
Revisiting ATMs∗

A COMP case study

Răzvan Diaconescu and Ionuț Țuțu

Simion Stoilow Institute of Mathematics
of the Romanian Academy, Romania

razvan.diaconescu@imar.ro, ionut.tutu@imar.ro

1 Summary
This report documents the formal specification and analysis in comp of a system
of automated teller machines (atms) that accommodates multiple users, bank
accounts, cash machines, and complex interactions between them. We cover bank
accounts, deposit and withdrawal operations, cash machines (modelled in terms
of their components, each with a specific function), and interconnected systems of
accounts and atms. All are built in a hierarchical manner following the specification
methodology of comp. In the last section of the report, we show how non-interference
properties can be formalized and checked using the comp tool.

For a full formal account of the syntax, semantics, and specification & verification
methodologies of the language – which we bring into use in this case study – see the
comp language-definition document. Instructions on how to obtain and run the tool,
including a short tutorial and a glossary of commands, can be found in the comp
user guide. Both documents are available at the comp homepage.

∗This work was supported by a grant of the Romanian Ministry of Education and Research, CCCDI
– UEFISCDI, project number PN-III-P2-2.1-PED-2019-0955, within PNCDI III.

1

razvan.diaconescu@imar.ro
ionut.tutu@imar.ro
http://www.imar.ro/~diacon/COMPproject/COMP.html
http://www.imar.ro/~diacon/COMPproject/doc/COMP-LangDef.pdf
http://www.imar.ro/~diacon/COMPproject/doc/COMP-UserGuide.pdf
http://www.imar.ro/~diacon/COMPproject/COMP.html

2 The bank-account system
We begin with the specification of the data type of user identifiers (or ids, for short).
We identify users using natural numbers and also make provision for exceptional
situations in the operation of an atm where a user cannot be identified.

data USER-ID is
protecting NAT .
sort UId .
op uid : Nat -> UId [ctor] .
op unidentified-user : () -> UId [ctor] .

enddata

User accounts are modelled as behavioural objects without componets. We consider
two initialization operations, no-account and init, that capture the absence of an
account and the initial state of an account opened for a given user. In addition,
we specify two actions, _>>= deposit(_) and _>>= withdraw(_), for depositing and
withdrawing funds from an account, respectively, which we declare in mixfix form
in order to allow for chaining actions in the later part of the case study – as in
S >>= deposit(M) >>= withdraw(N) for withdrawing N monetary units after deposit-
ing M monetary units to an account state S. The amount of money in (a given state
of) a user’s account is given by an observation called balance.

The following adj diagram gives a compact graphical representation of the signa-
ture of the ACCOUNT object. Data types, labelled in this case UId and Nat, are depicted
using white elliptical shapes, while (the type of) object states, implicitly called
State, are depicted using teal-blue elliptical shapes. Operations are represented using
hyperarcs with multiple inputs depending on the arity of the operation (some of the
lines are dashed in order to indicate data-type arguments).

State
ACCOUNT

no-account

UId

Nat

balance

init

>>= deposit()
>>= withdraw()

In addition to the signature part discussed above, the object ACCOUNT also comprises
five axioms (more precisely, strict equations, two of which are conditional) that define
the initial value of an account and how the balance changes under deposit and
withdraw actions. The full listing of the object module is as follows:

2

bobj ACCOUNT is
protecting NAT/ORD .
protecting NAT/ADDITION .
protecting NAT/SUBTRACTION .
protecting USER-ID .
var S : State . var U : UId . var N : Nat .

op no-account : () -> State .
op init : UId -> State .
act _>>=`deposit`(_`) : State Nat -> State .
act _>>=`withdraw`(_`) : State Nat -> State .
obs balance : State -> Nat .

ax balance(no-ccount) = 0 .
ax balance(init(U)) = 0 .
ax balance(S >>= deposit(N)) = balance(S) + N .
ax balance(S >>= withdraw(N)) = balance(S) - N if balance(S) >= N = true .
ax balance(S >>= withdraw(N)) = balance(S) if balance(S) < N = true .

