
COMP∗

Language Definition
Syntax, Semantics, and Methodologies

Răzvan Diaconescu and Ionuț Țuțu

Simion Stoilow Institute of Mathematics
of the Romanian Academy, Romania

razvan.diaconescu@imar.ro, ionut.tutu@imar.ro

Summary
The structure of this document is as follows:

1. A brief presentation of the mathematical theory that underlies the comp
system. The full mathematical foundations of comp can be studied in [2]; here,
we limit the mathematics to what is needed to understand the definition of the
language and the basic specification methodologies of comp.

2. The syntax of comp, which provides the grammar for building and parsing
comp specifications.

3. The semantics of comp, which provides the mathematical meaning for specifi-
cations written in comp and constitutes the basis of the comp interpreter.

4. Specification and verification methodologies for comp.

1 Mathematical foundations
Comp has a model-theoretic semantics based on hidden algebra (hereafter abbreviated
ha), which is a refined form of many-sorted algebra (msa). In the following, we will

∗This work was supported by a grant of the Romanian Ministry of Education and Research, CCCDI
– UEFISCDI, project number PN-III-P2-2.1-PED-2019-0955, within PNCDI III.

1

razvan.diaconescu@imar.ro
ionut.tutu@imar.ro

present these logical systems very briefly, the only purpose being to support the
understanding of the definition of comp. For a deeper understanding, the reader
should look into the rather rich literature on the subject (e.g., [11, 12]).

1.1 Many-sorted algebra
This is the traditional framework for algebraic specification and constitutes the core
framework for all algebraic-specification formalisms. In the following, we introduce
the main concepts of many-sorted algebra needed for understanding comp.

Definition 1.1 (Many-sorted signatures). We let 𝑆∗ denote the set of all finite
sequences of elements from a set 𝑆, with 𝜀 indicating the empty sequence. A(n
𝑆-sorted) signature (𝑆, 𝐹) is an (𝑆∗ × 𝑆)-indexed set 𝐹 = {𝐹𝑤→𝑠 ∣ 𝑤 ∈ 𝑆∗, 𝑠 ∈ 𝑆}
of sets of operation symbols, indexed by arities 𝑤 ∈ 𝑆∗ and sorts 𝑠 ∈ 𝑆.

Note that this definition admits overloading, meaning that the sets 𝐹𝑤→𝑠, for 𝑤 ∈ 𝑆∗

and 𝑠 ∈ 𝑆, need not be disjoint. We call 𝜎 ∈ 𝐹𝜀→𝑠 a constant symbol of sort 𝑠.

Definition 1.2 (Terms). An (𝑆, 𝐹)-term 𝑡 of sort 𝑠 ∈ 𝑆 is a syntactic structure of the
form 𝜎(𝑡1, … , 𝑡𝑛), where 𝜎 ∈ 𝐹𝑤→𝑠 is an operation symbol of arity 𝑤 = 𝑠1 … 𝑠𝑛 ∈ 𝑆∗

ant sort 𝑠 ∈ 𝑆, and 𝑡1, … , 𝑡𝑛 are (𝑆, 𝐹)-terms of sorts 𝑠1, … 𝑠𝑛.

Definition 1.3 (Many-sorted sets). Given a sort set 𝑆, an 𝑆-indexed (or sorted)
set 𝐴 is a family {𝐴𝑠}𝑠∈𝑆 of sets indexed by the elements of 𝑆; in this context, we
typically write 𝑎 ∈ 𝐴 to indicate that 𝑎 ∈ 𝐴𝑠 for some sort 𝑠 ∈ 𝑆.

Given an 𝑆-indexed set 𝐴 and 𝑤 = 𝑠1 ⋯ 𝑠𝑛 ∈ 𝑆∗, we let 𝐴𝑤 denote the Cartesian
product 𝐴𝑠1

× ⋯ × 𝐴𝑠𝑛
; in particular, we let 𝐴𝜀 = {⋆}, some one-point set.

Definition 1.4 (Many-sorted algebras). An (𝑆, 𝐹)-algebra 𝐴 consists of

• an 𝑆-indexed set 𝐴 (where 𝐴𝑠 is called the carrier of 𝐴 of sort 𝑠), and

• a function 𝐴𝜎 ∶ 𝐴𝑤 → 𝐴𝑠 for each operation symbol 𝜎 ∈ 𝐹𝑤→𝑠.

Note that, if 𝜎 ∈ 𝐹𝜀→𝑠 is a constant symbol, 𝐴𝜎 is an element in 𝐴𝑠, i.e. 𝐴𝜎 ∈ 𝐴𝑠.

Definition 1.5 (Term evaluation). Any (𝑆, 𝐹)-term 𝑡 = 𝜎(𝑡1, … , 𝑡𝑛), where 𝜎 ∈
𝐹𝑤→𝑠 is an operation symbol and 𝑡1, … , 𝑡𝑛 are (𝑆, 𝐹)-(sub)terms corresponding to
the arity 𝑤, gets interpreted as an element 𝐴𝑡 ∈ 𝐴𝑠 in an (𝑆, 𝐹)-algebra 𝐴 by
𝐴𝑡 = 𝐴𝜎(𝐴𝑡1

, … , 𝐴𝑡𝑛
).

Definition 1.6 (Congruences). An (𝑆, 𝐹)-congruence on an (𝑆, 𝐹)-algebra 𝐴 is
an 𝑆-sorted family of equivalence relations ≡ = {≡𝑠 ⊆ 𝐴𝑠 × 𝐴𝑠} that also satisfies
the following congruence property: given any 𝜎 ∈ 𝐹𝑤→𝑠 and any 𝑎 ∈ 𝐴𝑤, we have
𝐴𝜎(𝑎) ≡𝑠 𝐴𝜎(𝑎′) whenever 𝑎 ≡𝑤 𝑎′.1

1Meaning 𝑎𝑖 ≡𝑠𝑖
𝑎′

𝑖 for all 1 ≤ 𝑖 ≤ 𝑛, where 𝑤 = 𝑠1 ⋯ 𝑠𝑛 and 𝑎 = (𝑎1, … , 𝑎𝑛).

2

Definition 1.7 (Quantifier-free equations). A quantifier-free (𝑆, 𝐹)-equation is an
equality 𝑡 = 𝑡′ between (𝑆, 𝐹)-terms 𝑡 and 𝑡′ of the same sort.

Definition 1.8 (Quantifier-free sentences). The set of quantifier-free (𝑆, 𝐹)-sentences
is the least set that

• contains all (𝑆, 𝐹)-equations,

• is closed under the usual binary connectives ∧ (which stands for conjunction), ∨
(disjunction), ⇒ (implication) and under the unary connective ¬ (negation).

A quantifier-free conditional (𝑆, 𝐹)-equation is an implication sentence of the form
𝑒1 ∧ ⋯ ∧ 𝑒𝑛 ⇒ 𝑒, where 𝑒, 𝑒1, … , 𝑒𝑛 are all quantifier-free equations.

Definition 1.9 (Universal sentences). A set 𝑋 of variables for a signature (𝑆, 𝐹) is
a set of new constants. Then (𝑆, 𝐹 ∪ 𝑋) denotes the signature obtained from (𝑆, 𝐹)
by adjoining 𝑋 to 𝐹. A universal(ly quantified) (𝑆, 𝐹)-sentence is a sentence of the
form ∀𝑋 ⋅ 𝜌, where 𝜌 is a quantifier-free (𝑆, 𝐹 ∪ 𝑋)-sentence.

