SCIENTIFIC REPORT FOR THE YEAR 2022 FOR THE PROJECT
PN-I11-P4-ID-PCE-2020-0446
“AXIOMATIC METHODS IN NON-CLASSICAL MODEL THEORY”

The contents of this report is as follows:

(1) Summary of the developments at stage 2 of the project (year 2022) — Section 1. This
includes the general scientific and technical description of the results.

(2) The results obtained at stage 2 of the project. These are presented in appropriate detail
separately for each of the activities specified in the funding contract — Section 2 for activity
2.1, Section 3 for activity 2.2, Section 4 for activity 2.3, Section 5 for activity 2.4.

All objectives of stage 2 of the project have been 100% accomplished.

1. SUMMARY OF DEVELOPMENTS AT STAGE 2 OF THE PROJECT

1.1. Bisimulation in stratified institutions. The goal of this activity is to develop a concept
of bisimulation at the level of stratified institutions that is viable in the sense of supporting
an institution-independent model-theoretic treatment of bisimilarity. This includes a series of
new concepts and results, which we classify in three categories.

1.1.1. New concepts.

e From a technical perspective, the most important concept is that of bounded homomor-
phism, which captures a simplified kind of bisimulation that arises from certain maps from
one frame to another. In concrete examples of stratified institutions, such homomorphisms
are also called p-morphisms, or pseudo-epimorphisms.

e Bounded homomorphisms allow us to capture another useful concept: generated sub-
models and, in particular, rooted (sub-)models. Those are models whose states are all
reachable from a given root.

e The main concept of this activity is an institution-independent formalization of the set-
theoretic notion of bisimulation. To that end, we define bisimulation representations by
means of categorical spans of bounded homomorphisms.

e The notions of image-finite model and maximal sub-model with respect to some forgetful
functor, together with preservation and lifting properties, also play an important role in
establishing a Hennessy-Milner theorem for stratified institutions.

1.1.2. Tree unravelling. Boundedness allows us to capture at the level of stratified institu-
tions an important technique used both in theoretical computer science and in modal logic. It
is called tree unravelling, and deals with clearing up the Kripke structure of a model, resulting
in a model whose underlying frame is a tree, without altering the information it encompasses.
We have developed an institution-independent unravelling theorem, which, together with re-

sults on bisimilarity, gives rise to a tree-model property for stratified institutions.
1
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1.1.3. Bisimilarity versus elementary equivalence. The fundamental result of this activity is
a Hennessy-Milner theorem for stratified institutions, which likens the notions of bisimilarity
(i.e., the existence of a bisimulation between two models) and elementary equivalence (refer-
ring to the fact that two models satisfy the same sentences). We have studied the two mutual
implications of the theorem separately, and we have identified sufficient conditions (which
hold in conventional examples of stratified institutions) for each property.

1.2. Interpolation and definability for the graded consequence relation. This activity
consisted in developing new concepts on the one hand, and on proving results about them on
the other hand. The obtained results are classified in three main categories.

1.2.1. New concepts.

e The main concept introduced is a many-valued extension / generalisation of the general
institution theoretic (crisp) concept of interpolation. Some examples of this new concept
have been developed. While some of them may be expected, others go opposite to the to
the common understanding from the crisp case. The latter category illustrate the higher
level of subtlety of graded interpolation versus crisp interpolation.

e The definition of a graded truth concept of Robinson consistency is another concept that
has been introduced. This comes with some specific auxiliary order-theoretic concepts as
well as of some specific semantic consistency and compactness concepts.

e The (Beth) definability property (i.e. implicit definability causes explicit definability) is an
important model theoretic property, that in the binary situation may have interpolation as
its main cause [2, 3, 17, 5, 1]. We have extended the binary institution-theoretic concepts
of definability to ‘graded definability’. These include explicit and implicit definability, and
it has been done at both the semantic and the consequence-theoretic levels.

1.2.2. Compositionality properties. In category theory it is well known that pushout / pull-
back squares enjoy both ‘horizontal’ and ‘vertical’ compositionality, in the sense that by
‘glueing together’ pushout / pullback squares in any of the two ways the result is still a
pushout / pullback square. These properties are technically useful in many situations. We
have established very similar compositionality properties for interpolation squares. (How-
ever these do not bear any technical relationship to the corresponding categorical properties.)
They can be used to establish bigger graded interpolation squares from smaller ones.