endbo

Next, we define the operations that users can perform on their accounts. These
are either operations that may alter the state of a user’s account (depositing or
withdrawing funds to/from that account), or a special nop operation indicating that
the state of the account should not be altered in any way.

data OPERATION is
sort Operation .
ops deposit, withdraw, nop : () -> Operation [ctor] .

enddata

Users, accounts, and account operations are all basic building blocks of an account-
system object, which we call BANK. Intuitively, this is a database that maps each
recorded user id to an account. We model it in comp using an indexed composition.

bobj BANK is
indexing ACCOUNT on USER-ID by UId .
protecting OPERATION .
var S : State . vars U, U' : UId . var N : Nat . var O : Operation .

We use a constant init to indicate a state in which the object BANK has no registered
users – and thus no accounts either. We specify the later property by defining the
ACCOUNT projection of init as no-account for every user id U.

3

op init : () -> State .
ax ACCOUNT/State(U, init) = no-account .

For BANK, we consider three actions. All of them are declared with mixfix syntax
for convenience – to ease chaining – similarly to the actions of the object ACCOUNT.
First, we consider an action that allows new users to be added to the bank database;
for each such user, we consider an initial balance of their account.

act _>>=`add`(_`,_`) : State UId Nat -> State .
ax ACCOUNT/State(U, S >>= add(U, N))
= init(U) >>= deposit(N) .

ax ACCOUNT/State(U, S >>= add(U', N))
= ACCOUNT/State(U, S) if not U = U' .

Second, we formalize (also using an action) the closing of an user’s account.

act _>>=`del`(_`) : State UId -> State .
ax ACCOUNT/State(U, S >>= del(U))
= no-account .

ax ACCOUNT/State(U, S >>= del(U'))
= ACCOUNT/State(U, S) if not U = U' .

The last BANK action we consider is do, which is used to apply an operation (deposit,
withdraw, or nop) to a user’s account. Notice that we no longer check the account’s
balance when withdrawing funds, because that functionality is already encapsulated
in the ACCOUNT object. All we need to verify is that the user is correctly identified
and that the operation is indeed meant to update their account.

act _>>=`do`(_`,_`,_`) : State Operation UId Nat -> State .
ax ACCOUNT/State(U, S >>= do(deposit, U, N))
= ACCOUNT/State(U, S) >>= deposit(N)
if not U = unidentified-user .

ax ACCOUNT/State(U, S >>= do(withdraw, U, N))
= ACCOUNT/State(U, S) >>= withdraw(N)
if not U = unidentified-user .

ax ACCOUNT/State(U, S >>= do(O, U', N))
= ACCOUNT/State(U, S)
if not U = U' or U' = unidentified-user or O = nop .

endbo

4

To summarize, the following adj diagram gives an overview of the algebraic signa-
ture of the BANK module. In order to keep the diagram readable, we omit the ACCOUNT
actions and observations that the interpreter defines automatically for BANK. Those
include, for example, S >>= deposit(N) :: ACCOUNT(U) and S >>= withdraw(N) ::
ACCOUNT(U), which are used to deposit/withdraw N monetary units to/from the ac-
count of a user U in a BANK state S. The only automatic behavioural operation we
include (depicted in teal) is the ACCOUNT projection on BANK states, which captures
the ‘has component’ relation between the objects BANK and ACCOUNT.