The satisfaction relation between algebras and sentences is the usual Tarskian
satisfaction defined inductively on the structure of sentences.

Definition 1.10 (Satisfaction). Given an arbitrary but fixed signature (𝑆, 𝐹) and
an (𝑆, 𝐹)-algebra 𝐴, we define:

• 𝐴 ⊧ 𝑡 = 𝑡′ if 𝐴𝑡 = 𝐴𝑡′ for quantifier-free equations;

• 𝐴 ⊧ 𝜌1 ∧ 𝜌2 if 𝐴 ⊧ 𝜌1 and 𝐴 ⊧ 𝜌2;

• 𝐴 ⊧ 𝜌1 ∨ 𝜌2 if 𝐴 ⊧ 𝜌1 or 𝐴 ⊧ 𝜌2;

• 𝐴 ⊧ 𝜌1 ⇒ 𝜌2 if 𝐴 ⊧ 𝜌2 when 𝐴 ⊧ 𝜌1;

• 𝐴 ⊧ ¬𝜌 if 𝐴 ̸⊧ 𝜌;

• 𝐴 ⊧ ∀𝑋 ⋅ 𝜌 if 𝐴′ ⊧ 𝜌 for all (𝑆, 𝐹 ∪ 𝑋)-algebras 𝐴′ such that 𝐴′
𝜍 = 𝐴𝜍 for each

sort or operation symbol 𝜍 in (𝑆, 𝐹).

1.2 Hidden algebra
This is the mathematical framework that underlies the so-called ‘behavioural specifica-
tion’ paradigm [9, 10, 6, 7, 3, 8, 11], which is a generalisation of ordinary (many-sorted)
algebraic specification. Behavioural specification characterises how objects (and sys-
tems) behave, not how they are implemented. This new form of abstraction can
be very powerful in the specification and verification of software systems since it
naturally embeds other useful paradigms such as concurrency, object-orientation,
constraints, nondeterminism, etc. (see [7] for details). Behavioural abstraction is

3

achieved by using specification with hidden sorts and a behavioural concept of satis-
faction based on the idea of indistinguishability of states that are observationally the
same. Our brief presentation of the main concepts of hidden algebra given below
follows the so-called ‘coherent-hidden-algebra approach’ [3, 4].

Definition 1.11 (Hidden algebra signatures). A hidden-algebra signature is a tuple
(𝐻, 𝑉 , 𝐹 , BF) that consists of:

• disjoint sets 𝐻 of hidden sorts and 𝑉 of (ordinary) visible sorts;

• an indexed family 𝐹 of (𝐻 ∪ 𝑉)-sorted operation symbols such that (𝐻 ∪ 𝑉 , 𝐹)
is an ordinary many-sorted signature; and

• a distinguished subset BF𝑤→𝑠 ⊆ 𝐹𝑤→𝑠 of behavioural operations for each arity
𝑤 ∈ (𝐻 ∪ 𝑉)∗ and sort 𝑠 ∈ 𝐻 ∪ 𝑉 such that 𝑤 contains at least one hidden sort.

Definition 1.12 (Hidden congruence). Given an ha-signature (𝐻, 𝑉 , 𝐹 , BF) and
an (𝐻 ∪ 𝑉 , 𝐹)-algebra 𝐴, a hidden (𝐻, 𝑉 , 𝐹 , BF)-congruence ∼ on 𝐴 is just an
(𝐻 ∪ 𝑉 , BF)-congruence whose components on visible sorts are all identities.

Definition 1.13 (Behavioural equivalence). The largest hidden (𝐻, 𝑉 , 𝐹 , BF)-
congruence ∼𝐴 on an (𝐻 ∪ 𝑉 , 𝐹)-algebra 𝐴 – which is guaranteed to exist by a
crucial result found, e.g., in [11] – is called the behavioural equivalence on 𝐴.

Definition 1.14 (Hidden algebras). Given an ha-signature (𝐻, 𝑉 , 𝐹 , BF), an
(𝐻, 𝑉 , 𝐹 , BF)-algebra is a many-sorted (𝐻 ∪𝑉 , 𝐹)-algebra 𝐴 such that each operation
(interpretation of a symbol in 𝐹) preserves the behavioural equivalence relation ∼𝐴.

Note that ∼𝐴 is always automatically preserved by behavioural operations and by
data operations (i.e., those operations that are free of hidden sorts). Hence only the
interpretation of other operation symbols in 𝐹 may narrow that class of many-sorted
(𝐻 ∪ 𝑉 , 𝐹)-algebras to the class of hidden (𝐻, 𝑉 , 𝐹 , BF)-algebras.

Definition 1.15 (Behavioural sentences). Given a hidden algebraic signature
(𝐻, 𝑉 , 𝐹 , BF), a quantifier-free behavioural (𝐻, 𝑉 , 𝐹 , BF)-equation 𝑡 ∼ 𝑡′ consists
of a pair of (𝐻 ∪ 𝑉 , 𝐹)-terms of the same sort. Universal (𝐻, 𝑉 , 𝐹 , BF)-sentences
are defined in a similar manner to Definition 1.7 by considering both strict equations
𝑡 = 𝑡′ and behavioural equations 𝑡 ∼ 𝑡′ as atoms.

Definition 1.16 (Behavioural satisfaction). An (𝐻, 𝑉 , 𝐹 , BF)-algebra 𝐴 satisfies a
behavioural equation 𝑡 ∼ 𝑡′, which we denote by 𝐴 ⊧ 𝑡 ∼ 𝑡′, when 𝐴𝑡 ∼𝐴 𝐴𝑡′ . This is
extended to universal (𝐻, 𝑉 , 𝐹 , BF)-sentences similarly to Definition 1.10.

4

2 Syntax
We define the syntax of comp using the following extended bnf notation:

⟨a⟩ non-terminals are written in italics and surrounded by angle brackets;

a terminals (literal text) are written in a typewriter font;

(𝑎) “(” and “)” are metaparentheses used to define 𝑎 as syntactical unit;

[𝑎] “[” and “]” indicate optional syntax, i.e. “”, the empty string, or “𝑎”;

𝑎 ∣ 𝑏 “∣” is used to separate alternatives, i.e. either 𝑎 or 𝑏;

𝑎∗ “∗” indicates zero or more repetitions op the preceding unit;

𝑎+ “+” indicates one or more repetitions op the preceding unit.

A comp specification consists of a sequence of interrelated modules, which are either
data-type modules or behavioural-object modules.

⟨specification⟩ ::= (⟨data-module⟩ | ⟨bobj-module⟩)*

2.1 Data types
Data-type modules (⟨data-module⟩) are specified using a syntax similar to that
of Maude’s functional modules, except that the Maude keywords fmod … endfm
are replaced with data … enddata. The non-terminal ⟨module-name⟩ is special; it
matches simple identifiers, which are sequences of ascii characters that do not
contain (unescaped) spaces, commas, or parentheses.

⟨data-module⟩ ::= data ⟨module-name⟩ is
[(⟨data-declaration⟩ .)*]

enddata

A data declaration is either an import or an msa declaration.