1.2.3. Craig-Robinson versus Craig interpolation. Craig-Robinson interpolation is an ex-
tended version of the common interpolation (known as Craig interpolation), this extension
being especially relevant in computing science applications, but not only. In the binary situ-
ation, in the presence of implications the two versions of interpolation can be established as
equivalent (at the general level of abstract institutions a proof can be found in [5]). We have
extended this equivalence to graded interpolation.

1.2.4. Interpolation versus Robinson consistency. Inbinary truth model theory, the existence
of negations and conjunctions guarantees the equivalence between Craig interpolation and
Robinson consistency, which gives the latter the role of a route to establishing interpolation
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properties [18, 16, 3, 19, 15, 5]. We have extended this result to graded interpolation as
follows.

e We have developed proofs for the mutual implications between graded interpolation and
graded Robinson consistency.

e A consequence of the equivalence property mentioned above, namely a symmetry property
for graded interpolation is also developed.

1.2.5. Definability by interpolation. The causality relationship between interpolation and de-
finability is a cornerstone in classical model theory. In the general binary institution-theoretic
setting this has been established in [17]. For the graded case we have done the following.

e We have extended the binary institution theoretic concepts of definability to graded / many-
valued truth.

e We have established the natural link between consequence-theoretic and model-theoretic
levels of graded definability theory.

e We have proved that one form of graded interpolation causes the so called ‘definability
property’ in the graded context, i.e. that the implicit determines the explicit definability.
This has been established first at the consequence theoretic level and than on that basis at
the semantic level.

1.3. Representations of 3/2-institutions as stratified institutions. The fundamental result
of this activity is a definition of a representation of 3/2-institutions (introduced and developed
in [8]) as stratified institutions.

1.3.1. New concepts. The above mentioned representation is conditioned by certain proper-
ties of the signature morphisms in the 3/2-institution. We introduce them as special classes of
signature morphisms.

1.3.2. The representation. This comprises of a stepwise construction of a stratified institu-
tion out of any 3/2-institution that admits classes of signature morphisms as mentioned above.
We have also proved the correctness of this representation, i.e. that it satisfies the axioms of
a stratified institution.

1.3.3. Consequences of the representation. We have explored several consequences of rep-
resenting 3/2-institutions as stratified institutions as follows:

e A further representation to ordinary institution theory via the adjunction from stratified
institutions to ordinary institutions defined in [10] (formerly presented as a mere represen-
tation in [7]).

e The import of concepts of semantic connectives.

e The relationship between model amalgamation properties in the representation and in the
original 3/2-institution.



4 SCIENTIFIC REPORT FOR THE YEAR 2022 FOR THE PROJECT PN-III-P4-ID-PCE-2020-0446

2. BISIMULATION IN STRATIFIED INSTITUTIONS

Here we document the concepts and results developed under this topic without providing
proofs and applications / examples. The full developments can be found in [21]. To simplify
the presentation, for the purpose of this report, we consider only binary frames and we denote
by A the corresponding modality; however, all concepts and results outlined below can be
adapted with ease to the more general setting of polyadic modalities.

2.1. New concepts.

Definition 2.1 (Bounded homomorphism). Let S = (Sign, Sen, Mod, [], =) be a strati-
fied institution equipped with a binary frame extraction (L, Fr) and a sentence sub-functor
Seng C Sen. We say that a Y-homomorphism h: M — N is bounded when:

o forallw € [M] and p € Seny(X), M =¥ pif and only if N =l p;

e forallw € [M], Fr(N)\([h]w) C [R](Fr(M)\w).

In practice, for every signature Y, the set Seng(X) typically consists of atomic sentences.
So, a homomorphism h: M — N is bounded when it preserves and reflects the satisfaction
of atoms, preserves the accessibility of M -states (implicitly via the frame extraction) and, in
addition, ensures that the N-states originating from M can only be accessed through transi-
tions that originate from M as well. In the conventional modal-logic literature, this kind of
homomorphisms are also known as p-morphisms (see, e.g., [14]).

When the category Mod(X) is endowed with an inclusion system, the concept of bounded
homomorphism gives rise to a refined notion of sub-model.

Definition 2.2 (Generated sub-model). A sub-model M of N is generated when the inclusion
homomorphism M — N is bounded.