State
BANK

State
ACCOUNT

init

UId

Nat

Operation

ACCOUNT/State
>>= do(, ,)

>>= del(,)

>>= add(,)

5

3 ATMs
Analogously to user accounts (because we aim to support multiple devices) we
consider identifiers of atms: each machine has a unique natural-number identifier.

data ATM-ID is
protecting NAT .
sort AId .
op aid : Nat -> AId [ctor] .

enddata

For the machines we analyse in this case study, it suffices to consider five physical
components: a card reader, a set of function keys, a keypad, a cash dispenser, and a
deposit slot. These are depicted in the image below.

function keys

card reader

keypad

cash dispenser deposit slot

We model each of the five physical components as a base object. For instance, for
the card reader, we consider the following module with one initial-state constant,
one action (capturing the insertion of a card into the reader), and one observation
(capturing the reading of user-identification data from an inserted card).

bobj CARD-READER is
protecting USER-ID .
var S : State . var U : UId .

op init : () -> State .
act _>>=`insert-card`(_`) : State UId -> State .
obs get-user : State -> UId .

ax get-user(init) = unidentified-user .
ax get-user(S >>= insert-card(U)) = U .

endbo

6

For the function keys, we consider two physical buttons utilized to select what
kind of account operation the user intends to perform: i.e., deposit or withdraw. For
each button, we define a corresponding action (with the same name as the operation).
In addition, we use a get-op observation (with sort Operation) through which the
atm controller could determine which of the two function keys has been pressed.

bobj FUNCTION-KEYS is
protecting OPERATION .
var S : State .

op init : () -> State .
act _>>=`deposit : State -> State .
act _>>=`withdraw : State -> State .
obs get-op : State -> Operation .

ax get-op(init) = nop .
ax get-op(S >>= deposit) = deposit .
ax get-op(S >>= withdraw) = withdraw .

endbo

The keypad is an array of buttons through which users can input numeric values.
We model it as an object with one initial-state constant, one action (to indicate that
a value has been entered into the device, which is usually done by pressing a special
button on the keypad), and one observation (to retrieve the input data).

bobj KEYPAD is
protecting NAT .
var S : State . var N : Nat .

op init : () -> State .
act _>>=`input`(_`) : State Nat -> State .
obs get-input : State -> Nat .

ax get-input(init) = 0 .
ax get-input(S >>= input(N)) = N .

endbo

The last two physical components of the atm that we consider here are used
for dealing with cash. One of them is suited to dispensing cash (as a result of
a withdrawal), while the other is suited to depositing cash. Each of them has a
corresponding action for dealing out or taking in a given amount, and an observation
that reveals how many monetary units have been delivered to or obtained from the
user. In addition, for the cash dispenser, we consider a separate clear action to
model the physical withdrawal of banknotes from the dispenser slot.

7

bobj CASH-DISPENSER is
protecting NAT .
var S : State . var N : Nat .

op init : () -> State .
act _>>=`dispense`(_`) : State Nat -> State .
act _>>=`clear : State -> State .
obs get-amount : State -> Nat .

ax get-amount(init) = 0 .
ax get-amount(S >>= dispense(N)) = N .
ax get-amount(S >>= clear) = 0 .

endbo

bobj DEPOSIT-SLOT is
protecting NAT .
var S : State . var N : Nat .

op init : () -> State .
act _>>=`pay`(_`) : State Nat -> State .
obs get-amount : State -> Nat .

ax get-amount(init) = 0 .
ax get-amount(S >>= pay(N)) = N .

endbo

We are now ready to specify atms as compound objects combining card readers,
function keys, cash dispensers, and so on. We consider a synchronized composition
instead of a simpler parallel composition because, while using an atm, none of the
five components of the device can operate independently of the other four.

bobj ATM is
syncing CARD-READER and FUNCTION-KEYS and KEYPAD

and DEPOSIT-SLOT and CASH-DISPENSER .
protecting ATM-ID .
protecting NAT/ORD .
var S : State . var N : Nat . var A : AId . var U : UId .

To model the initial state of the machine we consider a monadic operation init
that defines an initial state init(A) for each atm identifier A. According to the
specification methodology of comp, we need to specify what are the component
projections of initial states – which is trivial in this case because we simply initialize
each of the five components of the atm.

