest hereditary class C̃ of lattices which includes C. As a consequence of this fact, it

follows that any result on a lattice preradical also holds for a weakly lattice preradical.
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We hoped that, in particular, this will allow us to apply in the next sections the weak

versions of Theorem 2.4 and its Corollary 2.5 to Grothendieck categories and module categories

equipped with hereditary torsion theories. Example 4.1 at the beginning of the next section

will show that our hope can not be fulfilled. We developed in our paper [7] another weaker

version of lattice preradicals, that allows us to perform the desired specializations.

Definition 3.1. We say that a subclass ∅ 6= C ⊆ L, not necessarily abstract, is weakly

hereditary if a/0 ∈ C for any L ∈ C and a ∈ L. �

Thus, a hereditary class of lattice is nothing else than a weakly hereditary class which

additionally is an abstract class. For example, the class

S = {L(Z/p2Z) | p > 0 prime number } ∪ {L(pZ/p2Z) | p > 0 prime number } ∪ { 0 }

is weakly hereditary but not hereditary, where L(G) denotes the lattice of all subgroups of

the Abelian group G.

Definition 3.2. For any weakly hereditary class C ⊆ M we define a weakly lattice preradical

on C as a functor r : LC −→ LC satisfying the following two conditions.

(1) r(L) is an initial interval of L for any L ∈ LC.

(2) For any morphism f : L −→ L′ in LC, r(f) : r(L) −→ r(L′) is the restriction of f,

i.e., f(r(L)) ⊆ r(L′).

As in the case of “true” lattice preradicals, for a weakly lattice preradical r on the weakly

hereditary class C ⊆ M, we set r(a/0) = ar/0.

Clearly, every lattice preradical is also a weakly lattice preradical. The converse is not

true. Indeed, for the class S defined above, the assignment

s(L(Z/p2Z)) = s(L(pZ/p2Z)) = L(pZ/p2Z) for any prime number p > 0, and s(0) = 0

defines a weakly preradical, as one can easily see by considering the possible linear morphisms

between the members of S.
First, we need the following simple fact.

Lemma 3.3. Let r be a weakly lattice preradical on the weakly hereditary class C ⊆ M,

and let ϕ : L
∼−→ L′ be a lattice isomorphism with L, L′ ∈ C. Then ϕ(1r) = 1′ r, where 1

(respectively, 1′) is the greatest element of L (respectively, L′).

Proof. Notice that any lattice isomorphism is a linear morphism. We have r(ϕ−1)(1′ r) 6 1r, so

1′ r = r(ϕ ◦ϕ−1)(1′ r) = r(ϕ)(r(ϕ−1)(1′ r)) 6 r(ϕ)(1r) 6 1′ r. Thus 1′ r = r(ϕ)(1r) = ϕ(1r).

Proposition 3.4. Let r be a weakly lattice preradical on the weakly hereditary class C ⊆ M,

and set C̃ := { L̃ ∈M|∃L ∈ C , L ' L̃ }. Then, the following assertions hold.

(1) C̃ is the smallest hereditary subclass of M that includes C.
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(2) r can be uniquely extended to a lattice preradical r̃ on C̃, i.e., r̃(L) = r(L), ∀L ∈ C.

(3) If r is a weakly hereditary preradical, then so r̃ is a hereditary preradical.

Proof. (1) Let L̃ ∈ C̃ and M ∈ M with L̃ 'M. Then, there exists L ∈ C such that L ' L̃.
Thus L 'M, and so M ∈ C̃. Hence C̃ is an abstract class.

Now, let L̃ ∈ C̃ and b ∈ L̃. There exists L ∈ C and an isomorphism ϕ : L
∼−→ L̃. Then

b = ϕ(a) for some a ∈ L. Since C is weakly hereditary, we have a/0 ∈ C. Clearly, ϕ induces

a lattice isomorphism a/0
∼−→ b/0, and so b/0 ∈ C̃, which shows that C̃ is a hereditary class.

For any hereditary subclass H of M such that C ⊆ H one has C̃ ⊆ H, i.e., C̃ is the smallest

hereditary subclass of M which includes C.

(2) Let L̃ ∈ C̃, and let 1̃ (respectively, 0̃) denote the greatest (respectively least) element

of L̃. As above, there exists L ∈ C and a lattice isomorphism ϕ : L
∼−→ L̃. If p is a lattice

preradical on C̃ that extends r, one has p(L) = r(L), i.e., 1p/0 = 1r/0, so 1p = 1r. By

Lemma 3.3 applied to the isomorphism ϕ : L
∼−→ L̃, we have ϕ(1r) = ϕ(1p) = 1̃ r = 1̃ p. This

shows that for the given weakly lattice preradical r on C there exists at most one lattice

preradical on C̃, say r̃, defined by r̃(L̃) := ϕ(1r)/ 0̃, ∀ L̃ ∈ C̃, i.e., 1̃ r̃ := ϕ(1r).