Given a set X C [N] of states, a sub-model M of N is generated by X if it is the least
generated sub-model of N such that X C [M], When X is a singleton set {x}, we also say
that the model M is rooted and that the state x is its TOOL.

Definition 2.3 (Bisimulation). Given a stratified institution S as in Definition 2.1, a bisim-
ulation (representation) between two Y.-models M and N is a span M &z N N on
Mod (%) such that both homomorphisms 7y and 7y are bounded.

We say that the stratified models M and N are bisimilar if there exists a bisimulation
between them. Moreover, for every pair of states u € [M] and v € [N], we say that the
pointed models (M, ) and (N, v) are bisimilar if there exists a bisimulation M < Z — N
as above and a state w € [Z] such that [y Jw = w and [rn]w = v. In this case, if M and
N can be easily inferred, we may also call the states u and v bisimilar, omitting the models.

Definition 2.4 (Image-finite model). Given a stratified institution equipped with a binary
frame extraction, we say that a Y.-model M is image finite when, for all states w € [M], the
set of ‘successors’ Fr(M)w = {w" € [M] | (w,w’) € Fr(M),} is finite.

Definition 2.5 (Maximal sub-objects). Let U: C — C' be an inclusive functor. A sub-object
A — B in C is maximal w.r.t. U when there exists no other sub-object X — B such that
UA)=U(X)and A — X.



SCIENTIFIC REPORT FOR THE YEAR 2022 FOR THE PROJECT PN-III-P4-ID-PCE-2020-0446 5

We say that U maximally lifts sub-objects when for every inclusion A" — U(B) in C’ there
exists a maximal sub-object A of B in C such that U(A) = A’. And we say that a functor
F: C — D as in the commuting diagram below, where V : D — C' is also inclusive,

C dl D

N

preserves maximal sub-objects when F'(A) is a maximal sub-object of F(B) w.r.t. V for all
maximal sub-objects A of B w.r.t. U.

2.2. Tree unravelling. The first important result on bisimulations in stratified institutions
deals with a well-known method in conventional modal logic: tree unravelling. This allows
the paths in the Kripke frame of a given rooted model to be disentangled into a tree-like
structure without altering the model’s behaviour.

To that end, we say that a model M is tree-like if its underlying frame Fr(M) is a directed
tree. In preparation for the tree-unravelling theorem below, we recall that Fr lifts backwards
a frame homomorphism f: W — V when for every model N such that Frr(N) = V there
exists a model homomorphism h: M — N such that Frr(h) = f. We say that such a lifting
is final when for every other homomorphism h’': M’ — N such that Fir(h') = f there exists
a unique morphism g: M’ — M such that Fr(g) = idw and g; h = I/.

Theorem 2.1. Under the notations and hypotheses of Definition 2.1, if S admits final (back-
wards) liftings of homomorphisms along Fr and the satisfaction of Senq-sentences is invari-
ant along such final liftings, then every rooted model is bisimilar to a tree-like model.

2.3. Bisimilarity versus elementary equivalence. This section comprises two main results
relating the concepts of bisimilarity and elementary equivalence. The fist of them states that
the satisfaction of sentences is invariant under bisimulations. In other words, bisimilar models
satisfy — in bisimilar states — the same sentences.

Theorem 2.2. If bounded homomorphisms are elementary, then for any two bisimilar pointed
Y-models (M, u) and (N,v), and any Y-sentence p, we have M =" p if and only if N =" p.

The hypothesis that bounded homomorphisms are elementary is essential. In concrete
examples of stratified institutions, it is usually checked by induction on the structure of sen-
tences. Even so, we can still simplify the proofs by making use of general institution-theoretic
results concerning the internal logic of stratified institutions.

For example, if p is a semantic conjunction of p; and ps, and the satisfaction of p; and p,
is invariant along a homomorphism A (not necessarily bounded), then the satisfaction of p is
also invariant along h. The same can be said about semantic negations or disjunctions.

The more interesting case of modal operators is discussed in the following result.

Proposition 2.1. Suppose p is a semantic possibility of p' and that the satisfaction of p' is in-
variant along a homomorphism h. Then the satisfaction of p is preserved along h. Moreover,
if h is a bounded homomorphism, the satisfaction of p is also reflected along it.
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Combining the invariance of the satisfaction of sentences under bisimulations with the tree-
unravelling theorem outlined in Section 2.2, we obtain the following tree-model property.

