Seminar on Harmonic Analysis at IMAR
Participants:
Gruia Arsu, Daniel Beltita, Ingrid Beltita, Gheorghe Nenciu, Mihai Pascu, Bebe Prunaru, Radu Purice
Activity:
harmonic analysis on Euclidean spaces, on Lie groups, and even on more general topological groups
Founding event:
The Seminar on Harmonic Analysis held in 21-22 September 2012,
at IMAR in Bucharest, with support from the reseach project
Operator Calculus for Lie Group Representations, with Applications to PDE and Quantum Physics
(PN-II-ID-PCE-2011-3-0131) and from the SOFTWIN Group
ARCHIVE
2013-2014
Special sessions
- 1. Gary Weiss (Univ. of Cincinnati):
An operator theorist`s journey, pre INCREST 1978 and post OT24.
2. Sasmita Patnaik (Indian Institute of Technology, Kanpur):
Subideals of operators, on Wednesday, the 24th of June, 2014
- Marius Mantoiu (Universidad de Chile, Santiago):
Fréchet-Hilbert algebras associated with families of bounded operators
on Wednesday, the 11th of September, 2013
Regular presentations in the academic year 2013-2014:
● Mihai Pascu (7 Apr. - 28 May 2014):
Introduction to analysis on homogeneous groups (1)-(5),
after:
[1] G.B. Folland, E.M. Stein, "Hardy spaces on homogeneous groups".
Mathematical Notes, 28. Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1982.
● Daniel Beltita (19 Feb. - 17 March 2014):
Global coordinates on coadjoint orbits (1)-(5),
after:
[1] J.-M. Maillard, "Explicit star products on orbits of nilpotent Lie groups with square integrable representations".
J. Math. Phys. 48 (2007), no. 7, 073504, 15 pp.
[2] D. Arnal, J.-C. Cortet, P. Molin, G. Pinczon, "Covariance and geometrical invariance in ∗-quantization".
J. Math. Phys. 24 (1983), no. 2, 276--283.
● Ingrid Beltita (16 - 30 Oct., 27 Nov. - 11 Dec. 2013; 15 - 22 Jan. 2014):
Spectral multipliers on the Heisenberg groups (1)-(8),
after:
[1] D. Müller, E.M. Stein, "On spectral multipliers for Heisenberg and related groups".
J. Math. Pures Appl. (9) 73 (1994), no. 4, 413--440.
● Mihai Pascu (9 Oct. 2013): Pseudo-differential operators on nilpotent Lie groups (9),
after:
[1] M. Pascu, "Melin calculus on homogeneous Lie groups". IMAR Preprint Series
no. 2/2013.
[2] P. Głowacki, "The Melin calculus for general homogeneous groups". Ark. Mat. 45 (2007), no. 1, 31--48.
(A corrected version can be found here.)
2012-2013
Special session
Jean Ludwig (Université de Lorraine, Metz):
The C*-algebra of the Heisenberg group on Wednesday, the 12th of June, 2013
Regular presentations in the academic year 2012-2013:
● Mihai Pascu (Nov. 2012 - Feb. 2013): Pseudo-differential operators on nilpotent Lie groups,
after:
[1] G.B. Folland, E.M. Stein, "Hardy spaces on homogeneous groups". Mathematical Notes, 28. Princeton University
Press, Princeton, N.J.;
University of Tokyo Press, Tokyo, 1982.
[2] P. Głowacki, "A symbolic calculus and L2-boundedness on nilpotent Lie groups".
J. Funct. Anal. 206 (2004), no. 1, 233--251.
[3] P. Głowacki, "The Melin calculus for general homogeneous groups". Ark. Mat. 45 (2007), no. 1, 31--48.
(A corrected version can be found here.)
● José Garcia (26 Nov. 2012): Spectral analysis and non propagation properties -
in connection with Rieffel algebras
● Ingrid Beltita (March - April 2013): Ideals in function algebras,
after:
[1] Y. Domar, "On the spectral synthesis problem for (n-1)-dimensional subsets of
Rn, n≥2".
Ark. Mat. 9 (1971), 23--37.
[2] D. Müller, "On the spectral synthesis problem for hypersurfaces of RN".
J. Funct. Anal. 47 (1982), no. 2, 247--280.
[3] H. Reiter and J.D. Stegeman, "Classical harmonic analysis and locally compact groups".
Second edition. London Mathematical Society Monographs. New Series, 22. The Clarendon Press, Oxford University Press, New York, 2000.
● Daniel Beltita (April 2013): Metaplectic representations,
after:
[1] G. Lion, "Intégrales d'entrelacement sur des groupes de Lie nilpotents et indices de Maslov".
In: J. Carmona and M. Vregne (eds.), "Non-commutative harmonic analysis" (Actes du Colloque d'Analyse Harmonique Non-Commutative, tenu à
Marseille-Luminy,
5 au 9 Juillet, 1976). Lecture Notes in Math., Vol. 587, Springer, Berlin, 1977, pp. 160--176.
[2] G. Lion, M. Vergne, "The Weil representation, Maslov index and theta series". Progress in Mathematics, 6.
Birkhäuser, Boston, Mass., 1980.
Back to the main page