We are now going to show that r̃ is actually a lattice preradical on C̃. Firstly, ϕ(1r)

depends neither on L nor on ϕ. Indeed, if we pick another lattice L′ ∈ C and a lattice

isomorphism ψ : L′
∼−→ L̃, then we have an isomorphism ψ−1 ◦ ϕ : L

∼−→ L′. By Lemma 3.3,

we have (ψ−1 ◦ ϕ)(1r) = 1′ r, and so ϕ(1r) = ψ(1′ r), where 1′ is the greatest element of L′.

Now, for L̃, L̃′ ∈ C̃, let g : L̃ −→ L̃′ be a linear morphism. In order to define r̃(g), it

suffices to show that the restriction of g to 1̃ r̃/0̃ can be corestricted to 1̃′
r̃
/0̃′, where 1̃′

(respectively, 0̃′) is the greatest (respectively, least) element of L̃′, in other words, we have

to show that g(1̃ r̃) 6 1̃′
r̃
. To see this, consider two lattices L, L′ ∈ C and two isomorphisms

ϕ : L
∼−→ L̃ and ϕ ′ : L′

∼−→ L̃′. Set f = ϕ ′ −1 ◦ g ◦ ϕ : L −→ L′.

Since r is a weakly preradical and f is a linear morphism, we have f(1r) = r(f)(1r) 6 1′ r.

Thus

g(1̃ r̃) = (g ◦ ϕ)(1r) = (ϕ ′ ◦ f)(1r) 6 ϕ ′(1′ r) = 1̃′
r

= 1̃′
r̃
,

and we are done.

(3) Let L̃ ∈ C̃ and b ∈ L̃. Then, there exists L ∈ C, a lattice isomorphism ϕ : L
∼−→ L̃,

and a ∈ L such that ϕ(a) = b. Since r is a weakly hereditary preradical, we have ar = a∧1r.

On the other hand, ϕ induces a lattice isomorphism a/0
∼−→ b/0̃, thus b r̃ = ϕ(ar) by the

definition of r̃ in (2). So, b r̃ = ϕ(ar) = ϕ(a ∧ 1r) = ϕ(a) ∧ ϕ(1r) = b ∧ 1̃ r̃, as desired.

If we consider the class S and the weakly lattice preradical s defined above, then the

corresponding hereditary class S̃ is the class of all chains with at most three elements, and

the corresponding extension s̃ of s to S̃ has an obvious definition. In fact, for any S ∈ S̃,
s̃(S) is precisely the socle of S.
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Remark 3.5. Proposition 3.4 shows that any result T on a lattice preradical also holds for

a weakly lattice preradical. When we apply T to a weakly lattice preradical, we say that we

apply the weak form of T. �

4 Applications to Grothendieck categories

In this section we specialize the main result of Section 2 to Grothendieck categories. Recall that

a Grothendieck category is an Abelian category with exact direct limits and with a generator.

Throughout this section G will denote a Grothendieck category, and for any object X of

G, L(X) will denote the upper continuous modular lattice of all subobjects of X. The reader

is referred to [10] and [15] for more about Grothendieck categories.

We say that X ∈ G is a C11 object if the lattice L(X) is C11. More generally, if P is

any property on lattices, we say that an object X ∈ G is/has P if the lattice L(X) is/has P.

Similarly, a subobject Y of an object X ∈ G is/has P if the element Y of the lattice L(X)

is/has P. Thus, we obtain the concepts of an essential subobject of an object, closed subobject

of an object, complement subobject of an object, socle of an object, etc. For a complement

subobject of an object X ∈ G one uses the well-established term of a direct summand of X.

For any X ′ ⊆ X in G, we denote by [X ′, X] the interval in the lattice L(X), and by

ϕX/X′ : [X ′, X]
∼−→ L(X/X ′)

the canonical lattice isomorphism Z 7→ Z/X ′, which is clearly a linear morphism of lattices.

Let X be a non-empty class of objects of G. We say that X is hereditary, if it is closed

under subobjects, i.e., for any X ∈ X and subobject Y of X in G, we have Y ∈ X . A preradical

on X is just a subfunctor of the identity functor 1X of the full subcategory X of G.