8

op init : AId -> State .
ax CARD-READER/State(init(A)) = init .
ax FUNCTION-KEYS/State(init(A)) = init .
ax KEYPAD/State(init(A)) = init .
ax DEPOSIT-SLOT/State(init(A)) = init .
ax CASH-DISPENSER/State(init(A)) = init .

The synchronization action of ATM, called process-request, marks the completion
of an operation in front of the machine. Its only data-type argument, a natural
number, is an upper bound on how much cash a user may withdraw; we need to
provide this argument because, unless we connect the atm to a bank, there is no
way of determining the user’s account balance. Under this action, most of the atm
components are reset to their initial states in order to be ready for the next user
interaction. Only the deposit slot and the cash dispenser are continuously updated to
capture changes in the vault of the atm as a result of deposit/withdraw operations.

ax DEPOSIT-SLOT/State(S >>= process-request(N))
= DEPOSIT-SLOT/State(S) .

ax CASH-DISPENSER/State(S >>= process-request(N))
= CASH-DISPENSER/State(S) >>= dispense(KEYPAD/get-input(S))
if not CARD-READER/get-user(S) = unidentified-user

and FUNCTION-KEYS/get-op(S) = withdraw
and KEYPAD/get-input(S) <= N = true .

ax CASH-DISPENSER/State(S >>= process-request(N))
= CASH-DISPENSER/State(S)
if CARD-READER/get-user(S) = unidentified-user

or not FUNCTION-KEYS/get-op(S) = withdraw
or KEYPAD/get-input(S) > N = true .

endbo

The adj diagram below gives an overview of the structure of ATM.

State
ATM

State
CARD-READER

State
FUNCTION-KEYS

State
KEYPAD

State
DEPOSIT-SLOT

State
CASH-DISPENSER

init

Nat

>>= process-
request()

CARD-READER/State

FUNCTION-KEYS/State

KEYPAD/State

DEPOSIT-SLOT/State

CASH-DISPENSER/State

9

Similarly to BANK, we introduce a new object, called DEVICES, to model a database
of atms. We specify it in comp through an indexed composition mapping atm
ids to cash machines. We consider an initial state of the database, which contains
no machines, and two actions: add for adding a new atm (given by its id) to the
database, and del for removing an atm from the database.

bobj DEVICES is
indexing ATM on ATM-ID by AId .
var S : State . vars A, A' : AId .

op init : () -> State .
ax ATM/State(A, init) = no-atm .

act _>>=`add`(_`) : State AId -> State .
ax ATM/State(A, S >>= add(A)) = init(A) .
ax ATM/State(A, S >>= add(A')) = ATM/State(A, S) if not A = A' .

act _>>=`del`(_`) : State AId -> State .
ax ATM/State(A, S >>= del(A)) = no-atm .
ax ATM/State(A, S >>= del(A')) = ATM/State(A, S) if not A = A' .

endbo

10

4 Connecting ATMs to bank accounts
The final assembly step of the comp specification of an atm system consists in
synchronizing atms with bank accounts so that any cash-machine operation is
properly linked to a user-account update.

bobj ATM-SYSTEM is
syncing BANK and DEVICES .
var S : State . vars A, A' : AId . var U : UId . var N : Nat .

Initially, the system has no registered users and no atms are deployed.

op init : () -> State .
ax BANK/State(init) = init .
ax DEVICES/State(init) = init .