Corollary 2.1. Under the hypotheses of Theorems 2.1 and 2.2, every sentence that is locally
satisfiable in a rooted model (at its root) is also locally satisfiable in a tree-like model.

The converse of Theorem 2.2 does not typically hold — not even in conventional examples
of stratified institutions. It suffices to consider a stratified institution with only two sentence-
building operators: true, which holds at all states, and the conventional possibility operator.
Then we can define tree-like models that are elementary equivalent but not bisimilar: take,
for instance, a model consisting of all finite paths or arbitrary length (starting from the same
state — the root of the model) and the model that has, in addition, another infinite path.

However, we can prove a restricted form of the converse of Theorem 2.2, which deals with
image-finite models, thus obtaining a Hennessy-Milner theorem for stratified institutions.

For that purpose, we recall that a direct product of models M x N given by projections
s M X N — Mand mn: M x N — N preserves the satisfaction of a sentence p when,
for all states w € [M x N|, M =l pand N |=I7¥1w pimply M x N =" p. We also say
that the product reflects the satisfaction of p when M x N =" p implies both M =lmvlv p
and N [=l™v1" p (this is actually a preservation property along each of the two projections).

Similarly, with respect to (maximal) sub-models, M C N preserves the satisfaction of a
sentence p at a state w € [M] when N =" p implies M =" p, and it reflects the satisfaction
of p when the opposite implication holds (once more, the latter is in fact a preservation
property along the inclusion homomorphism M — N).

Theorem 2.3. Let S be a stratified institution as in Definition 2.1 such that:

e [] lifts direct products and maximally lifts sub-objects;

e Fr preserves direct products and maximal sub-models w.r.t. [];

e direct products and maximal sub-models w.r.t. [_] preserve and reflect the satisfaction of
sentences in Seng(X), for every signature 3;

e S has semantic true (true), conjunctions (N\), and possibilities ().

Then any two image-finite and elementary-equivalent pointed Y.-models are bisimilar.

3. INTERPOLATION AND DEFINABILITY FOR THE GRADED CONSEQUENCE RELATION

The basic concepts of the theory of L-institutions are available in [6]. Examples of the
newly developed concepts and proofs of the results in this section can be found in [12]. The
assumption on L is that it is a residuated lattice (where * denotes the residual conjunction.
This assumption is common in many-valued truth model theoretic studies and originates from
Goguen’s seminal work [13].

3.1. New concepts.

3.1.1. Graded interpolation.
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Definition 3.1 (Graded interpolation). In any L-entailment system, given a commutative
square of signature morphisms

oy

A e

EQT‘E/

and finite sets Ey C Sen(Xq) and Ey,T'y C Sen(3y) we say that a finite set E C Sen(X) is
a Craig-Robinson interpolant of E'y, E5 and I'y when

(1) HlEl U QQFQ " QQEQ S (El I— ngE) * ((,OQE U FQ I— EQ)

When 'y is empty then E is called a Craig interpolant (of Ey and Es).

When interpolants exist for all £y, Es (, I'y) the respective commutative square of signature
morphisms is called a Craig(-Robinson) interpolation square (abbr. C(R)i square).

When L is a residuated lattice, the concepts introduced in this definition extend also to
L-institutions by considering its semantic entailment system.

Definition 3.2 ((£, fR)-interpolation). An L-entailment system (or L-institution) has (£, R)-
CRi / Ci for £,/ C Sign classes of signature morphisms, when each pushout square of
signature morphisms

UL i
%02l L91
—_— !
PN . )y
with o € £ and p2 € Ris a CRi/ Ci square.

Definition 3.3 (Strong graded interpolation). In any L-entailment system, for any k, k1, ko €
L\ {0} such that k < Ky * Ko, a commutative square of signature morphisms

oy,

S

EQTE/

is a (K, k1, k2)-Ci square when for any finite sets Ey C Sen(X1) and Ey C Sen(Xq) such
that
QlEl F 92E2 2 K

there exists a finite set E C Sen(X), called the (k, k1, k2 )-interpolant of Ey, Es, such that
(E1 F ngE) 2 K1 and QOQEUFQ - E2 Z R9.
3.1.2. Graded Robinson consistency.