In general, a left exact preradical r on such a class X does not define a hereditary weakly

preradical % on the weakly hereditary class of lattices LX := {L(X) |X ∈ X} as one may

guess by putting %(L(X)) := L(r(X)), ∀X ∈ X . To see this, for the reader’s convenience, we

reformulate the idea of [7, Example 2.2].

Example 4.1. Let G be the category of all Abelian groups, and let X be the class of

all Abelian groups class having at most three subgroups. Then X is a hereditary class whose

objects have totally ordered lattices of subgroups. For X ∈ X put r(X) := {x ∈ X | 2x = 0 }.
The assignment X 7→ r(X) is a left exact preradical on X as well as on the whole G. Notice

that the weakly hereditary class of lattices LX := {L(X) |X ∈ X} contains only chains with

at most three elements and includes the class S considered in Section 3.

We claim that there is no weakly preradical % on LX such that

%(L(X)) = L(r(X)), ∀X ∈ X .

Indeed, suppose that such a % exists, and set X1 := Z/2Z, X2 := Z/3Z. Then r(X1) = X1 6= 0

and r(X2) = 0. On the other hand, L(X1) and L(X2) are two-element isomorphic lattices in
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LX , so by Lemma 3.3, we deduce that %(L(X1) and %(L(X2) are isomorphic lattices. But, by

definition, we have %(L(X1)) = L(r(X1)) = L(X1) 6= 0, and %(L(X2)) = L(r(X2)) = L(0) = 0,

which is a contradiction. �

However, to specialize the main result of Section 2 to Grothendieck categories, by [7,

Example 2.7], we may associate to any hereditary subclass X of G a so called linearly closed

subcategory SCX . Roughly speaking, such a subcategory is a subcategory, not necessarily

full, of the category LM of all linear modular lattices that satisfies four natural conditions

(see [7, Definitions 2.3]) naturally occurring when one consider subcategories of locally small

Abelian categories or subcategories associated with τ -saturated submodules with respect to

a hereditary torsion theory τ on the category Mod-R of all right R-modules over a unital

ring R. More precisely, the linearly closed subcategory SCX associated to a given hereditary

subclass X of G has

CX := { [X ′, X] |X ∈ X , X ′ ⊆ X}

as class of objects, and as morphisms those mappings that are induced by morphisms

f : X/X ′ −→ Y/Y ′ in G, i.e., arise as compositions

[X ′, X]
ϕX/X′−→ L(X/X ′)

f∗−→ L(Y/Y ′)
ϕ−1
Y/Y ′−→ [Y ′, Y ].

Recall that for any morphism f : A −→ B in G we denoted by f∗ the so called direct image

mapping

f∗ : L(A) −→ L(B), f∗(A
′) = f(A′), ∀A′ ∈ L(A).

By [8, Lemma 5.1], any such mapping f∗ is a linear morphism of lattices, so, the morphisms

in SCX , as compositions of linear morphisms of lattices, are also linear morphisms of lattices.

Theorem 4.2. Let X be a hereditary subclass of a Grothendieck category G, and let r be a

left exact preradical on G. Then, the following assertions are equivalent for an object X ∈ X
such that r(X) has a unique closure in X.

(1) X is a C11 object.

(2) There exist subobjects X1 and X2 of X such that X = X1⊕X2, r(X1) is an essential

subobject of X1, r(X2) = 0, and X1, X2 are both C11 objects.

Proof. In view of [7, Proposition 3.3], r canonically yields a preradical % on the linearly closed

subcategory SCX := { [X ′, X] |X ∈ X , X ′ ⊆ X} defined as

% : SCX −→ SCX , %([X ′, X]) := [X ′, Xr], ∀ [X ′, X] ∈ SCX ,

where Xr is the subobject of X such that X ′ ⊆ Xr ⊆ X and r(X/X ′) = Xr/X ′. Notice that

Xr ∈ X because X ∈ X and X is a hereditary subclass of G.

Observe that, for any L = 1/0 = L(X), X ∈ X , we have %(L) = 1%/0, and also
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%(L) = %(1/0) = %([0, 1]) = %([0, X]) = [0, Xr],

On the other hand,

r(X) = r(X/0) = Xr/0 = Xr,

so

[0, Xr] = [0, r(X)] = L(r(X)).

We deduce that 1% = Xr = r(X). By [7, Remarks 3.5(2)], Theorem 2.4 is valid also for the

linearly closed subcategory SCX and its preradical %, which ends the proof.

Corollary 4.3. The following statements are equivalent for an object X of a Grothendieck

category G such that Soc (X) has a unique closure in X.

(1) X is a C11 object.

(2) There exist subobjects X1 and X2 of X such that X = X1 ⊕ X2, Soc (X1) is an

essential subobject of X1, Soc (X2) = 0, and X1, X2 are both C11 objects.