We synchronize atms with bank accounts through the action all-done, which
captures the completion of a transaction. For atms, this reduces to applying the
action process-request (with the proper account balance this time, since the system
has access to it); but for bank accounts we need to consider several cases depending
on which function key (account operation) has been selected.

act _>>=`all-done`(_`) : State AId -> State .
ax BANK/State(S >>= all-done(A))
= BANK/State(S) >>= do(deposit,

DEVICES/ATM/CARD-READER/get-user(A, S),
DEVICES/ATM/DEPOSIT-SLOT/get-amount(A, S))

if DEVICES/ATM/FUNCTION-KEYS/get-op(A, S) = deposit .

ax BANK/State(S >>= all-done(A))
= BANK/State(S) >>= do(withdraw,

DEVICES/ATM/CARD-READER/get-user(A, S),
DEVICES/ATM/KEYPAD/get-input(A, S))

if DEVICES/ATM/FUNCTION-KEYS/get-op(A, S) = withdraw .

ax BANK/State(S >>= all-done(A))
= BANK/State(S)
if DEVICES/ATM/FUNCTION-KEYS/get-op(A, S) = nop .

ax DEVICES/State(S >>= all-done(A))
= DEVICES/State(S)

>>= process-request(
BANK/ACCOUNT/balance(DEVICES/ATM/CARD-READER/get-user(A, S), S))

:: ATM(A) .

11

The resulting hierarchical structure of the atm system consists of four levels,
which we label from 0 (the root level) to 3. Each teal edge indicates a composition
of objects, either synchronized (as it is the case for ATM-SYSTEM and ATM) or indexed,
in which case we use dashed lines to link the corresponding indexing modules.

level 0

level 1

level 2

level 3

ATM-SYSTEM

BANK DEVICES

ACCOUNT USER-ID ATM ATM-ID

CARD-READERFUNCTION-KEYS KEYPAD

CASH-DISPENSER DEPOSIT-SLOT

Lastly, we add two macro operations that encode the deposit or withdraw operations
performed by a user at an atm. For instance, to deposit N monetary units at an
atm A, a user U first inserts the card, then selects deposit using the function keys,
inserts banknotes into the deposit slot, and confirms the operation.

ax S >>= deposit(U, A, N)
= S >>= insert-card(U) :: CARD-READER :: ATM(A) :: DEVICES

>>= deposit :: FUNCTION-KEYS :: ATM(A) :: DEVICES
>>= pay(N) :: DEPOSIT-SLOT :: ATM(A) :: DEVICES
>>= all-done(A) .

ax S >>= withdraw(U, A, N)
= S >>= insert-card(U) :: CARD-READER :: ATM(A) :: DEVICES

>>= withdraw :: FUNCTION-KEYS :: ATM(A) :: DEVICES
>>= input(N) :: KEYPAD :: ATM(A) :: DEVICES
>>= all-done(A)
>>= clear :: CASH-DISPENSER :: ATM(A) :: DEVICES .

endbo

12

The following table gives an overview of the increasing complexity of the hierarchical
specification of the atm system. For each of its ten objects, we record the overall
number of declarations/sorts/operations/axioms/etc. – including those imported
from other modules – and we highlight in parentheses how many of them are
automatically generated by comp. As expected, only a handful of declarations are
generated automatically for those objects in the lower part of the hierarchy such as
ACCOUNT, KEYPAD, or DEPOSIT-SLOT; but the situation changes drastically for objects
with a richer structure: more than half of the final specification of the atm system
is generated automatically by the comp interpreter.

Object Declarations Sorts Operations Actions Obs. Axioms

ACCOUNT 53(1) 4(1) 21(0) 2(0) 1(0) 28(0)
BANK 75(11) 6(2) 32(4) 7(2) 2(1) 41(5)
FUNCTION-KEYS 12(1) 2(1) 7(0) 2(0) 1(0) 3(0)
CARD-READER 12(1) 3(1) 7(0) 1(0) 1(0) 2(0)
KEYPAD 10(1) 2(1) 5(0) 1(0) 1(0) 2(0)
CASH-DISPENSER 11(1) 2(1) 6(0) 2(0) 1(0) 3(0)
DEPOSIT-SLOT 10(1) 2(1) 5(0) 1(0) 1(0) 2(0)
ATM 147(63) 11(6) 55(17) 15(7) 10(5) 81(40)
DEVICES 191(99) 12(7) 72(31) 25(15) 15(10) 107(61)
ATM-SYSTEM 303(171) 15(10) 114(58) 48(32) 23(17) 174(103)

13

5 Non-interference properties
Using the theorem-proving capabilities of comp, we show that atm withdrawals are
non-interfering. More precisely, we show that, for any two distinct users u1 and u2 and
any system state where both u1 and u2 have accounts open, every withdrawal made
by u1, using any atm registered in the system, is independent of every withdrawal
made by u2, once more, using any atm in the system.