Definition 3.4 (x-reduct of sets of sentences). In any L-institution, for each signature mor-
phism o : 3 — Y/ and each set E' of X-sentences and each k € L, we let [p™ 'E'|, = {p €

Sen(X) | (£ |= ¢p) = K}
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Definition 3.5 (Inter-consistent sets of sentences). Consider an L-institution. For any k € L
we say that two sets of 2.-sentences 'y, I'y are k-inter-consistent when there exists a >:-model
M such that (M = T'1) x (M = I'y) > k. We also just say that they are inter-consistent
when there exists k > 0 such that they are k-inter-consistent. Otherwise, we say that they are
inter-inconsistent.

Definition 3.6 (Companions). Let L be a partially ordered set with bottom (0) and top (1)
elements and with a binary commutative monotone operation x which admits 1 as identity.
For any k,{ € L we say that { is

e a lower-companion fo k when {z |z x k # 0} C {z | { < x};
e an upper-companion to k when {x | { <z} C {x | x x k # 0}; or
e a single-companion to k when it is both a lower- and and upper-companion to K.

We say that L admits lower / upper / single companions when each k. # 0 has a lower / upper
/ single companion.

Definition 3.7 (Graded Robinson consistency). Consider an L-institution such that L is a
residuated lattice. For any (, k1, ko € L\ {0}, a commutative square of signature morphisms

eI i

o e

220—2>E,

is a (¢, k1, ko)-Rc square when for any finite sets E; of Y;-sentences, i = 1,2, if [p7 B,
and [ps5 IEQ],.€2 are inter-consistent then 01 E, and 0, F» are (-inter-consistent.

Definition 3.8 (Compactness). An L-institution is compact when each set E of inconsistent
Y.-sentences admits a finite subset I' C E that is inconsistent too.

Definition 3.9 (Inter-compactness). An L-institution is inter-compact when for any two inter-
inconsistent sets I, E5 of Y-sentences there are finite subsets I'; C E;, i = 1,2, such that
Iy and Ty are inter-inconsistent.

3.1.3. Graded definability.

Definition 3.10 (Semantic graded implicit definability). In any L-institution, for any k € L,
a signature morphism ¢ : % — Y is defined k-implicitly by a set E' C Sen(X') when for
any Y'-models M| and M}, if

e M{=E AN M)EFE >kand

o Mod(p)M{ = Mod(p)M}

then M| = M.

Definition 3.11 (Consequence theoretic graded implicit definability). In any L-entailment
system, for any k € L, a signature morphism ¢ : 3 — Y is defined s-implicitly by a set



SCIENTIFIC REPORT FOR THE YEAR 2022 FOR THE PROJECT PN-III-P4-ID-PCE-2020-0446 9

E' C Sen(X') when for any diagram of pushout squares like below

9

//\

Z—>21

N

and for any Y| -sentence p we have that

w@E"YUv(@'E"YUup b vp > k.

2)

Definition 3.12 (Graded explicit definability). In any L-entailment system, for each xk € L, a
signature morphism ¢ : X — X' is k-explicitly defined by a set of sentences E' C Sen(X')
when for each pushout square of signature morphisms like below

3) PR 3/

[

Y 5
and each p € Sen(X)) there exists a finite set of sentences E, C Sen(¥;) such that
(E'Upk@piE,)*« (0E'UpE, Fp) > k.
3.2. Compositionality properties.

Proposition 3.1 (Horizontal compositionality). If both the left-hand side and the right-hand
side squares below are CRi squares then the outer square is a CRi square too.

Proposition 3.2 (Vertical compositionality). If the upper square below is a Ci square and the
lower square is a CRi square then the outer square is a CRi square.

e

o

22—>E/

02
T

QQTQ/
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As seen from Propositions 3.1 and 3.2, the vertical compositionality result requires milder
conditions than the horizontal one since one of the inner squares is required to be only Ci
rather than CRi square.

3.3. Craig-Robinson versus Craig interpolation. The following result establishes the suf-
ficient conditions for the equivalence between Craig interpolation and Craig-Robinson inter-
polation in the graded context.

Theorem 3.1. Let L be a Heyting algebra. In any L-institution T with model-theoretic im-
plications any Ci square is a CRi square.

3.4. Interpolation versus Robinson consistency. The causality relationship between graded
interpolation and graded Robinson consistency goes both ways. Theorem 3.2 does one im-
plication. The reverse implication requires an additional condition of compactness which is
specific to this result; this is done with Theorem 3.3 below.