Proof. Specialize Theorem 4.2 for r(X) = Soc (X).

Corollary 4.4. Let X be a hereditary subclass of a Grothendieck category G, and let r be a

left exact preradical on G. Then, the following assertions are equivalent for an object X ∈ X
such that r(X) is closed in X.

(1) X is a C11 object.

(2) There exists a subobject Y of X such that X = r(X)⊕ Y, and r(X) and Y are both

C11 objects.

Proof. By [7, Remarks 3.5(2)], Corollary 2.5 is valid also for the linearly closed subcategory

SCX and its preradical %, so we may specialize it for the upper continuous modular lattice

L = L(X) = [0, X].

5 Applications to module categories equipped with torsion
theories

In this section we specialize the main result of Section 2 to module categories equipped with

hereditary torsion theories.

From now on, R will denote an associative ring with non-zero identity element, Mod-R

the category of all unital right R-modules, τ = (T ,F) a fixed hereditary torsion theory on

Mod-R, and tτ (M) the τ -torsion submodule of a right R-module M . It is well known that

the assignment M 7→ tτ (M), M ∈ Mod-R, defines a left exact (pre)radical on Mod-R. We
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shall use the notation MR to emphasize that M is a right R-module. For any MR we shall

denote

Satτ (M) := { N | N 6M and M/N ∈ F },

and for any N 6M we shall denote by N the τ -saturation of N (in M) defined by N/N =

tτ (M/N). The submodule N is called τ -saturated if N = N . Note that

Satτ (M) = {N |N 6M, N = N },

so Satτ (M) is the set of all τ -saturated submodules of M . It is well-known that for any MR,

Satτ (M) is an upper continuous modular lattice. The reader is referred to [15] for more about

hereditary torsion theories.

We say that MR is a τ -C11 module if the lattice Satτ (M) is C11. More generally, if P is

any property on lattices, we say that a module MR is/has τ -P if the lattice Satτ (M) is/has

P. We say that a submodule N of MR is/has τ -P if its τ -saturation N , which is an element

of Satτ (M), is/has P. Thus, we obtain the concepts of a τ -essential submodule of a module,

τ -closed submodule of a module, τ -closure of a submodule, etc.

According to our definition above of a τ -P submodule of a module, we say that a non-

empty class H of right R-modules is τ -hereditary if for any M ∈ H and N ∈ Sat τ (M) one

has N ∈ H, or equivalently N ∈ H for any N 6M and any M ∈ H.

By a preradical on a τ -hereditary subclass H of Mod-R we mean a subfunctor of the

identity functor 1H of the full subcategory H of Mod-R in Mod-R.

Lemma 5.1. Let f : M −→M ′ be a morphism of right R-modules, N 6M, and N ′ 6M ′.

If f(N) ⊆ N ′, then f(N ) ⊆ N ′.

Proof. Let g : M/N −→ M ′/N ′, g(x + N) = f(x) + N ′, ∀x ∈ M, be the morphism induced

by f . Since X 7→ tτ (X), X ∈ Mod-R, is a preradical on Mod-R, it follows that

g(N/N) = g(tτ (M/N)) ⊆ tτ (M ′/N ′) = N ′/N ′.

We deduce that, for x ∈ N, one has f(x) +N ′ = g(x+N) ∈ N ′/N ′, and so, f(x) ∈ N ′.

Proposition 5.2. Let H be a τ -hereditary class of right R-modules, and let r be a left exact

preradical on H. Then, the assignment M 7→ r(M), ∀M ∈ H, defines a preradical r on H,

and r(N) = N ∩ r(M), ∀M ∈ H, N ∈ Sat τ (M).

Proof. Since H is τ -hereditary, r(M) := r(M) ∈ H, ∀M ∈ H. If f : M −→M ′ is a morphism

of modules M, M ′ ∈ H, then f(r(M)) ⊆ r(M ′), and hence f( r(M) ) ⊆ r(M ′) by Lemma

5.1, so f(r(M)) ⊆ r(M ′). This shows that r̄ is a preradical on H.

For N ∈ Sat τ (M), we have N ∩ r(M) = N ∩ r(M) = N ∩ r(M) = r(N) = r(N).

As in the case of Grothendieck categories, to any τ -hereditary class H of right R-modules

we can associate a linearly closed subcategory SCH of LM as follows.