First, we formalize the assumptions and we introduce them using the let command:

open ATM-SYSTEM
let op s : () -> State .
let ops u, u1, u2 : () -> UId .
let ops a, a1, a2 : () -> AId .
let ops m, m1, m1', m2, m2', n1, n2 : () -> Nat .

let op system-state : Nat Nat -> State .
let ax system-state(M1:Nat, M2:Nat)

= s >>= add(a) :: DEVICES
>>= add(a1) :: DEVICES
>>= add(a2) :: DEVICES
>>= add(u, m) :: BANK
>>= add(u1, M1:Nat) :: BANK
>>= add(u2, M2:Nat) :: BANK .

let ax not u = u1 .
let ax not u = u2 .
let ax not u1 = unidentified-user .
let ax not u2 = unidentified-user .
let ax not u1 = u2 .
let ax not a = a1 .
let ax not a = a2 .

We consider several cases, depending on whether the amount withdrawn by u𝑖 (for
𝑖 ∈ {1, 2}, given by n𝑖), is 0, less than or equal to the balance of u𝑖’s account (given
by m𝑖), or greater than the balance of u𝑖’s account (given by m𝑖'). The following
additional axioms – also introduced using let – provide support for case analysis.

let ax not n1 = 0 .
let ax n1 <= m1 = true .
let ax n1 <= m1' = false .
let ax not n2 = 0 .
let ax n2 <= m2 = true .
let ax n2 <= m2' = false .

14

With all the preparations in place, the final verification step is straightforward:

check system-state(M1:Nat, M2:Nat)
>>= withdraw(u1, A1:AId, N1:Nat)
>>= withdraw(u2, A2:AId, N2:Nat)

~ system-state(M1:Nat, M2:Nat)
>>= withdraw(u2, A2:AId, N2:Nat)
>>= withdraw(u1, A1:AId, N1:Nat)

forall (A1:AId = a1 and (A2:AId = a1 or A2:AId = a2)
or A1:AId = a and (A2:AId = a or A2:AId = a2))

and (N1:Nat = n1 and (M1:Nat = m1 or M1:Nat = m1')
or N1:Nat = 0 and M1:Nat = m1)

and (N2:Nat = n2 and (M2:Nat = m2 or M2:Nat = m2')
or N2:Nat = 0 and M2:Nat = m2)

given (<BANK/State.ACCOUNT/State>-UI:UId = u
or <BANK/State.ACCOUNT/State>-UI:UId = u1
or <BANK/State.ACCOUNT/State>-UI:UId = u2)

and <DEVICES/State.ATM/State>-AI:AId = a .
close

In a similar manner, we can show that any other combination of operations (two
deposits, a deposit followed by a withdrawal, or vice versa) is non-interfering as well.
Using the command show check stats (executed before check), we can also see how
many equalities are examined by comp in order to fully verify the property:

| Proved! The property holds.
|
| Equations examined for each bobj hierarchy level
| level 0: 108 behavioural and 0 strict
| level 1: 216 behavioural and 0 strict
| level 2: 216 behavioural and 0 strict
| level 3: 135 behavioural and 21 strict
|_______________________________________

The full specification of the atm system, including proof scores of non-interference
properties, is available in the comp online repository of examples.

15

https://gitlab.com/ittutu/comp/-/blob/main/ex/ATM.comp

	Summary
	The bank-account system
	atms
	Connecting atms to bank accounts
	Non-interference properties