Theorem 3.2. In any L-institution with conjunctions and negations, if { is a lower-companion
to K then any (K, k1, ke)-Ci square is a ({, k1, ko )-Rc square.

With respect to the relationship between the compactness of [6] and that given by Defini-
tion 3.9, at the general level inter-compactness is stronger than compactness as shown by the
following result.

Proposition 3.3. Any inter-compact L-institution is compact.

Moreover with Proposition 3.4 we have established general applicable conditions when
this follows from the many-valued concept of model-theoretic compactness put forward in

[6].

Proposition 3.4. In any L-institution Z, in any of the following two situations
(1) L is a Heyting algebra;
(2) L is a finite total order and T has semantic residual conjunctions;

the compactness property implies inter-compactness.

The second case of Proposition 3.4 is within the scope of the finite residuated lattices based
on the Lukasiewicz arithmetic conjunction.

Theorem 3.3. In any inter-compact L-institution with conjunctions and negations, if { is an
upper-companion to k and 0 < k < Ky * ko, then any ({, k1, ko)-Rc square is a (k, k1, Ko)-Ci
square.

By putting together the results of Theorems 3.2 and 3.3 we obtain an equivalence rela-
tionship between Ci and Rc that generalises the corresponding equivalence from the binary
institution-independent model theory [19, 5] to L-institutions. This is given by Corollary 3.1
below.

Corollary 3.1. In any inter-compact L-institution with conjunctions and negations, for any k
that admits a single-companion, any commutative square of signature morphism is a (K*, K1, ka)-
Rc square if and only if it is a (k, k1, k2)-Ci square.
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A symmetry property of graded interpolation has been established via graded Robinson
consistency:

Corollary 3.2. In an arbitrary inter-compact L-institution with conjunctions and negations
we consider the following commutative squares of signature morphisms:

eI i I X
SOQl l@l CPIL j@g
/ !

EQTE EITE

Then for any k, k' € L\ {0} such that k < k' x k' we have that the left-hand side square
above is a (k, k', K')-Ci square if and only if the right-hand side one is a (k, k', k)-Ci square.

3.5. Definability by interpolation. Proposition 3.5 links semantic and consequence-theoretic
implicit graded definabilities. Theorem 3.4 and Corollary 3.3 provide the causality between
graded interpolation and graded definability.

Proposition 3.5. In any semi-exact L-institution let k., { € L such that { is a lower-companion
to k. Then a signature morphism ¢ : ¥ — Y is defined k-implicitly by E' C Sen(Y) in
the consequence theoretic sense (Definition 3.11) if it is defined (- implicitly by E’ in the
semantic sense (Definition 3.10).

The following result shows that at the general graded consequence theoretic level explicit
definability implies implicit definability. Note the rather lax conditions of the result: no
pushout property required, and any set I' of sentences instead of £,. This situation is con-
sonant to the rather trivial nature of this part of the definability property, as known from the
classical studies of definability where it is often skipped.

Proposition 3.6. In any L-entailment system with x monotone, for any signature morphism
@ X — Y and any set of sentences E' C Sen(Y), for any commuting diagram of signature
morphisms like (2) and for all sets of sentences I' C Sen(X) and all ¥} -sentences p we have
that

(OE'"Upt D)« (0E'UpiTEp) < (65u)E' U (0;50)E Uup = vp.

The other part of the definability property, namely that implicit definability causes explicit
definability, and which is the substance of the definability property, can be established on
the basis of interpolation. This is what the result of Theorem 3.4 below does at the general
graded consequence theoretic level of L-entailment systems.

Theorem 3.4. In any L-entailment system that has (£, R)-CRi for classes £,R of signature
morphisms that are stable under pushouts, for any signature morphism ¢ : > — ¥ € £NR
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and any set of sentences E' C Sen(Y), for any diagram of pushout squares:

4)

9

//\

Z—>21

N

for any ¥ -sentence p there exists a finite set of sentences E, C Sen(3;) such that
(OE'Upk piE)*x (E'UpE, Fp) > (05u)E U (0;0)E Uup b vp.

By putting together the results of Proposition 3.5 and of Theorem 3.4 we have obtained the
semantic graded definability property:

Corollary 3.3. In any semi-exact L-institution with (£, R)-CRi we let k,{ € L such that {
is a lower-companion to k. Then a signature morphism in £ N R is defined r-explicitly when
it is defined (-implicitly.