First, for any M ∈ H and M ′ ∈ Sat τ (M), we denote by [M ′,M ] the interval in the lattice

Sat τ (M), and by
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ψM/M ′ : [M ′,M ]
∼−→ Sat τ (M/M ′), ψ(N) := N/M ′, ∀N ∈ [M ′,M ],

the canonical lattice isomorphism in [3, Lemma 3.4.4] or [4, Lemma 3.4.4], which is clearly a

linear morphism of lattices.

The linearly closed subcategory SCH ol LM associated to H has

CH := { [M ′,M ] |M ∈ H, M ′ ∈ Sat τ (M)}

as class of objects and as morphisms the mappings induced by morphisms f : M/M ′ −→ P/P ′

in Mod-R, i.e., arising as compositions

[M ′,M ]
ψM/M′−→ Sat τ (M/M ′)

fτ−→ Sat τ (P/P ′)
ψ−1
P/P ′−→ [P ′, P ].

where, for any morphism f : A −→ B in Mod-R, fτ denotes the mapping

fτ : Sat τ (A) −→ Sat τ (B), fτ (X) = f(X), ∀X ∈ Sat τ (A).

Notice that fτ is a linear morphism of lattices by [7, Lemma 6.6]. We deduce that the

morphisms in SCH, as compositions of linear morphisms of lattices, are also so.

Theorem 5.3. Let H be a τ -hereditary class of right R-modules and let r be a left exact

preradical on Mod-R. Then, the following assertions are equivalent for a module MR ∈ H∩F
such that r(M) has a unique τ -closure in M.

(1) M is a τ -C11 module.

(2) There exist submodules N and P of M such that M/(N +P ) ∈ T , N ∩P ∈ T , r(N)

is τ -essential in N , r(P ) ∈ T , and both N and P are τ -C11 modules.

Proof. In view of [7, Proposition 3.4], r canonically yields a preradical %τ on the linearly

closed subcategory SCH := { [M ′,M ] |M ∈ H, M ′ ∈ Sat τ (M)} of LM, defined as follows:

%τ : SCH −→ SCH, %τ ([M ′,M ]) := [M ′,M r], ∀ [M ′,M ] ∈ SCH,

where M r := Q and M ′ 6 Q 6M with r(M/M ′) = Q/M ′.

Observe that, for any L = Sat τ (M), M ∈ H, the least element 0 of L is 0 = tτ (M) and

the greatest element 1 of L is M , so L = [0,M ]. We deduce that

%τ (L) = %τ (1/0) = 1%τ /0 = [ 0, 1%τ ] = %τ ([ 0,M ]) = [ 0,M r],

and then, M r = 1%τ . On the other hand, using [1, Lemma 1.14], we have

M r/0 = Q/0 = Q/0 = r(M/0 ).

It follows that M r = r(M), i.e., 1%τ = r(M) because M ∈ F , so 0 = tτ (M) = 0.

Now, notice that

r(N) is τ -essential in N ⇐⇒ r(N) is τ -essential in N
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and

r(P ) ∈ T ⇐⇒ r(P ) ∈ T .

As in the proof of Theorem 4.2, by [7, Remarks 3.5(2)] we deduce that Theorem 2.4 is

valid also for the linearly closed subcategory SCH and its preradical %τ . To finish the proof,

use the description in [2, Proposition 5.3(5)] of the concept of a τ -complement (or τ -direct

summand) of a submodule of a module.

Corollary 5.4. The following statements are equivalent for a module MR ∈ F such that

Soc τ (M) has a unique τ -closure in M .

(1) M is a τ -C11 module.

(2) There exist submodules N and P of X such that M/(N + P ) ∈ T , N ∩ P ∈ T ,
Soc τ (N) is τ -essential in N, Soc τ (P ) ∈ T , and N and P are both τ -C11 modules.

Proof. Specialize Theorem 5.3 for r = Soc τ .

Corollary 5.5. Let H be a τ -hereditary class of right R-modules and let r be a left exact

preradical on Mod-R. Then, the following assertions are equivalent for a module MR ∈ H∩F
such that r(M) is a τ -closed submodule of M.

(1) M is a τ -C11 module.

(2) There exists a submodule N of M such that such that M/(r(M)+N) ∈ T , r(M)∩N ∈ T ,

and r(M) and N are both τ -C11 modules.

Proof. As we stated in [7, Remarks 3.5(2)], Corollary 2.5 can be applied to a lattice from the

linearly closed subcategory SCH of LM and its left exact preradical %τ , canonically associated

to r, as in the proof of Theorem 5.3. Apply this form of Corollary 2.5 for the upper continuous

modular lattice L = Sat τ (M) = [0,M ] .

Problem 5.6. We guess that Theorem 5.3 and its subsequent corollaries hold true without

the additional condition M ∈ F . �
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