⟨data-declaration⟩ ::= ⟨data-import⟩ | ⟨msa-declaration⟩

Comp admits three importation modes, just like Maude: protecting, the most
restrictive, which abides by the no junk and no confusion policy; extending, which
allows junk, but not confusion; and including, the most permissive, which allows
both junk and confusion – for a detailed discussion, see [1] and also [5].

⟨data-import⟩ ::= protecting ⟨module-name⟩
| extending ⟨module-name⟩
| including ⟨module-name⟩

5

Base msa declarations are of either sorts, operations, variables, or sentences (which
are implicitly universally quantified, as per Definition 1.9). Binary operations may
be declared with equational attributes such as associativity (assoc), commutativity
(comm), and identity (id: e, with e denoting the identity element).

Similarly to ⟨module-name⟩, the non-terminals ⟨sort⟩, ⟨symbol⟩, ⟨term⟩, and
⟨sentence⟩ are special. The first two match simple identifiers, while the latter
correspond to sequences of identifiers written according to the grammars for terms
and sentences of the msa-signature under consideration.

⟨msa-declaration⟩ ::= sort ⟨sort⟩
| sorts ⟨cs-sort-list⟩
| op ⟨symbol⟩ : ⟨arity⟩ -> ⟨sort⟩ [[⟨attribute⟩+]]
| ops ⟨cs-symbol-list⟩ : ⟨arity⟩ -> ⟨sort⟩ [[⟨attribute⟩+]]
| var ⟨symbol⟩ : ⟨sort⟩
| vars ⟨cs-symb-list⟩ : ⟨sort⟩
| ax ⟨sentence⟩

⟨cs-sort-list⟩ ::= ⟨sort⟩ (, ⟨sort⟩)*

⟨cs-symbol-list⟩ ::= ⟨symbol⟩ (, ⟨symbol⟩)*

⟨arity⟩ ::= () | ⟨sort⟩+

⟨attribute⟩ ::= assoc | comm | id: (⟨term⟩)

As an example, the following is a simple specification of natural numbers with
addition. It consists of two data-type modules: NAT, defining natural numbers, and
NAT/ADDITION, introducing addition, which is defined in the usual inductive manner.

data NAT is
sort Nat .
op 0 : () -> Nat .
op s_ : Nat -> Nat .

enddata

data NAT/ADDITION is
protecting NAT .
op _+_ : Nat Nat -> Nat [assoc comm] .
vars M, N : Nat .
ax 0 + N = N .
ax (s M) + N = s (M + N) .

enddata

6

2.2 Objects
Object declarations are characteristic to comp. Their syntax is as follows:

⟨bobj-module⟩ ::= bobj ⟨bobj-name⟩ [with states ⟨sort⟩] is
[⟨composition⟩ .]
[(⟨bobj-declaration⟩ .)*]

endbo

The non-terminal ⟨bobj-name⟩ is special; it matches simple identifiers, just like
⟨module-name⟩ – as it is used in the syntax of data-type modules – and ⟨sort⟩.

Every object has a designated state sort, which from a hidden-algebra perspective
is regarded as a hidden sort. That sort can be declared explicitly, using the optional
syntax “with states ⟨sort⟩”, or it can be left implicit, by omitting the optional
“with states …” syntax, in which case it is declared as State.

Objects that are not composed – i.e., for which “⟨composition⟩ .” is opted out –
are called base objects. The consist solely of a list of behavioural-object declarations,
which are either data-type imports or ha declarations.

⟨bobj-declaration⟩ ::= ⟨data-import⟩ | ⟨ha-declaration⟩

Hidden-algebra declarations extend msa declarations with actions and observations,
both of which are particular kinds of behavioural operations.

⟨ha-declaration⟩ ::= ⟨msa-declaration⟩
| act ⟨symbol⟩ : ⟨arity⟩ -> ⟨sort⟩
| obs ⟨symbol⟩ : ⟨arity⟩ -> ⟨sort⟩

Actions and observations are monadic behavioural operations, meaning that their
arities contain a single hidden (state) sort. Moreover, for each action 𝑎∶ 𝑤 → 𝑠, 𝑠 is
the unique hidden sort in 𝑤; and for each observation 𝑜∶ 𝑤 → 𝑠, 𝑠 is a visible sort.

The following is an example of a base object. It captures a bank-account with one
observation, balance (the amount of savings held in the account), and two actions:
deposit (which increases the balance), and withdraw (which decreases the balance).

bobj ACCOUNT with states Account is
protecting NAT/OPS .
act deposit : Account Nat -> Account .
act withdraw : Account Nat -> Account .
obs balance : Account -> Nat .
…

endbo

7

The effect of the actions deposit and withdraw on the observation balance
is specified (in place of the ellipsis in the previous listing) through the following
conditional equations over variables A : Account and N : Nat.

ax balance(deposit(A, N)) = balance(A) + N .
ax balance(withdraw(A, N)) = balance(A) - N if N <= balance(A) = true .
ax balance(withdraw(A, N)) = balance(A) if N <= balance(A) = false .

Composed objects are obtained through three types of compositions: parallel,
synchronized, and indexed. While the former type is a degenerated case of the
second, the latter is a refined case of the second.

⟨composition⟩ ::= ⟨parallel-comp⟩ | ⟨sync-comp⟩ | ⟨indexed-comp⟩

2.3 Parallel compositions
This is the simplest form of composition. Its syntax is:

⟨parallel-comp⟩ ::= composing ⟨bobj-ref-list⟩

⟨bobj-ref-list⟩ ::= ⟨bobj-ref ⟩ (and ⟨bobj-ref ⟩)+

⟨bobj-ref ⟩ ::= ⟨bobj-name⟩ | (⟨bobj-name⟩ as ⟨bobj-name⟩)

That is, when composing objects, we can reference to them either by their original
names or by new names introduced using the (… as …) renaming syntax. The final
names of the objects involved in a composition need to be distinct.

As an example, the following specification describes an bank-account system with
two kinds of accounts, called A and B, which operate independently, in parallel. The
system is obtained through the parallel composition of two copies of ACCOUNT:

bobj ACCOUNT-SYS with states AccountSys is
composing (ACCOUNT as A) and (ACCOUNT as B) .

endbo

2.4 Synchronized compositions
The syntax for synchronized compositions is as follows:

⟨sync-comp⟩ ::= syncing (⟨bobj-name⟩ | ⟨bobj-ref-list⟩)

Here we have two options:

8

• add synchronization to an existing object, using the syntax syncing ⟨bobj-name⟩;

• create a new (synchronized) compound object, through syncing ⟨bobj-ref-list⟩.