4. REPRESENTATIONS OF 3/2-INSTITUTIONS AS STRATIFIED INSTITUTIONS

The proofs of the results presented in this section can be found in the publication [ 1],
which also provides the involved notations.

4.1. New concepts.

Definition 4.1. In any 3/2-institution, a signature morphism x

e is fiber-small when for each xT-model M we have that Mod(x)M is a set; and

e is quasi-representable when for each xU-model homomorphism h : M — M, and each
N € Mod(x)M there exists and unique model homomorphism h™ € Mod(x)h such that
OrY = N.

4.2. The general representation. A 3/2-institution Z = (Sign, Sen, Mod, |=) is fixed and

then gradually the entities that will define its associated stratified institution Z° = (Sign®, Sen®, Mod®, [-], =°
) are built. The main idea of this representation is that the reducts of a model M are consid-

ered to be its states.

Definition 4.2 (The category of the signatures). The category Sign® has the objects the fiber-
small quasi-representable signature morphisms x of Sign. The arrows x — X' in Sign® are
pairs of signature morphisms (i, 0) such that
e both ¢ and 0 are total and Mod-strict; and

o ;0 <y x.
(5) §3£m“m.m
9
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The composition in Sign® is defined as pairwise composition in Sign, i.e. (p,0);(¢",0') =
(p; ¢, 0;0"), as shown in the following figure:

o E i E’_ @ >
0 N

An arrow (p,0) : x — X is strict when x; 0 = ¢; X'.
We have the correctness of Definition 4.1:
Proposition 4.1. Sign® is a category.

Definition 4.3 (The sentence translation functor). For any Sign® signature x we define Sen®(x) =
Sen(Ox) and for any Sign®-morphism (p, 0) we define Sen®(p,0) = Sen(p).

Proposition 4.2. Sen® is a functor Sign® — Set.

Definition 4.4 (The model reduct functor). For any Sign® signature x we define Mod®(x) =
Mod(xO) and for any Sign®-morphism (p,0) we define Mod®(p,0) = Mod(0).

Proposition 4.3. Mod?® is a functor (Sign®)° — CAT.

Definition 4.5 (The stratification). For any Sign® signature x we define

o [M], = Mod(x)M forany M € |Mod*(x)|(= |Mod(xO)|), and

o [R),N = KO for any xO-model homomorphism h € Mod*(x)(= |Mod(xO)|) and
Ox-model N € Mod(x)(Oh).

For each signature morphism (¢,0) : x — X' in Sign® we define:

o [M')po)N' = Mod ()N’ for any M' € |Mod*(x")| and any N’ € [M'],s.

Proposition 4.4. [_] is a lax natural transformation Mod® = SET.

Definition 4.6 (The satisfaction relation). For each signature x in Sign®, each x[J-model M,
each Ox-model N € [M], and each Ox-sentence p,

M(E*)Yp ifandonlyif N =g, p.

Proposition 4.5. For any signature morphism (p,0) : x — X' in Sign®, any x'-model M’,
any N' € [M'], and any x-sentence p:

M’ ):g/ Sen®(p,0)p if and only if Mod®(p,0)M' =, p.
Corollary 4.1. Z° = (Sign®, Sen®, Mod®, [_], &°) is a stratified institution.
4.3. Consequences of the representation.

4.3.1. Representing 3/2-institutions as ordinary institutions. By resorting to the adjunction
between institutions and stratified institutions of [10] we can further canonically represent
3/2-institutions as ordinary institutions.
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Corollary 4.2. Let T = (Sign, Sen, Mod, =) be a 3/2-institution. Then
(T°)* = (Sign®, Sen®, (Mod®)*, =)
defines an ordinary institution where

e Sign® and Sen® are given by Definitions 4.2 and 4.3, respectively.
e Foreach x € |Sign®|:
— a (Mod?®)* x-model is pair (M, N) such that M € |Mod(xO)|, N € Mod(x)M;
— a x-model homomorphism (M, N) — (M, Ny) is a model homomorphism h : M —
M, such that Ny = hV .
e Foreach (¢,0) : x — X' and any (Mod®)* x'-model (M', N")

(Mod®)*(ip,0)(M", N") = (Mod (0) M, Mod(¢)N').
e For each (Mod®)* x-model (M, N) and each Sen® x-sentence p
(M,N) I p ifand only if N =5, p.