As an example, we may define a system of two bank accounts with a transfer operation
between them by adding synchronization to ACCOUNT-SYS:

bobj ACCOUNT-SYS-TRANSFER is
syncing ACCOUNT-SYS .
var AS : AccountSys . var N : Nat .

act transfer : AccountSys Nat -> AccountSys .
ax A/Account(transfer(AS, N)) = withdraw(A/Account(AS), N) .
ax B/Account(transfer(AS, N)) = deposit(B/Account(AS), N)

if N <= A/balance(AS) = true .
ax B/Account(transfer(AS, N)) = B/Account(AS)

if N <= A/balance(AS) = false .
endbo

Alternatively, we may compose the two accounts directly with synchronization:

bobj ACCOUNT-SYS-ALT-TRANSFER with states AccountSys is
syncing (ACCOUNT as A) and (ACCOUNT as B) .
var AS : AccountSys . var N : Nat .

act transfer : AccountSys Nat -> AccountSys .
ax A/Account(transfer(AS, N)) = withdraw(A/Account(AS), N) .
ax B/Account(transfer(AS, N)) = deposit(B/Account(AS), N)

if N <= A/balance(AS) = true .
ax B/Account(transfer(AS, N)) = B/Account(AS)

if N <= A/balance(AS) = false .
endbo

For now, in both of the above examples, we do not pay attention to the code below
the third line of the specification; that part is subject to a dedicated explanation in
Section 3 of this document.

2.5 Indexed compositions
These are the most complex kinds of object compositions. Their syntax is as follows:

⟨indexed-comp⟩ ::= indexing ⟨bobj-name⟩ on ⟨module-name⟩ by ⟨sort⟩

The idea behind this syntax is that components are given as copies of ⟨bobj-name⟩
that are indexed by elements of (visible) sort ⟨sort⟩, which is declared in the indexing
module ⟨module-name⟩. We distinguish two types of situations:

9

• ⟨module-name⟩ references a data-type module, in which case we say that the
composition is static;

• ⟨module-name⟩ references a behavioural object, hence the presence of compo-
nents is managed by an object, in which case the composition is dynamic.

The following is an example of the dynamic situation (we include for now only the
part that is relevant for the indexing … on … by … syntax).

bobj ACCOUNT-SYS-DYN with states AccountSys is
indexing ACCOUNT on USER-DB by UId .
…

endbo

In the listing above, the indexing specification USER-DB specifies the manager object.
It is based on a predefined data-type specification UID of user identifiers.

bobj USER-DB with states UserDB is
protecting UID .
obs _in_ : UId UserDB -> Bool .
act add : UId UserDB -> UserDB .
act delete : UId UserDB -> UserDB .
…

endbo

3 Semantics
3.1 Behavioural objects
The following concept applies both to many-sorted algebra and to hidden algebra.

Definition 3.1 (Specification). A specification is a pair (Σ, 𝐸), where Σ is a
signature and 𝐸 is a finite set of Σ-axioms/sentences.

To each comp-specification module we associate either an msa-specification, in the
case of ⟨data-module(𝑠)⟩, or a particular type of ha-specification, called behavioural
object, in the sense of the definition below, in the case of ⟨bobj-module(𝑠)⟩. This
constitutes the semantics of comp specifications.

Definition 3.2 (Behavioural object). A behavioural object 𝐵 is a pair (SP𝐵, ℎ𝐵)
consisting of a behavioural (ha) specification SP𝐵 whose behavioural operations are
all monadic2 and a distinguished hidden sort ℎ𝐵 of SP𝐵.

2Recall that a behavioural operation is monadic when its arity contains exactly one hidden sort.

10

Definition 3.3 (Behavioural-object algebra). Let 𝐵 = (SP𝐵, ℎ𝐵) be a behavioural
object. Then a 𝐵-algebra is just an ordinary algebra of the specification SP𝐵.

In the remaining part of this section we show how the semantics of comp specifi-
cations is defined by recursion on the hierarchical structure of their components.

3.2 The semantics of component-free specifications
For base comp-specification modules (i.e., for modules without components), the
corresponding behavioural object is defined as follows:

• 𝐻𝐵 = {ℎ𝐵}, where ℎ𝐵 is the states sort.

• 𝑉𝐵 consists of all data-type sorts.

• 𝐹𝐵 consists of all operations declared in the module.

• BF𝐵 consists of all actions and observations declared in the module.
These constitute the hidden-algebra signature and designated hidden sort of the
module. With regard to the axioms of the module, we let:

• 𝐸𝐵 be the set of all sentences (universally quantified, potentially conditional)
of the comp module; this includes all sentences of imported data types.

The bank-account object

As an example, for the ACCOUNT object specification defined in Section 2.2, we have:
• 𝐻ACCOUNT = {ℎACCOUNT} = {Account};

• 𝑉ACCOUNT consists of all sorts in the predefined module NAT (Nat is such a sort);

• 𝐹ACCOUNT consists of all data operations declared in NAT, including addition (_+_)
and subtraction (_-_), plus the two specified actions (deposit and withdraw)
and one observation (balance);

• BFACCOUNT consists precisely of those two actions and of the observation balance;
for instance, (BFACCOUNT)AccountNat→Account = {deposit, withdraw}.

A partial representation of the signature of ACCOUNT, including all actions and
observations and which uses an adj diagram is as follows:

Account

Nat

balance

deposit
withdraw

11

The set 𝐸ACCOUNT of axioms consists of all sentences declared in NAT plus the three
conditional equations from the body of ACCOUNT. In standard mathematical notation,
there are as follows:

• ∀{𝐴, 𝑁} ⋅ balance(deposit(𝐴, 𝑁)) = balance(𝐴) + 𝑁;

• ∀{𝐴, 𝑁} ⋅ 𝑁 ≤ balance(𝐴) ⇒ balance(withdraw(𝐴, 𝑁)) = balance(𝐴) − 𝑁;

• ∀{𝐴, 𝑁} ⋅ 𝑁 ≰ balance(𝐴) ⇒ balance(withdraw(𝐴, 𝑁)) = balance(𝐴).

3.3 The semantics of parallel compositions
The semantics of an object B obtained through a simple parallel composition of two
component objects B1 and B2, and specified in comp as follows:

bobj B with states St is
composing B1 and B2 .
…

endbo

is given by:

• 𝐻B = 𝐻B1 ⊎ 𝐻B1 ⊎ {St}; i.e., the disjoint union of 𝐻B1 and 𝐻B2, plus St.

• ℎB = St.

• 𝑉B = 𝑉B1 ∪ 𝑉B2, which allows data sharing between B1 and B2.

• 𝐹B gathers together the operations in 𝐹B1 and 𝐹B2, and adds a set of new
behavioural operations, as follows:

– for each component Bi, a ‘projection’ 𝜋𝑖 ∶ ℎB → ℎBi;
– for each action 𝜎 ∈ (BFBi)ℎBi𝑤→ℎBi

, a B-action 𝜎𝑖 ∶ ℎB𝑤 → ℎB;3

– for each observation 𝜁 ∈ (BFBi)ℎBi𝑤→𝑠, a B-observation 𝜁𝑖 ∶ ℎB𝑤 → 𝑠.

• BFB extends BFB1 and BFB2 with the projections (one for each component),
B-actions, and B-observations described above.

• 𝐸B adds the following quantified equations to the axioms of B1 and B2:
– ∀{𝑋, 𝑊} ⋅ 𝜋𝑖(𝜎𝑖(𝑋, 𝑊)) = 𝜎(𝜋𝑖(𝑋), 𝑊), for 𝑖 ∈ {1, 2};
– ∀{𝑋, 𝑊} ⋅ 𝜋𝑗(𝜎𝑖(𝑋, 𝑊)) = 𝜋𝑗(𝑋), for {𝑖, 𝑗} = {1, 2};
– ∀{𝑋, 𝑊} ⋅ 𝜁𝑖(𝑋, 𝑊) = 𝜁(𝜋𝑖(𝑋), 𝑊), for 𝑖 ∈ {1, 2}.

3To simplify the notation, we write the arities of actions and observations with the hidden sort in
the head position, as in ℎB𝑤, regardless of its actual position in the arity.

12

This means that the actions originating from one component do not change the
state of the other component, hence each component can operate independently.
This axiomatization supports the terminology parallel composition.

When writing comp specifications in ascii:

• the projections 𝜋𝑖 are encoded as Bi/ℎBi; for example, B/Account;

• the actions 𝜎𝑖 are encoded as Bi/𝜎; for example, B/deposit;

• the observations 𝜁𝑖 are encoded as Bi/𝜁; for example, B/balance.

The parallel composition of two account objects

The ACCOUNT-SYS object defined in Section 2.3 as composing (ACCOUNT as A) and
(ACCOUNT as B) has four actions (two for each component) and two observations (one
for each component) declared at the compound level – in addition to the projections.
Its signature can be visualised in the following adj diagram:

AccountSys

A/Account B/Account

Nat

A/Account B/Account

A/balance
B/balance

A/deposit
B/deposit
A/withdraw
B/withdraw

All operations are generated automatically by the comp compiler. Moreover, the
compiler relates (via projections) the actions at the level of the compound object
to the actions of the component objects through the following sets of universally
quantified equations (over variables AS : AccountSys and N : Nat):

ax A/Account(A/deposit(AS, N)) = deposit(A/Account(AS), N) .
ax B/Account(B/deposit(AS, N)) = deposit(B/Account(AS), N) .
ax A/Account(A/withdraw(AS, N)) = withdraw(A/Account(AS), N) .
ax B/Account(B/withdraw(AS, N)) = withdraw(B/Account(AS), N) .

ax A/Account(B/deposit(AS, N)) = A/Account(AS) .
ax B/Account(A/deposit(AS, N)) = B/Account(AS) .
ax A/Account(B/withdraw(AS, N)) = A/Account(AS) .
ax B/Account(A/withdraw(AS, N)) = B/Account(AS) .

The observations on the compound object are just abbreviations of the observations
of the components. These are also build automatically by the comp compiler:

13

ax A/balance(AS) = balance(A/Account(AS)) .
ax B/balance(AS) = balance(B/Account(AS)) .

3.4 The semantics of synchronisation
Composition with synchronisation refines parallel composition by bringing in syn-
chronicity between components. The composition syntax syncing … signals that
we are going to add synchronisation to an existing compound object. When that
compound object is a parallel composition we may perform the two steps in only one
step by using the second variant of syncing.
Synchronising a compound object B is achieved by adding new actions at the

topmost level of B. Let B' denote the newly obtained synchronised object. Then
𝐻B' = 𝐻B, ℎB' = ℎB, and the hidden algebra specification of B' just extends the
specification of B with data sorts, the operations, and the axioms declared in the
body of the comp specification of B'.

Synchronising the parallel composition of two accounts

As an example, we add a transfer action to the bank account system ACCOUNT-SYS,
which we have previously defined as parallel composition of two accounts. Transfer
is specified as an action at the level of the compound object and models a transfer of
financial resources from the first account to the second one. The comp specification
of this object has been introduced in Section 2.4. Let us recall it:

bobj ACCOUNT-SYS-TRANSFER is
syncing ACCOUNT-SYS .
var AS : AccountSys . var N : Nat .

act transfer : AccountSys Nat -> AccountSys .
ax A/Account(transfer(AS, N)) = withdraw(A/Account(AS), N) .
ax B/Account(transfer(AS, N)) = deposit(B/Account(AS), N)

if N <= A/balance(AS) = true .
ax B/Account(transfer(AS, N)) = B/Account(AS)

if N <= A/balance(AS) = false .
endbo

The adj-diagram representation of its signature is as follows:

14

AccountSys

A/Account B/Account

Nat

A/Account B/Account

A/balance
B/balance

A/deposit
B/deposit
A/withdraw
B/withdraw

transfer

Although simple, this example showcases two important synchronisation situations:

broadcasting appears because transfer changes the states of both components, and

client-server computing appears because transfer is related to a deposit of the
account of type A by using information of an account of type B.

3.5 The semantics of indexed compositions
Static indexing

Suppose we would like to extend the parallel composition of two bank accounts
(ACCOUNT-SYS) to an undefined number of bank accounts. More generally, this means
a parallel composition of multiple copies of one object B, any number of copies. In
comp this can be achieved by writing:

bobj B' with states St is
indexing B on DATA by Idx .
…

endbo

where Idx is a sort in the data type DATA. Then

• 𝐻B' = 𝐻B ⊎ {St}.

• ℎB' = St.

• 𝑉B' = 𝑉B ∪ 𝑉DATA (where 𝑉DATA is the set of sorts of the specification DATA).

• 𝐹B' adds the operations of DATA to 𝐹B, together with:
– a parameterized behavioural ‘projection’ 𝜋∶ IdxℎB' → ℎB;
– for each action 𝜎 ∈ (BFB)ℎB𝑤→ℎB

, a B'-action 𝜎′ ∶ IdxℎB'𝑤 → ℎB';

15

– for each observation 𝜁 ∈ (BFB)ℎB𝑤→𝑠, a B'-observation 𝜁′ ∶ IdxℎB'𝑤 → 𝑠.

• BFB' adds the new behavioural operations of 𝐹B' to BFB.

• 𝐸B' adds to 𝐸B the axioms of DATA plus, for each B-action 𝜎, the sentences:
– ∀{𝑖, 𝑋, 𝑊} ⋅ 𝜋(𝑖, 𝜎′(𝑖, 𝑋, 𝑊)) = 𝜎(𝜋(𝑖, 𝑋), 𝑊);
– ∀{𝑖, 𝑗, 𝑋, 𝑊} ⋅ 𝑖 ≠ 𝑗 ⇒ 𝜋(𝑗, 𝜎′(𝑖, 𝑋, 𝑊)) = 𝜋(𝑗, 𝑋);

and for each B-observation 𝜁 the equation:
– ∀{𝑖, 𝑋, 𝑊} ⋅ 𝜁′(𝑖, 𝑋, 𝑊) = 𝜁(𝜋(𝑖, 𝑋), 𝑊).

Dynamic indexing

In this case, the set of the components may differ across different states of the
compound object. For instance, in a system of bank accounts, individual accounts
may be deleted or added to the system. The dynamics of the set of components is
managed by a special component. A specification like

bobj B' with states St is
indexing B on BOBJ by Idx .
…

endbo

should be understood and a synchronised composition of BOBJ with multiple copies
of B, where the synchronicity refers to the management of the indexing. Its semantics
refines the semantics of parallel indexed compositions as follows:

• 𝐻B' = 𝐻B ⊎ 𝐻BOBJ ⊎ {St}.

• ℎB' = St.

• 𝑉B' = 𝑉B ∪ 𝑉BOBJ.