4.3.2. Semantic connectives. Institution theory has developed its own general approach to
logical connectives [20, 4, 5]. This has been refined in [7] to stratified institution theory.
With 3/2-institutions there are two ways to approach this issue.

(1) The straightforward way that mimics the semantic treatment of connectives from ordinary
institution theory.

(2) By using the stratified institution theoretic approach via the representation result given by
Corollary 4.1.

In [11] it is argued that the straightforward approach does not work, which means that in
order to have sound semantic connectives we have to rely on the representation result.

4.3.3. Model amalgamation. Model amalgamation is a crucial property in the institution the-
oretic computer science and model theory alike. It has been instrumental in the proposal for
the institution theoretic treatment of conceptual blending put forward in [8]. The following is
a general result that explains model amalgamation in 3/2-institutions as a model amalgama-
tion property specific to stratified institutions.

Proposition 4.6. Let 7 = (Sign, Sen, Mod, |=) be a stratified institution and let

I8 = (Sign®, Sen®, Mod®, [ ], |E®°) be its representation as a stratified institution. Let the left
hand square below represent a commutative diagram in Sign® such that its projection on the
first component (the right hand side square below) is a model amalgamation square in Z.

((p,@) / 2

(7) X —>X X——Y
(Cm)[ L(C’m’) Cl j(’

/ !/

N e e

Then the square of 1*-signature morphisms is a stratified model amalgamation square if and
only if the following lax co-cone of L-signature morphisms has the model amalgamation
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(8) Q

1

- 01X i\k \%

O o >
1 6, 1

Propositions 4.7 / 4.8 / 4.9 support the applicability of the general result given by Proposi-
tion 4.6.

Proposition 4.7. Let us assume a 3/2-institution I such that when we remove its model ho-
momorphisms it is generated by a 3/2-institutional seed [3]. Let us consider a lax co-cone of
T signature morphisms like in Figure (8) with the following properties:

o the inner square (aka the right hand side square of Figure (7)) is a 3/2-pushout square;
e the outer square (1,0,7',61) is a model amalgamation square; and

o (p1,01): x1 = xyand ((',1) : X' — X} are strict.

Then the lax co-cone of Figure (8) has the model amalgamation property.

In concrete situations it is quite common that the 3/2-pushout condition on the inner square
in Proposition 4.7 implies the model amalgamation condition on the same square in Propo-
sition 4.6, a fact that enhances the applicability of Proposition 4.7 within the context of the
equivalence established by Proposition 4.6.

Proposition 4.8. In the context of a 3/2-institution generated by a 3/2-institutional seed let us
assume that Sen preserves and reflects maximality (i.e. ¢ is maximal if and only if Sen(p) is
total). Then any pushout co-cone of signature morphisms determines a model amalgamation
square.

With respect to the conditions underlying Proposition 4.8 note that:

e There are no restrictions on the signature morphisms that form the pushout square.

e Then the condition of Proposition 4.8 that Sen preserves and reflects maximality applies
well in concrete situations. As an example let us consider the case of 3/2PL. There Sign =
Pfn and therefore it is evident that for any signature morphism ¢, Sen(¢y) is total if and
only if ¢ is total.

e The 3/2-pushout condition of Proposition 4.7 in general is stronger than the pushout con-
dition of Proposition 4.8.

Often, in concrete situations that are related to the basic context of Proposition 4.6, the
pushout squares of signature morphisms are already 3/2-pushout squares. The following re-
sult illustrates such a case that is emblematic for the concrete applications not only because
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it is sometimes involved as such (e.g. in 3/2PL) but also because when it is not the case then
the respective category of signature morphisms can be often treated in a similar way.

Proposition 4.9. Any pushout square in Set is a 3/2-pushout square in Ph (i.e., the 3/2-
category of sets and partial functions).

5. ARTICLES 2022

The publications [11, 12, 9] have emerged from the research reported here. The article
“Interpolation concepts in stratified institutions” that contains results obtained at stage 1 of
the project has been submitted for publication in 2022. According to the latest version of the
planned activities (following the buget reduction for the stage 2 of the project, in 2022) the
results obtained at activity 2.1 (reported in Section 2) will constitute the subject of an article
to be prepared and submitted for publication to a journal in 2023 at stage 3 of the project.
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