• 𝐹B' gathers together the operations of 𝐹B and of 𝐹BOBJ, and then adds
– a parameterized behavioural ‘projection’ 𝜋B ∶ Idx ℎB' → ℎB;
– a ‘projection’ 𝜋BOBJ ∶ ℎB' → ℎBOBJ;
– for each action 𝜎 ∈ (BFB)ℎB𝑤→ℎB

, a B'-action 𝜎′ ∶ Idx ℎB'𝑤 → ℎB';
– for each action 𝜎 ∈ (BFBOBJ)ℎBOBJ𝑤→ℎBOBJ

, a B'-action 𝜎′ ∶ ℎB'𝑤 → ℎB';
– for each observation 𝜁 ∈ (BFB)ℎB𝑤→𝑠, a B'-observation 𝜁′ ∶ Idx ℎB'𝑤 → 𝑠;
– for each observation 𝜁 ∈ (BFBOBJ)ℎBOBJ𝑤→𝑠, a B'-observation 𝜁′ ∶ ℎB'𝑤 → 𝑠.

• BFB' consists of the above behavioural operations added to BFB and BFBOBJ.

16

• 𝐸B' gathers together 𝐸B and 𝐸BOBJ, and also adds the following sentences:
– ∀{𝑋, 𝑊} ⋅ 𝜋BOBJ(𝜎′(𝑋, 𝑊)) = 𝜎(𝜋BOBJ(𝑋), 𝑊), for each BOBJ-action 𝜎;
– ∀{𝑋, 𝑊} ⋅ 𝜋BOBJ(𝜎′(𝑋, 𝑊)) = 𝜋BOBJ(𝑋), for each B-action 𝜎;
– ∀{𝑋, 𝑊} ⋅ 𝜁′(𝑋, 𝑊) = 𝜁(𝜋BOBJ(𝑋), 𝑊), for each BOBJ-observation 𝜁;
– ∀{𝑖, 𝑋, 𝑊} ⋅ 𝜁′(𝑖, 𝑋, 𝑊) = 𝜁(𝜋B(𝑖, 𝑋), 𝑊), for each B-observation 𝜁.

When writing indexed comp specifications in ascii:

• the projections 𝜋 and 𝜋B are encoded as B/ℎB;

• the projection 𝜋BOBJ is encoded as BOBJ/ℎBOBJ;

• the actions 𝜎′ ∶ Idx ℎB'𝑤 → ℎB' are encoded as B/𝜎;

• the actions 𝜎′ ∶ ℎB'𝑤 → ℎB' are encoded as BOBJ/𝜎;

• the observations 𝜁′ ∶ Idx ℎB'𝑤 → 𝑠 are encoded as B/𝜁;

• the observations 𝜁′ ∶ ℎB'𝑤 → 𝑠 are encoded as BOBJ/𝜁.

4 Specification and verification methodologies
4.1 The methodology of specifying component-free objects
There is a freedom in the way component-free objects are specified that contrasts
with the rather rigid specification methodologies for composing objects. However,
the following methodology is often used when specifying component-free objects, say
B. It follows the principle that after applying any B-action we are able for all possible
cases to evaluate all observations on the result B-state. Mathematically, this means
that 𝐸B contains only the following groups of (possibly conditional) equations:

• For any B-action 𝜎∶ ℎB𝑤 → ℎB and B-observation 𝜁 ∶ ℎB𝑤′ → 𝑣, 𝐸B includes

{∀{𝑋, 𝑊, 𝑊 ′} ⋅ 𝐶𝑘
𝜎,𝜁 ⇒ 𝜁(𝜎(𝑋, 𝑊)) = 𝜏𝑘

𝜎,𝜁 ∣ 1 ≤ 𝑘 ≤ 𝑛𝜎,𝜁}

where 𝜏𝑘
𝜎,𝜁 is a term and 𝐶𝑘

𝜎,𝜁 is a condition, neither of them containing any
B-action, and such that for each B-algebra 𝐴 we have:

𝐴 ⊧ ∀{𝑋, 𝑊, 𝑊 ′} ⋅ ⋁
𝑘

𝐶𝑘
𝜎,𝜁 (completeness)

𝐴 ⊧ ∀{𝑋, 𝑊, 𝑊 ′} ⋅ ¬(𝐶𝑘
𝜎,𝜁 ∧ 𝐶𝑘′

𝜎,𝜁) (disjointness)

• For any B-constant 𝑐 and each B-observation 𝜁, a similar set of axioms like
above for B-actions, but now the 𝜏’s are data terms.

17

This methodology allows us to reduce the (rather difficult, in general) problem of
verifying whether two states are behaviourally equivalent to a much simpler check of
whether all observations yield the same outcome when applied to the two states.

Revisiting the bank-account specification

To illustrate the principle, let us consider once more the ACCOUNT object defined in
Section 3.2. The simplest ACCOUNT-algebra, which we denote by 𝑀, implements only
a minimal information, namely the current balance:

• 𝑀Account = 𝜔 = {0, 1, 2, … }, the set of the natural numbers;

• 𝑀 interprets the entities of the imported module NAT as the common sets of
numbers with their common operations (addition, subtraction, etc.);

• 𝑀deposit(𝑎, 𝑛) = 𝑎 + 𝑛;

• 𝑀withdraw(𝑎, 𝑛) = {
𝑎 − 𝑛, when 𝑛 ≤ 𝑎,
𝑎, otherwise;

• 𝑀balance(𝑎) = 𝑎.

A more complex ACCOUNT-algebra 𝑀 ′ may implement more information: for instance,
the history of all actions on the account. This corresponds to the following situation:

• the imported data (NAT) is interpreted in the standard way, like 𝑀 above does;

• 𝑀 ′
Account consists of all lists 𝑎 of integers such that 𝑆(𝑎) ≥ 0, where 𝑆(𝑎)

represents the sum of all elements of 𝑎;

• 𝑀 ′
deposit(𝑎, 𝑛) = (𝑛 𝑎);

• 𝑀 ′
withdraw(𝑎, 𝑛) = {

(−𝑛 𝑎), when 𝑆(𝑎) ≤ 𝑛,
𝑎, otherwise;

• 𝑀 ′
balance(𝑎) = 𝑆(𝑎).

Many other ACCOUNT-algebras are possible. For instance a model ‘in-between’ 𝑀
and 𝑀 ′ may store only the account balance and the number of actions performed.
Regardless of which algebra we choose, the comp methodology provides a simple
and intuitive characterization of behavioural equivalences.

Since the specification of ACCOUNT conforms to the above methodology for component-
free objects, it follows that two accounts (in any ACCOUNT-algebra) are behaviourally
equivalent if and only if the have the same balance. In particular, we have:

In the algebra 𝑀: 𝑎 ∼𝑀 𝑎′ if and only if 𝑎 = 𝑎′.

18

In the algebra 𝑀 ′: 𝑎 ∼𝑀′ 𝑎′ if and only if 𝑆(𝑎) = 𝑆(𝑎′).

The following section sets the basis for more complex methodologies meant to
facilitate a lifting of this characterization from base to compound objects.

4.2 The compositionality of the algebras
Consider the simple parallel composition of two objects, B1 and B2, and let B denote
the compound object. Then the algebras of B and the algebras of the component
objects B1 and B2 are related by the following important properties:

1. Given any B-algebra 𝐴, if we consider 𝐴1 and 𝐴2 the reducts of 𝐴 that interpret
only the syntactic entities of B1 and B2, respectively, then 𝐴1 is a B1-algebra
and 𝐴2 is a B2-algebra.

2. Conversely, given a B1-algebra 𝐴1 and a B2-algebra 𝐴2 that share the same
interpretations of data types and data operations that are common to B1 and
B2, there exists a ‘standard’ B-algebra 𝐴 that expands both 𝐴1 and 𝐴2. The
full mathematical details of this result can be found in [2]. Here, we merely
recall the most important bits of the definition of 𝐴:
• 𝐴ℎB

= 𝐴ℎB1
× 𝐴ℎB2

, i.e., the Cartesian product of the two state spaces;
• for each 𝑖 ∈ {1, 2}, 𝐴𝜋𝑖

(𝑎1, 𝑎2) = 𝑎𝑖, thus justifying the term ‘projection’;
• for each B1-action 𝜎, 𝐴𝜎1

((𝑎1, 𝑎2), 𝑊) = ((𝐴1)𝜎(𝑎1, 𝑊), 𝑎2);
• for each B2-action 𝜎, 𝐴𝜎2

((𝑎1, 𝑎2), 𝑊) = (𝑎1, (𝐴2)𝜎(𝑎2, 𝑊)).

3. Within the context of the previous properties, the behavioural equivalence on
𝐴 is the conjunction of the behavioural equivalences of 𝐴1 and on 𝐴2. More
precisely, for any elements 𝑎, 𝑎′ ∈ 𝐴ℎB

, we have:

𝑎 ∼ 𝑎′ if and only if 𝜋1(𝑎) ∼ 𝜋1(𝑎′) and 𝜋2(𝑎) ∼ 𝜋2(𝑎′).

These three properties have been developed mathematically in [2]. While the former
two properties express a semantical correctness of simple parallel compositions, the
latter one represents the foundation for the comp verification method.

4.3 Enhancing simple parallel compositions
After a composing declaration, the comp grammar allows for declarations of other
actions, observations, or just operations, and also of other sentences than those
presented above. The comp specification of parallel composition considers two
categories of such declarations motivated by the following situations:

19

• The necessity to be able to use observations on the components directly at the
compound level.

• The necessity to initialise the compound object through the initialisation of its
components.

Such enhancements have to preserve the three semantic properties discussed above.
This is achieved by observing the following set of rules:

• No additional B-actions (other than the predefined ones) can be declared.

• When specifying a B-observation 𝜁 we write one equation of the form

∀{𝑋, 𝑊} ⋅ 𝜁(𝑋, 𝑊) = 𝑐𝜁[𝜋𝑖(𝑋)]

where 𝑐𝜁[𝑧] is a Bi-context (which means that the sort of the variable 𝑧 is ℎBi).

• For each constant 𝑐 of sort ℎB and each 𝑖 ∈ {1, 2}, we should write an equation
of the form 𝜋𝑖(𝑐) = 𝑐𝑖, where 𝑐𝑖 is a constant of sort ℎBi.

• Besides the above equations, no other sentences should be introduced.

4.4 Equivalence, associativity, and commutativity of parallel compositions
The three semantic properties mentioned in Section 4.2 are common to all types of
behavioural-object compositions available in comp. However, parallel compositions
enjoy some distinctive additional properties that are generally characteristic to the
phenomenon of parallelism in computation. The mathematical details of these
properties can be found in [2]; here, we just present them rather informally.
The first such property is a preliminary one, and concerns only behavioural

objects, not necessarily having correspondents in other concurrency formalisms.
Let us say that two behavioural objects 𝐵 and 𝐵′ are equivalent when there is
a one-one correspondence between 𝐵-algebras and 𝐵′-algebras that preserves the
interpretations of the states (designated by the sorts ℎ𝐵 and ℎ𝐵′) as well as the
behavioural equivalence relation on states. In fact, by this equivalence we abstract
behavioural objects to their essence, their states at the compound level, and therefore
ignore their components. If we do that, we find that:

Any two comp specifications of a parallel composition of two objects
determine equivalent compound objects.

The second property is a commutativity property:

In a parallel composition, the order of the components is immaterial.
That is, by changing their order we get equivalent compound objects.

20

The third property is an associativity property. Assume we have three objects: 𝐵1,
𝐵2, and 𝐵3. We have three ways to compose them:

1. First compose 𝐵1 and 𝐵2 to get an object 𝐵12, then compose 𝐵12 with 𝐵3.

B(12)3

B12 B3

B1 B2

2. First compose 𝐵2 with 𝐵3 to get an object 𝐵23, then compose 𝐵1 with 𝐵23.

B(12)3

B23B1

B2 B3

3. Compose 𝐵1, 𝐵2, and 𝐵3 simultaneously.

B(12)3

B1 B2 B3

Then all three parallel compositions above yield equivalent compound objects.

4.5 The methodology of synchronisation
Consider the following synchronization of an existing compound object B:

bobj B' is
syncing B .
…

endbo

21

According to this methodology, the specification of B' has to conform to a set of
rules that guarantee the three properties of Section 4.2. The meaning of these rules
is that each synchronisation action may affect all components, and its effect on each
component can be described as an effect of a local action. Moreover, these effects
may depend on cases, which do not overlap and which cover all possible situations.
The set of rules for synchronisation are as follows:

• Except for data declarations (sorts and operations), the signature declarations
in B' may add only actions on the (hidden) sort ℎB' = ℎB.

• For each B'-action 𝜎 and each component B𝑖 of B there is a set of quantified,
potentially conditional, equations of the form:

{∀{𝑋, 𝑊} ⋅ 𝐶𝑘
𝜎,𝑖 ⇒ (𝜋𝑖(𝜎(𝑋, 𝑊)) = 𝜏𝑘

𝜎,𝑖[𝜋𝑖(𝑋)]) ∣ 1 ≤ 𝑘 ≤ 𝑛𝜎,𝑖}

where:
– each 𝜏𝑘

𝜎,𝑖 is a B𝑖-context or a B𝑖-constant, and

– 𝐶𝑘
𝜎,𝑖 is a quantifier-free sentence formed from strict equations whose

members are either data terms or terms of the form 𝑐[𝜋𝑗(𝑋)], where 𝑐[𝑧]
is a behavioural context

such that for each B-algebra 𝐴 we have:

𝐴 ⊧ ∀{𝑋, 𝑊} ⋅ ⋁
𝑘

𝐶𝑘
𝜎,𝑖 (completeness)

𝐴 ⊧ ∀{𝑋, 𝑊} ⋅ ¬(𝐶𝑘
𝜎,𝑖 ∧ 𝐶𝑘

𝜎,𝑖) (disjointness)

• The comp specification of B' does not contain any other sentences.

Revisiting the synchronized composition of two accounts

Now let us see in detail how the methodological rules for specifying synchronicity in
comp are observed in the specification of ACCOUNT-SYS-TRANSFER:

• B is ACCOUNT-SYS while B' is ACCOUNT-SYS-TRANSFER.

• B' declares only one (synchronisation) action, namely transfer.

• There is only one axiom for transfer corresponding to the first account. This
is unconditional, which means that 𝐶1

transfer,1 is just true.

• The term 𝜏1
transfer,1 is withdraw(𝑧, 𝑁).

• There are two equations for transfer corresponding to the second account.
– The term 𝜏1

transfer,2 is just 𝑧, a variable.

22

– 𝐶1
transfer,2 is 𝑁 ≤ A/balance(AS), which as equation is

(𝑁 ≤ A/balance(AS)) = true

which in turn can be written as

(𝑁 ≤ balance(A/Account(AS))) = true

The left-hand side of this equation is a term of the form 𝑐[𝜋𝑗(𝑋)] while
the right-hand side is a data term (the predefined constant true).

– 𝜏2
transfer,2 is deposit(𝑧, 𝑁).

– 𝐶2
transfer,2 is 𝑁 ≰ A/balance(AS), which can be framed in terms of the

methodological conditions like we did for 𝐶1
transfer,2.

Note that the completeness and the disjointness conditions are trivially fulfilled for
both components. In the first case, that is because there is only one axiom whose
condition of true; and in the second case, the natural-number relations 𝑥 ≤ 𝑦 and
𝑥 ≰ 𝑦 are, of course, both disjoint and complementary.

4.6 The methodology of indexed compositions
For indexed compositions, the three properties of Section 4.2 hold in a suitably
adapted form. For instance, the compositionality of behavioural equivalences becomes:

𝑎 ∼ 𝑎′ if and only if 𝜋(𝑖, 𝑎) ∼ 𝜋(𝑖, 𝑎′) for all indices 𝑖.

A static system of multiple bank accounts

A comp specification of a countable parallel composition of accounts is as follows:

bobj ACCOUNT-SYS-MULT with states AccountSys is
indexing ACCOUNT on NAT by Nat .

endbo

This leads to the following adj-diagram for ACCOUNT-SYS-MULT:

23

AccountSys

Account

Nat

Account

balance

deposit
withdraw

A dynamic system of bank accounts

The static indexed parallel composition of bank accounts can be refined to a dynamic
composition in which accounts can be added or deleted to the system by using the
following user-database object for managing the indexing.

bobj USER-DB with states UserDB is
protecting UID .
vars U, U' : UId . var DB : UserDB .

op empty : () -> UserDB .
obs _in_ : UId UserDB -> Bool .
act add : UId UserDB -> UserDB .
act delete : UId UserDB -> UserDB .

ax U in empty = false .
ax U in add(U', DB) = (U == U') or (U in DB) .
ax U in delete(U', DB) = (U =/= U') and (U in DB) .

endbo

In this case, the indexing declaration

bobj ACCOUNT-SYS-DYN with states AccountSys is
indexing ACCOUNT on USER-DB by UId .

endbo

determines the following projections:

AccountSys

UserDB Account

UId

UserDB Account

24

The equations for the USER-DB actions are:

ax UserDB(add(U, AS)) = add(U, UserDB(AS)) .
ax Account(I, add(U, AS)) = init-account if I = U .
ax Account(I, add(U, AS)) = Account(I, AS) if not I = U .
ax UserDB(delete(U, AS)) = delete(U, UserDB(AS)) .
ax Account(I, delete(U, AS)) = no-account if I = U .
ax Account(I, delete(U, AS)) = Account(I, AS) if not I = U .

Note that, in this case, the object ACCOUNT is enhanced with two constants, init-
account and no-account, whose observed values are as follows:

ax balance(init-account) = 0 .
ax balance(no-account) = 0 .

The equations for the ACCOUNT actions are as follows:

ax UserDB(deposit(AS, U, N)) = UserDB(AS) .
ax Account(I, deposit(AS, U, N)) = Account(I, AS)

if not I = U or (U in UserDB(AS)) = false .
ax Account(I, deposit(AS, U, N)) = deposit(Account(I, AS), N)

if I = U and (U in UserDB(AS)) = true .
ax UserDB(withdraw(AS, U, N)) = UserDB(AS) .
ax Account(I, withdraw(AS, U, N)) = Account(I, AS)

if not I = U or (U in UserDB(AS)) = false .
ax Account(I, withdraw(AS, U, N)) = withdraw(Account(I, AS), N)

if I = U and (U in UserDB(AS)) = true .

We may also add various synchronization actions to ACCOUNT-SYS-DYN, such as a
transfer between any two accounts:

act transfer : AccountSys UId UId Nat -> AccountSys .

References
[1] Manuel Clavel, Francisco Durán, Steven Eker, Patrick Lincoln, Narciso Martí-

Oliet, José Meseguer, and Carolyn L. Talcott, editors. All About Maude - A
High-Performance Logical Framework, How to Specify, Program and Verify
Systems in Rewriting Logic, volume 4350 of Lecture Notes in Computer Science.
Springer, 2007.

25

[2] Răzvan Diaconescu. Behavioural specification for hierarchical object composition.
Theor. Comput. Sci., 343(3):305–331, 2005.

[3] Răzvan Diaconescu and Kokichi Futatsugi. Behavioural coherence in object-
oriented algebraic specification. J. Univers. Comput. Sci., 6(1):74–96, 2000.

[4] Răzvan Diaconescu and Kokichi Futatsugi. Logical foundations of cafeobj. Theor.
Comput. Sci., 285(2):289–318, 2002.

[5] Razvan Diaconescu and Ionut Tutu. On the algebra of structured specifications.
Theor. Comput. Sci., 412(28):3145–3174, 2011.

[6] Joseph A. Goguen and Razvan Diaconescu. Towards an algebraic semantics for
the object paradigm. In Hartmut Ehrig, editor, Recent Trends in Data Type
Specification, 9th Workshop on Specification of Abstract Data Types Joint with
the 4th COMPASS Workshop, Caldes de Malavella, Spain, October 26-30, 1992,
Selected Papers, volume 785 of Lecture Notes in Computer Science, pages 1–29.
Springer, 1992.

[7] Joseph A. Goguen and Grant Malcolm. A hidden agenda. Theor. Comput. Sci.,
245(1):55–101, 2000.

[8] Rolf Hennicker and Michel Bidoit. Observational logic. In Armando Martin Hae-
berer, editor, Algebraic Methodology and Software Technology, 7th International
Conference, AMAST ’98, Amazonia, Brasil, January 4-8, 1999, Proceedings,
volume 1548 of Lecture Notes in Computer Science, pages 263–277. Springer,
1998.

[9] Horst Reichel. Behavioural equivalence – a unifying concept for initial and final
specifications. In Proceedings, Third Hungarian Computer Science Conference.
Akademiai Kiado, 1981.

[10] Horst Reichel. Initial Computability, Algebraic Specifications, and Partial
Algebras. Clarendon, 1987.

[11] Grigore Roşu. Hidden Logic. PhD thesis, University of California at San Diego,
2000.

[12] Donald Sannella and Andrzej Tarlecki. Foundations of Algebraic Specification
and Formal Software Development. Monographs in Theoretical Computer Science.
An EATCS Series. Springer, 2012.

26

	Mathematical foundations
	Many-sorted algebra
	Hidden algebra

	Syntax
	Data types
	Objects
	Parallel compositions
	Synchronized compositions
	Indexed compositions

	Semantics
	Behavioural objects
	The semantics of component-free specifications
	The semantics of parallel compositions
	The semantics of synchronisation
	The semantics of indexed compositions

	Specification and verification methodologies
	The methodology of specifying component-free objects
	The compositionality of the algebras
	Enhancing simple parallel compositions
	Equivalence, associativity, and commutativity of parallel compositions
	The methodology of synchronisation
	The methodology of indexed compositions

